xref: /freebsd/sys/kern/uipc_mbuf.c (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sbuf.h>
54 #include <sys/sdt.h>
55 #include <vm/vm.h>
56 #include <vm/vm_pageout.h>
57 #include <vm/vm_page.h>
58 
59 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
60     "struct mbuf *", "mbufinfo_t *",
61     "uint32_t", "uint32_t",
62     "uint16_t", "uint16_t",
63     "uint32_t", "uint32_t",
64     "uint32_t", "uint32_t");
65 
66 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
67     "uint32_t", "uint32_t",
68     "uint16_t", "uint16_t",
69     "struct mbuf *", "mbufinfo_t *");
70 
71 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
72     "uint32_t", "uint32_t",
73     "uint16_t", "uint16_t",
74     "struct mbuf *", "mbufinfo_t *");
75 
76 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
77     "uint32_t", "uint32_t",
78     "uint16_t", "uint16_t",
79     "struct mbuf *", "mbufinfo_t *");
80 
81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
82     "uint32_t", "uint32_t",
83     "uint16_t", "uint16_t",
84     "struct mbuf *", "mbufinfo_t *");
85 
86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
87     "uint32_t", "uint32_t",
88     "uint16_t", "uint16_t",
89     "uint32_t", "uint32_t",
90     "struct mbuf *", "mbufinfo_t *");
91 
92 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
93     "uint32_t", "uint32_t",
94     "uint16_t", "uint16_t",
95     "uint32_t", "uint32_t",
96     "uint32_t", "uint32_t",
97     "struct mbuf *", "mbufinfo_t *");
98 
99 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
100     "struct mbuf *", "mbufinfo_t *",
101     "uint32_t", "uint32_t",
102     "uint32_t", "uint32_t");
103 
104 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
105     "struct mbuf *", "mbufinfo_t *",
106     "uint32_t", "uint32_t",
107     "uint32_t", "uint32_t",
108     "void*", "void*");
109 
110 SDT_PROBE_DEFINE(sdt, , , m__cljset);
111 
112 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
113         "struct mbuf *", "mbufinfo_t *");
114 
115 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
116     "struct mbuf *", "mbufinfo_t *");
117 
118 #include <security/mac/mac_framework.h>
119 
120 /*
121  * Provide minimum possible defaults for link and protocol header space,
122  * assuming IPv4 over Ethernet.  Enabling IPv6, IEEE802.11 or some other
123  * protocol may grow these values.
124  */
125 u_int	max_linkhdr = 16;
126 u_int	max_protohdr = 40;
127 u_int	max_hdr = 16 + 40;
128 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
129 	   &max_linkhdr, 16, "Size of largest link layer header");
130 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
131 	   &max_protohdr, 40, "Size of largest protocol layer header");
132 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
133 	   &max_hdr, 16 + 40, "Size of largest link plus protocol header");
134 
135 static void
136 max_hdr_grow(void)
137 {
138 
139 	max_hdr = max_linkhdr + max_protohdr;
140 	MPASS(max_hdr <= MHLEN);
141 }
142 
143 void
144 max_linkhdr_grow(u_int new)
145 {
146 
147 	if (new > max_linkhdr) {
148 		max_linkhdr = new;
149 		max_hdr_grow();
150 	}
151 }
152 
153 void
154 max_protohdr_grow(u_int new)
155 {
156 
157 	if (new > max_protohdr) {
158 		max_protohdr = new;
159 		max_hdr_grow();
160 	}
161 }
162 
163 #ifdef MBUF_STRESS_TEST
164 int	m_defragpackets;
165 int	m_defragbytes;
166 int	m_defraguseless;
167 int	m_defragfailure;
168 int	m_defragrandomfailures;
169 
170 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
171 	   &m_defragpackets, 0, "");
172 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
173 	   &m_defragbytes, 0, "");
174 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
175 	   &m_defraguseless, 0, "");
176 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
177 	   &m_defragfailure, 0, "");
178 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
179 	   &m_defragrandomfailures, 0, "");
180 #endif
181 
182 /*
183  * Ensure the correct size of various mbuf parameters.  It could be off due
184  * to compiler-induced padding and alignment artifacts.
185  */
186 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
187 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
188 
189 /*
190  * mbuf data storage should be 64-bit aligned regardless of architectural
191  * pointer size; check this is the case with and without a packet header.
192  */
193 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
194 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
195 
196 /*
197  * While the specific values here don't matter too much (i.e., +/- a few
198  * words), we do want to ensure that changes to these values are carefully
199  * reasoned about and properly documented.  This is especially the case as
200  * network-protocol and device-driver modules encode these layouts, and must
201  * be recompiled if the structures change.  Check these values at compile time
202  * against the ones documented in comments in mbuf.h.
203  *
204  * NB: Possibly they should be documented there via #define's and not just
205  * comments.
206  */
207 #if defined(__LP64__)
208 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
209 CTASSERT(sizeof(struct pkthdr) == 64);
210 CTASSERT(sizeof(struct m_ext) == 160);
211 #else
212 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
213 CTASSERT(sizeof(struct pkthdr) == 56);
214 #if defined(__powerpc__) && defined(BOOKE)
215 /* PowerPC booke has 64-bit physical pointers. */
216 CTASSERT(sizeof(struct m_ext) == 176);
217 #else
218 CTASSERT(sizeof(struct m_ext) == 172);
219 #endif
220 #endif
221 
222 /*
223  * Assert that the queue(3) macros produce code of the same size as an old
224  * plain pointer does.
225  */
226 #ifdef INVARIANTS
227 static struct mbuf __used m_assertbuf;
228 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
229 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
230 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
231 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
232 #endif
233 
234 /*
235  * Attach the cluster from *m to *n, set up m_ext in *n
236  * and bump the refcount of the cluster.
237  */
238 void
239 mb_dupcl(struct mbuf *n, struct mbuf *m)
240 {
241 	volatile u_int *refcnt;
242 
243 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
244 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
245 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
246 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
247 
248 	/*
249 	 * Cache access optimization.
250 	 *
251 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
252 	 *   the holder of the 'ext_count' is responsible to carry the free
253 	 *   routine and its arguments.
254 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
255 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
256 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
257 	 *   special - it needs full copy of m_ext into each mbuf, since any
258 	 *   copy could end up as the last to free.
259 	 */
260 	if (m->m_flags & M_EXTPG) {
261 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
262 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
263 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
264 	} else if (m->m_ext.ext_type == EXT_EXTREF)
265 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
266 	else
267 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
268 
269 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
270 
271 	/* See if this is the mbuf that holds the embedded refcount. */
272 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
273 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
274 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
275 	} else {
276 		KASSERT(m->m_ext.ext_cnt != NULL,
277 		    ("%s: no refcounting pointer on %p", __func__, m));
278 		refcnt = m->m_ext.ext_cnt;
279 	}
280 
281 	if (*refcnt == 1)
282 		*refcnt += 1;
283 	else
284 		atomic_add_int(refcnt, 1);
285 }
286 
287 void
288 m_demote_pkthdr(struct mbuf *m)
289 {
290 
291 	M_ASSERTPKTHDR(m);
292 	M_ASSERT_NO_SND_TAG(m);
293 
294 	m_tag_delete_chain(m, NULL);
295 	m->m_flags &= ~M_PKTHDR;
296 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
297 }
298 
299 /*
300  * Clean up mbuf (chain) from any tags and packet headers.
301  * If "all" is set then the first mbuf in the chain will be
302  * cleaned too.
303  */
304 void
305 m_demote(struct mbuf *m0, int all, int flags)
306 {
307 	struct mbuf *m;
308 
309 	flags |= M_DEMOTEFLAGS;
310 
311 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
312 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
313 		    __func__, m, m0));
314 		if (m->m_flags & M_PKTHDR)
315 			m_demote_pkthdr(m);
316 		m->m_flags &= flags;
317 	}
318 }
319 
320 /*
321  * Sanity checks on mbuf (chain) for use in KASSERT() and general
322  * debugging.
323  * Returns 0 or panics when bad and 1 on all tests passed.
324  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
325  * blow up later.
326  */
327 int
328 m_sanity(struct mbuf *m0, int sanitize)
329 {
330 	struct mbuf *m;
331 	caddr_t a, b;
332 	int pktlen = 0;
333 
334 #ifdef INVARIANTS
335 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
336 #else
337 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
338 #endif
339 
340 	for (m = m0; m != NULL; m = m->m_next) {
341 		/*
342 		 * Basic pointer checks.  If any of these fails then some
343 		 * unrelated kernel memory before or after us is trashed.
344 		 * No way to recover from that.
345 		 */
346 		a = M_START(m);
347 		b = a + M_SIZE(m);
348 		if ((caddr_t)m->m_data < a)
349 			M_SANITY_ACTION("m_data outside mbuf data range left");
350 		if ((caddr_t)m->m_data > b)
351 			M_SANITY_ACTION("m_data outside mbuf data range right");
352 		if ((caddr_t)m->m_data + m->m_len > b)
353 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
354 
355 		/* m->m_nextpkt may only be set on first mbuf in chain. */
356 		if (m != m0 && m->m_nextpkt != NULL) {
357 			if (sanitize) {
358 				m_freem(m->m_nextpkt);
359 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
360 			} else
361 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
362 		}
363 
364 		/* packet length (not mbuf length!) calculation */
365 		if (m0->m_flags & M_PKTHDR)
366 			pktlen += m->m_len;
367 
368 		/* m_tags may only be attached to first mbuf in chain. */
369 		if (m != m0 && m->m_flags & M_PKTHDR &&
370 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
371 			if (sanitize) {
372 				m_tag_delete_chain(m, NULL);
373 				/* put in 0xDEADC0DE perhaps? */
374 			} else
375 				M_SANITY_ACTION("m_tags on in-chain mbuf");
376 		}
377 
378 		/* M_PKTHDR may only be set on first mbuf in chain */
379 		if (m != m0 && m->m_flags & M_PKTHDR) {
380 			if (sanitize) {
381 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
382 				m->m_flags &= ~M_PKTHDR;
383 				/* put in 0xDEADCODE and leave hdr flag in */
384 			} else
385 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
386 		}
387 	}
388 	m = m0;
389 	if (pktlen && pktlen != m->m_pkthdr.len) {
390 		if (sanitize)
391 			m->m_pkthdr.len = 0;
392 		else
393 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
394 	}
395 	return 1;
396 
397 #undef	M_SANITY_ACTION
398 }
399 
400 /*
401  * Non-inlined part of m_init().
402  */
403 int
404 m_pkthdr_init(struct mbuf *m, int how)
405 {
406 #ifdef MAC
407 	int error;
408 #endif
409 	m->m_data = m->m_pktdat;
410 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
411 #ifdef NUMA
412 	m->m_pkthdr.numa_domain = M_NODOM;
413 #endif
414 #ifdef MAC
415 	/* If the label init fails, fail the alloc */
416 	error = mac_mbuf_init(m, how);
417 	if (error)
418 		return (error);
419 #endif
420 
421 	return (0);
422 }
423 
424 /*
425  * "Move" mbuf pkthdr from "from" to "to".
426  * "from" must have M_PKTHDR set, and "to" must be empty.
427  */
428 void
429 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
430 {
431 
432 #if 0
433 	/* see below for why these are not enabled */
434 	M_ASSERTPKTHDR(to);
435 	/* Note: with MAC, this may not be a good assertion. */
436 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
437 	    ("m_move_pkthdr: to has tags"));
438 #endif
439 #ifdef MAC
440 	/*
441 	 * XXXMAC: It could be this should also occur for non-MAC?
442 	 */
443 	if (to->m_flags & M_PKTHDR)
444 		m_tag_delete_chain(to, NULL);
445 #endif
446 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
447 	    (to->m_flags & (M_EXT | M_EXTPG));
448 	if ((to->m_flags & M_EXT) == 0)
449 		to->m_data = to->m_pktdat;
450 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
451 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
452 	from->m_flags &= ~M_PKTHDR;
453 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
454 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
455 		from->m_pkthdr.snd_tag = NULL;
456 	}
457 }
458 
459 /*
460  * Duplicate "from"'s mbuf pkthdr in "to".
461  * "from" must have M_PKTHDR set, and "to" must be empty.
462  * In particular, this does a deep copy of the packet tags.
463  */
464 int
465 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
466 {
467 
468 #if 0
469 	/*
470 	 * The mbuf allocator only initializes the pkthdr
471 	 * when the mbuf is allocated with m_gethdr(). Many users
472 	 * (e.g. m_copy*, m_prepend) use m_get() and then
473 	 * smash the pkthdr as needed causing these
474 	 * assertions to trip.  For now just disable them.
475 	 */
476 	M_ASSERTPKTHDR(to);
477 	/* Note: with MAC, this may not be a good assertion. */
478 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
479 #endif
480 	MBUF_CHECKSLEEP(how);
481 #ifdef MAC
482 	if (to->m_flags & M_PKTHDR)
483 		m_tag_delete_chain(to, NULL);
484 #endif
485 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
486 	    (to->m_flags & (M_EXT | M_EXTPG));
487 	if ((to->m_flags & M_EXT) == 0)
488 		to->m_data = to->m_pktdat;
489 	to->m_pkthdr = from->m_pkthdr;
490 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
491 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
492 	SLIST_INIT(&to->m_pkthdr.tags);
493 	return (m_tag_copy_chain(to, from, how));
494 }
495 
496 /*
497  * Lesser-used path for M_PREPEND:
498  * allocate new mbuf to prepend to chain,
499  * copy junk along.
500  */
501 struct mbuf *
502 m_prepend(struct mbuf *m, int len, int how)
503 {
504 	struct mbuf *mn;
505 
506 	if (m->m_flags & M_PKTHDR)
507 		mn = m_gethdr(how, m->m_type);
508 	else
509 		mn = m_get(how, m->m_type);
510 	if (mn == NULL) {
511 		m_freem(m);
512 		return (NULL);
513 	}
514 	if (m->m_flags & M_PKTHDR)
515 		m_move_pkthdr(mn, m);
516 	mn->m_next = m;
517 	m = mn;
518 	if (len < M_SIZE(m))
519 		M_ALIGN(m, len);
520 	m->m_len = len;
521 	return (m);
522 }
523 
524 /*
525  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
526  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
527  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
528  * Note that the copy is read-only, because clusters are not copied,
529  * only their reference counts are incremented.
530  */
531 struct mbuf *
532 m_copym(struct mbuf *m, int off0, int len, int wait)
533 {
534 	struct mbuf *n, **np;
535 	int off = off0;
536 	struct mbuf *top;
537 	int copyhdr = 0;
538 
539 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
540 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
541 	MBUF_CHECKSLEEP(wait);
542 	if (off == 0 && m->m_flags & M_PKTHDR)
543 		copyhdr = 1;
544 	while (off > 0) {
545 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
546 		if (off < m->m_len)
547 			break;
548 		off -= m->m_len;
549 		m = m->m_next;
550 	}
551 	np = &top;
552 	top = NULL;
553 	while (len > 0) {
554 		if (m == NULL) {
555 			KASSERT(len == M_COPYALL,
556 			    ("m_copym, length > size of mbuf chain"));
557 			break;
558 		}
559 		if (copyhdr)
560 			n = m_gethdr(wait, m->m_type);
561 		else
562 			n = m_get(wait, m->m_type);
563 		*np = n;
564 		if (n == NULL)
565 			goto nospace;
566 		if (copyhdr) {
567 			if (!m_dup_pkthdr(n, m, wait))
568 				goto nospace;
569 			if (len == M_COPYALL)
570 				n->m_pkthdr.len -= off0;
571 			else
572 				n->m_pkthdr.len = len;
573 			copyhdr = 0;
574 		}
575 		n->m_len = min(len, m->m_len - off);
576 		if (m->m_flags & (M_EXT|M_EXTPG)) {
577 			n->m_data = m->m_data + off;
578 			mb_dupcl(n, m);
579 		} else
580 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
581 			    (u_int)n->m_len);
582 		if (len != M_COPYALL)
583 			len -= n->m_len;
584 		off = 0;
585 		m = m->m_next;
586 		np = &n->m_next;
587 	}
588 
589 	return (top);
590 nospace:
591 	m_freem(top);
592 	return (NULL);
593 }
594 
595 /*
596  * Copy an entire packet, including header (which must be present).
597  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
598  * Note that the copy is read-only, because clusters are not copied,
599  * only their reference counts are incremented.
600  * Preserve alignment of the first mbuf so if the creator has left
601  * some room at the beginning (e.g. for inserting protocol headers)
602  * the copies still have the room available.
603  */
604 struct mbuf *
605 m_copypacket(struct mbuf *m, int how)
606 {
607 	struct mbuf *top, *n, *o;
608 
609 	MBUF_CHECKSLEEP(how);
610 	n = m_get(how, m->m_type);
611 	top = n;
612 	if (n == NULL)
613 		goto nospace;
614 
615 	if (!m_dup_pkthdr(n, m, how))
616 		goto nospace;
617 	n->m_len = m->m_len;
618 	if (m->m_flags & (M_EXT|M_EXTPG)) {
619 		n->m_data = m->m_data;
620 		mb_dupcl(n, m);
621 	} else {
622 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
623 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
624 	}
625 
626 	m = m->m_next;
627 	while (m) {
628 		o = m_get(how, m->m_type);
629 		if (o == NULL)
630 			goto nospace;
631 
632 		n->m_next = o;
633 		n = n->m_next;
634 
635 		n->m_len = m->m_len;
636 		if (m->m_flags & (M_EXT|M_EXTPG)) {
637 			n->m_data = m->m_data;
638 			mb_dupcl(n, m);
639 		} else {
640 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
641 		}
642 
643 		m = m->m_next;
644 	}
645 	return top;
646 nospace:
647 	m_freem(top);
648 	return (NULL);
649 }
650 
651 static void
652 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
653 {
654 	struct iovec iov;
655 	struct uio uio;
656 	int error __diagused;
657 
658 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
659 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
660 	KASSERT(off < m->m_len,
661 	    ("m_copyfromunmapped: len exceeds mbuf length"));
662 	iov.iov_base = cp;
663 	iov.iov_len = len;
664 	uio.uio_resid = len;
665 	uio.uio_iov = &iov;
666 	uio.uio_segflg = UIO_SYSSPACE;
667 	uio.uio_iovcnt = 1;
668 	uio.uio_offset = 0;
669 	uio.uio_rw = UIO_READ;
670 	error = m_unmapped_uiomove(m, off, &uio, len);
671 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
672 	   len));
673 }
674 
675 /*
676  * Copy data from an mbuf chain starting "off" bytes from the beginning,
677  * continuing for "len" bytes, into the indicated buffer.
678  */
679 void
680 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
681 {
682 	u_int count;
683 
684 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
685 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
686 	while (off > 0) {
687 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
688 		if (off < m->m_len)
689 			break;
690 		off -= m->m_len;
691 		m = m->m_next;
692 	}
693 	while (len > 0) {
694 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
695 		count = min(m->m_len - off, len);
696 		if ((m->m_flags & M_EXTPG) != 0)
697 			m_copyfromunmapped(m, off, count, cp);
698 		else
699 			bcopy(mtod(m, caddr_t) + off, cp, count);
700 		len -= count;
701 		cp += count;
702 		off = 0;
703 		m = m->m_next;
704 	}
705 }
706 
707 /*
708  * Copy a packet header mbuf chain into a completely new chain, including
709  * copying any mbuf clusters.  Use this instead of m_copypacket() when
710  * you need a writable copy of an mbuf chain.
711  */
712 struct mbuf *
713 m_dup(const struct mbuf *m, int how)
714 {
715 	struct mbuf **p, *top = NULL;
716 	int remain, moff, nsize;
717 
718 	MBUF_CHECKSLEEP(how);
719 	/* Sanity check */
720 	if (m == NULL)
721 		return (NULL);
722 	M_ASSERTPKTHDR(m);
723 
724 	/* While there's more data, get a new mbuf, tack it on, and fill it */
725 	remain = m->m_pkthdr.len;
726 	moff = 0;
727 	p = &top;
728 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
729 		struct mbuf *n;
730 
731 		/* Get the next new mbuf */
732 		if (remain >= MINCLSIZE) {
733 			n = m_getcl(how, m->m_type, 0);
734 			nsize = MCLBYTES;
735 		} else {
736 			n = m_get(how, m->m_type);
737 			nsize = MLEN;
738 		}
739 		if (n == NULL)
740 			goto nospace;
741 
742 		if (top == NULL) {		/* First one, must be PKTHDR */
743 			if (!m_dup_pkthdr(n, m, how)) {
744 				m_free(n);
745 				goto nospace;
746 			}
747 			if ((n->m_flags & M_EXT) == 0)
748 				nsize = MHLEN;
749 			n->m_flags &= ~M_RDONLY;
750 		}
751 		n->m_len = 0;
752 
753 		/* Link it into the new chain */
754 		*p = n;
755 		p = &n->m_next;
756 
757 		/* Copy data from original mbuf(s) into new mbuf */
758 		while (n->m_len < nsize && m != NULL) {
759 			int chunk = min(nsize - n->m_len, m->m_len - moff);
760 
761 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
762 			moff += chunk;
763 			n->m_len += chunk;
764 			remain -= chunk;
765 			if (moff == m->m_len) {
766 				m = m->m_next;
767 				moff = 0;
768 			}
769 		}
770 
771 		/* Check correct total mbuf length */
772 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
773 		    	("%s: bogus m_pkthdr.len", __func__));
774 	}
775 	return (top);
776 
777 nospace:
778 	m_freem(top);
779 	return (NULL);
780 }
781 
782 /*
783  * Concatenate mbuf chain n to m.
784  * Both chains must be of the same type (e.g. MT_DATA).
785  * Any m_pkthdr is not updated.
786  */
787 void
788 m_cat(struct mbuf *m, struct mbuf *n)
789 {
790 	while (m->m_next)
791 		m = m->m_next;
792 	while (n) {
793 		if (!M_WRITABLE(m) ||
794 		    (n->m_flags & M_EXTPG) != 0 ||
795 		    M_TRAILINGSPACE(m) < n->m_len) {
796 			/* just join the two chains */
797 			m->m_next = n;
798 			return;
799 		}
800 		/* splat the data from one into the other */
801 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
802 		    (u_int)n->m_len);
803 		m->m_len += n->m_len;
804 		n = m_free(n);
805 	}
806 }
807 
808 /*
809  * Concatenate two pkthdr mbuf chains.
810  */
811 void
812 m_catpkt(struct mbuf *m, struct mbuf *n)
813 {
814 
815 	M_ASSERTPKTHDR(m);
816 	M_ASSERTPKTHDR(n);
817 
818 	m->m_pkthdr.len += n->m_pkthdr.len;
819 	m_demote(n, 1, 0);
820 
821 	m_cat(m, n);
822 }
823 
824 void
825 m_adj(struct mbuf *mp, int req_len)
826 {
827 	int len = req_len;
828 	struct mbuf *m;
829 	int count;
830 
831 	if ((m = mp) == NULL)
832 		return;
833 	if (len >= 0) {
834 		/*
835 		 * Trim from head.
836 		 */
837 		while (m != NULL && len > 0) {
838 			if (m->m_len <= len) {
839 				len -= m->m_len;
840 				m->m_len = 0;
841 				m = m->m_next;
842 			} else {
843 				m->m_len -= len;
844 				m->m_data += len;
845 				len = 0;
846 			}
847 		}
848 		if (mp->m_flags & M_PKTHDR)
849 			mp->m_pkthdr.len -= (req_len - len);
850 	} else {
851 		/*
852 		 * Trim from tail.  Scan the mbuf chain,
853 		 * calculating its length and finding the last mbuf.
854 		 * If the adjustment only affects this mbuf, then just
855 		 * adjust and return.  Otherwise, rescan and truncate
856 		 * after the remaining size.
857 		 */
858 		len = -len;
859 		count = 0;
860 		for (;;) {
861 			count += m->m_len;
862 			if (m->m_next == (struct mbuf *)0)
863 				break;
864 			m = m->m_next;
865 		}
866 		if (m->m_len >= len) {
867 			m->m_len -= len;
868 			if (mp->m_flags & M_PKTHDR)
869 				mp->m_pkthdr.len -= len;
870 			return;
871 		}
872 		count -= len;
873 		if (count < 0)
874 			count = 0;
875 		/*
876 		 * Correct length for chain is "count".
877 		 * Find the mbuf with last data, adjust its length,
878 		 * and toss data from remaining mbufs on chain.
879 		 */
880 		m = mp;
881 		if (m->m_flags & M_PKTHDR)
882 			m->m_pkthdr.len = count;
883 		for (; m; m = m->m_next) {
884 			if (m->m_len >= count) {
885 				m->m_len = count;
886 				if (m->m_next != NULL) {
887 					m_freem(m->m_next);
888 					m->m_next = NULL;
889 				}
890 				break;
891 			}
892 			count -= m->m_len;
893 		}
894 	}
895 }
896 
897 void
898 m_adj_decap(struct mbuf *mp, int len)
899 {
900 	uint8_t rsstype;
901 
902 	m_adj(mp, len);
903 	if ((mp->m_flags & M_PKTHDR) != 0) {
904 		/*
905 		 * If flowid was calculated by card from the inner
906 		 * headers, move flowid to the decapsulated mbuf
907 		 * chain, otherwise clear.  This depends on the
908 		 * internals of m_adj, which keeps pkthdr as is, in
909 		 * particular not changing rsstype and flowid.
910 		 */
911 		rsstype = mp->m_pkthdr.rsstype;
912 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
913 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
914 		} else {
915 			M_HASHTYPE_CLEAR(mp);
916 		}
917 	}
918 }
919 
920 /*
921  * Rearange an mbuf chain so that len bytes are contiguous
922  * and in the data area of an mbuf (so that mtod will work
923  * for a structure of size len).  Returns the resulting
924  * mbuf chain on success, frees it and returns null on failure.
925  * If there is room, it will add up to max_protohdr-len extra bytes to the
926  * contiguous region in an attempt to avoid being called next time.
927  */
928 struct mbuf *
929 m_pullup(struct mbuf *n, int len)
930 {
931 	struct mbuf *m;
932 	int count;
933 	int space;
934 
935 	KASSERT((n->m_flags & M_EXTPG) == 0,
936 	    ("%s: unmapped mbuf %p", __func__, n));
937 
938 	/*
939 	 * If first mbuf has no cluster, and has room for len bytes
940 	 * without shifting current data, pullup into it,
941 	 * otherwise allocate a new mbuf to prepend to the chain.
942 	 */
943 	if ((n->m_flags & M_EXT) == 0 &&
944 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
945 		if (n->m_len >= len)
946 			return (n);
947 		m = n;
948 		n = n->m_next;
949 		len -= m->m_len;
950 	} else {
951 		if (len > MHLEN)
952 			goto bad;
953 		m = m_get(M_NOWAIT, n->m_type);
954 		if (m == NULL)
955 			goto bad;
956 		if (n->m_flags & M_PKTHDR)
957 			m_move_pkthdr(m, n);
958 	}
959 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
960 	do {
961 		count = min(min(max(len, max_protohdr), space), n->m_len);
962 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
963 		  (u_int)count);
964 		len -= count;
965 		m->m_len += count;
966 		n->m_len -= count;
967 		space -= count;
968 		if (n->m_len)
969 			n->m_data += count;
970 		else
971 			n = m_free(n);
972 	} while (len > 0 && n);
973 	if (len > 0) {
974 		(void) m_free(m);
975 		goto bad;
976 	}
977 	m->m_next = n;
978 	return (m);
979 bad:
980 	m_freem(n);
981 	return (NULL);
982 }
983 
984 /*
985  * Like m_pullup(), except a new mbuf is always allocated, and we allow
986  * the amount of empty space before the data in the new mbuf to be specified
987  * (in the event that the caller expects to prepend later).
988  */
989 struct mbuf *
990 m_copyup(struct mbuf *n, int len, int dstoff)
991 {
992 	struct mbuf *m;
993 	int count, space;
994 
995 	if (len > (MHLEN - dstoff))
996 		goto bad;
997 	m = m_get(M_NOWAIT, n->m_type);
998 	if (m == NULL)
999 		goto bad;
1000 	if (n->m_flags & M_PKTHDR)
1001 		m_move_pkthdr(m, n);
1002 	m->m_data += dstoff;
1003 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1004 	do {
1005 		count = min(min(max(len, max_protohdr), space), n->m_len);
1006 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1007 		    (unsigned)count);
1008 		len -= count;
1009 		m->m_len += count;
1010 		n->m_len -= count;
1011 		space -= count;
1012 		if (n->m_len)
1013 			n->m_data += count;
1014 		else
1015 			n = m_free(n);
1016 	} while (len > 0 && n);
1017 	if (len > 0) {
1018 		(void) m_free(m);
1019 		goto bad;
1020 	}
1021 	m->m_next = n;
1022 	return (m);
1023  bad:
1024 	m_freem(n);
1025 	return (NULL);
1026 }
1027 
1028 /*
1029  * Partition an mbuf chain in two pieces, returning the tail --
1030  * all but the first len0 bytes.  In case of failure, it returns NULL and
1031  * attempts to restore the chain to its original state.
1032  *
1033  * Note that the resulting mbufs might be read-only, because the new
1034  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1035  * the "breaking point" happens to lie within a cluster mbuf. Use the
1036  * M_WRITABLE() macro to check for this case.
1037  */
1038 struct mbuf *
1039 m_split(struct mbuf *m0, int len0, int wait)
1040 {
1041 	struct mbuf *m, *n;
1042 	u_int len = len0, remain;
1043 
1044 	MBUF_CHECKSLEEP(wait);
1045 	for (m = m0; m && len > m->m_len; m = m->m_next)
1046 		len -= m->m_len;
1047 	if (m == NULL)
1048 		return (NULL);
1049 	remain = m->m_len - len;
1050 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1051 		n = m_gethdr(wait, m0->m_type);
1052 		if (n == NULL)
1053 			return (NULL);
1054 		n->m_next = m->m_next;
1055 		m->m_next = NULL;
1056 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1057 			n->m_pkthdr.snd_tag =
1058 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1059 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1060 		} else
1061 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1062 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1063 		m0->m_pkthdr.len = len0;
1064 		return (n);
1065 	} else if (m0->m_flags & M_PKTHDR) {
1066 		n = m_gethdr(wait, m0->m_type);
1067 		if (n == NULL)
1068 			return (NULL);
1069 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1070 			n->m_pkthdr.snd_tag =
1071 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1072 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1073 		} else
1074 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1075 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1076 		m0->m_pkthdr.len = len0;
1077 		if (m->m_flags & (M_EXT|M_EXTPG))
1078 			goto extpacket;
1079 		if (remain > MHLEN) {
1080 			/* m can't be the lead packet */
1081 			M_ALIGN(n, 0);
1082 			n->m_next = m_split(m, len, wait);
1083 			if (n->m_next == NULL) {
1084 				(void) m_free(n);
1085 				return (NULL);
1086 			} else {
1087 				n->m_len = 0;
1088 				return (n);
1089 			}
1090 		} else
1091 			M_ALIGN(n, remain);
1092 	} else if (remain == 0) {
1093 		n = m->m_next;
1094 		m->m_next = NULL;
1095 		return (n);
1096 	} else {
1097 		n = m_get(wait, m->m_type);
1098 		if (n == NULL)
1099 			return (NULL);
1100 		M_ALIGN(n, remain);
1101 	}
1102 extpacket:
1103 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1104 		n->m_data = m->m_data + len;
1105 		mb_dupcl(n, m);
1106 	} else {
1107 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1108 	}
1109 	n->m_len = remain;
1110 	m->m_len = len;
1111 	n->m_next = m->m_next;
1112 	m->m_next = NULL;
1113 	return (n);
1114 }
1115 /*
1116  * Routine to copy from device local memory into mbufs.
1117  * Note that `off' argument is offset into first mbuf of target chain from
1118  * which to begin copying the data to.
1119  */
1120 struct mbuf *
1121 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1122     void (*copy)(char *from, caddr_t to, u_int len))
1123 {
1124 	struct mbuf *m;
1125 	struct mbuf *top = NULL, **mp = &top;
1126 	int len;
1127 
1128 	if (off < 0 || off > MHLEN)
1129 		return (NULL);
1130 
1131 	while (totlen > 0) {
1132 		if (top == NULL) {	/* First one, must be PKTHDR */
1133 			if (totlen + off >= MINCLSIZE) {
1134 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1135 				len = MCLBYTES;
1136 			} else {
1137 				m = m_gethdr(M_NOWAIT, MT_DATA);
1138 				len = MHLEN;
1139 
1140 				/* Place initial small packet/header at end of mbuf */
1141 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1142 					m->m_data += max_linkhdr;
1143 					len -= max_linkhdr;
1144 				}
1145 			}
1146 			if (m == NULL)
1147 				return NULL;
1148 			m->m_pkthdr.rcvif = ifp;
1149 			m->m_pkthdr.len = totlen;
1150 		} else {
1151 			if (totlen + off >= MINCLSIZE) {
1152 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1153 				len = MCLBYTES;
1154 			} else {
1155 				m = m_get(M_NOWAIT, MT_DATA);
1156 				len = MLEN;
1157 			}
1158 			if (m == NULL) {
1159 				m_freem(top);
1160 				return NULL;
1161 			}
1162 		}
1163 		if (off) {
1164 			m->m_data += off;
1165 			len -= off;
1166 			off = 0;
1167 		}
1168 		m->m_len = len = min(totlen, len);
1169 		if (copy)
1170 			copy(buf, mtod(m, caddr_t), (u_int)len);
1171 		else
1172 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1173 		buf += len;
1174 		*mp = m;
1175 		mp = &m->m_next;
1176 		totlen -= len;
1177 	}
1178 	return (top);
1179 }
1180 
1181 static void
1182 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1183 {
1184 	struct iovec iov;
1185 	struct uio uio;
1186 	int error __diagused;
1187 
1188 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1189 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1190 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1191 	iov.iov_base = __DECONST(caddr_t, cp);
1192 	iov.iov_len = len;
1193 	uio.uio_resid = len;
1194 	uio.uio_iov = &iov;
1195 	uio.uio_segflg = UIO_SYSSPACE;
1196 	uio.uio_iovcnt = 1;
1197 	uio.uio_offset = 0;
1198 	uio.uio_rw = UIO_WRITE;
1199 	error = m_unmapped_uiomove(m, off, &uio, len);
1200 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1201 	   len));
1202 }
1203 
1204 /*
1205  * Copy data from a buffer back into the indicated mbuf chain,
1206  * starting "off" bytes from the beginning, extending the mbuf
1207  * chain if necessary.
1208  */
1209 void
1210 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1211 {
1212 	int mlen;
1213 	struct mbuf *m = m0, *n;
1214 	int totlen = 0;
1215 
1216 	if (m0 == NULL)
1217 		return;
1218 	while (off > (mlen = m->m_len)) {
1219 		off -= mlen;
1220 		totlen += mlen;
1221 		if (m->m_next == NULL) {
1222 			n = m_get(M_NOWAIT, m->m_type);
1223 			if (n == NULL)
1224 				goto out;
1225 			bzero(mtod(n, caddr_t), MLEN);
1226 			n->m_len = min(MLEN, len + off);
1227 			m->m_next = n;
1228 		}
1229 		m = m->m_next;
1230 	}
1231 	while (len > 0) {
1232 		if (m->m_next == NULL && (len > m->m_len - off)) {
1233 			m->m_len += min(len - (m->m_len - off),
1234 			    M_TRAILINGSPACE(m));
1235 		}
1236 		mlen = min (m->m_len - off, len);
1237 		if ((m->m_flags & M_EXTPG) != 0)
1238 			m_copytounmapped(m, off, mlen, cp);
1239 		else
1240 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1241 		cp += mlen;
1242 		len -= mlen;
1243 		mlen += off;
1244 		off = 0;
1245 		totlen += mlen;
1246 		if (len == 0)
1247 			break;
1248 		if (m->m_next == NULL) {
1249 			n = m_get(M_NOWAIT, m->m_type);
1250 			if (n == NULL)
1251 				break;
1252 			n->m_len = min(MLEN, len);
1253 			m->m_next = n;
1254 		}
1255 		m = m->m_next;
1256 	}
1257 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1258 		m->m_pkthdr.len = totlen;
1259 }
1260 
1261 /*
1262  * Append the specified data to the indicated mbuf chain,
1263  * Extend the mbuf chain if the new data does not fit in
1264  * existing space.
1265  *
1266  * Return 1 if able to complete the job; otherwise 0.
1267  */
1268 int
1269 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1270 {
1271 	struct mbuf *m, *n;
1272 	int remainder, space;
1273 
1274 	for (m = m0; m->m_next != NULL; m = m->m_next)
1275 		;
1276 	remainder = len;
1277 	space = M_TRAILINGSPACE(m);
1278 	if (space > 0) {
1279 		/*
1280 		 * Copy into available space.
1281 		 */
1282 		if (space > remainder)
1283 			space = remainder;
1284 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1285 		m->m_len += space;
1286 		cp += space, remainder -= space;
1287 	}
1288 	while (remainder > 0) {
1289 		/*
1290 		 * Allocate a new mbuf; could check space
1291 		 * and allocate a cluster instead.
1292 		 */
1293 		n = m_get(M_NOWAIT, m->m_type);
1294 		if (n == NULL)
1295 			break;
1296 		n->m_len = min(MLEN, remainder);
1297 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1298 		cp += n->m_len, remainder -= n->m_len;
1299 		m->m_next = n;
1300 		m = n;
1301 	}
1302 	if (m0->m_flags & M_PKTHDR)
1303 		m0->m_pkthdr.len += len - remainder;
1304 	return (remainder == 0);
1305 }
1306 
1307 static int
1308 m_apply_extpg_one(struct mbuf *m, int off, int len,
1309     int (*f)(void *, void *, u_int), void *arg)
1310 {
1311 	void *p;
1312 	u_int i, count, pgoff, pglen;
1313 	int rval;
1314 
1315 	KASSERT(PMAP_HAS_DMAP,
1316 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1317 	off += mtod(m, vm_offset_t);
1318 	if (off < m->m_epg_hdrlen) {
1319 		count = min(m->m_epg_hdrlen - off, len);
1320 		rval = f(arg, m->m_epg_hdr + off, count);
1321 		if (rval)
1322 			return (rval);
1323 		len -= count;
1324 		off = 0;
1325 	} else
1326 		off -= m->m_epg_hdrlen;
1327 	pgoff = m->m_epg_1st_off;
1328 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1329 		pglen = m_epg_pagelen(m, i, pgoff);
1330 		if (off < pglen) {
1331 			count = min(pglen - off, len);
1332 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
1333 			rval = f(arg, p, count);
1334 			if (rval)
1335 				return (rval);
1336 			len -= count;
1337 			off = 0;
1338 		} else
1339 			off -= pglen;
1340 		pgoff = 0;
1341 	}
1342 	if (len > 0) {
1343 		KASSERT(off < m->m_epg_trllen,
1344 		    ("m_apply_extpg_one: offset beyond trailer"));
1345 		KASSERT(len <= m->m_epg_trllen - off,
1346 		    ("m_apply_extpg_one: length beyond trailer"));
1347 		return (f(arg, m->m_epg_trail + off, len));
1348 	}
1349 	return (0);
1350 }
1351 
1352 /* Apply function f to the data in a single mbuf. */
1353 static int
1354 m_apply_one(struct mbuf *m, int off, int len,
1355     int (*f)(void *, void *, u_int), void *arg)
1356 {
1357 	if ((m->m_flags & M_EXTPG) != 0)
1358 		return (m_apply_extpg_one(m, off, len, f, arg));
1359 	else
1360 		return (f(arg, mtod(m, caddr_t) + off, len));
1361 }
1362 
1363 /*
1364  * Apply function f to the data in an mbuf chain starting "off" bytes from
1365  * the beginning, continuing for "len" bytes.
1366  */
1367 int
1368 m_apply(struct mbuf *m, int off, int len,
1369     int (*f)(void *, void *, u_int), void *arg)
1370 {
1371 	u_int count;
1372 	int rval;
1373 
1374 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1375 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1376 	while (off > 0) {
1377 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1378 		if (off < m->m_len)
1379 			break;
1380 		off -= m->m_len;
1381 		m = m->m_next;
1382 	}
1383 	while (len > 0) {
1384 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1385 		count = min(m->m_len - off, len);
1386 		rval = m_apply_one(m, off, count, f, arg);
1387 		if (rval)
1388 			return (rval);
1389 		len -= count;
1390 		off = 0;
1391 		m = m->m_next;
1392 	}
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Return a pointer to mbuf/offset of location in mbuf chain.
1398  */
1399 struct mbuf *
1400 m_getptr(struct mbuf *m, int loc, int *off)
1401 {
1402 
1403 	while (loc >= 0) {
1404 		/* Normal end of search. */
1405 		if (m->m_len > loc) {
1406 			*off = loc;
1407 			return (m);
1408 		} else {
1409 			loc -= m->m_len;
1410 			if (m->m_next == NULL) {
1411 				if (loc == 0) {
1412 					/* Point at the end of valid data. */
1413 					*off = m->m_len;
1414 					return (m);
1415 				}
1416 				return (NULL);
1417 			}
1418 			m = m->m_next;
1419 		}
1420 	}
1421 	return (NULL);
1422 }
1423 
1424 void
1425 m_print(const struct mbuf *m, int maxlen)
1426 {
1427 	int len;
1428 	int pdata;
1429 	const struct mbuf *m2;
1430 
1431 	if (m == NULL) {
1432 		printf("mbuf: %p\n", m);
1433 		return;
1434 	}
1435 
1436 	if (m->m_flags & M_PKTHDR)
1437 		len = m->m_pkthdr.len;
1438 	else
1439 		len = -1;
1440 	m2 = m;
1441 	while (m2 != NULL && (len == -1 || len)) {
1442 		pdata = m2->m_len;
1443 		if (maxlen != -1 && pdata > maxlen)
1444 			pdata = maxlen;
1445 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1446 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1447 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1448 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1449 		if (pdata)
1450 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1451 		if (len != -1)
1452 			len -= m2->m_len;
1453 		m2 = m2->m_next;
1454 	}
1455 	if (len > 0)
1456 		printf("%d bytes unaccounted for.\n", len);
1457 	return;
1458 }
1459 
1460 u_int
1461 m_fixhdr(struct mbuf *m0)
1462 {
1463 	u_int len;
1464 
1465 	len = m_length(m0, NULL);
1466 	m0->m_pkthdr.len = len;
1467 	return (len);
1468 }
1469 
1470 u_int
1471 m_length(struct mbuf *m0, struct mbuf **last)
1472 {
1473 	struct mbuf *m;
1474 	u_int len;
1475 
1476 	len = 0;
1477 	for (m = m0; m != NULL; m = m->m_next) {
1478 		len += m->m_len;
1479 		if (m->m_next == NULL)
1480 			break;
1481 	}
1482 	if (last != NULL)
1483 		*last = m;
1484 	return (len);
1485 }
1486 
1487 /*
1488  * Defragment a mbuf chain, returning the shortest possible
1489  * chain of mbufs and clusters.  If allocation fails and
1490  * this cannot be completed, NULL will be returned, but
1491  * the passed in chain will be unchanged.  Upon success,
1492  * the original chain will be freed, and the new chain
1493  * will be returned.
1494  *
1495  * If a non-packet header is passed in, the original
1496  * mbuf (chain?) will be returned unharmed.
1497  */
1498 struct mbuf *
1499 m_defrag(struct mbuf *m0, int how)
1500 {
1501 	struct mbuf *m_new = NULL, *m_final = NULL;
1502 	int progress = 0, length;
1503 
1504 	MBUF_CHECKSLEEP(how);
1505 	if (!(m0->m_flags & M_PKTHDR))
1506 		return (m0);
1507 
1508 	m_fixhdr(m0); /* Needed sanity check */
1509 
1510 #ifdef MBUF_STRESS_TEST
1511 	if (m_defragrandomfailures) {
1512 		int temp = arc4random() & 0xff;
1513 		if (temp == 0xba)
1514 			goto nospace;
1515 	}
1516 #endif
1517 
1518 	if (m0->m_pkthdr.len > MHLEN)
1519 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1520 	else
1521 		m_final = m_gethdr(how, MT_DATA);
1522 
1523 	if (m_final == NULL)
1524 		goto nospace;
1525 
1526 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1527 		goto nospace;
1528 
1529 	m_new = m_final;
1530 
1531 	while (progress < m0->m_pkthdr.len) {
1532 		length = m0->m_pkthdr.len - progress;
1533 		if (length > MCLBYTES)
1534 			length = MCLBYTES;
1535 
1536 		if (m_new == NULL) {
1537 			if (length > MLEN)
1538 				m_new = m_getcl(how, MT_DATA, 0);
1539 			else
1540 				m_new = m_get(how, MT_DATA);
1541 			if (m_new == NULL)
1542 				goto nospace;
1543 		}
1544 
1545 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1546 		progress += length;
1547 		m_new->m_len = length;
1548 		if (m_new != m_final)
1549 			m_cat(m_final, m_new);
1550 		m_new = NULL;
1551 	}
1552 #ifdef MBUF_STRESS_TEST
1553 	if (m0->m_next == NULL)
1554 		m_defraguseless++;
1555 #endif
1556 	m_freem(m0);
1557 	m0 = m_final;
1558 #ifdef MBUF_STRESS_TEST
1559 	m_defragpackets++;
1560 	m_defragbytes += m0->m_pkthdr.len;
1561 #endif
1562 	return (m0);
1563 nospace:
1564 #ifdef MBUF_STRESS_TEST
1565 	m_defragfailure++;
1566 #endif
1567 	if (m_final)
1568 		m_freem(m_final);
1569 	return (NULL);
1570 }
1571 
1572 /*
1573  * Return the number of fragments an mbuf will use.  This is usually
1574  * used as a proxy for the number of scatter/gather elements needed by
1575  * a DMA engine to access an mbuf.  In general mapped mbufs are
1576  * assumed to be backed by physically contiguous buffers that only
1577  * need a single fragment.  Unmapped mbufs, on the other hand, can
1578  * span disjoint physical pages.
1579  */
1580 static int
1581 frags_per_mbuf(struct mbuf *m)
1582 {
1583 	int frags;
1584 
1585 	if ((m->m_flags & M_EXTPG) == 0)
1586 		return (1);
1587 
1588 	/*
1589 	 * The header and trailer are counted as a single fragment
1590 	 * each when present.
1591 	 *
1592 	 * XXX: This overestimates the number of fragments by assuming
1593 	 * all the backing physical pages are disjoint.
1594 	 */
1595 	frags = 0;
1596 	if (m->m_epg_hdrlen != 0)
1597 		frags++;
1598 	frags += m->m_epg_npgs;
1599 	if (m->m_epg_trllen != 0)
1600 		frags++;
1601 
1602 	return (frags);
1603 }
1604 
1605 /*
1606  * Defragment an mbuf chain, returning at most maxfrags separate
1607  * mbufs+clusters.  If this is not possible NULL is returned and
1608  * the original mbuf chain is left in its present (potentially
1609  * modified) state.  We use two techniques: collapsing consecutive
1610  * mbufs and replacing consecutive mbufs by a cluster.
1611  *
1612  * NB: this should really be named m_defrag but that name is taken
1613  */
1614 struct mbuf *
1615 m_collapse(struct mbuf *m0, int how, int maxfrags)
1616 {
1617 	struct mbuf *m, *n, *n2, **prev;
1618 	u_int curfrags;
1619 
1620 	/*
1621 	 * Calculate the current number of frags.
1622 	 */
1623 	curfrags = 0;
1624 	for (m = m0; m != NULL; m = m->m_next)
1625 		curfrags += frags_per_mbuf(m);
1626 	/*
1627 	 * First, try to collapse mbufs.  Note that we always collapse
1628 	 * towards the front so we don't need to deal with moving the
1629 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1630 	 * less data than the following.
1631 	 */
1632 	m = m0;
1633 again:
1634 	for (;;) {
1635 		n = m->m_next;
1636 		if (n == NULL)
1637 			break;
1638 		if (M_WRITABLE(m) &&
1639 		    n->m_len < M_TRAILINGSPACE(m)) {
1640 			m_copydata(n, 0, n->m_len,
1641 			    mtod(m, char *) + m->m_len);
1642 			m->m_len += n->m_len;
1643 			m->m_next = n->m_next;
1644 			curfrags -= frags_per_mbuf(n);
1645 			m_free(n);
1646 			if (curfrags <= maxfrags)
1647 				return m0;
1648 		} else
1649 			m = n;
1650 	}
1651 	KASSERT(maxfrags > 1,
1652 		("maxfrags %u, but normal collapse failed", maxfrags));
1653 	/*
1654 	 * Collapse consecutive mbufs to a cluster.
1655 	 */
1656 	prev = &m0->m_next;		/* NB: not the first mbuf */
1657 	while ((n = *prev) != NULL) {
1658 		if ((n2 = n->m_next) != NULL &&
1659 		    n->m_len + n2->m_len < MCLBYTES) {
1660 			m = m_getcl(how, MT_DATA, 0);
1661 			if (m == NULL)
1662 				goto bad;
1663 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1664 			m_copydata(n2, 0,  n2->m_len,
1665 			    mtod(m, char *) + n->m_len);
1666 			m->m_len = n->m_len + n2->m_len;
1667 			m->m_next = n2->m_next;
1668 			*prev = m;
1669 			curfrags += 1;  /* For the new cluster */
1670 			curfrags -= frags_per_mbuf(n);
1671 			curfrags -= frags_per_mbuf(n2);
1672 			m_free(n);
1673 			m_free(n2);
1674 			if (curfrags <= maxfrags)
1675 				return m0;
1676 			/*
1677 			 * Still not there, try the normal collapse
1678 			 * again before we allocate another cluster.
1679 			 */
1680 			goto again;
1681 		}
1682 		prev = &n->m_next;
1683 	}
1684 	/*
1685 	 * No place where we can collapse to a cluster; punt.
1686 	 * This can occur if, for example, you request 2 frags
1687 	 * but the packet requires that both be clusters (we
1688 	 * never reallocate the first mbuf to avoid moving the
1689 	 * packet header).
1690 	 */
1691 bad:
1692 	return NULL;
1693 }
1694 
1695 #ifdef MBUF_STRESS_TEST
1696 
1697 /*
1698  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1699  * this in normal usage, but it's great for stress testing various
1700  * mbuf consumers.
1701  *
1702  * If fragmentation is not possible, the original chain will be
1703  * returned.
1704  *
1705  * Possible length values:
1706  * 0	 no fragmentation will occur
1707  * > 0	each fragment will be of the specified length
1708  * -1	each fragment will be the same random value in length
1709  * -2	each fragment's length will be entirely random
1710  * (Random values range from 1 to 256)
1711  */
1712 struct mbuf *
1713 m_fragment(struct mbuf *m0, int how, int length)
1714 {
1715 	struct mbuf *m_first, *m_last;
1716 	int divisor = 255, progress = 0, fraglen;
1717 
1718 	if (!(m0->m_flags & M_PKTHDR))
1719 		return (m0);
1720 
1721 	if (length == 0 || length < -2)
1722 		return (m0);
1723 	if (length > MCLBYTES)
1724 		length = MCLBYTES;
1725 	if (length < 0 && divisor > MCLBYTES)
1726 		divisor = MCLBYTES;
1727 	if (length == -1)
1728 		length = 1 + (arc4random() % divisor);
1729 	if (length > 0)
1730 		fraglen = length;
1731 
1732 	m_fixhdr(m0); /* Needed sanity check */
1733 
1734 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1735 	if (m_first == NULL)
1736 		goto nospace;
1737 
1738 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1739 		goto nospace;
1740 
1741 	m_last = m_first;
1742 
1743 	while (progress < m0->m_pkthdr.len) {
1744 		if (length == -2)
1745 			fraglen = 1 + (arc4random() % divisor);
1746 		if (fraglen > m0->m_pkthdr.len - progress)
1747 			fraglen = m0->m_pkthdr.len - progress;
1748 
1749 		if (progress != 0) {
1750 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1751 			if (m_new == NULL)
1752 				goto nospace;
1753 
1754 			m_last->m_next = m_new;
1755 			m_last = m_new;
1756 		}
1757 
1758 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1759 		progress += fraglen;
1760 		m_last->m_len = fraglen;
1761 	}
1762 	m_freem(m0);
1763 	m0 = m_first;
1764 	return (m0);
1765 nospace:
1766 	if (m_first)
1767 		m_freem(m_first);
1768 	/* Return the original chain on failure */
1769 	return (m0);
1770 }
1771 
1772 #endif
1773 
1774 /*
1775  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1776  * vm_page_alloc() and aren't associated with any object.  Complement
1777  * to allocator from m_uiotombuf_nomap().
1778  */
1779 void
1780 mb_free_mext_pgs(struct mbuf *m)
1781 {
1782 	vm_page_t pg;
1783 
1784 	M_ASSERTEXTPG(m);
1785 	for (int i = 0; i < m->m_epg_npgs; i++) {
1786 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1787 		vm_page_unwire_noq(pg);
1788 		vm_page_free(pg);
1789 	}
1790 }
1791 
1792 static struct mbuf *
1793 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1794 {
1795 	struct mbuf *m, *mb, *prev;
1796 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1797 	int error, length, i, needed;
1798 	ssize_t total;
1799 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
1800 
1801 	MPASS((flags & M_PKTHDR) == 0);
1802 	MPASS((how & M_ZERO) == 0);
1803 
1804 	/*
1805 	 * len can be zero or an arbitrary large value bound by
1806 	 * the total data supplied by the uio.
1807 	 */
1808 	if (len > 0)
1809 		total = MIN(uio->uio_resid, len);
1810 	else
1811 		total = uio->uio_resid;
1812 
1813 	if (maxseg == 0)
1814 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1815 
1816 	/*
1817 	 * If total is zero, return an empty mbuf.  This can occur
1818 	 * for TLS 1.0 connections which send empty fragments as
1819 	 * a countermeasure against the known-IV weakness in CBC
1820 	 * ciphersuites.
1821 	 */
1822 	if (__predict_false(total == 0)) {
1823 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1824 		if (mb == NULL)
1825 			return (NULL);
1826 		mb->m_epg_flags = EPG_FLAG_ANON;
1827 		return (mb);
1828 	}
1829 
1830 	/*
1831 	 * Allocate the pages
1832 	 */
1833 	m = NULL;
1834 	while (total > 0) {
1835 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1836 		if (mb == NULL)
1837 			goto failed;
1838 		if (m == NULL)
1839 			m = mb;
1840 		else
1841 			prev->m_next = mb;
1842 		prev = mb;
1843 		mb->m_epg_flags = EPG_FLAG_ANON;
1844 		needed = length = MIN(maxseg, total);
1845 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1846 retry_page:
1847 			pg_array[i] = vm_page_alloc_noobj(pflags);
1848 			if (pg_array[i] == NULL) {
1849 				if (how & M_NOWAIT) {
1850 					goto failed;
1851 				} else {
1852 					vm_wait(NULL);
1853 					goto retry_page;
1854 				}
1855 			}
1856 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1857 			mb->m_epg_npgs++;
1858 		}
1859 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1860 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1861 		total -= length;
1862 		error = uiomove_fromphys(pg_array, 0, length, uio);
1863 		if (error != 0)
1864 			goto failed;
1865 		mb->m_len = length;
1866 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1867 		if (flags & M_PKTHDR)
1868 			m->m_pkthdr.len += length;
1869 	}
1870 	return (m);
1871 
1872 failed:
1873 	m_freem(m);
1874 	return (NULL);
1875 }
1876 
1877 /*
1878  * Copy the contents of uio into a properly sized mbuf chain.
1879  */
1880 struct mbuf *
1881 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1882 {
1883 	struct mbuf *m, *mb;
1884 	int error, length;
1885 	ssize_t total;
1886 	int progress = 0;
1887 
1888 	if (flags & M_EXTPG)
1889 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1890 
1891 	/*
1892 	 * len can be zero or an arbitrary large value bound by
1893 	 * the total data supplied by the uio.
1894 	 */
1895 	if (len > 0)
1896 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1897 	else
1898 		total = uio->uio_resid;
1899 
1900 	/*
1901 	 * The smallest unit returned by m_getm2() is a single mbuf
1902 	 * with pkthdr.  We can't align past it.
1903 	 */
1904 	if (align >= MHLEN)
1905 		return (NULL);
1906 
1907 	/*
1908 	 * Give us the full allocation or nothing.
1909 	 * If len is zero return the smallest empty mbuf.
1910 	 */
1911 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1912 	if (m == NULL)
1913 		return (NULL);
1914 	m->m_data += align;
1915 
1916 	/* Fill all mbufs with uio data and update header information. */
1917 	for (mb = m; mb != NULL; mb = mb->m_next) {
1918 		length = min(M_TRAILINGSPACE(mb), total - progress);
1919 
1920 		error = uiomove(mtod(mb, void *), length, uio);
1921 		if (error) {
1922 			m_freem(m);
1923 			return (NULL);
1924 		}
1925 
1926 		mb->m_len = length;
1927 		progress += length;
1928 		if (flags & M_PKTHDR) {
1929 			m->m_pkthdr.len += length;
1930 			m->m_pkthdr.memlen += MSIZE;
1931 			if (mb->m_flags & M_EXT)
1932 				m->m_pkthdr.memlen += mb->m_ext.ext_size;
1933 		}
1934 	}
1935 	KASSERT(progress == total, ("%s: progress != total", __func__));
1936 
1937 	return (m);
1938 }
1939 
1940 /*
1941  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
1942  */
1943 int
1944 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
1945 {
1946 	vm_page_t pg;
1947 	int error, i, off, pglen, pgoff, seglen, segoff;
1948 
1949 	M_ASSERTEXTPG(m);
1950 	error = 0;
1951 
1952 	/* Skip over any data removed from the front. */
1953 	off = mtod(m, vm_offset_t);
1954 
1955 	off += m_off;
1956 	if (m->m_epg_hdrlen != 0) {
1957 		if (off >= m->m_epg_hdrlen) {
1958 			off -= m->m_epg_hdrlen;
1959 		} else {
1960 			seglen = m->m_epg_hdrlen - off;
1961 			segoff = off;
1962 			seglen = min(seglen, len);
1963 			off = 0;
1964 			len -= seglen;
1965 			error = uiomove(__DECONST(void *,
1966 			    &m->m_epg_hdr[segoff]), seglen, uio);
1967 		}
1968 	}
1969 	pgoff = m->m_epg_1st_off;
1970 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1971 		pglen = m_epg_pagelen(m, i, pgoff);
1972 		if (off >= pglen) {
1973 			off -= pglen;
1974 			pgoff = 0;
1975 			continue;
1976 		}
1977 		seglen = pglen - off;
1978 		segoff = pgoff + off;
1979 		off = 0;
1980 		seglen = min(seglen, len);
1981 		len -= seglen;
1982 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1983 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1984 		pgoff = 0;
1985 	};
1986 	if (len != 0 && error == 0) {
1987 		KASSERT((off + len) <= m->m_epg_trllen,
1988 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1989 		    m->m_epg_trllen, m_off));
1990 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1991 		    len, uio);
1992 	}
1993 	return (error);
1994 }
1995 
1996 /*
1997  * Copy an mbuf chain into a uio limited by len if set.
1998  */
1999 int
2000 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
2001 {
2002 	int error, length, total;
2003 	int progress = 0;
2004 
2005 	if (len > 0)
2006 		total = min(uio->uio_resid, len);
2007 	else
2008 		total = uio->uio_resid;
2009 
2010 	/* Fill the uio with data from the mbufs. */
2011 	for (; m != NULL; m = m->m_next) {
2012 		length = min(m->m_len, total - progress);
2013 
2014 		if ((m->m_flags & M_EXTPG) != 0)
2015 			error = m_unmapped_uiomove(m, 0, uio, length);
2016 		else
2017 			error = uiomove(mtod(m, void *), length, uio);
2018 		if (error)
2019 			return (error);
2020 
2021 		progress += length;
2022 	}
2023 
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Create a writable copy of the mbuf chain.  While doing this
2029  * we compact the chain with a goal of producing a chain with
2030  * at most two mbufs.  The second mbuf in this chain is likely
2031  * to be a cluster.  The primary purpose of this work is to create
2032  * a writable packet for encryption, compression, etc.  The
2033  * secondary goal is to linearize the data so the data can be
2034  * passed to crypto hardware in the most efficient manner possible.
2035  */
2036 struct mbuf *
2037 m_unshare(struct mbuf *m0, int how)
2038 {
2039 	struct mbuf *m, *mprev;
2040 	struct mbuf *n, *mfirst, *mlast;
2041 	int len, off;
2042 
2043 	mprev = NULL;
2044 	for (m = m0; m != NULL; m = mprev->m_next) {
2045 		/*
2046 		 * Regular mbufs are ignored unless there's a cluster
2047 		 * in front of it that we can use to coalesce.  We do
2048 		 * the latter mainly so later clusters can be coalesced
2049 		 * also w/o having to handle them specially (i.e. convert
2050 		 * mbuf+cluster -> cluster).  This optimization is heavily
2051 		 * influenced by the assumption that we're running over
2052 		 * Ethernet where MCLBYTES is large enough that the max
2053 		 * packet size will permit lots of coalescing into a
2054 		 * single cluster.  This in turn permits efficient
2055 		 * crypto operations, especially when using hardware.
2056 		 */
2057 		if ((m->m_flags & M_EXT) == 0) {
2058 			if (mprev && (mprev->m_flags & M_EXT) &&
2059 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2060 				/* XXX: this ignores mbuf types */
2061 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2062 				    mtod(m, caddr_t), m->m_len);
2063 				mprev->m_len += m->m_len;
2064 				mprev->m_next = m->m_next;	/* unlink from chain */
2065 				m_free(m);			/* reclaim mbuf */
2066 			} else {
2067 				mprev = m;
2068 			}
2069 			continue;
2070 		}
2071 		/*
2072 		 * Writable mbufs are left alone (for now).
2073 		 */
2074 		if (M_WRITABLE(m)) {
2075 			mprev = m;
2076 			continue;
2077 		}
2078 
2079 		/*
2080 		 * Not writable, replace with a copy or coalesce with
2081 		 * the previous mbuf if possible (since we have to copy
2082 		 * it anyway, we try to reduce the number of mbufs and
2083 		 * clusters so that future work is easier).
2084 		 */
2085 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2086 		/* NB: we only coalesce into a cluster or larger */
2087 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2088 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2089 			/* XXX: this ignores mbuf types */
2090 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2091 			    mtod(m, caddr_t), m->m_len);
2092 			mprev->m_len += m->m_len;
2093 			mprev->m_next = m->m_next;	/* unlink from chain */
2094 			m_free(m);			/* reclaim mbuf */
2095 			continue;
2096 		}
2097 
2098 		/*
2099 		 * Allocate new space to hold the copy and copy the data.
2100 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2101 		 * splitting them into clusters.  We could just malloc a
2102 		 * buffer and make it external but too many device drivers
2103 		 * don't know how to break up the non-contiguous memory when
2104 		 * doing DMA.
2105 		 */
2106 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2107 		if (n == NULL) {
2108 			m_freem(m0);
2109 			return (NULL);
2110 		}
2111 		if (m->m_flags & M_PKTHDR) {
2112 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2113 			    __func__, m0, m));
2114 			m_move_pkthdr(n, m);
2115 		}
2116 		len = m->m_len;
2117 		off = 0;
2118 		mfirst = n;
2119 		mlast = NULL;
2120 		for (;;) {
2121 			int cc = min(len, MCLBYTES);
2122 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2123 			n->m_len = cc;
2124 			if (mlast != NULL)
2125 				mlast->m_next = n;
2126 			mlast = n;
2127 #if 0
2128 			newipsecstat.ips_clcopied++;
2129 #endif
2130 
2131 			len -= cc;
2132 			if (len <= 0)
2133 				break;
2134 			off += cc;
2135 
2136 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2137 			if (n == NULL) {
2138 				m_freem(mfirst);
2139 				m_freem(m0);
2140 				return (NULL);
2141 			}
2142 		}
2143 		n->m_next = m->m_next;
2144 		if (mprev == NULL)
2145 			m0 = mfirst;		/* new head of chain */
2146 		else
2147 			mprev->m_next = mfirst;	/* replace old mbuf */
2148 		m_free(m);			/* release old mbuf */
2149 		mprev = mfirst;
2150 	}
2151 	return (m0);
2152 }
2153 
2154 #ifdef MBUF_PROFILING
2155 
2156 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2157 struct mbufprofile {
2158 	uintmax_t wasted[MP_BUCKETS];
2159 	uintmax_t used[MP_BUCKETS];
2160 	uintmax_t segments[MP_BUCKETS];
2161 } mbprof;
2162 
2163 void
2164 m_profile(struct mbuf *m)
2165 {
2166 	int segments = 0;
2167 	int used = 0;
2168 	int wasted = 0;
2169 
2170 	while (m) {
2171 		segments++;
2172 		used += m->m_len;
2173 		if (m->m_flags & M_EXT) {
2174 			wasted += MHLEN - sizeof(m->m_ext) +
2175 			    m->m_ext.ext_size - m->m_len;
2176 		} else {
2177 			if (m->m_flags & M_PKTHDR)
2178 				wasted += MHLEN - m->m_len;
2179 			else
2180 				wasted += MLEN - m->m_len;
2181 		}
2182 		m = m->m_next;
2183 	}
2184 	/* be paranoid.. it helps */
2185 	if (segments > MP_BUCKETS - 1)
2186 		segments = MP_BUCKETS - 1;
2187 	if (used > 100000)
2188 		used = 100000;
2189 	if (wasted > 100000)
2190 		wasted = 100000;
2191 	/* store in the appropriate bucket */
2192 	/* don't bother locking. if it's slightly off, so what? */
2193 	mbprof.segments[segments]++;
2194 	mbprof.used[fls(used)]++;
2195 	mbprof.wasted[fls(wasted)]++;
2196 }
2197 
2198 static int
2199 mbprof_handler(SYSCTL_HANDLER_ARGS)
2200 {
2201 	char buf[256];
2202 	struct sbuf sb;
2203 	int error;
2204 	uint64_t *p;
2205 
2206 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
2207 
2208 	p = &mbprof.wasted[0];
2209 	sbuf_printf(&sb,
2210 	    "wasted:\n"
2211 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2212 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2213 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2214 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2215 #ifdef BIG_ARRAY
2216 	p = &mbprof.wasted[16];
2217 	sbuf_printf(&sb,
2218 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2219 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2220 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2221 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2222 #endif
2223 	p = &mbprof.used[0];
2224 	sbuf_printf(&sb,
2225 	    "used:\n"
2226 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2227 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2228 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2229 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2230 #ifdef BIG_ARRAY
2231 	p = &mbprof.used[16];
2232 	sbuf_printf(&sb,
2233 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2234 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2235 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2236 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2237 #endif
2238 	p = &mbprof.segments[0];
2239 	sbuf_printf(&sb,
2240 	    "segments:\n"
2241 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2242 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2243 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2244 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2245 #ifdef BIG_ARRAY
2246 	p = &mbprof.segments[16];
2247 	sbuf_printf(&sb,
2248 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2249 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2250 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2251 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2252 #endif
2253 
2254 	error = sbuf_finish(&sb);
2255 	sbuf_delete(&sb);
2256 	return (error);
2257 }
2258 
2259 static int
2260 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2261 {
2262 	int clear, error;
2263 
2264 	clear = 0;
2265 	error = sysctl_handle_int(oidp, &clear, 0, req);
2266 	if (error || !req->newptr)
2267 		return (error);
2268 
2269 	if (clear) {
2270 		bzero(&mbprof, sizeof(mbprof));
2271 	}
2272 
2273 	return (error);
2274 }
2275 
2276 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2277     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2278     mbprof_handler, "A",
2279     "mbuf profiling statistics");
2280 
2281 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2282     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
2283     mbprof_clr_handler, "I",
2284     "clear mbuf profiling statistics");
2285 #endif
2286