1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 #include <sys/sdt.h> 51 52 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 53 "struct mbuf *", "mbufinfo_t *", 54 "uint32_t", "uint32_t", 55 "uint16_t", "uint16_t", 56 "uint32_t", "uint32_t", 57 "uint32_t", "uint32_t"); 58 59 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "struct mbuf *", "mbufinfo_t *"); 63 64 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 65 "uint32_t", "uint32_t", 66 "uint16_t", "uint16_t", 67 "struct mbuf *", "mbufinfo_t *"); 68 69 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 70 "uint32_t", "uint32_t", 71 "uint16_t", "uint16_t", 72 "uint32_t", "uint32_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 76 "struct mbuf *", "mbufinfo_t *", 77 "uint32_t", "uint32_t", 78 "uint32_t", "uint32_t"); 79 80 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 81 "struct mbuf *", "mbufinfo_t *", 82 "uint32_t", "uint32_t", 83 "uint32_t", "uint32_t", 84 "void*", "void*"); 85 86 SDT_PROBE_DEFINE(sdt, , , m__cljset); 87 88 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 89 "struct mbuf *", "mbufinfo_t *"); 90 91 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 92 "struct mbuf *", "mbufinfo_t *"); 93 94 #include <security/mac/mac_framework.h> 95 96 int max_linkhdr; 97 int max_protohdr; 98 int max_hdr; 99 int max_datalen; 100 #ifdef MBUF_STRESS_TEST 101 int m_defragpackets; 102 int m_defragbytes; 103 int m_defraguseless; 104 int m_defragfailure; 105 int m_defragrandomfailures; 106 #endif 107 108 /* 109 * sysctl(8) exported objects 110 */ 111 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 112 &max_linkhdr, 0, "Size of largest link layer header"); 113 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 114 &max_protohdr, 0, "Size of largest protocol layer header"); 115 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 116 &max_hdr, 0, "Size of largest link plus protocol header"); 117 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 118 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 119 #ifdef MBUF_STRESS_TEST 120 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 121 &m_defragpackets, 0, ""); 122 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 123 &m_defragbytes, 0, ""); 124 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 125 &m_defraguseless, 0, ""); 126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 127 &m_defragfailure, 0, ""); 128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 129 &m_defragrandomfailures, 0, ""); 130 #endif 131 132 /* 133 * Ensure the correct size of various mbuf parameters. It could be off due 134 * to compiler-induced padding and alignment artifacts. 135 */ 136 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 137 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 138 139 /* 140 * mbuf data storage should be 64-bit aligned regardless of architectural 141 * pointer size; check this is the case with and without a packet header. 142 */ 143 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 144 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 145 146 /* 147 * While the specific values here don't matter too much (i.e., +/- a few 148 * words), we do want to ensure that changes to these values are carefully 149 * reasoned about and properly documented. This is especially the case as 150 * network-protocol and device-driver modules encode these layouts, and must 151 * be recompiled if the structures change. Check these values at compile time 152 * against the ones documented in comments in mbuf.h. 153 * 154 * NB: Possibly they should be documented there via #define's and not just 155 * comments. 156 */ 157 #if defined(__LP64__) 158 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 159 CTASSERT(sizeof(struct pkthdr) == 56); 160 CTASSERT(sizeof(struct m_ext) == 48); 161 #else 162 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 163 CTASSERT(sizeof(struct pkthdr) == 48); 164 CTASSERT(sizeof(struct m_ext) == 28); 165 #endif 166 167 /* 168 * Assert that the queue(3) macros produce code of the same size as an old 169 * plain pointer does. 170 */ 171 #ifdef INVARIANTS 172 static struct mbuf m_assertbuf; 173 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 174 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 175 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 176 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 177 #endif 178 179 /* 180 * Attach the cluster from *m to *n, set up m_ext in *n 181 * and bump the refcount of the cluster. 182 */ 183 void 184 mb_dupcl(struct mbuf *n, struct mbuf *m) 185 { 186 volatile u_int *refcnt; 187 188 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 189 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 190 191 n->m_ext = m->m_ext; 192 n->m_flags |= M_EXT; 193 n->m_flags |= m->m_flags & M_RDONLY; 194 195 /* See if this is the mbuf that holds the embedded refcount. */ 196 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 197 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 198 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 199 } else { 200 KASSERT(m->m_ext.ext_cnt != NULL, 201 ("%s: no refcounting pointer on %p", __func__, m)); 202 refcnt = m->m_ext.ext_cnt; 203 } 204 205 if (*refcnt == 1) 206 *refcnt += 1; 207 else 208 atomic_add_int(refcnt, 1); 209 } 210 211 void 212 m_demote_pkthdr(struct mbuf *m) 213 { 214 215 M_ASSERTPKTHDR(m); 216 217 m_tag_delete_chain(m, NULL); 218 m->m_flags &= ~M_PKTHDR; 219 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 220 } 221 222 /* 223 * Clean up mbuf (chain) from any tags and packet headers. 224 * If "all" is set then the first mbuf in the chain will be 225 * cleaned too. 226 */ 227 void 228 m_demote(struct mbuf *m0, int all, int flags) 229 { 230 struct mbuf *m; 231 232 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 233 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 234 __func__, m, m0)); 235 if (m->m_flags & M_PKTHDR) 236 m_demote_pkthdr(m); 237 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags); 238 } 239 } 240 241 /* 242 * Sanity checks on mbuf (chain) for use in KASSERT() and general 243 * debugging. 244 * Returns 0 or panics when bad and 1 on all tests passed. 245 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 246 * blow up later. 247 */ 248 int 249 m_sanity(struct mbuf *m0, int sanitize) 250 { 251 struct mbuf *m; 252 caddr_t a, b; 253 int pktlen = 0; 254 255 #ifdef INVARIANTS 256 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 257 #else 258 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 259 #endif 260 261 for (m = m0; m != NULL; m = m->m_next) { 262 /* 263 * Basic pointer checks. If any of these fails then some 264 * unrelated kernel memory before or after us is trashed. 265 * No way to recover from that. 266 */ 267 a = M_START(m); 268 b = a + M_SIZE(m); 269 if ((caddr_t)m->m_data < a) 270 M_SANITY_ACTION("m_data outside mbuf data range left"); 271 if ((caddr_t)m->m_data > b) 272 M_SANITY_ACTION("m_data outside mbuf data range right"); 273 if ((caddr_t)m->m_data + m->m_len > b) 274 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 275 276 /* m->m_nextpkt may only be set on first mbuf in chain. */ 277 if (m != m0 && m->m_nextpkt != NULL) { 278 if (sanitize) { 279 m_freem(m->m_nextpkt); 280 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 281 } else 282 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 283 } 284 285 /* packet length (not mbuf length!) calculation */ 286 if (m0->m_flags & M_PKTHDR) 287 pktlen += m->m_len; 288 289 /* m_tags may only be attached to first mbuf in chain. */ 290 if (m != m0 && m->m_flags & M_PKTHDR && 291 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 292 if (sanitize) { 293 m_tag_delete_chain(m, NULL); 294 /* put in 0xDEADC0DE perhaps? */ 295 } else 296 M_SANITY_ACTION("m_tags on in-chain mbuf"); 297 } 298 299 /* M_PKTHDR may only be set on first mbuf in chain */ 300 if (m != m0 && m->m_flags & M_PKTHDR) { 301 if (sanitize) { 302 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 303 m->m_flags &= ~M_PKTHDR; 304 /* put in 0xDEADCODE and leave hdr flag in */ 305 } else 306 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 307 } 308 } 309 m = m0; 310 if (pktlen && pktlen != m->m_pkthdr.len) { 311 if (sanitize) 312 m->m_pkthdr.len = 0; 313 else 314 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 315 } 316 return 1; 317 318 #undef M_SANITY_ACTION 319 } 320 321 /* 322 * Non-inlined part of m_init(). 323 */ 324 int 325 m_pkthdr_init(struct mbuf *m, int how) 326 { 327 #ifdef MAC 328 int error; 329 #endif 330 m->m_data = m->m_pktdat; 331 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 332 #ifdef MAC 333 /* If the label init fails, fail the alloc */ 334 error = mac_mbuf_init(m, how); 335 if (error) 336 return (error); 337 #endif 338 339 return (0); 340 } 341 342 /* 343 * "Move" mbuf pkthdr from "from" to "to". 344 * "from" must have M_PKTHDR set, and "to" must be empty. 345 */ 346 void 347 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 348 { 349 350 #if 0 351 /* see below for why these are not enabled */ 352 M_ASSERTPKTHDR(to); 353 /* Note: with MAC, this may not be a good assertion. */ 354 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 355 ("m_move_pkthdr: to has tags")); 356 #endif 357 #ifdef MAC 358 /* 359 * XXXMAC: It could be this should also occur for non-MAC? 360 */ 361 if (to->m_flags & M_PKTHDR) 362 m_tag_delete_chain(to, NULL); 363 #endif 364 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 365 if ((to->m_flags & M_EXT) == 0) 366 to->m_data = to->m_pktdat; 367 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 368 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 369 from->m_flags &= ~M_PKTHDR; 370 } 371 372 /* 373 * Duplicate "from"'s mbuf pkthdr in "to". 374 * "from" must have M_PKTHDR set, and "to" must be empty. 375 * In particular, this does a deep copy of the packet tags. 376 */ 377 int 378 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 379 { 380 381 #if 0 382 /* 383 * The mbuf allocator only initializes the pkthdr 384 * when the mbuf is allocated with m_gethdr(). Many users 385 * (e.g. m_copy*, m_prepend) use m_get() and then 386 * smash the pkthdr as needed causing these 387 * assertions to trip. For now just disable them. 388 */ 389 M_ASSERTPKTHDR(to); 390 /* Note: with MAC, this may not be a good assertion. */ 391 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 392 #endif 393 MBUF_CHECKSLEEP(how); 394 #ifdef MAC 395 if (to->m_flags & M_PKTHDR) 396 m_tag_delete_chain(to, NULL); 397 #endif 398 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 399 if ((to->m_flags & M_EXT) == 0) 400 to->m_data = to->m_pktdat; 401 to->m_pkthdr = from->m_pkthdr; 402 SLIST_INIT(&to->m_pkthdr.tags); 403 return (m_tag_copy_chain(to, from, how)); 404 } 405 406 /* 407 * Lesser-used path for M_PREPEND: 408 * allocate new mbuf to prepend to chain, 409 * copy junk along. 410 */ 411 struct mbuf * 412 m_prepend(struct mbuf *m, int len, int how) 413 { 414 struct mbuf *mn; 415 416 if (m->m_flags & M_PKTHDR) 417 mn = m_gethdr(how, m->m_type); 418 else 419 mn = m_get(how, m->m_type); 420 if (mn == NULL) { 421 m_freem(m); 422 return (NULL); 423 } 424 if (m->m_flags & M_PKTHDR) 425 m_move_pkthdr(mn, m); 426 mn->m_next = m; 427 m = mn; 428 if (len < M_SIZE(m)) 429 M_ALIGN(m, len); 430 m->m_len = len; 431 return (m); 432 } 433 434 /* 435 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 436 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 437 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 438 * Note that the copy is read-only, because clusters are not copied, 439 * only their reference counts are incremented. 440 */ 441 struct mbuf * 442 m_copym(struct mbuf *m, int off0, int len, int wait) 443 { 444 struct mbuf *n, **np; 445 int off = off0; 446 struct mbuf *top; 447 int copyhdr = 0; 448 449 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 450 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 451 MBUF_CHECKSLEEP(wait); 452 if (off == 0 && m->m_flags & M_PKTHDR) 453 copyhdr = 1; 454 while (off > 0) { 455 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 456 if (off < m->m_len) 457 break; 458 off -= m->m_len; 459 m = m->m_next; 460 } 461 np = ⊤ 462 top = 0; 463 while (len > 0) { 464 if (m == NULL) { 465 KASSERT(len == M_COPYALL, 466 ("m_copym, length > size of mbuf chain")); 467 break; 468 } 469 if (copyhdr) 470 n = m_gethdr(wait, m->m_type); 471 else 472 n = m_get(wait, m->m_type); 473 *np = n; 474 if (n == NULL) 475 goto nospace; 476 if (copyhdr) { 477 if (!m_dup_pkthdr(n, m, wait)) 478 goto nospace; 479 if (len == M_COPYALL) 480 n->m_pkthdr.len -= off0; 481 else 482 n->m_pkthdr.len = len; 483 copyhdr = 0; 484 } 485 n->m_len = min(len, m->m_len - off); 486 if (m->m_flags & M_EXT) { 487 n->m_data = m->m_data + off; 488 mb_dupcl(n, m); 489 } else 490 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 491 (u_int)n->m_len); 492 if (len != M_COPYALL) 493 len -= n->m_len; 494 off = 0; 495 m = m->m_next; 496 np = &n->m_next; 497 } 498 499 return (top); 500 nospace: 501 m_freem(top); 502 return (NULL); 503 } 504 505 /* 506 * Copy an entire packet, including header (which must be present). 507 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 508 * Note that the copy is read-only, because clusters are not copied, 509 * only their reference counts are incremented. 510 * Preserve alignment of the first mbuf so if the creator has left 511 * some room at the beginning (e.g. for inserting protocol headers) 512 * the copies still have the room available. 513 */ 514 struct mbuf * 515 m_copypacket(struct mbuf *m, int how) 516 { 517 struct mbuf *top, *n, *o; 518 519 MBUF_CHECKSLEEP(how); 520 n = m_get(how, m->m_type); 521 top = n; 522 if (n == NULL) 523 goto nospace; 524 525 if (!m_dup_pkthdr(n, m, how)) 526 goto nospace; 527 n->m_len = m->m_len; 528 if (m->m_flags & M_EXT) { 529 n->m_data = m->m_data; 530 mb_dupcl(n, m); 531 } else { 532 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 533 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 534 } 535 536 m = m->m_next; 537 while (m) { 538 o = m_get(how, m->m_type); 539 if (o == NULL) 540 goto nospace; 541 542 n->m_next = o; 543 n = n->m_next; 544 545 n->m_len = m->m_len; 546 if (m->m_flags & M_EXT) { 547 n->m_data = m->m_data; 548 mb_dupcl(n, m); 549 } else { 550 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 551 } 552 553 m = m->m_next; 554 } 555 return top; 556 nospace: 557 m_freem(top); 558 return (NULL); 559 } 560 561 /* 562 * Copy data from an mbuf chain starting "off" bytes from the beginning, 563 * continuing for "len" bytes, into the indicated buffer. 564 */ 565 void 566 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 567 { 568 u_int count; 569 570 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 571 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 572 while (off > 0) { 573 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 574 if (off < m->m_len) 575 break; 576 off -= m->m_len; 577 m = m->m_next; 578 } 579 while (len > 0) { 580 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 581 count = min(m->m_len - off, len); 582 bcopy(mtod(m, caddr_t) + off, cp, count); 583 len -= count; 584 cp += count; 585 off = 0; 586 m = m->m_next; 587 } 588 } 589 590 /* 591 * Copy a packet header mbuf chain into a completely new chain, including 592 * copying any mbuf clusters. Use this instead of m_copypacket() when 593 * you need a writable copy of an mbuf chain. 594 */ 595 struct mbuf * 596 m_dup(const struct mbuf *m, int how) 597 { 598 struct mbuf **p, *top = NULL; 599 int remain, moff, nsize; 600 601 MBUF_CHECKSLEEP(how); 602 /* Sanity check */ 603 if (m == NULL) 604 return (NULL); 605 M_ASSERTPKTHDR(m); 606 607 /* While there's more data, get a new mbuf, tack it on, and fill it */ 608 remain = m->m_pkthdr.len; 609 moff = 0; 610 p = ⊤ 611 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 612 struct mbuf *n; 613 614 /* Get the next new mbuf */ 615 if (remain >= MINCLSIZE) { 616 n = m_getcl(how, m->m_type, 0); 617 nsize = MCLBYTES; 618 } else { 619 n = m_get(how, m->m_type); 620 nsize = MLEN; 621 } 622 if (n == NULL) 623 goto nospace; 624 625 if (top == NULL) { /* First one, must be PKTHDR */ 626 if (!m_dup_pkthdr(n, m, how)) { 627 m_free(n); 628 goto nospace; 629 } 630 if ((n->m_flags & M_EXT) == 0) 631 nsize = MHLEN; 632 n->m_flags &= ~M_RDONLY; 633 } 634 n->m_len = 0; 635 636 /* Link it into the new chain */ 637 *p = n; 638 p = &n->m_next; 639 640 /* Copy data from original mbuf(s) into new mbuf */ 641 while (n->m_len < nsize && m != NULL) { 642 int chunk = min(nsize - n->m_len, m->m_len - moff); 643 644 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 645 moff += chunk; 646 n->m_len += chunk; 647 remain -= chunk; 648 if (moff == m->m_len) { 649 m = m->m_next; 650 moff = 0; 651 } 652 } 653 654 /* Check correct total mbuf length */ 655 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 656 ("%s: bogus m_pkthdr.len", __func__)); 657 } 658 return (top); 659 660 nospace: 661 m_freem(top); 662 return (NULL); 663 } 664 665 /* 666 * Concatenate mbuf chain n to m. 667 * Both chains must be of the same type (e.g. MT_DATA). 668 * Any m_pkthdr is not updated. 669 */ 670 void 671 m_cat(struct mbuf *m, struct mbuf *n) 672 { 673 while (m->m_next) 674 m = m->m_next; 675 while (n) { 676 if (!M_WRITABLE(m) || 677 M_TRAILINGSPACE(m) < n->m_len) { 678 /* just join the two chains */ 679 m->m_next = n; 680 return; 681 } 682 /* splat the data from one into the other */ 683 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 684 (u_int)n->m_len); 685 m->m_len += n->m_len; 686 n = m_free(n); 687 } 688 } 689 690 /* 691 * Concatenate two pkthdr mbuf chains. 692 */ 693 void 694 m_catpkt(struct mbuf *m, struct mbuf *n) 695 { 696 697 M_ASSERTPKTHDR(m); 698 M_ASSERTPKTHDR(n); 699 700 m->m_pkthdr.len += n->m_pkthdr.len; 701 m_demote(n, 1, 0); 702 703 m_cat(m, n); 704 } 705 706 void 707 m_adj(struct mbuf *mp, int req_len) 708 { 709 int len = req_len; 710 struct mbuf *m; 711 int count; 712 713 if ((m = mp) == NULL) 714 return; 715 if (len >= 0) { 716 /* 717 * Trim from head. 718 */ 719 while (m != NULL && len > 0) { 720 if (m->m_len <= len) { 721 len -= m->m_len; 722 m->m_len = 0; 723 m = m->m_next; 724 } else { 725 m->m_len -= len; 726 m->m_data += len; 727 len = 0; 728 } 729 } 730 if (mp->m_flags & M_PKTHDR) 731 mp->m_pkthdr.len -= (req_len - len); 732 } else { 733 /* 734 * Trim from tail. Scan the mbuf chain, 735 * calculating its length and finding the last mbuf. 736 * If the adjustment only affects this mbuf, then just 737 * adjust and return. Otherwise, rescan and truncate 738 * after the remaining size. 739 */ 740 len = -len; 741 count = 0; 742 for (;;) { 743 count += m->m_len; 744 if (m->m_next == (struct mbuf *)0) 745 break; 746 m = m->m_next; 747 } 748 if (m->m_len >= len) { 749 m->m_len -= len; 750 if (mp->m_flags & M_PKTHDR) 751 mp->m_pkthdr.len -= len; 752 return; 753 } 754 count -= len; 755 if (count < 0) 756 count = 0; 757 /* 758 * Correct length for chain is "count". 759 * Find the mbuf with last data, adjust its length, 760 * and toss data from remaining mbufs on chain. 761 */ 762 m = mp; 763 if (m->m_flags & M_PKTHDR) 764 m->m_pkthdr.len = count; 765 for (; m; m = m->m_next) { 766 if (m->m_len >= count) { 767 m->m_len = count; 768 if (m->m_next != NULL) { 769 m_freem(m->m_next); 770 m->m_next = NULL; 771 } 772 break; 773 } 774 count -= m->m_len; 775 } 776 } 777 } 778 779 /* 780 * Rearange an mbuf chain so that len bytes are contiguous 781 * and in the data area of an mbuf (so that mtod will work 782 * for a structure of size len). Returns the resulting 783 * mbuf chain on success, frees it and returns null on failure. 784 * If there is room, it will add up to max_protohdr-len extra bytes to the 785 * contiguous region in an attempt to avoid being called next time. 786 */ 787 struct mbuf * 788 m_pullup(struct mbuf *n, int len) 789 { 790 struct mbuf *m; 791 int count; 792 int space; 793 794 /* 795 * If first mbuf has no cluster, and has room for len bytes 796 * without shifting current data, pullup into it, 797 * otherwise allocate a new mbuf to prepend to the chain. 798 */ 799 if ((n->m_flags & M_EXT) == 0 && 800 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 801 if (n->m_len >= len) 802 return (n); 803 m = n; 804 n = n->m_next; 805 len -= m->m_len; 806 } else { 807 if (len > MHLEN) 808 goto bad; 809 m = m_get(M_NOWAIT, n->m_type); 810 if (m == NULL) 811 goto bad; 812 if (n->m_flags & M_PKTHDR) 813 m_move_pkthdr(m, n); 814 } 815 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 816 do { 817 count = min(min(max(len, max_protohdr), space), n->m_len); 818 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 819 (u_int)count); 820 len -= count; 821 m->m_len += count; 822 n->m_len -= count; 823 space -= count; 824 if (n->m_len) 825 n->m_data += count; 826 else 827 n = m_free(n); 828 } while (len > 0 && n); 829 if (len > 0) { 830 (void) m_free(m); 831 goto bad; 832 } 833 m->m_next = n; 834 return (m); 835 bad: 836 m_freem(n); 837 return (NULL); 838 } 839 840 /* 841 * Like m_pullup(), except a new mbuf is always allocated, and we allow 842 * the amount of empty space before the data in the new mbuf to be specified 843 * (in the event that the caller expects to prepend later). 844 */ 845 struct mbuf * 846 m_copyup(struct mbuf *n, int len, int dstoff) 847 { 848 struct mbuf *m; 849 int count, space; 850 851 if (len > (MHLEN - dstoff)) 852 goto bad; 853 m = m_get(M_NOWAIT, n->m_type); 854 if (m == NULL) 855 goto bad; 856 if (n->m_flags & M_PKTHDR) 857 m_move_pkthdr(m, n); 858 m->m_data += dstoff; 859 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 860 do { 861 count = min(min(max(len, max_protohdr), space), n->m_len); 862 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 863 (unsigned)count); 864 len -= count; 865 m->m_len += count; 866 n->m_len -= count; 867 space -= count; 868 if (n->m_len) 869 n->m_data += count; 870 else 871 n = m_free(n); 872 } while (len > 0 && n); 873 if (len > 0) { 874 (void) m_free(m); 875 goto bad; 876 } 877 m->m_next = n; 878 return (m); 879 bad: 880 m_freem(n); 881 return (NULL); 882 } 883 884 /* 885 * Partition an mbuf chain in two pieces, returning the tail -- 886 * all but the first len0 bytes. In case of failure, it returns NULL and 887 * attempts to restore the chain to its original state. 888 * 889 * Note that the resulting mbufs might be read-only, because the new 890 * mbuf can end up sharing an mbuf cluster with the original mbuf if 891 * the "breaking point" happens to lie within a cluster mbuf. Use the 892 * M_WRITABLE() macro to check for this case. 893 */ 894 struct mbuf * 895 m_split(struct mbuf *m0, int len0, int wait) 896 { 897 struct mbuf *m, *n; 898 u_int len = len0, remain; 899 900 MBUF_CHECKSLEEP(wait); 901 for (m = m0; m && len > m->m_len; m = m->m_next) 902 len -= m->m_len; 903 if (m == NULL) 904 return (NULL); 905 remain = m->m_len - len; 906 if (m0->m_flags & M_PKTHDR && remain == 0) { 907 n = m_gethdr(wait, m0->m_type); 908 if (n == NULL) 909 return (NULL); 910 n->m_next = m->m_next; 911 m->m_next = NULL; 912 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 913 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 914 m0->m_pkthdr.len = len0; 915 return (n); 916 } else if (m0->m_flags & M_PKTHDR) { 917 n = m_gethdr(wait, m0->m_type); 918 if (n == NULL) 919 return (NULL); 920 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 921 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 922 m0->m_pkthdr.len = len0; 923 if (m->m_flags & M_EXT) 924 goto extpacket; 925 if (remain > MHLEN) { 926 /* m can't be the lead packet */ 927 M_ALIGN(n, 0); 928 n->m_next = m_split(m, len, wait); 929 if (n->m_next == NULL) { 930 (void) m_free(n); 931 return (NULL); 932 } else { 933 n->m_len = 0; 934 return (n); 935 } 936 } else 937 M_ALIGN(n, remain); 938 } else if (remain == 0) { 939 n = m->m_next; 940 m->m_next = NULL; 941 return (n); 942 } else { 943 n = m_get(wait, m->m_type); 944 if (n == NULL) 945 return (NULL); 946 M_ALIGN(n, remain); 947 } 948 extpacket: 949 if (m->m_flags & M_EXT) { 950 n->m_data = m->m_data + len; 951 mb_dupcl(n, m); 952 } else { 953 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 954 } 955 n->m_len = remain; 956 m->m_len = len; 957 n->m_next = m->m_next; 958 m->m_next = NULL; 959 return (n); 960 } 961 /* 962 * Routine to copy from device local memory into mbufs. 963 * Note that `off' argument is offset into first mbuf of target chain from 964 * which to begin copying the data to. 965 */ 966 struct mbuf * 967 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 968 void (*copy)(char *from, caddr_t to, u_int len)) 969 { 970 struct mbuf *m; 971 struct mbuf *top = NULL, **mp = ⊤ 972 int len; 973 974 if (off < 0 || off > MHLEN) 975 return (NULL); 976 977 while (totlen > 0) { 978 if (top == NULL) { /* First one, must be PKTHDR */ 979 if (totlen + off >= MINCLSIZE) { 980 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 981 len = MCLBYTES; 982 } else { 983 m = m_gethdr(M_NOWAIT, MT_DATA); 984 len = MHLEN; 985 986 /* Place initial small packet/header at end of mbuf */ 987 if (m && totlen + off + max_linkhdr <= MLEN) { 988 m->m_data += max_linkhdr; 989 len -= max_linkhdr; 990 } 991 } 992 if (m == NULL) 993 return NULL; 994 m->m_pkthdr.rcvif = ifp; 995 m->m_pkthdr.len = totlen; 996 } else { 997 if (totlen + off >= MINCLSIZE) { 998 m = m_getcl(M_NOWAIT, MT_DATA, 0); 999 len = MCLBYTES; 1000 } else { 1001 m = m_get(M_NOWAIT, MT_DATA); 1002 len = MLEN; 1003 } 1004 if (m == NULL) { 1005 m_freem(top); 1006 return NULL; 1007 } 1008 } 1009 if (off) { 1010 m->m_data += off; 1011 len -= off; 1012 off = 0; 1013 } 1014 m->m_len = len = min(totlen, len); 1015 if (copy) 1016 copy(buf, mtod(m, caddr_t), (u_int)len); 1017 else 1018 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1019 buf += len; 1020 *mp = m; 1021 mp = &m->m_next; 1022 totlen -= len; 1023 } 1024 return (top); 1025 } 1026 1027 /* 1028 * Copy data from a buffer back into the indicated mbuf chain, 1029 * starting "off" bytes from the beginning, extending the mbuf 1030 * chain if necessary. 1031 */ 1032 void 1033 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1034 { 1035 int mlen; 1036 struct mbuf *m = m0, *n; 1037 int totlen = 0; 1038 1039 if (m0 == NULL) 1040 return; 1041 while (off > (mlen = m->m_len)) { 1042 off -= mlen; 1043 totlen += mlen; 1044 if (m->m_next == NULL) { 1045 n = m_get(M_NOWAIT, m->m_type); 1046 if (n == NULL) 1047 goto out; 1048 bzero(mtod(n, caddr_t), MLEN); 1049 n->m_len = min(MLEN, len + off); 1050 m->m_next = n; 1051 } 1052 m = m->m_next; 1053 } 1054 while (len > 0) { 1055 if (m->m_next == NULL && (len > m->m_len - off)) { 1056 m->m_len += min(len - (m->m_len - off), 1057 M_TRAILINGSPACE(m)); 1058 } 1059 mlen = min (m->m_len - off, len); 1060 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1061 cp += mlen; 1062 len -= mlen; 1063 mlen += off; 1064 off = 0; 1065 totlen += mlen; 1066 if (len == 0) 1067 break; 1068 if (m->m_next == NULL) { 1069 n = m_get(M_NOWAIT, m->m_type); 1070 if (n == NULL) 1071 break; 1072 n->m_len = min(MLEN, len); 1073 m->m_next = n; 1074 } 1075 m = m->m_next; 1076 } 1077 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1078 m->m_pkthdr.len = totlen; 1079 } 1080 1081 /* 1082 * Append the specified data to the indicated mbuf chain, 1083 * Extend the mbuf chain if the new data does not fit in 1084 * existing space. 1085 * 1086 * Return 1 if able to complete the job; otherwise 0. 1087 */ 1088 int 1089 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1090 { 1091 struct mbuf *m, *n; 1092 int remainder, space; 1093 1094 for (m = m0; m->m_next != NULL; m = m->m_next) 1095 ; 1096 remainder = len; 1097 space = M_TRAILINGSPACE(m); 1098 if (space > 0) { 1099 /* 1100 * Copy into available space. 1101 */ 1102 if (space > remainder) 1103 space = remainder; 1104 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1105 m->m_len += space; 1106 cp += space, remainder -= space; 1107 } 1108 while (remainder > 0) { 1109 /* 1110 * Allocate a new mbuf; could check space 1111 * and allocate a cluster instead. 1112 */ 1113 n = m_get(M_NOWAIT, m->m_type); 1114 if (n == NULL) 1115 break; 1116 n->m_len = min(MLEN, remainder); 1117 bcopy(cp, mtod(n, caddr_t), n->m_len); 1118 cp += n->m_len, remainder -= n->m_len; 1119 m->m_next = n; 1120 m = n; 1121 } 1122 if (m0->m_flags & M_PKTHDR) 1123 m0->m_pkthdr.len += len - remainder; 1124 return (remainder == 0); 1125 } 1126 1127 /* 1128 * Apply function f to the data in an mbuf chain starting "off" bytes from 1129 * the beginning, continuing for "len" bytes. 1130 */ 1131 int 1132 m_apply(struct mbuf *m, int off, int len, 1133 int (*f)(void *, void *, u_int), void *arg) 1134 { 1135 u_int count; 1136 int rval; 1137 1138 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1139 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1140 while (off > 0) { 1141 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1142 if (off < m->m_len) 1143 break; 1144 off -= m->m_len; 1145 m = m->m_next; 1146 } 1147 while (len > 0) { 1148 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1149 count = min(m->m_len - off, len); 1150 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1151 if (rval) 1152 return (rval); 1153 len -= count; 1154 off = 0; 1155 m = m->m_next; 1156 } 1157 return (0); 1158 } 1159 1160 /* 1161 * Return a pointer to mbuf/offset of location in mbuf chain. 1162 */ 1163 struct mbuf * 1164 m_getptr(struct mbuf *m, int loc, int *off) 1165 { 1166 1167 while (loc >= 0) { 1168 /* Normal end of search. */ 1169 if (m->m_len > loc) { 1170 *off = loc; 1171 return (m); 1172 } else { 1173 loc -= m->m_len; 1174 if (m->m_next == NULL) { 1175 if (loc == 0) { 1176 /* Point at the end of valid data. */ 1177 *off = m->m_len; 1178 return (m); 1179 } 1180 return (NULL); 1181 } 1182 m = m->m_next; 1183 } 1184 } 1185 return (NULL); 1186 } 1187 1188 void 1189 m_print(const struct mbuf *m, int maxlen) 1190 { 1191 int len; 1192 int pdata; 1193 const struct mbuf *m2; 1194 1195 if (m == NULL) { 1196 printf("mbuf: %p\n", m); 1197 return; 1198 } 1199 1200 if (m->m_flags & M_PKTHDR) 1201 len = m->m_pkthdr.len; 1202 else 1203 len = -1; 1204 m2 = m; 1205 while (m2 != NULL && (len == -1 || len)) { 1206 pdata = m2->m_len; 1207 if (maxlen != -1 && pdata > maxlen) 1208 pdata = maxlen; 1209 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1210 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1211 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1212 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1213 if (pdata) 1214 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1215 if (len != -1) 1216 len -= m2->m_len; 1217 m2 = m2->m_next; 1218 } 1219 if (len > 0) 1220 printf("%d bytes unaccounted for.\n", len); 1221 return; 1222 } 1223 1224 u_int 1225 m_fixhdr(struct mbuf *m0) 1226 { 1227 u_int len; 1228 1229 len = m_length(m0, NULL); 1230 m0->m_pkthdr.len = len; 1231 return (len); 1232 } 1233 1234 u_int 1235 m_length(struct mbuf *m0, struct mbuf **last) 1236 { 1237 struct mbuf *m; 1238 u_int len; 1239 1240 len = 0; 1241 for (m = m0; m != NULL; m = m->m_next) { 1242 len += m->m_len; 1243 if (m->m_next == NULL) 1244 break; 1245 } 1246 if (last != NULL) 1247 *last = m; 1248 return (len); 1249 } 1250 1251 /* 1252 * Defragment a mbuf chain, returning the shortest possible 1253 * chain of mbufs and clusters. If allocation fails and 1254 * this cannot be completed, NULL will be returned, but 1255 * the passed in chain will be unchanged. Upon success, 1256 * the original chain will be freed, and the new chain 1257 * will be returned. 1258 * 1259 * If a non-packet header is passed in, the original 1260 * mbuf (chain?) will be returned unharmed. 1261 */ 1262 struct mbuf * 1263 m_defrag(struct mbuf *m0, int how) 1264 { 1265 struct mbuf *m_new = NULL, *m_final = NULL; 1266 int progress = 0, length; 1267 1268 MBUF_CHECKSLEEP(how); 1269 if (!(m0->m_flags & M_PKTHDR)) 1270 return (m0); 1271 1272 m_fixhdr(m0); /* Needed sanity check */ 1273 1274 #ifdef MBUF_STRESS_TEST 1275 if (m_defragrandomfailures) { 1276 int temp = arc4random() & 0xff; 1277 if (temp == 0xba) 1278 goto nospace; 1279 } 1280 #endif 1281 1282 if (m0->m_pkthdr.len > MHLEN) 1283 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1284 else 1285 m_final = m_gethdr(how, MT_DATA); 1286 1287 if (m_final == NULL) 1288 goto nospace; 1289 1290 if (m_dup_pkthdr(m_final, m0, how) == 0) 1291 goto nospace; 1292 1293 m_new = m_final; 1294 1295 while (progress < m0->m_pkthdr.len) { 1296 length = m0->m_pkthdr.len - progress; 1297 if (length > MCLBYTES) 1298 length = MCLBYTES; 1299 1300 if (m_new == NULL) { 1301 if (length > MLEN) 1302 m_new = m_getcl(how, MT_DATA, 0); 1303 else 1304 m_new = m_get(how, MT_DATA); 1305 if (m_new == NULL) 1306 goto nospace; 1307 } 1308 1309 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1310 progress += length; 1311 m_new->m_len = length; 1312 if (m_new != m_final) 1313 m_cat(m_final, m_new); 1314 m_new = NULL; 1315 } 1316 #ifdef MBUF_STRESS_TEST 1317 if (m0->m_next == NULL) 1318 m_defraguseless++; 1319 #endif 1320 m_freem(m0); 1321 m0 = m_final; 1322 #ifdef MBUF_STRESS_TEST 1323 m_defragpackets++; 1324 m_defragbytes += m0->m_pkthdr.len; 1325 #endif 1326 return (m0); 1327 nospace: 1328 #ifdef MBUF_STRESS_TEST 1329 m_defragfailure++; 1330 #endif 1331 if (m_final) 1332 m_freem(m_final); 1333 return (NULL); 1334 } 1335 1336 /* 1337 * Defragment an mbuf chain, returning at most maxfrags separate 1338 * mbufs+clusters. If this is not possible NULL is returned and 1339 * the original mbuf chain is left in it's present (potentially 1340 * modified) state. We use two techniques: collapsing consecutive 1341 * mbufs and replacing consecutive mbufs by a cluster. 1342 * 1343 * NB: this should really be named m_defrag but that name is taken 1344 */ 1345 struct mbuf * 1346 m_collapse(struct mbuf *m0, int how, int maxfrags) 1347 { 1348 struct mbuf *m, *n, *n2, **prev; 1349 u_int curfrags; 1350 1351 /* 1352 * Calculate the current number of frags. 1353 */ 1354 curfrags = 0; 1355 for (m = m0; m != NULL; m = m->m_next) 1356 curfrags++; 1357 /* 1358 * First, try to collapse mbufs. Note that we always collapse 1359 * towards the front so we don't need to deal with moving the 1360 * pkthdr. This may be suboptimal if the first mbuf has much 1361 * less data than the following. 1362 */ 1363 m = m0; 1364 again: 1365 for (;;) { 1366 n = m->m_next; 1367 if (n == NULL) 1368 break; 1369 if (M_WRITABLE(m) && 1370 n->m_len < M_TRAILINGSPACE(m)) { 1371 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1372 n->m_len); 1373 m->m_len += n->m_len; 1374 m->m_next = n->m_next; 1375 m_free(n); 1376 if (--curfrags <= maxfrags) 1377 return m0; 1378 } else 1379 m = n; 1380 } 1381 KASSERT(maxfrags > 1, 1382 ("maxfrags %u, but normal collapse failed", maxfrags)); 1383 /* 1384 * Collapse consecutive mbufs to a cluster. 1385 */ 1386 prev = &m0->m_next; /* NB: not the first mbuf */ 1387 while ((n = *prev) != NULL) { 1388 if ((n2 = n->m_next) != NULL && 1389 n->m_len + n2->m_len < MCLBYTES) { 1390 m = m_getcl(how, MT_DATA, 0); 1391 if (m == NULL) 1392 goto bad; 1393 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1394 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1395 n2->m_len); 1396 m->m_len = n->m_len + n2->m_len; 1397 m->m_next = n2->m_next; 1398 *prev = m; 1399 m_free(n); 1400 m_free(n2); 1401 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1402 return m0; 1403 /* 1404 * Still not there, try the normal collapse 1405 * again before we allocate another cluster. 1406 */ 1407 goto again; 1408 } 1409 prev = &n->m_next; 1410 } 1411 /* 1412 * No place where we can collapse to a cluster; punt. 1413 * This can occur if, for example, you request 2 frags 1414 * but the packet requires that both be clusters (we 1415 * never reallocate the first mbuf to avoid moving the 1416 * packet header). 1417 */ 1418 bad: 1419 return NULL; 1420 } 1421 1422 #ifdef MBUF_STRESS_TEST 1423 1424 /* 1425 * Fragment an mbuf chain. There's no reason you'd ever want to do 1426 * this in normal usage, but it's great for stress testing various 1427 * mbuf consumers. 1428 * 1429 * If fragmentation is not possible, the original chain will be 1430 * returned. 1431 * 1432 * Possible length values: 1433 * 0 no fragmentation will occur 1434 * > 0 each fragment will be of the specified length 1435 * -1 each fragment will be the same random value in length 1436 * -2 each fragment's length will be entirely random 1437 * (Random values range from 1 to 256) 1438 */ 1439 struct mbuf * 1440 m_fragment(struct mbuf *m0, int how, int length) 1441 { 1442 struct mbuf *m_new = NULL, *m_final = NULL; 1443 int progress = 0; 1444 1445 if (!(m0->m_flags & M_PKTHDR)) 1446 return (m0); 1447 1448 if ((length == 0) || (length < -2)) 1449 return (m0); 1450 1451 m_fixhdr(m0); /* Needed sanity check */ 1452 1453 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1454 1455 if (m_final == NULL) 1456 goto nospace; 1457 1458 if (m_dup_pkthdr(m_final, m0, how) == 0) 1459 goto nospace; 1460 1461 m_new = m_final; 1462 1463 if (length == -1) 1464 length = 1 + (arc4random() & 255); 1465 1466 while (progress < m0->m_pkthdr.len) { 1467 int fraglen; 1468 1469 if (length > 0) 1470 fraglen = length; 1471 else 1472 fraglen = 1 + (arc4random() & 255); 1473 if (fraglen > m0->m_pkthdr.len - progress) 1474 fraglen = m0->m_pkthdr.len - progress; 1475 1476 if (fraglen > MCLBYTES) 1477 fraglen = MCLBYTES; 1478 1479 if (m_new == NULL) { 1480 m_new = m_getcl(how, MT_DATA, 0); 1481 if (m_new == NULL) 1482 goto nospace; 1483 } 1484 1485 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1486 progress += fraglen; 1487 m_new->m_len = fraglen; 1488 if (m_new != m_final) 1489 m_cat(m_final, m_new); 1490 m_new = NULL; 1491 } 1492 m_freem(m0); 1493 m0 = m_final; 1494 return (m0); 1495 nospace: 1496 if (m_final) 1497 m_freem(m_final); 1498 /* Return the original chain on failure */ 1499 return (m0); 1500 } 1501 1502 #endif 1503 1504 /* 1505 * Copy the contents of uio into a properly sized mbuf chain. 1506 */ 1507 struct mbuf * 1508 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1509 { 1510 struct mbuf *m, *mb; 1511 int error, length; 1512 ssize_t total; 1513 int progress = 0; 1514 1515 /* 1516 * len can be zero or an arbitrary large value bound by 1517 * the total data supplied by the uio. 1518 */ 1519 if (len > 0) 1520 total = min(uio->uio_resid, len); 1521 else 1522 total = uio->uio_resid; 1523 1524 /* 1525 * The smallest unit returned by m_getm2() is a single mbuf 1526 * with pkthdr. We can't align past it. 1527 */ 1528 if (align >= MHLEN) 1529 return (NULL); 1530 1531 /* 1532 * Give us the full allocation or nothing. 1533 * If len is zero return the smallest empty mbuf. 1534 */ 1535 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1536 if (m == NULL) 1537 return (NULL); 1538 m->m_data += align; 1539 1540 /* Fill all mbufs with uio data and update header information. */ 1541 for (mb = m; mb != NULL; mb = mb->m_next) { 1542 length = min(M_TRAILINGSPACE(mb), total - progress); 1543 1544 error = uiomove(mtod(mb, void *), length, uio); 1545 if (error) { 1546 m_freem(m); 1547 return (NULL); 1548 } 1549 1550 mb->m_len = length; 1551 progress += length; 1552 if (flags & M_PKTHDR) 1553 m->m_pkthdr.len += length; 1554 } 1555 KASSERT(progress == total, ("%s: progress != total", __func__)); 1556 1557 return (m); 1558 } 1559 1560 /* 1561 * Copy an mbuf chain into a uio limited by len if set. 1562 */ 1563 int 1564 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1565 { 1566 int error, length, total; 1567 int progress = 0; 1568 1569 if (len > 0) 1570 total = min(uio->uio_resid, len); 1571 else 1572 total = uio->uio_resid; 1573 1574 /* Fill the uio with data from the mbufs. */ 1575 for (; m != NULL; m = m->m_next) { 1576 length = min(m->m_len, total - progress); 1577 1578 error = uiomove(mtod(m, void *), length, uio); 1579 if (error) 1580 return (error); 1581 1582 progress += length; 1583 } 1584 1585 return (0); 1586 } 1587 1588 /* 1589 * Create a writable copy of the mbuf chain. While doing this 1590 * we compact the chain with a goal of producing a chain with 1591 * at most two mbufs. The second mbuf in this chain is likely 1592 * to be a cluster. The primary purpose of this work is to create 1593 * a writable packet for encryption, compression, etc. The 1594 * secondary goal is to linearize the data so the data can be 1595 * passed to crypto hardware in the most efficient manner possible. 1596 */ 1597 struct mbuf * 1598 m_unshare(struct mbuf *m0, int how) 1599 { 1600 struct mbuf *m, *mprev; 1601 struct mbuf *n, *mfirst, *mlast; 1602 int len, off; 1603 1604 mprev = NULL; 1605 for (m = m0; m != NULL; m = mprev->m_next) { 1606 /* 1607 * Regular mbufs are ignored unless there's a cluster 1608 * in front of it that we can use to coalesce. We do 1609 * the latter mainly so later clusters can be coalesced 1610 * also w/o having to handle them specially (i.e. convert 1611 * mbuf+cluster -> cluster). This optimization is heavily 1612 * influenced by the assumption that we're running over 1613 * Ethernet where MCLBYTES is large enough that the max 1614 * packet size will permit lots of coalescing into a 1615 * single cluster. This in turn permits efficient 1616 * crypto operations, especially when using hardware. 1617 */ 1618 if ((m->m_flags & M_EXT) == 0) { 1619 if (mprev && (mprev->m_flags & M_EXT) && 1620 m->m_len <= M_TRAILINGSPACE(mprev)) { 1621 /* XXX: this ignores mbuf types */ 1622 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1623 mtod(m, caddr_t), m->m_len); 1624 mprev->m_len += m->m_len; 1625 mprev->m_next = m->m_next; /* unlink from chain */ 1626 m_free(m); /* reclaim mbuf */ 1627 #if 0 1628 newipsecstat.ips_mbcoalesced++; 1629 #endif 1630 } else { 1631 mprev = m; 1632 } 1633 continue; 1634 } 1635 /* 1636 * Writable mbufs are left alone (for now). 1637 */ 1638 if (M_WRITABLE(m)) { 1639 mprev = m; 1640 continue; 1641 } 1642 1643 /* 1644 * Not writable, replace with a copy or coalesce with 1645 * the previous mbuf if possible (since we have to copy 1646 * it anyway, we try to reduce the number of mbufs and 1647 * clusters so that future work is easier). 1648 */ 1649 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1650 /* NB: we only coalesce into a cluster or larger */ 1651 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1652 m->m_len <= M_TRAILINGSPACE(mprev)) { 1653 /* XXX: this ignores mbuf types */ 1654 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1655 mtod(m, caddr_t), m->m_len); 1656 mprev->m_len += m->m_len; 1657 mprev->m_next = m->m_next; /* unlink from chain */ 1658 m_free(m); /* reclaim mbuf */ 1659 #if 0 1660 newipsecstat.ips_clcoalesced++; 1661 #endif 1662 continue; 1663 } 1664 1665 /* 1666 * Allocate new space to hold the copy and copy the data. 1667 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1668 * splitting them into clusters. We could just malloc a 1669 * buffer and make it external but too many device drivers 1670 * don't know how to break up the non-contiguous memory when 1671 * doing DMA. 1672 */ 1673 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1674 if (n == NULL) { 1675 m_freem(m0); 1676 return (NULL); 1677 } 1678 if (m->m_flags & M_PKTHDR) { 1679 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1680 __func__, m0, m)); 1681 m_move_pkthdr(n, m); 1682 } 1683 len = m->m_len; 1684 off = 0; 1685 mfirst = n; 1686 mlast = NULL; 1687 for (;;) { 1688 int cc = min(len, MCLBYTES); 1689 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1690 n->m_len = cc; 1691 if (mlast != NULL) 1692 mlast->m_next = n; 1693 mlast = n; 1694 #if 0 1695 newipsecstat.ips_clcopied++; 1696 #endif 1697 1698 len -= cc; 1699 if (len <= 0) 1700 break; 1701 off += cc; 1702 1703 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1704 if (n == NULL) { 1705 m_freem(mfirst); 1706 m_freem(m0); 1707 return (NULL); 1708 } 1709 } 1710 n->m_next = m->m_next; 1711 if (mprev == NULL) 1712 m0 = mfirst; /* new head of chain */ 1713 else 1714 mprev->m_next = mfirst; /* replace old mbuf */ 1715 m_free(m); /* release old mbuf */ 1716 mprev = mfirst; 1717 } 1718 return (m0); 1719 } 1720 1721 #ifdef MBUF_PROFILING 1722 1723 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1724 struct mbufprofile { 1725 uintmax_t wasted[MP_BUCKETS]; 1726 uintmax_t used[MP_BUCKETS]; 1727 uintmax_t segments[MP_BUCKETS]; 1728 } mbprof; 1729 1730 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1731 #define MP_NUMLINES 6 1732 #define MP_NUMSPERLINE 16 1733 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1734 /* work out max space needed and add a bit of spare space too */ 1735 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1736 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1737 1738 char mbprofbuf[MP_BUFSIZE]; 1739 1740 void 1741 m_profile(struct mbuf *m) 1742 { 1743 int segments = 0; 1744 int used = 0; 1745 int wasted = 0; 1746 1747 while (m) { 1748 segments++; 1749 used += m->m_len; 1750 if (m->m_flags & M_EXT) { 1751 wasted += MHLEN - sizeof(m->m_ext) + 1752 m->m_ext.ext_size - m->m_len; 1753 } else { 1754 if (m->m_flags & M_PKTHDR) 1755 wasted += MHLEN - m->m_len; 1756 else 1757 wasted += MLEN - m->m_len; 1758 } 1759 m = m->m_next; 1760 } 1761 /* be paranoid.. it helps */ 1762 if (segments > MP_BUCKETS - 1) 1763 segments = MP_BUCKETS - 1; 1764 if (used > 100000) 1765 used = 100000; 1766 if (wasted > 100000) 1767 wasted = 100000; 1768 /* store in the appropriate bucket */ 1769 /* don't bother locking. if it's slightly off, so what? */ 1770 mbprof.segments[segments]++; 1771 mbprof.used[fls(used)]++; 1772 mbprof.wasted[fls(wasted)]++; 1773 } 1774 1775 static void 1776 mbprof_textify(void) 1777 { 1778 int offset; 1779 char *c; 1780 uint64_t *p; 1781 1782 p = &mbprof.wasted[0]; 1783 c = mbprofbuf; 1784 offset = snprintf(c, MP_MAXLINE + 10, 1785 "wasted:\n" 1786 "%ju %ju %ju %ju %ju %ju %ju %ju " 1787 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1788 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1789 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1790 #ifdef BIG_ARRAY 1791 p = &mbprof.wasted[16]; 1792 c += offset; 1793 offset = snprintf(c, MP_MAXLINE, 1794 "%ju %ju %ju %ju %ju %ju %ju %ju " 1795 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1796 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1797 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1798 #endif 1799 p = &mbprof.used[0]; 1800 c += offset; 1801 offset = snprintf(c, MP_MAXLINE + 10, 1802 "used:\n" 1803 "%ju %ju %ju %ju %ju %ju %ju %ju " 1804 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1805 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1806 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1807 #ifdef BIG_ARRAY 1808 p = &mbprof.used[16]; 1809 c += offset; 1810 offset = snprintf(c, MP_MAXLINE, 1811 "%ju %ju %ju %ju %ju %ju %ju %ju " 1812 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1813 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1814 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1815 #endif 1816 p = &mbprof.segments[0]; 1817 c += offset; 1818 offset = snprintf(c, MP_MAXLINE + 10, 1819 "segments:\n" 1820 "%ju %ju %ju %ju %ju %ju %ju %ju " 1821 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1822 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1823 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1824 #ifdef BIG_ARRAY 1825 p = &mbprof.segments[16]; 1826 c += offset; 1827 offset = snprintf(c, MP_MAXLINE, 1828 "%ju %ju %ju %ju %ju %ju %ju %ju " 1829 "%ju %ju %ju %ju %ju %ju %ju %jju", 1830 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1831 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1832 #endif 1833 } 1834 1835 static int 1836 mbprof_handler(SYSCTL_HANDLER_ARGS) 1837 { 1838 int error; 1839 1840 mbprof_textify(); 1841 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 1842 return (error); 1843 } 1844 1845 static int 1846 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 1847 { 1848 int clear, error; 1849 1850 clear = 0; 1851 error = sysctl_handle_int(oidp, &clear, 0, req); 1852 if (error || !req->newptr) 1853 return (error); 1854 1855 if (clear) { 1856 bzero(&mbprof, sizeof(mbprof)); 1857 } 1858 1859 return (error); 1860 } 1861 1862 1863 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 1864 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 1865 1866 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 1867 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 1868 #endif 1869 1870