xref: /freebsd/sys/kern/uipc_mbuf.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_param.h"
38 #include "opt_mbuf_stress_test.h"
39 #include "opt_mbuf_profiling.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/domain.h>
50 #include <sys/protosw.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sdt.h>
54 #include <vm/vm.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/vm_page.h>
57 
58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
59     "struct mbuf *", "mbufinfo_t *",
60     "uint32_t", "uint32_t",
61     "uint16_t", "uint16_t",
62     "uint32_t", "uint32_t",
63     "uint32_t", "uint32_t");
64 
65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
66     "uint32_t", "uint32_t",
67     "uint16_t", "uint16_t",
68     "struct mbuf *", "mbufinfo_t *");
69 
70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
71     "uint32_t", "uint32_t",
72     "uint16_t", "uint16_t",
73     "struct mbuf *", "mbufinfo_t *");
74 
75 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
76     "uint32_t", "uint32_t",
77     "uint16_t", "uint16_t",
78     "struct mbuf *", "mbufinfo_t *");
79 
80 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
81     "uint32_t", "uint32_t",
82     "uint16_t", "uint16_t",
83     "struct mbuf *", "mbufinfo_t *");
84 
85 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
86     "uint32_t", "uint32_t",
87     "uint16_t", "uint16_t",
88     "uint32_t", "uint32_t",
89     "struct mbuf *", "mbufinfo_t *");
90 
91 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
92     "uint32_t", "uint32_t",
93     "uint16_t", "uint16_t",
94     "uint32_t", "uint32_t",
95     "uint32_t", "uint32_t",
96     "struct mbuf *", "mbufinfo_t *");
97 
98 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
99     "struct mbuf *", "mbufinfo_t *",
100     "uint32_t", "uint32_t",
101     "uint32_t", "uint32_t");
102 
103 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
104     "struct mbuf *", "mbufinfo_t *",
105     "uint32_t", "uint32_t",
106     "uint32_t", "uint32_t",
107     "void*", "void*");
108 
109 SDT_PROBE_DEFINE(sdt, , , m__cljset);
110 
111 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
112         "struct mbuf *", "mbufinfo_t *");
113 
114 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
115     "struct mbuf *", "mbufinfo_t *");
116 
117 #include <security/mac/mac_framework.h>
118 
119 int	max_linkhdr;
120 int	max_protohdr;
121 int	max_hdr;
122 int	max_datalen;
123 #ifdef MBUF_STRESS_TEST
124 int	m_defragpackets;
125 int	m_defragbytes;
126 int	m_defraguseless;
127 int	m_defragfailure;
128 int	m_defragrandomfailures;
129 #endif
130 
131 /*
132  * sysctl(8) exported objects
133  */
134 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
135 	   &max_linkhdr, 0, "Size of largest link layer header");
136 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
137 	   &max_protohdr, 0, "Size of largest protocol layer header");
138 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
139 	   &max_hdr, 0, "Size of largest link plus protocol header");
140 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
141 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
142 #ifdef MBUF_STRESS_TEST
143 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
144 	   &m_defragpackets, 0, "");
145 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
146 	   &m_defragbytes, 0, "");
147 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
148 	   &m_defraguseless, 0, "");
149 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
150 	   &m_defragfailure, 0, "");
151 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
152 	   &m_defragrandomfailures, 0, "");
153 #endif
154 
155 /*
156  * Ensure the correct size of various mbuf parameters.  It could be off due
157  * to compiler-induced padding and alignment artifacts.
158  */
159 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
160 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
161 
162 /*
163  * mbuf data storage should be 64-bit aligned regardless of architectural
164  * pointer size; check this is the case with and without a packet header.
165  */
166 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
167 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
168 
169 /*
170  * While the specific values here don't matter too much (i.e., +/- a few
171  * words), we do want to ensure that changes to these values are carefully
172  * reasoned about and properly documented.  This is especially the case as
173  * network-protocol and device-driver modules encode these layouts, and must
174  * be recompiled if the structures change.  Check these values at compile time
175  * against the ones documented in comments in mbuf.h.
176  *
177  * NB: Possibly they should be documented there via #define's and not just
178  * comments.
179  */
180 #if defined(__LP64__)
181 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
182 CTASSERT(sizeof(struct pkthdr) == 56);
183 CTASSERT(sizeof(struct m_ext) == 160);
184 #else
185 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
186 CTASSERT(sizeof(struct pkthdr) == 48);
187 #if defined(__powerpc__) && defined(BOOKE)
188 /* PowerPC booke has 64-bit physical pointers. */
189 CTASSERT(sizeof(struct m_ext) == 184);
190 #else
191 CTASSERT(sizeof(struct m_ext) == 180);
192 #endif
193 #endif
194 
195 /*
196  * Assert that the queue(3) macros produce code of the same size as an old
197  * plain pointer does.
198  */
199 #ifdef INVARIANTS
200 static struct mbuf __used m_assertbuf;
201 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
202 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
203 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
204 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
205 #endif
206 
207 /*
208  * Attach the cluster from *m to *n, set up m_ext in *n
209  * and bump the refcount of the cluster.
210  */
211 void
212 mb_dupcl(struct mbuf *n, struct mbuf *m)
213 {
214 	volatile u_int *refcnt;
215 
216 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
217 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
218 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
219 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
220 
221 	/*
222 	 * Cache access optimization.
223 	 *
224 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
225 	 *   the holder of the 'ext_count' is responsible to carry the free
226 	 *   routine and its arguments.
227 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
228 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
229 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
230 	 *   special - it needs full copy of m_ext into each mbuf, since any
231 	 *   copy could end up as the last to free.
232 	 */
233 	if (m->m_flags & M_EXTPG) {
234 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
235 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
236 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
237 	} else if (m->m_ext.ext_type == EXT_EXTREF)
238 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
239 	else
240 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
241 
242 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
243 
244 	/* See if this is the mbuf that holds the embedded refcount. */
245 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
246 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
247 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
248 	} else {
249 		KASSERT(m->m_ext.ext_cnt != NULL,
250 		    ("%s: no refcounting pointer on %p", __func__, m));
251 		refcnt = m->m_ext.ext_cnt;
252 	}
253 
254 	if (*refcnt == 1)
255 		*refcnt += 1;
256 	else
257 		atomic_add_int(refcnt, 1);
258 }
259 
260 void
261 m_demote_pkthdr(struct mbuf *m)
262 {
263 
264 	M_ASSERTPKTHDR(m);
265 
266 	m_tag_delete_chain(m, NULL);
267 	m->m_flags &= ~M_PKTHDR;
268 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
269 }
270 
271 /*
272  * Clean up mbuf (chain) from any tags and packet headers.
273  * If "all" is set then the first mbuf in the chain will be
274  * cleaned too.
275  */
276 void
277 m_demote(struct mbuf *m0, int all, int flags)
278 {
279 	struct mbuf *m;
280 
281 	flags |= M_DEMOTEFLAGS;
282 
283 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
284 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
285 		    __func__, m, m0));
286 		if (m->m_flags & M_PKTHDR)
287 			m_demote_pkthdr(m);
288 		m->m_flags &= flags;
289 	}
290 }
291 
292 /*
293  * Sanity checks on mbuf (chain) for use in KASSERT() and general
294  * debugging.
295  * Returns 0 or panics when bad and 1 on all tests passed.
296  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
297  * blow up later.
298  */
299 int
300 m_sanity(struct mbuf *m0, int sanitize)
301 {
302 	struct mbuf *m;
303 	caddr_t a, b;
304 	int pktlen = 0;
305 
306 #ifdef INVARIANTS
307 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
308 #else
309 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
310 #endif
311 
312 	for (m = m0; m != NULL; m = m->m_next) {
313 		/*
314 		 * Basic pointer checks.  If any of these fails then some
315 		 * unrelated kernel memory before or after us is trashed.
316 		 * No way to recover from that.
317 		 */
318 		a = M_START(m);
319 		b = a + M_SIZE(m);
320 		if ((caddr_t)m->m_data < a)
321 			M_SANITY_ACTION("m_data outside mbuf data range left");
322 		if ((caddr_t)m->m_data > b)
323 			M_SANITY_ACTION("m_data outside mbuf data range right");
324 		if ((caddr_t)m->m_data + m->m_len > b)
325 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
326 
327 		/* m->m_nextpkt may only be set on first mbuf in chain. */
328 		if (m != m0 && m->m_nextpkt != NULL) {
329 			if (sanitize) {
330 				m_freem(m->m_nextpkt);
331 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
332 			} else
333 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
334 		}
335 
336 		/* packet length (not mbuf length!) calculation */
337 		if (m0->m_flags & M_PKTHDR)
338 			pktlen += m->m_len;
339 
340 		/* m_tags may only be attached to first mbuf in chain. */
341 		if (m != m0 && m->m_flags & M_PKTHDR &&
342 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
343 			if (sanitize) {
344 				m_tag_delete_chain(m, NULL);
345 				/* put in 0xDEADC0DE perhaps? */
346 			} else
347 				M_SANITY_ACTION("m_tags on in-chain mbuf");
348 		}
349 
350 		/* M_PKTHDR may only be set on first mbuf in chain */
351 		if (m != m0 && m->m_flags & M_PKTHDR) {
352 			if (sanitize) {
353 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
354 				m->m_flags &= ~M_PKTHDR;
355 				/* put in 0xDEADCODE and leave hdr flag in */
356 			} else
357 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
358 		}
359 	}
360 	m = m0;
361 	if (pktlen && pktlen != m->m_pkthdr.len) {
362 		if (sanitize)
363 			m->m_pkthdr.len = 0;
364 		else
365 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
366 	}
367 	return 1;
368 
369 #undef	M_SANITY_ACTION
370 }
371 
372 /*
373  * Non-inlined part of m_init().
374  */
375 int
376 m_pkthdr_init(struct mbuf *m, int how)
377 {
378 #ifdef MAC
379 	int error;
380 #endif
381 	m->m_data = m->m_pktdat;
382 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
383 #ifdef NUMA
384 	m->m_pkthdr.numa_domain = M_NODOM;
385 #endif
386 #ifdef MAC
387 	/* If the label init fails, fail the alloc */
388 	error = mac_mbuf_init(m, how);
389 	if (error)
390 		return (error);
391 #endif
392 
393 	return (0);
394 }
395 
396 /*
397  * "Move" mbuf pkthdr from "from" to "to".
398  * "from" must have M_PKTHDR set, and "to" must be empty.
399  */
400 void
401 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
402 {
403 
404 #if 0
405 	/* see below for why these are not enabled */
406 	M_ASSERTPKTHDR(to);
407 	/* Note: with MAC, this may not be a good assertion. */
408 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
409 	    ("m_move_pkthdr: to has tags"));
410 #endif
411 #ifdef MAC
412 	/*
413 	 * XXXMAC: It could be this should also occur for non-MAC?
414 	 */
415 	if (to->m_flags & M_PKTHDR)
416 		m_tag_delete_chain(to, NULL);
417 #endif
418 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
419 	    (to->m_flags & (M_EXT | M_EXTPG));
420 	if ((to->m_flags & M_EXT) == 0)
421 		to->m_data = to->m_pktdat;
422 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
423 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
424 	from->m_flags &= ~M_PKTHDR;
425 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
426 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
427 		from->m_pkthdr.snd_tag = NULL;
428 	}
429 }
430 
431 /*
432  * Duplicate "from"'s mbuf pkthdr in "to".
433  * "from" must have M_PKTHDR set, and "to" must be empty.
434  * In particular, this does a deep copy of the packet tags.
435  */
436 int
437 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
438 {
439 
440 #if 0
441 	/*
442 	 * The mbuf allocator only initializes the pkthdr
443 	 * when the mbuf is allocated with m_gethdr(). Many users
444 	 * (e.g. m_copy*, m_prepend) use m_get() and then
445 	 * smash the pkthdr as needed causing these
446 	 * assertions to trip.  For now just disable them.
447 	 */
448 	M_ASSERTPKTHDR(to);
449 	/* Note: with MAC, this may not be a good assertion. */
450 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
451 #endif
452 	MBUF_CHECKSLEEP(how);
453 #ifdef MAC
454 	if (to->m_flags & M_PKTHDR)
455 		m_tag_delete_chain(to, NULL);
456 #endif
457 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
458 	    (to->m_flags & (M_EXT | M_EXTPG));
459 	if ((to->m_flags & M_EXT) == 0)
460 		to->m_data = to->m_pktdat;
461 	to->m_pkthdr = from->m_pkthdr;
462 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
463 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
464 	SLIST_INIT(&to->m_pkthdr.tags);
465 	return (m_tag_copy_chain(to, from, how));
466 }
467 
468 /*
469  * Lesser-used path for M_PREPEND:
470  * allocate new mbuf to prepend to chain,
471  * copy junk along.
472  */
473 struct mbuf *
474 m_prepend(struct mbuf *m, int len, int how)
475 {
476 	struct mbuf *mn;
477 
478 	if (m->m_flags & M_PKTHDR)
479 		mn = m_gethdr(how, m->m_type);
480 	else
481 		mn = m_get(how, m->m_type);
482 	if (mn == NULL) {
483 		m_freem(m);
484 		return (NULL);
485 	}
486 	if (m->m_flags & M_PKTHDR)
487 		m_move_pkthdr(mn, m);
488 	mn->m_next = m;
489 	m = mn;
490 	if (len < M_SIZE(m))
491 		M_ALIGN(m, len);
492 	m->m_len = len;
493 	return (m);
494 }
495 
496 /*
497  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
498  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
499  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
500  * Note that the copy is read-only, because clusters are not copied,
501  * only their reference counts are incremented.
502  */
503 struct mbuf *
504 m_copym(struct mbuf *m, int off0, int len, int wait)
505 {
506 	struct mbuf *n, **np;
507 	int off = off0;
508 	struct mbuf *top;
509 	int copyhdr = 0;
510 
511 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
512 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
513 	MBUF_CHECKSLEEP(wait);
514 	if (off == 0 && m->m_flags & M_PKTHDR)
515 		copyhdr = 1;
516 	while (off > 0) {
517 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
518 		if (off < m->m_len)
519 			break;
520 		off -= m->m_len;
521 		m = m->m_next;
522 	}
523 	np = &top;
524 	top = NULL;
525 	while (len > 0) {
526 		if (m == NULL) {
527 			KASSERT(len == M_COPYALL,
528 			    ("m_copym, length > size of mbuf chain"));
529 			break;
530 		}
531 		if (copyhdr)
532 			n = m_gethdr(wait, m->m_type);
533 		else
534 			n = m_get(wait, m->m_type);
535 		*np = n;
536 		if (n == NULL)
537 			goto nospace;
538 		if (copyhdr) {
539 			if (!m_dup_pkthdr(n, m, wait))
540 				goto nospace;
541 			if (len == M_COPYALL)
542 				n->m_pkthdr.len -= off0;
543 			else
544 				n->m_pkthdr.len = len;
545 			copyhdr = 0;
546 		}
547 		n->m_len = min(len, m->m_len - off);
548 		if (m->m_flags & (M_EXT|M_EXTPG)) {
549 			n->m_data = m->m_data + off;
550 			mb_dupcl(n, m);
551 		} else
552 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
553 			    (u_int)n->m_len);
554 		if (len != M_COPYALL)
555 			len -= n->m_len;
556 		off = 0;
557 		m = m->m_next;
558 		np = &n->m_next;
559 	}
560 
561 	return (top);
562 nospace:
563 	m_freem(top);
564 	return (NULL);
565 }
566 
567 /*
568  * Copy an entire packet, including header (which must be present).
569  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
570  * Note that the copy is read-only, because clusters are not copied,
571  * only their reference counts are incremented.
572  * Preserve alignment of the first mbuf so if the creator has left
573  * some room at the beginning (e.g. for inserting protocol headers)
574  * the copies still have the room available.
575  */
576 struct mbuf *
577 m_copypacket(struct mbuf *m, int how)
578 {
579 	struct mbuf *top, *n, *o;
580 
581 	MBUF_CHECKSLEEP(how);
582 	n = m_get(how, m->m_type);
583 	top = n;
584 	if (n == NULL)
585 		goto nospace;
586 
587 	if (!m_dup_pkthdr(n, m, how))
588 		goto nospace;
589 	n->m_len = m->m_len;
590 	if (m->m_flags & (M_EXT|M_EXTPG)) {
591 		n->m_data = m->m_data;
592 		mb_dupcl(n, m);
593 	} else {
594 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
595 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
596 	}
597 
598 	m = m->m_next;
599 	while (m) {
600 		o = m_get(how, m->m_type);
601 		if (o == NULL)
602 			goto nospace;
603 
604 		n->m_next = o;
605 		n = n->m_next;
606 
607 		n->m_len = m->m_len;
608 		if (m->m_flags & (M_EXT|M_EXTPG)) {
609 			n->m_data = m->m_data;
610 			mb_dupcl(n, m);
611 		} else {
612 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
613 		}
614 
615 		m = m->m_next;
616 	}
617 	return top;
618 nospace:
619 	m_freem(top);
620 	return (NULL);
621 }
622 
623 static void
624 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
625 {
626 	struct iovec iov;
627 	struct uio uio;
628 	int error;
629 
630 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
631 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
632 	KASSERT(off < m->m_len,
633 	    ("m_copyfromunmapped: len exceeds mbuf length"));
634 	iov.iov_base = cp;
635 	iov.iov_len = len;
636 	uio.uio_resid = len;
637 	uio.uio_iov = &iov;
638 	uio.uio_segflg = UIO_SYSSPACE;
639 	uio.uio_iovcnt = 1;
640 	uio.uio_offset = 0;
641 	uio.uio_rw = UIO_READ;
642 	error = m_unmapped_uiomove(m, off, &uio, len);
643 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
644 	   len));
645 }
646 
647 /*
648  * Copy data from an mbuf chain starting "off" bytes from the beginning,
649  * continuing for "len" bytes, into the indicated buffer.
650  */
651 void
652 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
653 {
654 	u_int count;
655 
656 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
657 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
658 	while (off > 0) {
659 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
660 		if (off < m->m_len)
661 			break;
662 		off -= m->m_len;
663 		m = m->m_next;
664 	}
665 	while (len > 0) {
666 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
667 		count = min(m->m_len - off, len);
668 		if ((m->m_flags & M_EXTPG) != 0)
669 			m_copyfromunmapped(m, off, count, cp);
670 		else
671 			bcopy(mtod(m, caddr_t) + off, cp, count);
672 		len -= count;
673 		cp += count;
674 		off = 0;
675 		m = m->m_next;
676 	}
677 }
678 
679 /*
680  * Copy a packet header mbuf chain into a completely new chain, including
681  * copying any mbuf clusters.  Use this instead of m_copypacket() when
682  * you need a writable copy of an mbuf chain.
683  */
684 struct mbuf *
685 m_dup(const struct mbuf *m, int how)
686 {
687 	struct mbuf **p, *top = NULL;
688 	int remain, moff, nsize;
689 
690 	MBUF_CHECKSLEEP(how);
691 	/* Sanity check */
692 	if (m == NULL)
693 		return (NULL);
694 	M_ASSERTPKTHDR(m);
695 
696 	/* While there's more data, get a new mbuf, tack it on, and fill it */
697 	remain = m->m_pkthdr.len;
698 	moff = 0;
699 	p = &top;
700 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
701 		struct mbuf *n;
702 
703 		/* Get the next new mbuf */
704 		if (remain >= MINCLSIZE) {
705 			n = m_getcl(how, m->m_type, 0);
706 			nsize = MCLBYTES;
707 		} else {
708 			n = m_get(how, m->m_type);
709 			nsize = MLEN;
710 		}
711 		if (n == NULL)
712 			goto nospace;
713 
714 		if (top == NULL) {		/* First one, must be PKTHDR */
715 			if (!m_dup_pkthdr(n, m, how)) {
716 				m_free(n);
717 				goto nospace;
718 			}
719 			if ((n->m_flags & M_EXT) == 0)
720 				nsize = MHLEN;
721 			n->m_flags &= ~M_RDONLY;
722 		}
723 		n->m_len = 0;
724 
725 		/* Link it into the new chain */
726 		*p = n;
727 		p = &n->m_next;
728 
729 		/* Copy data from original mbuf(s) into new mbuf */
730 		while (n->m_len < nsize && m != NULL) {
731 			int chunk = min(nsize - n->m_len, m->m_len - moff);
732 
733 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
734 			moff += chunk;
735 			n->m_len += chunk;
736 			remain -= chunk;
737 			if (moff == m->m_len) {
738 				m = m->m_next;
739 				moff = 0;
740 			}
741 		}
742 
743 		/* Check correct total mbuf length */
744 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
745 		    	("%s: bogus m_pkthdr.len", __func__));
746 	}
747 	return (top);
748 
749 nospace:
750 	m_freem(top);
751 	return (NULL);
752 }
753 
754 /*
755  * Concatenate mbuf chain n to m.
756  * Both chains must be of the same type (e.g. MT_DATA).
757  * Any m_pkthdr is not updated.
758  */
759 void
760 m_cat(struct mbuf *m, struct mbuf *n)
761 {
762 	while (m->m_next)
763 		m = m->m_next;
764 	while (n) {
765 		if (!M_WRITABLE(m) ||
766 		    (n->m_flags & M_EXTPG) != 0 ||
767 		    M_TRAILINGSPACE(m) < n->m_len) {
768 			/* just join the two chains */
769 			m->m_next = n;
770 			return;
771 		}
772 		/* splat the data from one into the other */
773 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
774 		    (u_int)n->m_len);
775 		m->m_len += n->m_len;
776 		n = m_free(n);
777 	}
778 }
779 
780 /*
781  * Concatenate two pkthdr mbuf chains.
782  */
783 void
784 m_catpkt(struct mbuf *m, struct mbuf *n)
785 {
786 
787 	M_ASSERTPKTHDR(m);
788 	M_ASSERTPKTHDR(n);
789 
790 	m->m_pkthdr.len += n->m_pkthdr.len;
791 	m_demote(n, 1, 0);
792 
793 	m_cat(m, n);
794 }
795 
796 void
797 m_adj(struct mbuf *mp, int req_len)
798 {
799 	int len = req_len;
800 	struct mbuf *m;
801 	int count;
802 
803 	if ((m = mp) == NULL)
804 		return;
805 	if (len >= 0) {
806 		/*
807 		 * Trim from head.
808 		 */
809 		while (m != NULL && len > 0) {
810 			if (m->m_len <= len) {
811 				len -= m->m_len;
812 				m->m_len = 0;
813 				m = m->m_next;
814 			} else {
815 				m->m_len -= len;
816 				m->m_data += len;
817 				len = 0;
818 			}
819 		}
820 		if (mp->m_flags & M_PKTHDR)
821 			mp->m_pkthdr.len -= (req_len - len);
822 	} else {
823 		/*
824 		 * Trim from tail.  Scan the mbuf chain,
825 		 * calculating its length and finding the last mbuf.
826 		 * If the adjustment only affects this mbuf, then just
827 		 * adjust and return.  Otherwise, rescan and truncate
828 		 * after the remaining size.
829 		 */
830 		len = -len;
831 		count = 0;
832 		for (;;) {
833 			count += m->m_len;
834 			if (m->m_next == (struct mbuf *)0)
835 				break;
836 			m = m->m_next;
837 		}
838 		if (m->m_len >= len) {
839 			m->m_len -= len;
840 			if (mp->m_flags & M_PKTHDR)
841 				mp->m_pkthdr.len -= len;
842 			return;
843 		}
844 		count -= len;
845 		if (count < 0)
846 			count = 0;
847 		/*
848 		 * Correct length for chain is "count".
849 		 * Find the mbuf with last data, adjust its length,
850 		 * and toss data from remaining mbufs on chain.
851 		 */
852 		m = mp;
853 		if (m->m_flags & M_PKTHDR)
854 			m->m_pkthdr.len = count;
855 		for (; m; m = m->m_next) {
856 			if (m->m_len >= count) {
857 				m->m_len = count;
858 				if (m->m_next != NULL) {
859 					m_freem(m->m_next);
860 					m->m_next = NULL;
861 				}
862 				break;
863 			}
864 			count -= m->m_len;
865 		}
866 	}
867 }
868 
869 void
870 m_adj_decap(struct mbuf *mp, int len)
871 {
872 	uint8_t rsstype;
873 
874 	m_adj(mp, len);
875 	if ((mp->m_flags & M_PKTHDR) != 0) {
876 		/*
877 		 * If flowid was calculated by card from the inner
878 		 * headers, move flowid to the decapsulated mbuf
879 		 * chain, otherwise clear.  This depends on the
880 		 * internals of m_adj, which keeps pkthdr as is, in
881 		 * particular not changing rsstype and flowid.
882 		 */
883 		rsstype = mp->m_pkthdr.rsstype;
884 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
885 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
886 		} else {
887 			M_HASHTYPE_CLEAR(mp);
888 		}
889 	}
890 }
891 
892 /*
893  * Rearange an mbuf chain so that len bytes are contiguous
894  * and in the data area of an mbuf (so that mtod will work
895  * for a structure of size len).  Returns the resulting
896  * mbuf chain on success, frees it and returns null on failure.
897  * If there is room, it will add up to max_protohdr-len extra bytes to the
898  * contiguous region in an attempt to avoid being called next time.
899  */
900 struct mbuf *
901 m_pullup(struct mbuf *n, int len)
902 {
903 	struct mbuf *m;
904 	int count;
905 	int space;
906 
907 	KASSERT((n->m_flags & M_EXTPG) == 0,
908 	    ("%s: unmapped mbuf %p", __func__, n));
909 
910 	/*
911 	 * If first mbuf has no cluster, and has room for len bytes
912 	 * without shifting current data, pullup into it,
913 	 * otherwise allocate a new mbuf to prepend to the chain.
914 	 */
915 	if ((n->m_flags & M_EXT) == 0 &&
916 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
917 		if (n->m_len >= len)
918 			return (n);
919 		m = n;
920 		n = n->m_next;
921 		len -= m->m_len;
922 	} else {
923 		if (len > MHLEN)
924 			goto bad;
925 		m = m_get(M_NOWAIT, n->m_type);
926 		if (m == NULL)
927 			goto bad;
928 		if (n->m_flags & M_PKTHDR)
929 			m_move_pkthdr(m, n);
930 	}
931 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
932 	do {
933 		count = min(min(max(len, max_protohdr), space), n->m_len);
934 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
935 		  (u_int)count);
936 		len -= count;
937 		m->m_len += count;
938 		n->m_len -= count;
939 		space -= count;
940 		if (n->m_len)
941 			n->m_data += count;
942 		else
943 			n = m_free(n);
944 	} while (len > 0 && n);
945 	if (len > 0) {
946 		(void) m_free(m);
947 		goto bad;
948 	}
949 	m->m_next = n;
950 	return (m);
951 bad:
952 	m_freem(n);
953 	return (NULL);
954 }
955 
956 /*
957  * Like m_pullup(), except a new mbuf is always allocated, and we allow
958  * the amount of empty space before the data in the new mbuf to be specified
959  * (in the event that the caller expects to prepend later).
960  */
961 struct mbuf *
962 m_copyup(struct mbuf *n, int len, int dstoff)
963 {
964 	struct mbuf *m;
965 	int count, space;
966 
967 	if (len > (MHLEN - dstoff))
968 		goto bad;
969 	m = m_get(M_NOWAIT, n->m_type);
970 	if (m == NULL)
971 		goto bad;
972 	if (n->m_flags & M_PKTHDR)
973 		m_move_pkthdr(m, n);
974 	m->m_data += dstoff;
975 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
976 	do {
977 		count = min(min(max(len, max_protohdr), space), n->m_len);
978 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
979 		    (unsigned)count);
980 		len -= count;
981 		m->m_len += count;
982 		n->m_len -= count;
983 		space -= count;
984 		if (n->m_len)
985 			n->m_data += count;
986 		else
987 			n = m_free(n);
988 	} while (len > 0 && n);
989 	if (len > 0) {
990 		(void) m_free(m);
991 		goto bad;
992 	}
993 	m->m_next = n;
994 	return (m);
995  bad:
996 	m_freem(n);
997 	return (NULL);
998 }
999 
1000 /*
1001  * Partition an mbuf chain in two pieces, returning the tail --
1002  * all but the first len0 bytes.  In case of failure, it returns NULL and
1003  * attempts to restore the chain to its original state.
1004  *
1005  * Note that the resulting mbufs might be read-only, because the new
1006  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1007  * the "breaking point" happens to lie within a cluster mbuf. Use the
1008  * M_WRITABLE() macro to check for this case.
1009  */
1010 struct mbuf *
1011 m_split(struct mbuf *m0, int len0, int wait)
1012 {
1013 	struct mbuf *m, *n;
1014 	u_int len = len0, remain;
1015 
1016 	MBUF_CHECKSLEEP(wait);
1017 	for (m = m0; m && len > m->m_len; m = m->m_next)
1018 		len -= m->m_len;
1019 	if (m == NULL)
1020 		return (NULL);
1021 	remain = m->m_len - len;
1022 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1023 		n = m_gethdr(wait, m0->m_type);
1024 		if (n == NULL)
1025 			return (NULL);
1026 		n->m_next = m->m_next;
1027 		m->m_next = NULL;
1028 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1029 			n->m_pkthdr.snd_tag =
1030 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1031 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1032 		} else
1033 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1034 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1035 		m0->m_pkthdr.len = len0;
1036 		return (n);
1037 	} else if (m0->m_flags & M_PKTHDR) {
1038 		n = m_gethdr(wait, m0->m_type);
1039 		if (n == NULL)
1040 			return (NULL);
1041 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1042 			n->m_pkthdr.snd_tag =
1043 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1044 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1045 		} else
1046 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1047 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1048 		m0->m_pkthdr.len = len0;
1049 		if (m->m_flags & (M_EXT|M_EXTPG))
1050 			goto extpacket;
1051 		if (remain > MHLEN) {
1052 			/* m can't be the lead packet */
1053 			M_ALIGN(n, 0);
1054 			n->m_next = m_split(m, len, wait);
1055 			if (n->m_next == NULL) {
1056 				(void) m_free(n);
1057 				return (NULL);
1058 			} else {
1059 				n->m_len = 0;
1060 				return (n);
1061 			}
1062 		} else
1063 			M_ALIGN(n, remain);
1064 	} else if (remain == 0) {
1065 		n = m->m_next;
1066 		m->m_next = NULL;
1067 		return (n);
1068 	} else {
1069 		n = m_get(wait, m->m_type);
1070 		if (n == NULL)
1071 			return (NULL);
1072 		M_ALIGN(n, remain);
1073 	}
1074 extpacket:
1075 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1076 		n->m_data = m->m_data + len;
1077 		mb_dupcl(n, m);
1078 	} else {
1079 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1080 	}
1081 	n->m_len = remain;
1082 	m->m_len = len;
1083 	n->m_next = m->m_next;
1084 	m->m_next = NULL;
1085 	return (n);
1086 }
1087 /*
1088  * Routine to copy from device local memory into mbufs.
1089  * Note that `off' argument is offset into first mbuf of target chain from
1090  * which to begin copying the data to.
1091  */
1092 struct mbuf *
1093 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1094     void (*copy)(char *from, caddr_t to, u_int len))
1095 {
1096 	struct mbuf *m;
1097 	struct mbuf *top = NULL, **mp = &top;
1098 	int len;
1099 
1100 	if (off < 0 || off > MHLEN)
1101 		return (NULL);
1102 
1103 	while (totlen > 0) {
1104 		if (top == NULL) {	/* First one, must be PKTHDR */
1105 			if (totlen + off >= MINCLSIZE) {
1106 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1107 				len = MCLBYTES;
1108 			} else {
1109 				m = m_gethdr(M_NOWAIT, MT_DATA);
1110 				len = MHLEN;
1111 
1112 				/* Place initial small packet/header at end of mbuf */
1113 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1114 					m->m_data += max_linkhdr;
1115 					len -= max_linkhdr;
1116 				}
1117 			}
1118 			if (m == NULL)
1119 				return NULL;
1120 			m->m_pkthdr.rcvif = ifp;
1121 			m->m_pkthdr.len = totlen;
1122 		} else {
1123 			if (totlen + off >= MINCLSIZE) {
1124 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1125 				len = MCLBYTES;
1126 			} else {
1127 				m = m_get(M_NOWAIT, MT_DATA);
1128 				len = MLEN;
1129 			}
1130 			if (m == NULL) {
1131 				m_freem(top);
1132 				return NULL;
1133 			}
1134 		}
1135 		if (off) {
1136 			m->m_data += off;
1137 			len -= off;
1138 			off = 0;
1139 		}
1140 		m->m_len = len = min(totlen, len);
1141 		if (copy)
1142 			copy(buf, mtod(m, caddr_t), (u_int)len);
1143 		else
1144 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1145 		buf += len;
1146 		*mp = m;
1147 		mp = &m->m_next;
1148 		totlen -= len;
1149 	}
1150 	return (top);
1151 }
1152 
1153 static void
1154 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1155 {
1156 	struct iovec iov;
1157 	struct uio uio;
1158 	int error;
1159 
1160 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1161 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1162 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1163 	iov.iov_base = __DECONST(caddr_t, cp);
1164 	iov.iov_len = len;
1165 	uio.uio_resid = len;
1166 	uio.uio_iov = &iov;
1167 	uio.uio_segflg = UIO_SYSSPACE;
1168 	uio.uio_iovcnt = 1;
1169 	uio.uio_offset = 0;
1170 	uio.uio_rw = UIO_WRITE;
1171 	error = m_unmapped_uiomove(m, off, &uio, len);
1172 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1173 	   len));
1174 }
1175 
1176 /*
1177  * Copy data from a buffer back into the indicated mbuf chain,
1178  * starting "off" bytes from the beginning, extending the mbuf
1179  * chain if necessary.
1180  */
1181 void
1182 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1183 {
1184 	int mlen;
1185 	struct mbuf *m = m0, *n;
1186 	int totlen = 0;
1187 
1188 	if (m0 == NULL)
1189 		return;
1190 	while (off > (mlen = m->m_len)) {
1191 		off -= mlen;
1192 		totlen += mlen;
1193 		if (m->m_next == NULL) {
1194 			n = m_get(M_NOWAIT, m->m_type);
1195 			if (n == NULL)
1196 				goto out;
1197 			bzero(mtod(n, caddr_t), MLEN);
1198 			n->m_len = min(MLEN, len + off);
1199 			m->m_next = n;
1200 		}
1201 		m = m->m_next;
1202 	}
1203 	while (len > 0) {
1204 		if (m->m_next == NULL && (len > m->m_len - off)) {
1205 			m->m_len += min(len - (m->m_len - off),
1206 			    M_TRAILINGSPACE(m));
1207 		}
1208 		mlen = min (m->m_len - off, len);
1209 		if ((m->m_flags & M_EXTPG) != 0)
1210 			m_copytounmapped(m, off, mlen, cp);
1211 		else
1212 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1213 		cp += mlen;
1214 		len -= mlen;
1215 		mlen += off;
1216 		off = 0;
1217 		totlen += mlen;
1218 		if (len == 0)
1219 			break;
1220 		if (m->m_next == NULL) {
1221 			n = m_get(M_NOWAIT, m->m_type);
1222 			if (n == NULL)
1223 				break;
1224 			n->m_len = min(MLEN, len);
1225 			m->m_next = n;
1226 		}
1227 		m = m->m_next;
1228 	}
1229 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1230 		m->m_pkthdr.len = totlen;
1231 }
1232 
1233 /*
1234  * Append the specified data to the indicated mbuf chain,
1235  * Extend the mbuf chain if the new data does not fit in
1236  * existing space.
1237  *
1238  * Return 1 if able to complete the job; otherwise 0.
1239  */
1240 int
1241 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1242 {
1243 	struct mbuf *m, *n;
1244 	int remainder, space;
1245 
1246 	for (m = m0; m->m_next != NULL; m = m->m_next)
1247 		;
1248 	remainder = len;
1249 	space = M_TRAILINGSPACE(m);
1250 	if (space > 0) {
1251 		/*
1252 		 * Copy into available space.
1253 		 */
1254 		if (space > remainder)
1255 			space = remainder;
1256 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1257 		m->m_len += space;
1258 		cp += space, remainder -= space;
1259 	}
1260 	while (remainder > 0) {
1261 		/*
1262 		 * Allocate a new mbuf; could check space
1263 		 * and allocate a cluster instead.
1264 		 */
1265 		n = m_get(M_NOWAIT, m->m_type);
1266 		if (n == NULL)
1267 			break;
1268 		n->m_len = min(MLEN, remainder);
1269 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1270 		cp += n->m_len, remainder -= n->m_len;
1271 		m->m_next = n;
1272 		m = n;
1273 	}
1274 	if (m0->m_flags & M_PKTHDR)
1275 		m0->m_pkthdr.len += len - remainder;
1276 	return (remainder == 0);
1277 }
1278 
1279 static int
1280 m_apply_extpg_one(struct mbuf *m, int off, int len,
1281     int (*f)(void *, void *, u_int), void *arg)
1282 {
1283 	void *p;
1284 	u_int i, count, pgoff, pglen;
1285 	int rval;
1286 
1287 	KASSERT(PMAP_HAS_DMAP,
1288 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1289 	off += mtod(m, vm_offset_t);
1290 	if (off < m->m_epg_hdrlen) {
1291 		count = min(m->m_epg_hdrlen - off, len);
1292 		rval = f(arg, m->m_epg_hdr + off, count);
1293 		if (rval)
1294 			return (rval);
1295 		len -= count;
1296 		off = 0;
1297 	} else
1298 		off -= m->m_epg_hdrlen;
1299 	pgoff = m->m_epg_1st_off;
1300 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1301 		pglen = m_epg_pagelen(m, i, pgoff);
1302 		if (off < pglen) {
1303 			count = min(pglen - off, len);
1304 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
1305 			rval = f(arg, p, count);
1306 			if (rval)
1307 				return (rval);
1308 			len -= count;
1309 			off = 0;
1310 		} else
1311 			off -= pglen;
1312 		pgoff = 0;
1313 	}
1314 	if (len > 0) {
1315 		KASSERT(off < m->m_epg_trllen,
1316 		    ("m_apply_extpg_one: offset beyond trailer"));
1317 		KASSERT(len <= m->m_epg_trllen - off,
1318 		    ("m_apply_extpg_one: length beyond trailer"));
1319 		return (f(arg, m->m_epg_trail + off, len));
1320 	}
1321 	return (0);
1322 }
1323 
1324 /* Apply function f to the data in a single mbuf. */
1325 static int
1326 m_apply_one(struct mbuf *m, int off, int len,
1327     int (*f)(void *, void *, u_int), void *arg)
1328 {
1329 	if ((m->m_flags & M_EXTPG) != 0)
1330 		return (m_apply_extpg_one(m, off, len, f, arg));
1331 	else
1332 		return (f(arg, mtod(m, caddr_t) + off, len));
1333 }
1334 
1335 /*
1336  * Apply function f to the data in an mbuf chain starting "off" bytes from
1337  * the beginning, continuing for "len" bytes.
1338  */
1339 int
1340 m_apply(struct mbuf *m, int off, int len,
1341     int (*f)(void *, void *, u_int), void *arg)
1342 {
1343 	u_int count;
1344 	int rval;
1345 
1346 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1347 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1348 	while (off > 0) {
1349 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1350 		if (off < m->m_len)
1351 			break;
1352 		off -= m->m_len;
1353 		m = m->m_next;
1354 	}
1355 	while (len > 0) {
1356 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1357 		count = min(m->m_len - off, len);
1358 		rval = m_apply_one(m, off, count, f, arg);
1359 		if (rval)
1360 			return (rval);
1361 		len -= count;
1362 		off = 0;
1363 		m = m->m_next;
1364 	}
1365 	return (0);
1366 }
1367 
1368 /*
1369  * Return a pointer to mbuf/offset of location in mbuf chain.
1370  */
1371 struct mbuf *
1372 m_getptr(struct mbuf *m, int loc, int *off)
1373 {
1374 
1375 	while (loc >= 0) {
1376 		/* Normal end of search. */
1377 		if (m->m_len > loc) {
1378 			*off = loc;
1379 			return (m);
1380 		} else {
1381 			loc -= m->m_len;
1382 			if (m->m_next == NULL) {
1383 				if (loc == 0) {
1384 					/* Point at the end of valid data. */
1385 					*off = m->m_len;
1386 					return (m);
1387 				}
1388 				return (NULL);
1389 			}
1390 			m = m->m_next;
1391 		}
1392 	}
1393 	return (NULL);
1394 }
1395 
1396 void
1397 m_print(const struct mbuf *m, int maxlen)
1398 {
1399 	int len;
1400 	int pdata;
1401 	const struct mbuf *m2;
1402 
1403 	if (m == NULL) {
1404 		printf("mbuf: %p\n", m);
1405 		return;
1406 	}
1407 
1408 	if (m->m_flags & M_PKTHDR)
1409 		len = m->m_pkthdr.len;
1410 	else
1411 		len = -1;
1412 	m2 = m;
1413 	while (m2 != NULL && (len == -1 || len)) {
1414 		pdata = m2->m_len;
1415 		if (maxlen != -1 && pdata > maxlen)
1416 			pdata = maxlen;
1417 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1418 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1419 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1420 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1421 		if (pdata)
1422 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1423 		if (len != -1)
1424 			len -= m2->m_len;
1425 		m2 = m2->m_next;
1426 	}
1427 	if (len > 0)
1428 		printf("%d bytes unaccounted for.\n", len);
1429 	return;
1430 }
1431 
1432 u_int
1433 m_fixhdr(struct mbuf *m0)
1434 {
1435 	u_int len;
1436 
1437 	len = m_length(m0, NULL);
1438 	m0->m_pkthdr.len = len;
1439 	return (len);
1440 }
1441 
1442 u_int
1443 m_length(struct mbuf *m0, struct mbuf **last)
1444 {
1445 	struct mbuf *m;
1446 	u_int len;
1447 
1448 	len = 0;
1449 	for (m = m0; m != NULL; m = m->m_next) {
1450 		len += m->m_len;
1451 		if (m->m_next == NULL)
1452 			break;
1453 	}
1454 	if (last != NULL)
1455 		*last = m;
1456 	return (len);
1457 }
1458 
1459 /*
1460  * Defragment a mbuf chain, returning the shortest possible
1461  * chain of mbufs and clusters.  If allocation fails and
1462  * this cannot be completed, NULL will be returned, but
1463  * the passed in chain will be unchanged.  Upon success,
1464  * the original chain will be freed, and the new chain
1465  * will be returned.
1466  *
1467  * If a non-packet header is passed in, the original
1468  * mbuf (chain?) will be returned unharmed.
1469  */
1470 struct mbuf *
1471 m_defrag(struct mbuf *m0, int how)
1472 {
1473 	struct mbuf *m_new = NULL, *m_final = NULL;
1474 	int progress = 0, length;
1475 
1476 	MBUF_CHECKSLEEP(how);
1477 	if (!(m0->m_flags & M_PKTHDR))
1478 		return (m0);
1479 
1480 	m_fixhdr(m0); /* Needed sanity check */
1481 
1482 #ifdef MBUF_STRESS_TEST
1483 	if (m_defragrandomfailures) {
1484 		int temp = arc4random() & 0xff;
1485 		if (temp == 0xba)
1486 			goto nospace;
1487 	}
1488 #endif
1489 
1490 	if (m0->m_pkthdr.len > MHLEN)
1491 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1492 	else
1493 		m_final = m_gethdr(how, MT_DATA);
1494 
1495 	if (m_final == NULL)
1496 		goto nospace;
1497 
1498 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1499 		goto nospace;
1500 
1501 	m_new = m_final;
1502 
1503 	while (progress < m0->m_pkthdr.len) {
1504 		length = m0->m_pkthdr.len - progress;
1505 		if (length > MCLBYTES)
1506 			length = MCLBYTES;
1507 
1508 		if (m_new == NULL) {
1509 			if (length > MLEN)
1510 				m_new = m_getcl(how, MT_DATA, 0);
1511 			else
1512 				m_new = m_get(how, MT_DATA);
1513 			if (m_new == NULL)
1514 				goto nospace;
1515 		}
1516 
1517 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1518 		progress += length;
1519 		m_new->m_len = length;
1520 		if (m_new != m_final)
1521 			m_cat(m_final, m_new);
1522 		m_new = NULL;
1523 	}
1524 #ifdef MBUF_STRESS_TEST
1525 	if (m0->m_next == NULL)
1526 		m_defraguseless++;
1527 #endif
1528 	m_freem(m0);
1529 	m0 = m_final;
1530 #ifdef MBUF_STRESS_TEST
1531 	m_defragpackets++;
1532 	m_defragbytes += m0->m_pkthdr.len;
1533 #endif
1534 	return (m0);
1535 nospace:
1536 #ifdef MBUF_STRESS_TEST
1537 	m_defragfailure++;
1538 #endif
1539 	if (m_final)
1540 		m_freem(m_final);
1541 	return (NULL);
1542 }
1543 
1544 /*
1545  * Return the number of fragments an mbuf will use.  This is usually
1546  * used as a proxy for the number of scatter/gather elements needed by
1547  * a DMA engine to access an mbuf.  In general mapped mbufs are
1548  * assumed to be backed by physically contiguous buffers that only
1549  * need a single fragment.  Unmapped mbufs, on the other hand, can
1550  * span disjoint physical pages.
1551  */
1552 static int
1553 frags_per_mbuf(struct mbuf *m)
1554 {
1555 	int frags;
1556 
1557 	if ((m->m_flags & M_EXTPG) == 0)
1558 		return (1);
1559 
1560 	/*
1561 	 * The header and trailer are counted as a single fragment
1562 	 * each when present.
1563 	 *
1564 	 * XXX: This overestimates the number of fragments by assuming
1565 	 * all the backing physical pages are disjoint.
1566 	 */
1567 	frags = 0;
1568 	if (m->m_epg_hdrlen != 0)
1569 		frags++;
1570 	frags += m->m_epg_npgs;
1571 	if (m->m_epg_trllen != 0)
1572 		frags++;
1573 
1574 	return (frags);
1575 }
1576 
1577 /*
1578  * Defragment an mbuf chain, returning at most maxfrags separate
1579  * mbufs+clusters.  If this is not possible NULL is returned and
1580  * the original mbuf chain is left in its present (potentially
1581  * modified) state.  We use two techniques: collapsing consecutive
1582  * mbufs and replacing consecutive mbufs by a cluster.
1583  *
1584  * NB: this should really be named m_defrag but that name is taken
1585  */
1586 struct mbuf *
1587 m_collapse(struct mbuf *m0, int how, int maxfrags)
1588 {
1589 	struct mbuf *m, *n, *n2, **prev;
1590 	u_int curfrags;
1591 
1592 	/*
1593 	 * Calculate the current number of frags.
1594 	 */
1595 	curfrags = 0;
1596 	for (m = m0; m != NULL; m = m->m_next)
1597 		curfrags += frags_per_mbuf(m);
1598 	/*
1599 	 * First, try to collapse mbufs.  Note that we always collapse
1600 	 * towards the front so we don't need to deal with moving the
1601 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1602 	 * less data than the following.
1603 	 */
1604 	m = m0;
1605 again:
1606 	for (;;) {
1607 		n = m->m_next;
1608 		if (n == NULL)
1609 			break;
1610 		if (M_WRITABLE(m) &&
1611 		    n->m_len < M_TRAILINGSPACE(m)) {
1612 			m_copydata(n, 0, n->m_len,
1613 			    mtod(m, char *) + m->m_len);
1614 			m->m_len += n->m_len;
1615 			m->m_next = n->m_next;
1616 			curfrags -= frags_per_mbuf(n);
1617 			m_free(n);
1618 			if (curfrags <= maxfrags)
1619 				return m0;
1620 		} else
1621 			m = n;
1622 	}
1623 	KASSERT(maxfrags > 1,
1624 		("maxfrags %u, but normal collapse failed", maxfrags));
1625 	/*
1626 	 * Collapse consecutive mbufs to a cluster.
1627 	 */
1628 	prev = &m0->m_next;		/* NB: not the first mbuf */
1629 	while ((n = *prev) != NULL) {
1630 		if ((n2 = n->m_next) != NULL &&
1631 		    n->m_len + n2->m_len < MCLBYTES) {
1632 			m = m_getcl(how, MT_DATA, 0);
1633 			if (m == NULL)
1634 				goto bad;
1635 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1636 			m_copydata(n2, 0,  n2->m_len,
1637 			    mtod(m, char *) + n->m_len);
1638 			m->m_len = n->m_len + n2->m_len;
1639 			m->m_next = n2->m_next;
1640 			*prev = m;
1641 			curfrags += 1;  /* For the new cluster */
1642 			curfrags -= frags_per_mbuf(n);
1643 			curfrags -= frags_per_mbuf(n2);
1644 			m_free(n);
1645 			m_free(n2);
1646 			if (curfrags <= maxfrags)
1647 				return m0;
1648 			/*
1649 			 * Still not there, try the normal collapse
1650 			 * again before we allocate another cluster.
1651 			 */
1652 			goto again;
1653 		}
1654 		prev = &n->m_next;
1655 	}
1656 	/*
1657 	 * No place where we can collapse to a cluster; punt.
1658 	 * This can occur if, for example, you request 2 frags
1659 	 * but the packet requires that both be clusters (we
1660 	 * never reallocate the first mbuf to avoid moving the
1661 	 * packet header).
1662 	 */
1663 bad:
1664 	return NULL;
1665 }
1666 
1667 #ifdef MBUF_STRESS_TEST
1668 
1669 /*
1670  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1671  * this in normal usage, but it's great for stress testing various
1672  * mbuf consumers.
1673  *
1674  * If fragmentation is not possible, the original chain will be
1675  * returned.
1676  *
1677  * Possible length values:
1678  * 0	 no fragmentation will occur
1679  * > 0	each fragment will be of the specified length
1680  * -1	each fragment will be the same random value in length
1681  * -2	each fragment's length will be entirely random
1682  * (Random values range from 1 to 256)
1683  */
1684 struct mbuf *
1685 m_fragment(struct mbuf *m0, int how, int length)
1686 {
1687 	struct mbuf *m_first, *m_last;
1688 	int divisor = 255, progress = 0, fraglen;
1689 
1690 	if (!(m0->m_flags & M_PKTHDR))
1691 		return (m0);
1692 
1693 	if (length == 0 || length < -2)
1694 		return (m0);
1695 	if (length > MCLBYTES)
1696 		length = MCLBYTES;
1697 	if (length < 0 && divisor > MCLBYTES)
1698 		divisor = MCLBYTES;
1699 	if (length == -1)
1700 		length = 1 + (arc4random() % divisor);
1701 	if (length > 0)
1702 		fraglen = length;
1703 
1704 	m_fixhdr(m0); /* Needed sanity check */
1705 
1706 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1707 	if (m_first == NULL)
1708 		goto nospace;
1709 
1710 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1711 		goto nospace;
1712 
1713 	m_last = m_first;
1714 
1715 	while (progress < m0->m_pkthdr.len) {
1716 		if (length == -2)
1717 			fraglen = 1 + (arc4random() % divisor);
1718 		if (fraglen > m0->m_pkthdr.len - progress)
1719 			fraglen = m0->m_pkthdr.len - progress;
1720 
1721 		if (progress != 0) {
1722 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1723 			if (m_new == NULL)
1724 				goto nospace;
1725 
1726 			m_last->m_next = m_new;
1727 			m_last = m_new;
1728 		}
1729 
1730 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1731 		progress += fraglen;
1732 		m_last->m_len = fraglen;
1733 	}
1734 	m_freem(m0);
1735 	m0 = m_first;
1736 	return (m0);
1737 nospace:
1738 	if (m_first)
1739 		m_freem(m_first);
1740 	/* Return the original chain on failure */
1741 	return (m0);
1742 }
1743 
1744 #endif
1745 
1746 /*
1747  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1748  * vm_page_alloc() and aren't associated with any object.  Complement
1749  * to allocator from m_uiotombuf_nomap().
1750  */
1751 void
1752 mb_free_mext_pgs(struct mbuf *m)
1753 {
1754 	vm_page_t pg;
1755 
1756 	M_ASSERTEXTPG(m);
1757 	for (int i = 0; i < m->m_epg_npgs; i++) {
1758 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1759 		vm_page_unwire_noq(pg);
1760 		vm_page_free(pg);
1761 	}
1762 }
1763 
1764 static struct mbuf *
1765 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1766 {
1767 	struct mbuf *m, *mb, *prev;
1768 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1769 	int error, length, i, needed;
1770 	ssize_t total;
1771 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
1772 
1773 	MPASS((flags & M_PKTHDR) == 0);
1774 	MPASS((how & M_ZERO) == 0);
1775 
1776 	/*
1777 	 * len can be zero or an arbitrary large value bound by
1778 	 * the total data supplied by the uio.
1779 	 */
1780 	if (len > 0)
1781 		total = MIN(uio->uio_resid, len);
1782 	else
1783 		total = uio->uio_resid;
1784 
1785 	if (maxseg == 0)
1786 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1787 
1788 	/*
1789 	 * If total is zero, return an empty mbuf.  This can occur
1790 	 * for TLS 1.0 connections which send empty fragments as
1791 	 * a countermeasure against the known-IV weakness in CBC
1792 	 * ciphersuites.
1793 	 */
1794 	if (__predict_false(total == 0)) {
1795 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1796 		if (mb == NULL)
1797 			return (NULL);
1798 		mb->m_epg_flags = EPG_FLAG_ANON;
1799 		return (mb);
1800 	}
1801 
1802 	/*
1803 	 * Allocate the pages
1804 	 */
1805 	m = NULL;
1806 	while (total > 0) {
1807 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1808 		if (mb == NULL)
1809 			goto failed;
1810 		if (m == NULL)
1811 			m = mb;
1812 		else
1813 			prev->m_next = mb;
1814 		prev = mb;
1815 		mb->m_epg_flags = EPG_FLAG_ANON;
1816 		needed = length = MIN(maxseg, total);
1817 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1818 retry_page:
1819 			pg_array[i] = vm_page_alloc_noobj(pflags);
1820 			if (pg_array[i] == NULL) {
1821 				if (how & M_NOWAIT) {
1822 					goto failed;
1823 				} else {
1824 					vm_wait(NULL);
1825 					goto retry_page;
1826 				}
1827 			}
1828 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1829 			mb->m_epg_npgs++;
1830 		}
1831 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1832 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1833 		total -= length;
1834 		error = uiomove_fromphys(pg_array, 0, length, uio);
1835 		if (error != 0)
1836 			goto failed;
1837 		mb->m_len = length;
1838 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1839 		if (flags & M_PKTHDR)
1840 			m->m_pkthdr.len += length;
1841 	}
1842 	return (m);
1843 
1844 failed:
1845 	m_freem(m);
1846 	return (NULL);
1847 }
1848 
1849 /*
1850  * Copy the contents of uio into a properly sized mbuf chain.
1851  */
1852 struct mbuf *
1853 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1854 {
1855 	struct mbuf *m, *mb;
1856 	int error, length;
1857 	ssize_t total;
1858 	int progress = 0;
1859 
1860 	if (flags & M_EXTPG)
1861 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1862 
1863 	/*
1864 	 * len can be zero or an arbitrary large value bound by
1865 	 * the total data supplied by the uio.
1866 	 */
1867 	if (len > 0)
1868 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1869 	else
1870 		total = uio->uio_resid;
1871 
1872 	/*
1873 	 * The smallest unit returned by m_getm2() is a single mbuf
1874 	 * with pkthdr.  We can't align past it.
1875 	 */
1876 	if (align >= MHLEN)
1877 		return (NULL);
1878 
1879 	/*
1880 	 * Give us the full allocation or nothing.
1881 	 * If len is zero return the smallest empty mbuf.
1882 	 */
1883 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1884 	if (m == NULL)
1885 		return (NULL);
1886 	m->m_data += align;
1887 
1888 	/* Fill all mbufs with uio data and update header information. */
1889 	for (mb = m; mb != NULL; mb = mb->m_next) {
1890 		length = min(M_TRAILINGSPACE(mb), total - progress);
1891 
1892 		error = uiomove(mtod(mb, void *), length, uio);
1893 		if (error) {
1894 			m_freem(m);
1895 			return (NULL);
1896 		}
1897 
1898 		mb->m_len = length;
1899 		progress += length;
1900 		if (flags & M_PKTHDR)
1901 			m->m_pkthdr.len += length;
1902 	}
1903 	KASSERT(progress == total, ("%s: progress != total", __func__));
1904 
1905 	return (m);
1906 }
1907 
1908 /*
1909  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
1910  */
1911 int
1912 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
1913 {
1914 	vm_page_t pg;
1915 	int error, i, off, pglen, pgoff, seglen, segoff;
1916 
1917 	M_ASSERTEXTPG(m);
1918 	error = 0;
1919 
1920 	/* Skip over any data removed from the front. */
1921 	off = mtod(m, vm_offset_t);
1922 
1923 	off += m_off;
1924 	if (m->m_epg_hdrlen != 0) {
1925 		if (off >= m->m_epg_hdrlen) {
1926 			off -= m->m_epg_hdrlen;
1927 		} else {
1928 			seglen = m->m_epg_hdrlen - off;
1929 			segoff = off;
1930 			seglen = min(seglen, len);
1931 			off = 0;
1932 			len -= seglen;
1933 			error = uiomove(__DECONST(void *,
1934 			    &m->m_epg_hdr[segoff]), seglen, uio);
1935 		}
1936 	}
1937 	pgoff = m->m_epg_1st_off;
1938 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1939 		pglen = m_epg_pagelen(m, i, pgoff);
1940 		if (off >= pglen) {
1941 			off -= pglen;
1942 			pgoff = 0;
1943 			continue;
1944 		}
1945 		seglen = pglen - off;
1946 		segoff = pgoff + off;
1947 		off = 0;
1948 		seglen = min(seglen, len);
1949 		len -= seglen;
1950 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1951 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1952 		pgoff = 0;
1953 	};
1954 	if (len != 0 && error == 0) {
1955 		KASSERT((off + len) <= m->m_epg_trllen,
1956 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1957 		    m->m_epg_trllen, m_off));
1958 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1959 		    len, uio);
1960 	}
1961 	return (error);
1962 }
1963 
1964 /*
1965  * Copy an mbuf chain into a uio limited by len if set.
1966  */
1967 int
1968 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1969 {
1970 	int error, length, total;
1971 	int progress = 0;
1972 
1973 	if (len > 0)
1974 		total = min(uio->uio_resid, len);
1975 	else
1976 		total = uio->uio_resid;
1977 
1978 	/* Fill the uio with data from the mbufs. */
1979 	for (; m != NULL; m = m->m_next) {
1980 		length = min(m->m_len, total - progress);
1981 
1982 		if ((m->m_flags & M_EXTPG) != 0)
1983 			error = m_unmapped_uiomove(m, 0, uio, length);
1984 		else
1985 			error = uiomove(mtod(m, void *), length, uio);
1986 		if (error)
1987 			return (error);
1988 
1989 		progress += length;
1990 	}
1991 
1992 	return (0);
1993 }
1994 
1995 /*
1996  * Create a writable copy of the mbuf chain.  While doing this
1997  * we compact the chain with a goal of producing a chain with
1998  * at most two mbufs.  The second mbuf in this chain is likely
1999  * to be a cluster.  The primary purpose of this work is to create
2000  * a writable packet for encryption, compression, etc.  The
2001  * secondary goal is to linearize the data so the data can be
2002  * passed to crypto hardware in the most efficient manner possible.
2003  */
2004 struct mbuf *
2005 m_unshare(struct mbuf *m0, int how)
2006 {
2007 	struct mbuf *m, *mprev;
2008 	struct mbuf *n, *mfirst, *mlast;
2009 	int len, off;
2010 
2011 	mprev = NULL;
2012 	for (m = m0; m != NULL; m = mprev->m_next) {
2013 		/*
2014 		 * Regular mbufs are ignored unless there's a cluster
2015 		 * in front of it that we can use to coalesce.  We do
2016 		 * the latter mainly so later clusters can be coalesced
2017 		 * also w/o having to handle them specially (i.e. convert
2018 		 * mbuf+cluster -> cluster).  This optimization is heavily
2019 		 * influenced by the assumption that we're running over
2020 		 * Ethernet where MCLBYTES is large enough that the max
2021 		 * packet size will permit lots of coalescing into a
2022 		 * single cluster.  This in turn permits efficient
2023 		 * crypto operations, especially when using hardware.
2024 		 */
2025 		if ((m->m_flags & M_EXT) == 0) {
2026 			if (mprev && (mprev->m_flags & M_EXT) &&
2027 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2028 				/* XXX: this ignores mbuf types */
2029 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2030 				    mtod(m, caddr_t), m->m_len);
2031 				mprev->m_len += m->m_len;
2032 				mprev->m_next = m->m_next;	/* unlink from chain */
2033 				m_free(m);			/* reclaim mbuf */
2034 			} else {
2035 				mprev = m;
2036 			}
2037 			continue;
2038 		}
2039 		/*
2040 		 * Writable mbufs are left alone (for now).
2041 		 */
2042 		if (M_WRITABLE(m)) {
2043 			mprev = m;
2044 			continue;
2045 		}
2046 
2047 		/*
2048 		 * Not writable, replace with a copy or coalesce with
2049 		 * the previous mbuf if possible (since we have to copy
2050 		 * it anyway, we try to reduce the number of mbufs and
2051 		 * clusters so that future work is easier).
2052 		 */
2053 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2054 		/* NB: we only coalesce into a cluster or larger */
2055 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2056 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2057 			/* XXX: this ignores mbuf types */
2058 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2059 			    mtod(m, caddr_t), m->m_len);
2060 			mprev->m_len += m->m_len;
2061 			mprev->m_next = m->m_next;	/* unlink from chain */
2062 			m_free(m);			/* reclaim mbuf */
2063 			continue;
2064 		}
2065 
2066 		/*
2067 		 * Allocate new space to hold the copy and copy the data.
2068 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2069 		 * splitting them into clusters.  We could just malloc a
2070 		 * buffer and make it external but too many device drivers
2071 		 * don't know how to break up the non-contiguous memory when
2072 		 * doing DMA.
2073 		 */
2074 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2075 		if (n == NULL) {
2076 			m_freem(m0);
2077 			return (NULL);
2078 		}
2079 		if (m->m_flags & M_PKTHDR) {
2080 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2081 			    __func__, m0, m));
2082 			m_move_pkthdr(n, m);
2083 		}
2084 		len = m->m_len;
2085 		off = 0;
2086 		mfirst = n;
2087 		mlast = NULL;
2088 		for (;;) {
2089 			int cc = min(len, MCLBYTES);
2090 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2091 			n->m_len = cc;
2092 			if (mlast != NULL)
2093 				mlast->m_next = n;
2094 			mlast = n;
2095 #if 0
2096 			newipsecstat.ips_clcopied++;
2097 #endif
2098 
2099 			len -= cc;
2100 			if (len <= 0)
2101 				break;
2102 			off += cc;
2103 
2104 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2105 			if (n == NULL) {
2106 				m_freem(mfirst);
2107 				m_freem(m0);
2108 				return (NULL);
2109 			}
2110 		}
2111 		n->m_next = m->m_next;
2112 		if (mprev == NULL)
2113 			m0 = mfirst;		/* new head of chain */
2114 		else
2115 			mprev->m_next = mfirst;	/* replace old mbuf */
2116 		m_free(m);			/* release old mbuf */
2117 		mprev = mfirst;
2118 	}
2119 	return (m0);
2120 }
2121 
2122 #ifdef MBUF_PROFILING
2123 
2124 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2125 struct mbufprofile {
2126 	uintmax_t wasted[MP_BUCKETS];
2127 	uintmax_t used[MP_BUCKETS];
2128 	uintmax_t segments[MP_BUCKETS];
2129 } mbprof;
2130 
2131 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2132 #define MP_NUMLINES 6
2133 #define MP_NUMSPERLINE 16
2134 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2135 /* work out max space needed and add a bit of spare space too */
2136 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2137 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2138 
2139 char mbprofbuf[MP_BUFSIZE];
2140 
2141 void
2142 m_profile(struct mbuf *m)
2143 {
2144 	int segments = 0;
2145 	int used = 0;
2146 	int wasted = 0;
2147 
2148 	while (m) {
2149 		segments++;
2150 		used += m->m_len;
2151 		if (m->m_flags & M_EXT) {
2152 			wasted += MHLEN - sizeof(m->m_ext) +
2153 			    m->m_ext.ext_size - m->m_len;
2154 		} else {
2155 			if (m->m_flags & M_PKTHDR)
2156 				wasted += MHLEN - m->m_len;
2157 			else
2158 				wasted += MLEN - m->m_len;
2159 		}
2160 		m = m->m_next;
2161 	}
2162 	/* be paranoid.. it helps */
2163 	if (segments > MP_BUCKETS - 1)
2164 		segments = MP_BUCKETS - 1;
2165 	if (used > 100000)
2166 		used = 100000;
2167 	if (wasted > 100000)
2168 		wasted = 100000;
2169 	/* store in the appropriate bucket */
2170 	/* don't bother locking. if it's slightly off, so what? */
2171 	mbprof.segments[segments]++;
2172 	mbprof.used[fls(used)]++;
2173 	mbprof.wasted[fls(wasted)]++;
2174 }
2175 
2176 static void
2177 mbprof_textify(void)
2178 {
2179 	int offset;
2180 	char *c;
2181 	uint64_t *p;
2182 
2183 	p = &mbprof.wasted[0];
2184 	c = mbprofbuf;
2185 	offset = snprintf(c, MP_MAXLINE + 10,
2186 	    "wasted:\n"
2187 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2188 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2189 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2190 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2191 #ifdef BIG_ARRAY
2192 	p = &mbprof.wasted[16];
2193 	c += offset;
2194 	offset = snprintf(c, MP_MAXLINE,
2195 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2196 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2197 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2198 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2199 #endif
2200 	p = &mbprof.used[0];
2201 	c += offset;
2202 	offset = snprintf(c, MP_MAXLINE + 10,
2203 	    "used:\n"
2204 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2205 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2206 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2207 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2208 #ifdef BIG_ARRAY
2209 	p = &mbprof.used[16];
2210 	c += offset;
2211 	offset = snprintf(c, MP_MAXLINE,
2212 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2213 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2214 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2215 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2216 #endif
2217 	p = &mbprof.segments[0];
2218 	c += offset;
2219 	offset = snprintf(c, MP_MAXLINE + 10,
2220 	    "segments:\n"
2221 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2222 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2223 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2224 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2225 #ifdef BIG_ARRAY
2226 	p = &mbprof.segments[16];
2227 	c += offset;
2228 	offset = snprintf(c, MP_MAXLINE,
2229 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2230 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2231 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2232 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2233 #endif
2234 }
2235 
2236 static int
2237 mbprof_handler(SYSCTL_HANDLER_ARGS)
2238 {
2239 	int error;
2240 
2241 	mbprof_textify();
2242 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2243 	return (error);
2244 }
2245 
2246 static int
2247 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2248 {
2249 	int clear, error;
2250 
2251 	clear = 0;
2252 	error = sysctl_handle_int(oidp, &clear, 0, req);
2253 	if (error || !req->newptr)
2254 		return (error);
2255 
2256 	if (clear) {
2257 		bzero(&mbprof, sizeof(mbprof));
2258 	}
2259 
2260 	return (error);
2261 }
2262 
2263 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2264     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, NULL, 0,
2265     mbprof_handler, "A",
2266     "mbuf profiling statistics");
2267 
2268 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2269     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0,
2270     mbprof_clr_handler, "I",
2271     "clear mbuf profiling statistics");
2272 #endif
2273