1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mbuf_profiling.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #include <sys/sdt.h> 54 #include <vm/vm.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/vm_page.h> 57 58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 59 "struct mbuf *", "mbufinfo_t *", 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "uint32_t", "uint32_t", 63 "uint32_t", "uint32_t"); 64 65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 66 "uint32_t", "uint32_t", 67 "uint16_t", "uint16_t", 68 "struct mbuf *", "mbufinfo_t *"); 69 70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 71 "uint32_t", "uint32_t", 72 "uint16_t", "uint16_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 76 "uint32_t", "uint32_t", 77 "uint16_t", "uint16_t", 78 "uint32_t", "uint32_t", 79 "struct mbuf *", "mbufinfo_t *"); 80 81 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl, 82 "uint32_t", "uint32_t", 83 "uint16_t", "uint16_t", 84 "uint32_t", "uint32_t", 85 "uint32_t", "uint32_t", 86 "struct mbuf *", "mbufinfo_t *"); 87 88 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 89 "struct mbuf *", "mbufinfo_t *", 90 "uint32_t", "uint32_t", 91 "uint32_t", "uint32_t"); 92 93 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 94 "struct mbuf *", "mbufinfo_t *", 95 "uint32_t", "uint32_t", 96 "uint32_t", "uint32_t", 97 "void*", "void*"); 98 99 SDT_PROBE_DEFINE(sdt, , , m__cljset); 100 101 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 102 "struct mbuf *", "mbufinfo_t *"); 103 104 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 105 "struct mbuf *", "mbufinfo_t *"); 106 107 #include <security/mac/mac_framework.h> 108 109 int max_linkhdr; 110 int max_protohdr; 111 int max_hdr; 112 int max_datalen; 113 #ifdef MBUF_STRESS_TEST 114 int m_defragpackets; 115 int m_defragbytes; 116 int m_defraguseless; 117 int m_defragfailure; 118 int m_defragrandomfailures; 119 #endif 120 121 /* 122 * sysctl(8) exported objects 123 */ 124 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 125 &max_linkhdr, 0, "Size of largest link layer header"); 126 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 127 &max_protohdr, 0, "Size of largest protocol layer header"); 128 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 129 &max_hdr, 0, "Size of largest link plus protocol header"); 130 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 131 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 132 #ifdef MBUF_STRESS_TEST 133 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 134 &m_defragpackets, 0, ""); 135 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 136 &m_defragbytes, 0, ""); 137 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 138 &m_defraguseless, 0, ""); 139 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 140 &m_defragfailure, 0, ""); 141 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 142 &m_defragrandomfailures, 0, ""); 143 #endif 144 145 /* 146 * Ensure the correct size of various mbuf parameters. It could be off due 147 * to compiler-induced padding and alignment artifacts. 148 */ 149 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 150 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 151 152 /* 153 * mbuf data storage should be 64-bit aligned regardless of architectural 154 * pointer size; check this is the case with and without a packet header. 155 */ 156 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 157 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 158 159 /* 160 * While the specific values here don't matter too much (i.e., +/- a few 161 * words), we do want to ensure that changes to these values are carefully 162 * reasoned about and properly documented. This is especially the case as 163 * network-protocol and device-driver modules encode these layouts, and must 164 * be recompiled if the structures change. Check these values at compile time 165 * against the ones documented in comments in mbuf.h. 166 * 167 * NB: Possibly they should be documented there via #define's and not just 168 * comments. 169 */ 170 #if defined(__LP64__) 171 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 172 CTASSERT(sizeof(struct pkthdr) == 56); 173 CTASSERT(sizeof(struct m_ext) == 160); 174 #else 175 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 176 CTASSERT(sizeof(struct pkthdr) == 48); 177 #if defined(__powerpc__) && defined(BOOKE) 178 /* PowerPC booke has 64-bit physical pointers. */ 179 CTASSERT(sizeof(struct m_ext) == 184); 180 #else 181 CTASSERT(sizeof(struct m_ext) == 180); 182 #endif 183 #endif 184 185 /* 186 * Assert that the queue(3) macros produce code of the same size as an old 187 * plain pointer does. 188 */ 189 #ifdef INVARIANTS 190 static struct mbuf __used m_assertbuf; 191 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 192 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 193 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 194 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 195 #endif 196 197 /* 198 * Attach the cluster from *m to *n, set up m_ext in *n 199 * and bump the refcount of the cluster. 200 */ 201 void 202 mb_dupcl(struct mbuf *n, struct mbuf *m) 203 { 204 volatile u_int *refcnt; 205 206 KASSERT(m->m_flags & (M_EXT|M_EXTPG), 207 ("%s: M_EXT|M_EXTPG not set on %p", __func__, m)); 208 KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)), 209 ("%s: M_EXT|M_EXTPG set on %p", __func__, n)); 210 211 /* 212 * Cache access optimization. 213 * 214 * o Regular M_EXT storage doesn't need full copy of m_ext, since 215 * the holder of the 'ext_count' is responsible to carry the free 216 * routine and its arguments. 217 * o M_EXTPG data is split between main part of mbuf and m_ext, the 218 * main part is copied in full, the m_ext part is similar to M_EXT. 219 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is 220 * special - it needs full copy of m_ext into each mbuf, since any 221 * copy could end up as the last to free. 222 */ 223 if (m->m_flags & M_EXTPG) { 224 bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy, 225 __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy)); 226 bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen); 227 } else if (m->m_ext.ext_type == EXT_EXTREF) 228 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 229 else 230 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 231 232 n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG); 233 234 /* See if this is the mbuf that holds the embedded refcount. */ 235 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 236 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 237 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 238 } else { 239 KASSERT(m->m_ext.ext_cnt != NULL, 240 ("%s: no refcounting pointer on %p", __func__, m)); 241 refcnt = m->m_ext.ext_cnt; 242 } 243 244 if (*refcnt == 1) 245 *refcnt += 1; 246 else 247 atomic_add_int(refcnt, 1); 248 } 249 250 void 251 m_demote_pkthdr(struct mbuf *m) 252 { 253 254 M_ASSERTPKTHDR(m); 255 256 m_tag_delete_chain(m, NULL); 257 m->m_flags &= ~M_PKTHDR; 258 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 259 } 260 261 /* 262 * Clean up mbuf (chain) from any tags and packet headers. 263 * If "all" is set then the first mbuf in the chain will be 264 * cleaned too. 265 */ 266 void 267 m_demote(struct mbuf *m0, int all, int flags) 268 { 269 struct mbuf *m; 270 271 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 272 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 273 __func__, m, m0)); 274 if (m->m_flags & M_PKTHDR) 275 m_demote_pkthdr(m); 276 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | 277 M_EXTPG | flags); 278 } 279 } 280 281 /* 282 * Sanity checks on mbuf (chain) for use in KASSERT() and general 283 * debugging. 284 * Returns 0 or panics when bad and 1 on all tests passed. 285 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 286 * blow up later. 287 */ 288 int 289 m_sanity(struct mbuf *m0, int sanitize) 290 { 291 struct mbuf *m; 292 caddr_t a, b; 293 int pktlen = 0; 294 295 #ifdef INVARIANTS 296 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 297 #else 298 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 299 #endif 300 301 for (m = m0; m != NULL; m = m->m_next) { 302 /* 303 * Basic pointer checks. If any of these fails then some 304 * unrelated kernel memory before or after us is trashed. 305 * No way to recover from that. 306 */ 307 a = M_START(m); 308 b = a + M_SIZE(m); 309 if ((caddr_t)m->m_data < a) 310 M_SANITY_ACTION("m_data outside mbuf data range left"); 311 if ((caddr_t)m->m_data > b) 312 M_SANITY_ACTION("m_data outside mbuf data range right"); 313 if ((caddr_t)m->m_data + m->m_len > b) 314 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 315 316 /* m->m_nextpkt may only be set on first mbuf in chain. */ 317 if (m != m0 && m->m_nextpkt != NULL) { 318 if (sanitize) { 319 m_freem(m->m_nextpkt); 320 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 321 } else 322 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 323 } 324 325 /* packet length (not mbuf length!) calculation */ 326 if (m0->m_flags & M_PKTHDR) 327 pktlen += m->m_len; 328 329 /* m_tags may only be attached to first mbuf in chain. */ 330 if (m != m0 && m->m_flags & M_PKTHDR && 331 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 332 if (sanitize) { 333 m_tag_delete_chain(m, NULL); 334 /* put in 0xDEADC0DE perhaps? */ 335 } else 336 M_SANITY_ACTION("m_tags on in-chain mbuf"); 337 } 338 339 /* M_PKTHDR may only be set on first mbuf in chain */ 340 if (m != m0 && m->m_flags & M_PKTHDR) { 341 if (sanitize) { 342 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 343 m->m_flags &= ~M_PKTHDR; 344 /* put in 0xDEADCODE and leave hdr flag in */ 345 } else 346 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 347 } 348 } 349 m = m0; 350 if (pktlen && pktlen != m->m_pkthdr.len) { 351 if (sanitize) 352 m->m_pkthdr.len = 0; 353 else 354 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 355 } 356 return 1; 357 358 #undef M_SANITY_ACTION 359 } 360 361 /* 362 * Non-inlined part of m_init(). 363 */ 364 int 365 m_pkthdr_init(struct mbuf *m, int how) 366 { 367 #ifdef MAC 368 int error; 369 #endif 370 m->m_data = m->m_pktdat; 371 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 372 #ifdef NUMA 373 m->m_pkthdr.numa_domain = M_NODOM; 374 #endif 375 #ifdef MAC 376 /* If the label init fails, fail the alloc */ 377 error = mac_mbuf_init(m, how); 378 if (error) 379 return (error); 380 #endif 381 382 return (0); 383 } 384 385 /* 386 * "Move" mbuf pkthdr from "from" to "to". 387 * "from" must have M_PKTHDR set, and "to" must be empty. 388 */ 389 void 390 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 391 { 392 393 #if 0 394 /* see below for why these are not enabled */ 395 M_ASSERTPKTHDR(to); 396 /* Note: with MAC, this may not be a good assertion. */ 397 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 398 ("m_move_pkthdr: to has tags")); 399 #endif 400 #ifdef MAC 401 /* 402 * XXXMAC: It could be this should also occur for non-MAC? 403 */ 404 if (to->m_flags & M_PKTHDR) 405 m_tag_delete_chain(to, NULL); 406 #endif 407 to->m_flags = (from->m_flags & M_COPYFLAGS) | 408 (to->m_flags & (M_EXT | M_EXTPG)); 409 if ((to->m_flags & M_EXT) == 0) 410 to->m_data = to->m_pktdat; 411 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 412 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 413 from->m_flags &= ~M_PKTHDR; 414 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 415 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 416 from->m_pkthdr.snd_tag = NULL; 417 } 418 } 419 420 /* 421 * Duplicate "from"'s mbuf pkthdr in "to". 422 * "from" must have M_PKTHDR set, and "to" must be empty. 423 * In particular, this does a deep copy of the packet tags. 424 */ 425 int 426 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 427 { 428 429 #if 0 430 /* 431 * The mbuf allocator only initializes the pkthdr 432 * when the mbuf is allocated with m_gethdr(). Many users 433 * (e.g. m_copy*, m_prepend) use m_get() and then 434 * smash the pkthdr as needed causing these 435 * assertions to trip. For now just disable them. 436 */ 437 M_ASSERTPKTHDR(to); 438 /* Note: with MAC, this may not be a good assertion. */ 439 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 440 #endif 441 MBUF_CHECKSLEEP(how); 442 #ifdef MAC 443 if (to->m_flags & M_PKTHDR) 444 m_tag_delete_chain(to, NULL); 445 #endif 446 to->m_flags = (from->m_flags & M_COPYFLAGS) | 447 (to->m_flags & (M_EXT | M_EXTPG)); 448 if ((to->m_flags & M_EXT) == 0) 449 to->m_data = to->m_pktdat; 450 to->m_pkthdr = from->m_pkthdr; 451 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 452 m_snd_tag_ref(from->m_pkthdr.snd_tag); 453 SLIST_INIT(&to->m_pkthdr.tags); 454 return (m_tag_copy_chain(to, from, how)); 455 } 456 457 /* 458 * Lesser-used path for M_PREPEND: 459 * allocate new mbuf to prepend to chain, 460 * copy junk along. 461 */ 462 struct mbuf * 463 m_prepend(struct mbuf *m, int len, int how) 464 { 465 struct mbuf *mn; 466 467 if (m->m_flags & M_PKTHDR) 468 mn = m_gethdr(how, m->m_type); 469 else 470 mn = m_get(how, m->m_type); 471 if (mn == NULL) { 472 m_freem(m); 473 return (NULL); 474 } 475 if (m->m_flags & M_PKTHDR) 476 m_move_pkthdr(mn, m); 477 mn->m_next = m; 478 m = mn; 479 if (len < M_SIZE(m)) 480 M_ALIGN(m, len); 481 m->m_len = len; 482 return (m); 483 } 484 485 /* 486 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 487 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 488 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 489 * Note that the copy is read-only, because clusters are not copied, 490 * only their reference counts are incremented. 491 */ 492 struct mbuf * 493 m_copym(struct mbuf *m, int off0, int len, int wait) 494 { 495 struct mbuf *n, **np; 496 int off = off0; 497 struct mbuf *top; 498 int copyhdr = 0; 499 500 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 501 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 502 MBUF_CHECKSLEEP(wait); 503 if (off == 0 && m->m_flags & M_PKTHDR) 504 copyhdr = 1; 505 while (off > 0) { 506 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 507 if (off < m->m_len) 508 break; 509 off -= m->m_len; 510 m = m->m_next; 511 } 512 np = ⊤ 513 top = NULL; 514 while (len > 0) { 515 if (m == NULL) { 516 KASSERT(len == M_COPYALL, 517 ("m_copym, length > size of mbuf chain")); 518 break; 519 } 520 if (copyhdr) 521 n = m_gethdr(wait, m->m_type); 522 else 523 n = m_get(wait, m->m_type); 524 *np = n; 525 if (n == NULL) 526 goto nospace; 527 if (copyhdr) { 528 if (!m_dup_pkthdr(n, m, wait)) 529 goto nospace; 530 if (len == M_COPYALL) 531 n->m_pkthdr.len -= off0; 532 else 533 n->m_pkthdr.len = len; 534 copyhdr = 0; 535 } 536 n->m_len = min(len, m->m_len - off); 537 if (m->m_flags & (M_EXT|M_EXTPG)) { 538 n->m_data = m->m_data + off; 539 mb_dupcl(n, m); 540 } else 541 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 542 (u_int)n->m_len); 543 if (len != M_COPYALL) 544 len -= n->m_len; 545 off = 0; 546 m = m->m_next; 547 np = &n->m_next; 548 } 549 550 return (top); 551 nospace: 552 m_freem(top); 553 return (NULL); 554 } 555 556 /* 557 * Copy an entire packet, including header (which must be present). 558 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 559 * Note that the copy is read-only, because clusters are not copied, 560 * only their reference counts are incremented. 561 * Preserve alignment of the first mbuf so if the creator has left 562 * some room at the beginning (e.g. for inserting protocol headers) 563 * the copies still have the room available. 564 */ 565 struct mbuf * 566 m_copypacket(struct mbuf *m, int how) 567 { 568 struct mbuf *top, *n, *o; 569 570 MBUF_CHECKSLEEP(how); 571 n = m_get(how, m->m_type); 572 top = n; 573 if (n == NULL) 574 goto nospace; 575 576 if (!m_dup_pkthdr(n, m, how)) 577 goto nospace; 578 n->m_len = m->m_len; 579 if (m->m_flags & (M_EXT|M_EXTPG)) { 580 n->m_data = m->m_data; 581 mb_dupcl(n, m); 582 } else { 583 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 584 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 585 } 586 587 m = m->m_next; 588 while (m) { 589 o = m_get(how, m->m_type); 590 if (o == NULL) 591 goto nospace; 592 593 n->m_next = o; 594 n = n->m_next; 595 596 n->m_len = m->m_len; 597 if (m->m_flags & (M_EXT|M_EXTPG)) { 598 n->m_data = m->m_data; 599 mb_dupcl(n, m); 600 } else { 601 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 602 } 603 604 m = m->m_next; 605 } 606 return top; 607 nospace: 608 m_freem(top); 609 return (NULL); 610 } 611 612 static void 613 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 614 { 615 struct iovec iov; 616 struct uio uio; 617 int error; 618 619 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 620 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 621 KASSERT(off < m->m_len, 622 ("m_copyfromunmapped: len exceeds mbuf length")); 623 iov.iov_base = cp; 624 iov.iov_len = len; 625 uio.uio_resid = len; 626 uio.uio_iov = &iov; 627 uio.uio_segflg = UIO_SYSSPACE; 628 uio.uio_iovcnt = 1; 629 uio.uio_offset = 0; 630 uio.uio_rw = UIO_READ; 631 error = m_unmapped_uiomove(m, off, &uio, len); 632 KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off, 633 len)); 634 } 635 636 /* 637 * Copy data from an mbuf chain starting "off" bytes from the beginning, 638 * continuing for "len" bytes, into the indicated buffer. 639 */ 640 void 641 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 642 { 643 u_int count; 644 645 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 646 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 647 while (off > 0) { 648 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 649 if (off < m->m_len) 650 break; 651 off -= m->m_len; 652 m = m->m_next; 653 } 654 while (len > 0) { 655 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 656 count = min(m->m_len - off, len); 657 if ((m->m_flags & M_EXTPG) != 0) 658 m_copyfromunmapped(m, off, count, cp); 659 else 660 bcopy(mtod(m, caddr_t) + off, cp, count); 661 len -= count; 662 cp += count; 663 off = 0; 664 m = m->m_next; 665 } 666 } 667 668 /* 669 * Copy a packet header mbuf chain into a completely new chain, including 670 * copying any mbuf clusters. Use this instead of m_copypacket() when 671 * you need a writable copy of an mbuf chain. 672 */ 673 struct mbuf * 674 m_dup(const struct mbuf *m, int how) 675 { 676 struct mbuf **p, *top = NULL; 677 int remain, moff, nsize; 678 679 MBUF_CHECKSLEEP(how); 680 /* Sanity check */ 681 if (m == NULL) 682 return (NULL); 683 M_ASSERTPKTHDR(m); 684 685 /* While there's more data, get a new mbuf, tack it on, and fill it */ 686 remain = m->m_pkthdr.len; 687 moff = 0; 688 p = ⊤ 689 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 690 struct mbuf *n; 691 692 /* Get the next new mbuf */ 693 if (remain >= MINCLSIZE) { 694 n = m_getcl(how, m->m_type, 0); 695 nsize = MCLBYTES; 696 } else { 697 n = m_get(how, m->m_type); 698 nsize = MLEN; 699 } 700 if (n == NULL) 701 goto nospace; 702 703 if (top == NULL) { /* First one, must be PKTHDR */ 704 if (!m_dup_pkthdr(n, m, how)) { 705 m_free(n); 706 goto nospace; 707 } 708 if ((n->m_flags & M_EXT) == 0) 709 nsize = MHLEN; 710 n->m_flags &= ~M_RDONLY; 711 } 712 n->m_len = 0; 713 714 /* Link it into the new chain */ 715 *p = n; 716 p = &n->m_next; 717 718 /* Copy data from original mbuf(s) into new mbuf */ 719 while (n->m_len < nsize && m != NULL) { 720 int chunk = min(nsize - n->m_len, m->m_len - moff); 721 722 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 723 moff += chunk; 724 n->m_len += chunk; 725 remain -= chunk; 726 if (moff == m->m_len) { 727 m = m->m_next; 728 moff = 0; 729 } 730 } 731 732 /* Check correct total mbuf length */ 733 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 734 ("%s: bogus m_pkthdr.len", __func__)); 735 } 736 return (top); 737 738 nospace: 739 m_freem(top); 740 return (NULL); 741 } 742 743 /* 744 * Concatenate mbuf chain n to m. 745 * Both chains must be of the same type (e.g. MT_DATA). 746 * Any m_pkthdr is not updated. 747 */ 748 void 749 m_cat(struct mbuf *m, struct mbuf *n) 750 { 751 while (m->m_next) 752 m = m->m_next; 753 while (n) { 754 if (!M_WRITABLE(m) || 755 (n->m_flags & M_EXTPG) != 0 || 756 M_TRAILINGSPACE(m) < n->m_len) { 757 /* just join the two chains */ 758 m->m_next = n; 759 return; 760 } 761 /* splat the data from one into the other */ 762 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 763 (u_int)n->m_len); 764 m->m_len += n->m_len; 765 n = m_free(n); 766 } 767 } 768 769 /* 770 * Concatenate two pkthdr mbuf chains. 771 */ 772 void 773 m_catpkt(struct mbuf *m, struct mbuf *n) 774 { 775 776 M_ASSERTPKTHDR(m); 777 M_ASSERTPKTHDR(n); 778 779 m->m_pkthdr.len += n->m_pkthdr.len; 780 m_demote(n, 1, 0); 781 782 m_cat(m, n); 783 } 784 785 void 786 m_adj(struct mbuf *mp, int req_len) 787 { 788 int len = req_len; 789 struct mbuf *m; 790 int count; 791 792 if ((m = mp) == NULL) 793 return; 794 if (len >= 0) { 795 /* 796 * Trim from head. 797 */ 798 while (m != NULL && len > 0) { 799 if (m->m_len <= len) { 800 len -= m->m_len; 801 m->m_len = 0; 802 m = m->m_next; 803 } else { 804 m->m_len -= len; 805 m->m_data += len; 806 len = 0; 807 } 808 } 809 if (mp->m_flags & M_PKTHDR) 810 mp->m_pkthdr.len -= (req_len - len); 811 } else { 812 /* 813 * Trim from tail. Scan the mbuf chain, 814 * calculating its length and finding the last mbuf. 815 * If the adjustment only affects this mbuf, then just 816 * adjust and return. Otherwise, rescan and truncate 817 * after the remaining size. 818 */ 819 len = -len; 820 count = 0; 821 for (;;) { 822 count += m->m_len; 823 if (m->m_next == (struct mbuf *)0) 824 break; 825 m = m->m_next; 826 } 827 if (m->m_len >= len) { 828 m->m_len -= len; 829 if (mp->m_flags & M_PKTHDR) 830 mp->m_pkthdr.len -= len; 831 return; 832 } 833 count -= len; 834 if (count < 0) 835 count = 0; 836 /* 837 * Correct length for chain is "count". 838 * Find the mbuf with last data, adjust its length, 839 * and toss data from remaining mbufs on chain. 840 */ 841 m = mp; 842 if (m->m_flags & M_PKTHDR) 843 m->m_pkthdr.len = count; 844 for (; m; m = m->m_next) { 845 if (m->m_len >= count) { 846 m->m_len = count; 847 if (m->m_next != NULL) { 848 m_freem(m->m_next); 849 m->m_next = NULL; 850 } 851 break; 852 } 853 count -= m->m_len; 854 } 855 } 856 } 857 858 void 859 m_adj_decap(struct mbuf *mp, int len) 860 { 861 uint8_t rsstype; 862 863 m_adj(mp, len); 864 if ((mp->m_flags & M_PKTHDR) != 0) { 865 /* 866 * If flowid was calculated by card from the inner 867 * headers, move flowid to the decapsulated mbuf 868 * chain, otherwise clear. This depends on the 869 * internals of m_adj, which keeps pkthdr as is, in 870 * particular not changing rsstype and flowid. 871 */ 872 rsstype = mp->m_pkthdr.rsstype; 873 if ((rsstype & M_HASHTYPE_INNER) != 0) { 874 M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER); 875 } else { 876 M_HASHTYPE_CLEAR(mp); 877 } 878 } 879 } 880 881 /* 882 * Rearange an mbuf chain so that len bytes are contiguous 883 * and in the data area of an mbuf (so that mtod will work 884 * for a structure of size len). Returns the resulting 885 * mbuf chain on success, frees it and returns null on failure. 886 * If there is room, it will add up to max_protohdr-len extra bytes to the 887 * contiguous region in an attempt to avoid being called next time. 888 */ 889 struct mbuf * 890 m_pullup(struct mbuf *n, int len) 891 { 892 struct mbuf *m; 893 int count; 894 int space; 895 896 KASSERT((n->m_flags & M_EXTPG) == 0, 897 ("%s: unmapped mbuf %p", __func__, n)); 898 899 /* 900 * If first mbuf has no cluster, and has room for len bytes 901 * without shifting current data, pullup into it, 902 * otherwise allocate a new mbuf to prepend to the chain. 903 */ 904 if ((n->m_flags & M_EXT) == 0 && 905 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 906 if (n->m_len >= len) 907 return (n); 908 m = n; 909 n = n->m_next; 910 len -= m->m_len; 911 } else { 912 if (len > MHLEN) 913 goto bad; 914 m = m_get(M_NOWAIT, n->m_type); 915 if (m == NULL) 916 goto bad; 917 if (n->m_flags & M_PKTHDR) 918 m_move_pkthdr(m, n); 919 } 920 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 921 do { 922 count = min(min(max(len, max_protohdr), space), n->m_len); 923 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 924 (u_int)count); 925 len -= count; 926 m->m_len += count; 927 n->m_len -= count; 928 space -= count; 929 if (n->m_len) 930 n->m_data += count; 931 else 932 n = m_free(n); 933 } while (len > 0 && n); 934 if (len > 0) { 935 (void) m_free(m); 936 goto bad; 937 } 938 m->m_next = n; 939 return (m); 940 bad: 941 m_freem(n); 942 return (NULL); 943 } 944 945 /* 946 * Like m_pullup(), except a new mbuf is always allocated, and we allow 947 * the amount of empty space before the data in the new mbuf to be specified 948 * (in the event that the caller expects to prepend later). 949 */ 950 struct mbuf * 951 m_copyup(struct mbuf *n, int len, int dstoff) 952 { 953 struct mbuf *m; 954 int count, space; 955 956 if (len > (MHLEN - dstoff)) 957 goto bad; 958 m = m_get(M_NOWAIT, n->m_type); 959 if (m == NULL) 960 goto bad; 961 if (n->m_flags & M_PKTHDR) 962 m_move_pkthdr(m, n); 963 m->m_data += dstoff; 964 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 965 do { 966 count = min(min(max(len, max_protohdr), space), n->m_len); 967 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 968 (unsigned)count); 969 len -= count; 970 m->m_len += count; 971 n->m_len -= count; 972 space -= count; 973 if (n->m_len) 974 n->m_data += count; 975 else 976 n = m_free(n); 977 } while (len > 0 && n); 978 if (len > 0) { 979 (void) m_free(m); 980 goto bad; 981 } 982 m->m_next = n; 983 return (m); 984 bad: 985 m_freem(n); 986 return (NULL); 987 } 988 989 /* 990 * Partition an mbuf chain in two pieces, returning the tail -- 991 * all but the first len0 bytes. In case of failure, it returns NULL and 992 * attempts to restore the chain to its original state. 993 * 994 * Note that the resulting mbufs might be read-only, because the new 995 * mbuf can end up sharing an mbuf cluster with the original mbuf if 996 * the "breaking point" happens to lie within a cluster mbuf. Use the 997 * M_WRITABLE() macro to check for this case. 998 */ 999 struct mbuf * 1000 m_split(struct mbuf *m0, int len0, int wait) 1001 { 1002 struct mbuf *m, *n; 1003 u_int len = len0, remain; 1004 1005 MBUF_CHECKSLEEP(wait); 1006 for (m = m0; m && len > m->m_len; m = m->m_next) 1007 len -= m->m_len; 1008 if (m == NULL) 1009 return (NULL); 1010 remain = m->m_len - len; 1011 if (m0->m_flags & M_PKTHDR && remain == 0) { 1012 n = m_gethdr(wait, m0->m_type); 1013 if (n == NULL) 1014 return (NULL); 1015 n->m_next = m->m_next; 1016 m->m_next = NULL; 1017 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1018 n->m_pkthdr.snd_tag = 1019 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1020 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1021 } else 1022 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1023 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1024 m0->m_pkthdr.len = len0; 1025 return (n); 1026 } else if (m0->m_flags & M_PKTHDR) { 1027 n = m_gethdr(wait, m0->m_type); 1028 if (n == NULL) 1029 return (NULL); 1030 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 1031 n->m_pkthdr.snd_tag = 1032 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 1033 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 1034 } else 1035 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1036 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1037 m0->m_pkthdr.len = len0; 1038 if (m->m_flags & (M_EXT|M_EXTPG)) 1039 goto extpacket; 1040 if (remain > MHLEN) { 1041 /* m can't be the lead packet */ 1042 M_ALIGN(n, 0); 1043 n->m_next = m_split(m, len, wait); 1044 if (n->m_next == NULL) { 1045 (void) m_free(n); 1046 return (NULL); 1047 } else { 1048 n->m_len = 0; 1049 return (n); 1050 } 1051 } else 1052 M_ALIGN(n, remain); 1053 } else if (remain == 0) { 1054 n = m->m_next; 1055 m->m_next = NULL; 1056 return (n); 1057 } else { 1058 n = m_get(wait, m->m_type); 1059 if (n == NULL) 1060 return (NULL); 1061 M_ALIGN(n, remain); 1062 } 1063 extpacket: 1064 if (m->m_flags & (M_EXT|M_EXTPG)) { 1065 n->m_data = m->m_data + len; 1066 mb_dupcl(n, m); 1067 } else { 1068 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1069 } 1070 n->m_len = remain; 1071 m->m_len = len; 1072 n->m_next = m->m_next; 1073 m->m_next = NULL; 1074 return (n); 1075 } 1076 /* 1077 * Routine to copy from device local memory into mbufs. 1078 * Note that `off' argument is offset into first mbuf of target chain from 1079 * which to begin copying the data to. 1080 */ 1081 struct mbuf * 1082 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1083 void (*copy)(char *from, caddr_t to, u_int len)) 1084 { 1085 struct mbuf *m; 1086 struct mbuf *top = NULL, **mp = ⊤ 1087 int len; 1088 1089 if (off < 0 || off > MHLEN) 1090 return (NULL); 1091 1092 while (totlen > 0) { 1093 if (top == NULL) { /* First one, must be PKTHDR */ 1094 if (totlen + off >= MINCLSIZE) { 1095 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1096 len = MCLBYTES; 1097 } else { 1098 m = m_gethdr(M_NOWAIT, MT_DATA); 1099 len = MHLEN; 1100 1101 /* Place initial small packet/header at end of mbuf */ 1102 if (m && totlen + off + max_linkhdr <= MHLEN) { 1103 m->m_data += max_linkhdr; 1104 len -= max_linkhdr; 1105 } 1106 } 1107 if (m == NULL) 1108 return NULL; 1109 m->m_pkthdr.rcvif = ifp; 1110 m->m_pkthdr.len = totlen; 1111 } else { 1112 if (totlen + off >= MINCLSIZE) { 1113 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1114 len = MCLBYTES; 1115 } else { 1116 m = m_get(M_NOWAIT, MT_DATA); 1117 len = MLEN; 1118 } 1119 if (m == NULL) { 1120 m_freem(top); 1121 return NULL; 1122 } 1123 } 1124 if (off) { 1125 m->m_data += off; 1126 len -= off; 1127 off = 0; 1128 } 1129 m->m_len = len = min(totlen, len); 1130 if (copy) 1131 copy(buf, mtod(m, caddr_t), (u_int)len); 1132 else 1133 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1134 buf += len; 1135 *mp = m; 1136 mp = &m->m_next; 1137 totlen -= len; 1138 } 1139 return (top); 1140 } 1141 1142 static void 1143 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp) 1144 { 1145 struct iovec iov; 1146 struct uio uio; 1147 int error; 1148 1149 KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off)); 1150 KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len)); 1151 KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length")); 1152 iov.iov_base = __DECONST(caddr_t, cp); 1153 iov.iov_len = len; 1154 uio.uio_resid = len; 1155 uio.uio_iov = &iov; 1156 uio.uio_segflg = UIO_SYSSPACE; 1157 uio.uio_iovcnt = 1; 1158 uio.uio_offset = 0; 1159 uio.uio_rw = UIO_WRITE; 1160 error = m_unmapped_uiomove(m, off, &uio, len); 1161 KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off, 1162 len)); 1163 } 1164 1165 /* 1166 * Copy data from a buffer back into the indicated mbuf chain, 1167 * starting "off" bytes from the beginning, extending the mbuf 1168 * chain if necessary. 1169 */ 1170 void 1171 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1172 { 1173 int mlen; 1174 struct mbuf *m = m0, *n; 1175 int totlen = 0; 1176 1177 if (m0 == NULL) 1178 return; 1179 while (off > (mlen = m->m_len)) { 1180 off -= mlen; 1181 totlen += mlen; 1182 if (m->m_next == NULL) { 1183 n = m_get(M_NOWAIT, m->m_type); 1184 if (n == NULL) 1185 goto out; 1186 bzero(mtod(n, caddr_t), MLEN); 1187 n->m_len = min(MLEN, len + off); 1188 m->m_next = n; 1189 } 1190 m = m->m_next; 1191 } 1192 while (len > 0) { 1193 if (m->m_next == NULL && (len > m->m_len - off)) { 1194 m->m_len += min(len - (m->m_len - off), 1195 M_TRAILINGSPACE(m)); 1196 } 1197 mlen = min (m->m_len - off, len); 1198 if ((m->m_flags & M_EXTPG) != 0) 1199 m_copytounmapped(m, off, mlen, cp); 1200 else 1201 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1202 cp += mlen; 1203 len -= mlen; 1204 mlen += off; 1205 off = 0; 1206 totlen += mlen; 1207 if (len == 0) 1208 break; 1209 if (m->m_next == NULL) { 1210 n = m_get(M_NOWAIT, m->m_type); 1211 if (n == NULL) 1212 break; 1213 n->m_len = min(MLEN, len); 1214 m->m_next = n; 1215 } 1216 m = m->m_next; 1217 } 1218 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1219 m->m_pkthdr.len = totlen; 1220 } 1221 1222 /* 1223 * Append the specified data to the indicated mbuf chain, 1224 * Extend the mbuf chain if the new data does not fit in 1225 * existing space. 1226 * 1227 * Return 1 if able to complete the job; otherwise 0. 1228 */ 1229 int 1230 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1231 { 1232 struct mbuf *m, *n; 1233 int remainder, space; 1234 1235 for (m = m0; m->m_next != NULL; m = m->m_next) 1236 ; 1237 remainder = len; 1238 space = M_TRAILINGSPACE(m); 1239 if (space > 0) { 1240 /* 1241 * Copy into available space. 1242 */ 1243 if (space > remainder) 1244 space = remainder; 1245 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1246 m->m_len += space; 1247 cp += space, remainder -= space; 1248 } 1249 while (remainder > 0) { 1250 /* 1251 * Allocate a new mbuf; could check space 1252 * and allocate a cluster instead. 1253 */ 1254 n = m_get(M_NOWAIT, m->m_type); 1255 if (n == NULL) 1256 break; 1257 n->m_len = min(MLEN, remainder); 1258 bcopy(cp, mtod(n, caddr_t), n->m_len); 1259 cp += n->m_len, remainder -= n->m_len; 1260 m->m_next = n; 1261 m = n; 1262 } 1263 if (m0->m_flags & M_PKTHDR) 1264 m0->m_pkthdr.len += len - remainder; 1265 return (remainder == 0); 1266 } 1267 1268 static int 1269 m_apply_extpg_one(struct mbuf *m, int off, int len, 1270 int (*f)(void *, void *, u_int), void *arg) 1271 { 1272 void *p; 1273 u_int i, count, pgoff, pglen; 1274 int rval; 1275 1276 KASSERT(PMAP_HAS_DMAP, 1277 ("m_apply_extpg_one does not support unmapped mbufs")); 1278 off += mtod(m, vm_offset_t); 1279 if (off < m->m_epg_hdrlen) { 1280 count = min(m->m_epg_hdrlen - off, len); 1281 rval = f(arg, m->m_epg_hdr + off, count); 1282 if (rval) 1283 return (rval); 1284 len -= count; 1285 off = 0; 1286 } else 1287 off -= m->m_epg_hdrlen; 1288 pgoff = m->m_epg_1st_off; 1289 for (i = 0; i < m->m_epg_npgs && len > 0; i++) { 1290 pglen = m_epg_pagelen(m, i, pgoff); 1291 if (off < pglen) { 1292 count = min(pglen - off, len); 1293 p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff); 1294 rval = f(arg, p, count); 1295 if (rval) 1296 return (rval); 1297 len -= count; 1298 off = 0; 1299 } else 1300 off -= pglen; 1301 pgoff = 0; 1302 } 1303 if (len > 0) { 1304 KASSERT(off < m->m_epg_trllen, 1305 ("m_apply_extpg_one: offset beyond trailer")); 1306 KASSERT(len <= m->m_epg_trllen - off, 1307 ("m_apply_extpg_one: length beyond trailer")); 1308 return (f(arg, m->m_epg_trail + off, len)); 1309 } 1310 return (0); 1311 } 1312 1313 /* Apply function f to the data in a single mbuf. */ 1314 static int 1315 m_apply_one(struct mbuf *m, int off, int len, 1316 int (*f)(void *, void *, u_int), void *arg) 1317 { 1318 if ((m->m_flags & M_EXTPG) != 0) 1319 return (m_apply_extpg_one(m, off, len, f, arg)); 1320 else 1321 return (f(arg, mtod(m, caddr_t) + off, len)); 1322 } 1323 1324 /* 1325 * Apply function f to the data in an mbuf chain starting "off" bytes from 1326 * the beginning, continuing for "len" bytes. 1327 */ 1328 int 1329 m_apply(struct mbuf *m, int off, int len, 1330 int (*f)(void *, void *, u_int), void *arg) 1331 { 1332 u_int count; 1333 int rval; 1334 1335 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1336 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1337 while (off > 0) { 1338 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1339 if (off < m->m_len) 1340 break; 1341 off -= m->m_len; 1342 m = m->m_next; 1343 } 1344 while (len > 0) { 1345 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1346 count = min(m->m_len - off, len); 1347 rval = m_apply_one(m, off, count, f, arg); 1348 if (rval) 1349 return (rval); 1350 len -= count; 1351 off = 0; 1352 m = m->m_next; 1353 } 1354 return (0); 1355 } 1356 1357 /* 1358 * Return a pointer to mbuf/offset of location in mbuf chain. 1359 */ 1360 struct mbuf * 1361 m_getptr(struct mbuf *m, int loc, int *off) 1362 { 1363 1364 while (loc >= 0) { 1365 /* Normal end of search. */ 1366 if (m->m_len > loc) { 1367 *off = loc; 1368 return (m); 1369 } else { 1370 loc -= m->m_len; 1371 if (m->m_next == NULL) { 1372 if (loc == 0) { 1373 /* Point at the end of valid data. */ 1374 *off = m->m_len; 1375 return (m); 1376 } 1377 return (NULL); 1378 } 1379 m = m->m_next; 1380 } 1381 } 1382 return (NULL); 1383 } 1384 1385 void 1386 m_print(const struct mbuf *m, int maxlen) 1387 { 1388 int len; 1389 int pdata; 1390 const struct mbuf *m2; 1391 1392 if (m == NULL) { 1393 printf("mbuf: %p\n", m); 1394 return; 1395 } 1396 1397 if (m->m_flags & M_PKTHDR) 1398 len = m->m_pkthdr.len; 1399 else 1400 len = -1; 1401 m2 = m; 1402 while (m2 != NULL && (len == -1 || len)) { 1403 pdata = m2->m_len; 1404 if (maxlen != -1 && pdata > maxlen) 1405 pdata = maxlen; 1406 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1407 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1408 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1409 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1410 if (pdata) 1411 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1412 if (len != -1) 1413 len -= m2->m_len; 1414 m2 = m2->m_next; 1415 } 1416 if (len > 0) 1417 printf("%d bytes unaccounted for.\n", len); 1418 return; 1419 } 1420 1421 u_int 1422 m_fixhdr(struct mbuf *m0) 1423 { 1424 u_int len; 1425 1426 len = m_length(m0, NULL); 1427 m0->m_pkthdr.len = len; 1428 return (len); 1429 } 1430 1431 u_int 1432 m_length(struct mbuf *m0, struct mbuf **last) 1433 { 1434 struct mbuf *m; 1435 u_int len; 1436 1437 len = 0; 1438 for (m = m0; m != NULL; m = m->m_next) { 1439 len += m->m_len; 1440 if (m->m_next == NULL) 1441 break; 1442 } 1443 if (last != NULL) 1444 *last = m; 1445 return (len); 1446 } 1447 1448 /* 1449 * Defragment a mbuf chain, returning the shortest possible 1450 * chain of mbufs and clusters. If allocation fails and 1451 * this cannot be completed, NULL will be returned, but 1452 * the passed in chain will be unchanged. Upon success, 1453 * the original chain will be freed, and the new chain 1454 * will be returned. 1455 * 1456 * If a non-packet header is passed in, the original 1457 * mbuf (chain?) will be returned unharmed. 1458 */ 1459 struct mbuf * 1460 m_defrag(struct mbuf *m0, int how) 1461 { 1462 struct mbuf *m_new = NULL, *m_final = NULL; 1463 int progress = 0, length; 1464 1465 MBUF_CHECKSLEEP(how); 1466 if (!(m0->m_flags & M_PKTHDR)) 1467 return (m0); 1468 1469 m_fixhdr(m0); /* Needed sanity check */ 1470 1471 #ifdef MBUF_STRESS_TEST 1472 if (m_defragrandomfailures) { 1473 int temp = arc4random() & 0xff; 1474 if (temp == 0xba) 1475 goto nospace; 1476 } 1477 #endif 1478 1479 if (m0->m_pkthdr.len > MHLEN) 1480 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1481 else 1482 m_final = m_gethdr(how, MT_DATA); 1483 1484 if (m_final == NULL) 1485 goto nospace; 1486 1487 if (m_dup_pkthdr(m_final, m0, how) == 0) 1488 goto nospace; 1489 1490 m_new = m_final; 1491 1492 while (progress < m0->m_pkthdr.len) { 1493 length = m0->m_pkthdr.len - progress; 1494 if (length > MCLBYTES) 1495 length = MCLBYTES; 1496 1497 if (m_new == NULL) { 1498 if (length > MLEN) 1499 m_new = m_getcl(how, MT_DATA, 0); 1500 else 1501 m_new = m_get(how, MT_DATA); 1502 if (m_new == NULL) 1503 goto nospace; 1504 } 1505 1506 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1507 progress += length; 1508 m_new->m_len = length; 1509 if (m_new != m_final) 1510 m_cat(m_final, m_new); 1511 m_new = NULL; 1512 } 1513 #ifdef MBUF_STRESS_TEST 1514 if (m0->m_next == NULL) 1515 m_defraguseless++; 1516 #endif 1517 m_freem(m0); 1518 m0 = m_final; 1519 #ifdef MBUF_STRESS_TEST 1520 m_defragpackets++; 1521 m_defragbytes += m0->m_pkthdr.len; 1522 #endif 1523 return (m0); 1524 nospace: 1525 #ifdef MBUF_STRESS_TEST 1526 m_defragfailure++; 1527 #endif 1528 if (m_final) 1529 m_freem(m_final); 1530 return (NULL); 1531 } 1532 1533 /* 1534 * Return the number of fragments an mbuf will use. This is usually 1535 * used as a proxy for the number of scatter/gather elements needed by 1536 * a DMA engine to access an mbuf. In general mapped mbufs are 1537 * assumed to be backed by physically contiguous buffers that only 1538 * need a single fragment. Unmapped mbufs, on the other hand, can 1539 * span disjoint physical pages. 1540 */ 1541 static int 1542 frags_per_mbuf(struct mbuf *m) 1543 { 1544 int frags; 1545 1546 if ((m->m_flags & M_EXTPG) == 0) 1547 return (1); 1548 1549 /* 1550 * The header and trailer are counted as a single fragment 1551 * each when present. 1552 * 1553 * XXX: This overestimates the number of fragments by assuming 1554 * all the backing physical pages are disjoint. 1555 */ 1556 frags = 0; 1557 if (m->m_epg_hdrlen != 0) 1558 frags++; 1559 frags += m->m_epg_npgs; 1560 if (m->m_epg_trllen != 0) 1561 frags++; 1562 1563 return (frags); 1564 } 1565 1566 /* 1567 * Defragment an mbuf chain, returning at most maxfrags separate 1568 * mbufs+clusters. If this is not possible NULL is returned and 1569 * the original mbuf chain is left in its present (potentially 1570 * modified) state. We use two techniques: collapsing consecutive 1571 * mbufs and replacing consecutive mbufs by a cluster. 1572 * 1573 * NB: this should really be named m_defrag but that name is taken 1574 */ 1575 struct mbuf * 1576 m_collapse(struct mbuf *m0, int how, int maxfrags) 1577 { 1578 struct mbuf *m, *n, *n2, **prev; 1579 u_int curfrags; 1580 1581 /* 1582 * Calculate the current number of frags. 1583 */ 1584 curfrags = 0; 1585 for (m = m0; m != NULL; m = m->m_next) 1586 curfrags += frags_per_mbuf(m); 1587 /* 1588 * First, try to collapse mbufs. Note that we always collapse 1589 * towards the front so we don't need to deal with moving the 1590 * pkthdr. This may be suboptimal if the first mbuf has much 1591 * less data than the following. 1592 */ 1593 m = m0; 1594 again: 1595 for (;;) { 1596 n = m->m_next; 1597 if (n == NULL) 1598 break; 1599 if (M_WRITABLE(m) && 1600 n->m_len < M_TRAILINGSPACE(m)) { 1601 m_copydata(n, 0, n->m_len, 1602 mtod(m, char *) + m->m_len); 1603 m->m_len += n->m_len; 1604 m->m_next = n->m_next; 1605 curfrags -= frags_per_mbuf(n); 1606 m_free(n); 1607 if (curfrags <= maxfrags) 1608 return m0; 1609 } else 1610 m = n; 1611 } 1612 KASSERT(maxfrags > 1, 1613 ("maxfrags %u, but normal collapse failed", maxfrags)); 1614 /* 1615 * Collapse consecutive mbufs to a cluster. 1616 */ 1617 prev = &m0->m_next; /* NB: not the first mbuf */ 1618 while ((n = *prev) != NULL) { 1619 if ((n2 = n->m_next) != NULL && 1620 n->m_len + n2->m_len < MCLBYTES) { 1621 m = m_getcl(how, MT_DATA, 0); 1622 if (m == NULL) 1623 goto bad; 1624 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1625 m_copydata(n2, 0, n2->m_len, 1626 mtod(m, char *) + n->m_len); 1627 m->m_len = n->m_len + n2->m_len; 1628 m->m_next = n2->m_next; 1629 *prev = m; 1630 curfrags += 1; /* For the new cluster */ 1631 curfrags -= frags_per_mbuf(n); 1632 curfrags -= frags_per_mbuf(n2); 1633 m_free(n); 1634 m_free(n2); 1635 if (curfrags <= maxfrags) 1636 return m0; 1637 /* 1638 * Still not there, try the normal collapse 1639 * again before we allocate another cluster. 1640 */ 1641 goto again; 1642 } 1643 prev = &n->m_next; 1644 } 1645 /* 1646 * No place where we can collapse to a cluster; punt. 1647 * This can occur if, for example, you request 2 frags 1648 * but the packet requires that both be clusters (we 1649 * never reallocate the first mbuf to avoid moving the 1650 * packet header). 1651 */ 1652 bad: 1653 return NULL; 1654 } 1655 1656 #ifdef MBUF_STRESS_TEST 1657 1658 /* 1659 * Fragment an mbuf chain. There's no reason you'd ever want to do 1660 * this in normal usage, but it's great for stress testing various 1661 * mbuf consumers. 1662 * 1663 * If fragmentation is not possible, the original chain will be 1664 * returned. 1665 * 1666 * Possible length values: 1667 * 0 no fragmentation will occur 1668 * > 0 each fragment will be of the specified length 1669 * -1 each fragment will be the same random value in length 1670 * -2 each fragment's length will be entirely random 1671 * (Random values range from 1 to 256) 1672 */ 1673 struct mbuf * 1674 m_fragment(struct mbuf *m0, int how, int length) 1675 { 1676 struct mbuf *m_first, *m_last; 1677 int divisor = 255, progress = 0, fraglen; 1678 1679 if (!(m0->m_flags & M_PKTHDR)) 1680 return (m0); 1681 1682 if (length == 0 || length < -2) 1683 return (m0); 1684 if (length > MCLBYTES) 1685 length = MCLBYTES; 1686 if (length < 0 && divisor > MCLBYTES) 1687 divisor = MCLBYTES; 1688 if (length == -1) 1689 length = 1 + (arc4random() % divisor); 1690 if (length > 0) 1691 fraglen = length; 1692 1693 m_fixhdr(m0); /* Needed sanity check */ 1694 1695 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1696 if (m_first == NULL) 1697 goto nospace; 1698 1699 if (m_dup_pkthdr(m_first, m0, how) == 0) 1700 goto nospace; 1701 1702 m_last = m_first; 1703 1704 while (progress < m0->m_pkthdr.len) { 1705 if (length == -2) 1706 fraglen = 1 + (arc4random() % divisor); 1707 if (fraglen > m0->m_pkthdr.len - progress) 1708 fraglen = m0->m_pkthdr.len - progress; 1709 1710 if (progress != 0) { 1711 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1712 if (m_new == NULL) 1713 goto nospace; 1714 1715 m_last->m_next = m_new; 1716 m_last = m_new; 1717 } 1718 1719 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1720 progress += fraglen; 1721 m_last->m_len = fraglen; 1722 } 1723 m_freem(m0); 1724 m0 = m_first; 1725 return (m0); 1726 nospace: 1727 if (m_first) 1728 m_freem(m_first); 1729 /* Return the original chain on failure */ 1730 return (m0); 1731 } 1732 1733 #endif 1734 1735 /* 1736 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1737 * vm_page_alloc() and aren't associated with any object. Complement 1738 * to allocator from m_uiotombuf_nomap(). 1739 */ 1740 void 1741 mb_free_mext_pgs(struct mbuf *m) 1742 { 1743 vm_page_t pg; 1744 1745 M_ASSERTEXTPG(m); 1746 for (int i = 0; i < m->m_epg_npgs; i++) { 1747 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1748 vm_page_unwire_noq(pg); 1749 vm_page_free(pg); 1750 } 1751 } 1752 1753 static struct mbuf * 1754 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1755 { 1756 struct mbuf *m, *mb, *prev; 1757 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1758 int error, length, i, needed; 1759 ssize_t total; 1760 int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 1761 VM_ALLOC_WIRED; 1762 1763 MPASS((flags & M_PKTHDR) == 0); 1764 MPASS((how & M_ZERO) == 0); 1765 1766 /* 1767 * len can be zero or an arbitrary large value bound by 1768 * the total data supplied by the uio. 1769 */ 1770 if (len > 0) 1771 total = MIN(uio->uio_resid, len); 1772 else 1773 total = uio->uio_resid; 1774 1775 if (maxseg == 0) 1776 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1777 1778 /* 1779 * If total is zero, return an empty mbuf. This can occur 1780 * for TLS 1.0 connections which send empty fragments as 1781 * a countermeasure against the known-IV weakness in CBC 1782 * ciphersuites. 1783 */ 1784 if (__predict_false(total == 0)) { 1785 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1786 if (mb == NULL) 1787 return (NULL); 1788 mb->m_epg_flags = EPG_FLAG_ANON; 1789 return (mb); 1790 } 1791 1792 /* 1793 * Allocate the pages 1794 */ 1795 m = NULL; 1796 while (total > 0) { 1797 mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs); 1798 if (mb == NULL) 1799 goto failed; 1800 if (m == NULL) 1801 m = mb; 1802 else 1803 prev->m_next = mb; 1804 prev = mb; 1805 mb->m_epg_flags = EPG_FLAG_ANON; 1806 needed = length = MIN(maxseg, total); 1807 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1808 retry_page: 1809 pg_array[i] = vm_page_alloc(NULL, 0, pflags); 1810 if (pg_array[i] == NULL) { 1811 if (how & M_NOWAIT) { 1812 goto failed; 1813 } else { 1814 vm_wait(NULL); 1815 goto retry_page; 1816 } 1817 } 1818 mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1819 mb->m_epg_npgs++; 1820 } 1821 mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1); 1822 MBUF_EXT_PGS_ASSERT_SANITY(mb); 1823 total -= length; 1824 error = uiomove_fromphys(pg_array, 0, length, uio); 1825 if (error != 0) 1826 goto failed; 1827 mb->m_len = length; 1828 mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs; 1829 if (flags & M_PKTHDR) 1830 m->m_pkthdr.len += length; 1831 } 1832 return (m); 1833 1834 failed: 1835 m_freem(m); 1836 return (NULL); 1837 } 1838 1839 /* 1840 * Copy the contents of uio into a properly sized mbuf chain. 1841 */ 1842 struct mbuf * 1843 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1844 { 1845 struct mbuf *m, *mb; 1846 int error, length; 1847 ssize_t total; 1848 int progress = 0; 1849 1850 if (flags & M_EXTPG) 1851 return (m_uiotombuf_nomap(uio, how, len, align, flags)); 1852 1853 /* 1854 * len can be zero or an arbitrary large value bound by 1855 * the total data supplied by the uio. 1856 */ 1857 if (len > 0) 1858 total = (uio->uio_resid < len) ? uio->uio_resid : len; 1859 else 1860 total = uio->uio_resid; 1861 1862 /* 1863 * The smallest unit returned by m_getm2() is a single mbuf 1864 * with pkthdr. We can't align past it. 1865 */ 1866 if (align >= MHLEN) 1867 return (NULL); 1868 1869 /* 1870 * Give us the full allocation or nothing. 1871 * If len is zero return the smallest empty mbuf. 1872 */ 1873 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1874 if (m == NULL) 1875 return (NULL); 1876 m->m_data += align; 1877 1878 /* Fill all mbufs with uio data and update header information. */ 1879 for (mb = m; mb != NULL; mb = mb->m_next) { 1880 length = min(M_TRAILINGSPACE(mb), total - progress); 1881 1882 error = uiomove(mtod(mb, void *), length, uio); 1883 if (error) { 1884 m_freem(m); 1885 return (NULL); 1886 } 1887 1888 mb->m_len = length; 1889 progress += length; 1890 if (flags & M_PKTHDR) 1891 m->m_pkthdr.len += length; 1892 } 1893 KASSERT(progress == total, ("%s: progress != total", __func__)); 1894 1895 return (m); 1896 } 1897 1898 /* 1899 * Copy data to/from an unmapped mbuf into a uio limited by len if set. 1900 */ 1901 int 1902 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len) 1903 { 1904 vm_page_t pg; 1905 int error, i, off, pglen, pgoff, seglen, segoff; 1906 1907 M_ASSERTEXTPG(m); 1908 error = 0; 1909 1910 /* Skip over any data removed from the front. */ 1911 off = mtod(m, vm_offset_t); 1912 1913 off += m_off; 1914 if (m->m_epg_hdrlen != 0) { 1915 if (off >= m->m_epg_hdrlen) { 1916 off -= m->m_epg_hdrlen; 1917 } else { 1918 seglen = m->m_epg_hdrlen - off; 1919 segoff = off; 1920 seglen = min(seglen, len); 1921 off = 0; 1922 len -= seglen; 1923 error = uiomove(__DECONST(void *, 1924 &m->m_epg_hdr[segoff]), seglen, uio); 1925 } 1926 } 1927 pgoff = m->m_epg_1st_off; 1928 for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) { 1929 pglen = m_epg_pagelen(m, i, pgoff); 1930 if (off >= pglen) { 1931 off -= pglen; 1932 pgoff = 0; 1933 continue; 1934 } 1935 seglen = pglen - off; 1936 segoff = pgoff + off; 1937 off = 0; 1938 seglen = min(seglen, len); 1939 len -= seglen; 1940 pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]); 1941 error = uiomove_fromphys(&pg, segoff, seglen, uio); 1942 pgoff = 0; 1943 }; 1944 if (len != 0 && error == 0) { 1945 KASSERT((off + len) <= m->m_epg_trllen, 1946 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 1947 m->m_epg_trllen, m_off)); 1948 error = uiomove(__DECONST(void *, &m->m_epg_trail[off]), 1949 len, uio); 1950 } 1951 return (error); 1952 } 1953 1954 /* 1955 * Copy an mbuf chain into a uio limited by len if set. 1956 */ 1957 int 1958 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 1959 { 1960 int error, length, total; 1961 int progress = 0; 1962 1963 if (len > 0) 1964 total = min(uio->uio_resid, len); 1965 else 1966 total = uio->uio_resid; 1967 1968 /* Fill the uio with data from the mbufs. */ 1969 for (; m != NULL; m = m->m_next) { 1970 length = min(m->m_len, total - progress); 1971 1972 if ((m->m_flags & M_EXTPG) != 0) 1973 error = m_unmapped_uiomove(m, 0, uio, length); 1974 else 1975 error = uiomove(mtod(m, void *), length, uio); 1976 if (error) 1977 return (error); 1978 1979 progress += length; 1980 } 1981 1982 return (0); 1983 } 1984 1985 /* 1986 * Create a writable copy of the mbuf chain. While doing this 1987 * we compact the chain with a goal of producing a chain with 1988 * at most two mbufs. The second mbuf in this chain is likely 1989 * to be a cluster. The primary purpose of this work is to create 1990 * a writable packet for encryption, compression, etc. The 1991 * secondary goal is to linearize the data so the data can be 1992 * passed to crypto hardware in the most efficient manner possible. 1993 */ 1994 struct mbuf * 1995 m_unshare(struct mbuf *m0, int how) 1996 { 1997 struct mbuf *m, *mprev; 1998 struct mbuf *n, *mfirst, *mlast; 1999 int len, off; 2000 2001 mprev = NULL; 2002 for (m = m0; m != NULL; m = mprev->m_next) { 2003 /* 2004 * Regular mbufs are ignored unless there's a cluster 2005 * in front of it that we can use to coalesce. We do 2006 * the latter mainly so later clusters can be coalesced 2007 * also w/o having to handle them specially (i.e. convert 2008 * mbuf+cluster -> cluster). This optimization is heavily 2009 * influenced by the assumption that we're running over 2010 * Ethernet where MCLBYTES is large enough that the max 2011 * packet size will permit lots of coalescing into a 2012 * single cluster. This in turn permits efficient 2013 * crypto operations, especially when using hardware. 2014 */ 2015 if ((m->m_flags & M_EXT) == 0) { 2016 if (mprev && (mprev->m_flags & M_EXT) && 2017 m->m_len <= M_TRAILINGSPACE(mprev)) { 2018 /* XXX: this ignores mbuf types */ 2019 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 2020 mtod(m, caddr_t), m->m_len); 2021 mprev->m_len += m->m_len; 2022 mprev->m_next = m->m_next; /* unlink from chain */ 2023 m_free(m); /* reclaim mbuf */ 2024 } else { 2025 mprev = m; 2026 } 2027 continue; 2028 } 2029 /* 2030 * Writable mbufs are left alone (for now). 2031 */ 2032 if (M_WRITABLE(m)) { 2033 mprev = m; 2034 continue; 2035 } 2036 2037 /* 2038 * Not writable, replace with a copy or coalesce with 2039 * the previous mbuf if possible (since we have to copy 2040 * it anyway, we try to reduce the number of mbufs and 2041 * clusters so that future work is easier). 2042 */ 2043 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 2044 /* NB: we only coalesce into a cluster or larger */ 2045 if (mprev != NULL && (mprev->m_flags & M_EXT) && 2046 m->m_len <= M_TRAILINGSPACE(mprev)) { 2047 /* XXX: this ignores mbuf types */ 2048 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 2049 mtod(m, caddr_t), m->m_len); 2050 mprev->m_len += m->m_len; 2051 mprev->m_next = m->m_next; /* unlink from chain */ 2052 m_free(m); /* reclaim mbuf */ 2053 continue; 2054 } 2055 2056 /* 2057 * Allocate new space to hold the copy and copy the data. 2058 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 2059 * splitting them into clusters. We could just malloc a 2060 * buffer and make it external but too many device drivers 2061 * don't know how to break up the non-contiguous memory when 2062 * doing DMA. 2063 */ 2064 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 2065 if (n == NULL) { 2066 m_freem(m0); 2067 return (NULL); 2068 } 2069 if (m->m_flags & M_PKTHDR) { 2070 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 2071 __func__, m0, m)); 2072 m_move_pkthdr(n, m); 2073 } 2074 len = m->m_len; 2075 off = 0; 2076 mfirst = n; 2077 mlast = NULL; 2078 for (;;) { 2079 int cc = min(len, MCLBYTES); 2080 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 2081 n->m_len = cc; 2082 if (mlast != NULL) 2083 mlast->m_next = n; 2084 mlast = n; 2085 #if 0 2086 newipsecstat.ips_clcopied++; 2087 #endif 2088 2089 len -= cc; 2090 if (len <= 0) 2091 break; 2092 off += cc; 2093 2094 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 2095 if (n == NULL) { 2096 m_freem(mfirst); 2097 m_freem(m0); 2098 return (NULL); 2099 } 2100 } 2101 n->m_next = m->m_next; 2102 if (mprev == NULL) 2103 m0 = mfirst; /* new head of chain */ 2104 else 2105 mprev->m_next = mfirst; /* replace old mbuf */ 2106 m_free(m); /* release old mbuf */ 2107 mprev = mfirst; 2108 } 2109 return (m0); 2110 } 2111 2112 #ifdef MBUF_PROFILING 2113 2114 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 2115 struct mbufprofile { 2116 uintmax_t wasted[MP_BUCKETS]; 2117 uintmax_t used[MP_BUCKETS]; 2118 uintmax_t segments[MP_BUCKETS]; 2119 } mbprof; 2120 2121 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 2122 #define MP_NUMLINES 6 2123 #define MP_NUMSPERLINE 16 2124 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 2125 /* work out max space needed and add a bit of spare space too */ 2126 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 2127 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 2128 2129 char mbprofbuf[MP_BUFSIZE]; 2130 2131 void 2132 m_profile(struct mbuf *m) 2133 { 2134 int segments = 0; 2135 int used = 0; 2136 int wasted = 0; 2137 2138 while (m) { 2139 segments++; 2140 used += m->m_len; 2141 if (m->m_flags & M_EXT) { 2142 wasted += MHLEN - sizeof(m->m_ext) + 2143 m->m_ext.ext_size - m->m_len; 2144 } else { 2145 if (m->m_flags & M_PKTHDR) 2146 wasted += MHLEN - m->m_len; 2147 else 2148 wasted += MLEN - m->m_len; 2149 } 2150 m = m->m_next; 2151 } 2152 /* be paranoid.. it helps */ 2153 if (segments > MP_BUCKETS - 1) 2154 segments = MP_BUCKETS - 1; 2155 if (used > 100000) 2156 used = 100000; 2157 if (wasted > 100000) 2158 wasted = 100000; 2159 /* store in the appropriate bucket */ 2160 /* don't bother locking. if it's slightly off, so what? */ 2161 mbprof.segments[segments]++; 2162 mbprof.used[fls(used)]++; 2163 mbprof.wasted[fls(wasted)]++; 2164 } 2165 2166 static void 2167 mbprof_textify(void) 2168 { 2169 int offset; 2170 char *c; 2171 uint64_t *p; 2172 2173 p = &mbprof.wasted[0]; 2174 c = mbprofbuf; 2175 offset = snprintf(c, MP_MAXLINE + 10, 2176 "wasted:\n" 2177 "%ju %ju %ju %ju %ju %ju %ju %ju " 2178 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2179 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2180 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2181 #ifdef BIG_ARRAY 2182 p = &mbprof.wasted[16]; 2183 c += offset; 2184 offset = snprintf(c, MP_MAXLINE, 2185 "%ju %ju %ju %ju %ju %ju %ju %ju " 2186 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2187 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2188 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2189 #endif 2190 p = &mbprof.used[0]; 2191 c += offset; 2192 offset = snprintf(c, MP_MAXLINE + 10, 2193 "used:\n" 2194 "%ju %ju %ju %ju %ju %ju %ju %ju " 2195 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2196 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2197 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2198 #ifdef BIG_ARRAY 2199 p = &mbprof.used[16]; 2200 c += offset; 2201 offset = snprintf(c, MP_MAXLINE, 2202 "%ju %ju %ju %ju %ju %ju %ju %ju " 2203 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2204 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2205 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2206 #endif 2207 p = &mbprof.segments[0]; 2208 c += offset; 2209 offset = snprintf(c, MP_MAXLINE + 10, 2210 "segments:\n" 2211 "%ju %ju %ju %ju %ju %ju %ju %ju " 2212 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2213 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2214 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2215 #ifdef BIG_ARRAY 2216 p = &mbprof.segments[16]; 2217 c += offset; 2218 offset = snprintf(c, MP_MAXLINE, 2219 "%ju %ju %ju %ju %ju %ju %ju %ju " 2220 "%ju %ju %ju %ju %ju %ju %ju %jju", 2221 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2222 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2223 #endif 2224 } 2225 2226 static int 2227 mbprof_handler(SYSCTL_HANDLER_ARGS) 2228 { 2229 int error; 2230 2231 mbprof_textify(); 2232 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2233 return (error); 2234 } 2235 2236 static int 2237 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2238 { 2239 int clear, error; 2240 2241 clear = 0; 2242 error = sysctl_handle_int(oidp, &clear, 0, req); 2243 if (error || !req->newptr) 2244 return (error); 2245 2246 if (clear) { 2247 bzero(&mbprof, sizeof(mbprof)); 2248 } 2249 2250 return (error); 2251 } 2252 2253 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, 2254 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0, 2255 mbprof_handler, "A", 2256 "mbuf profiling statistics"); 2257 2258 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, 2259 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 2260 mbprof_clr_handler, "I", 2261 "clear mbuf profiling statistics"); 2262 #endif 2263