xref: /freebsd/sys/kern/uipc_mbuf.c (revision 28f42739a547ffe0b5dfaaf9f49fb4c4813aa232)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 
51 int	max_linkhdr;
52 int	max_protohdr;
53 int	max_hdr;
54 int	max_datalen;
55 #ifdef MBUF_STRESS_TEST
56 int	m_defragpackets;
57 int	m_defragbytes;
58 int	m_defraguseless;
59 int	m_defragfailure;
60 int	m_defragrandomfailures;
61 #endif
62 
63 /*
64  * sysctl(8) exported objects
65  */
66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67 	   &max_linkhdr, 0, "Size of largest link layer header");
68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69 	   &max_protohdr, 0, "Size of largest protocol layer header");
70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71 	   &max_hdr, 0, "Size of largest link plus protocol header");
72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74 #ifdef MBUF_STRESS_TEST
75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76 	   &m_defragpackets, 0, "");
77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78 	   &m_defragbytes, 0, "");
79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80 	   &m_defraguseless, 0, "");
81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82 	   &m_defragfailure, 0, "");
83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84 	   &m_defragrandomfailures, 0, "");
85 #endif
86 
87 /*
88  * Ensure the correct size of various mbuf parameters.  It could be off due
89  * to compiler-induced padding and alignment artifacts.
90  */
91 CTASSERT(sizeof(struct mbuf) == MSIZE);
92 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
93 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
94 
95 /*
96  * m_get2() allocates minimum mbuf that would fit "size" argument.
97  */
98 struct mbuf *
99 m_get2(int size, int how, short type, int flags)
100 {
101 	struct mb_args args;
102 	struct mbuf *m, *n;
103 
104 	args.flags = flags;
105 	args.type = type;
106 
107 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
108 		return (uma_zalloc_arg(zone_mbuf, &args, how));
109 	if (size <= MCLBYTES)
110 		return (uma_zalloc_arg(zone_pack, &args, how));
111 
112 	if (size > MJUMPAGESIZE)
113 		return (NULL);
114 
115 	m = uma_zalloc_arg(zone_mbuf, &args, how);
116 	if (m == NULL)
117 		return (NULL);
118 
119 	n = uma_zalloc_arg(zone_jumbop, m, how);
120 	if (n == NULL) {
121 		uma_zfree(zone_mbuf, m);
122 		return (NULL);
123 	}
124 
125 	return (m);
126 }
127 
128 /*
129  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
130  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
131  */
132 struct mbuf *
133 m_getjcl(int how, short type, int flags, int size)
134 {
135 	struct mb_args args;
136 	struct mbuf *m, *n;
137 	uma_zone_t zone;
138 
139 	if (size == MCLBYTES)
140 		return m_getcl(how, type, flags);
141 
142 	args.flags = flags;
143 	args.type = type;
144 
145 	m = uma_zalloc_arg(zone_mbuf, &args, how);
146 	if (m == NULL)
147 		return (NULL);
148 
149 	zone = m_getzone(size);
150 	n = uma_zalloc_arg(zone, m, how);
151 	if (n == NULL) {
152 		uma_zfree(zone_mbuf, m);
153 		return (NULL);
154 	}
155 	return (m);
156 }
157 
158 /*
159  * Allocate a given length worth of mbufs and/or clusters (whatever fits
160  * best) and return a pointer to the top of the allocated chain.  If an
161  * existing mbuf chain is provided, then we will append the new chain
162  * to the existing one but still return the top of the newly allocated
163  * chain.
164  */
165 struct mbuf *
166 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
167 {
168 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
169 
170 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
171 
172 	/* Validate flags. */
173 	flags &= (M_PKTHDR | M_EOR);
174 
175 	/* Packet header mbuf must be first in chain. */
176 	if ((flags & M_PKTHDR) && m != NULL)
177 		flags &= ~M_PKTHDR;
178 
179 	/* Loop and append maximum sized mbufs to the chain tail. */
180 	while (len > 0) {
181 		if (len > MCLBYTES)
182 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
183 			    MJUMPAGESIZE);
184 		else if (len >= MINCLSIZE)
185 			mb = m_getcl(how, type, (flags & M_PKTHDR));
186 		else if (flags & M_PKTHDR)
187 			mb = m_gethdr(how, type);
188 		else
189 			mb = m_get(how, type);
190 
191 		/* Fail the whole operation if one mbuf can't be allocated. */
192 		if (mb == NULL) {
193 			if (nm != NULL)
194 				m_freem(nm);
195 			return (NULL);
196 		}
197 
198 		/* Book keeping. */
199 		len -= M_SIZE(mb);
200 		if (mtail != NULL)
201 			mtail->m_next = mb;
202 		else
203 			nm = mb;
204 		mtail = mb;
205 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
206 	}
207 	if (flags & M_EOR)
208 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
209 
210 	/* If mbuf was supplied, append new chain to the end of it. */
211 	if (m != NULL) {
212 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
213 			;
214 		mtail->m_next = nm;
215 		mtail->m_flags &= ~M_EOR;
216 	} else
217 		m = nm;
218 
219 	return (m);
220 }
221 
222 /*
223  * Free an entire chain of mbufs and associated external buffers, if
224  * applicable.
225  */
226 void
227 m_freem(struct mbuf *mb)
228 {
229 
230 	while (mb != NULL)
231 		mb = m_free(mb);
232 }
233 
234 /*-
235  * Configure a provided mbuf to refer to the provided external storage
236  * buffer and setup a reference count for said buffer.  If the setting
237  * up of the reference count fails, the M_EXT bit will not be set.  If
238  * successfull, the M_EXT bit is set in the mbuf's flags.
239  *
240  * Arguments:
241  *    mb     The existing mbuf to which to attach the provided buffer.
242  *    buf    The address of the provided external storage buffer.
243  *    size   The size of the provided buffer.
244  *    freef  A pointer to a routine that is responsible for freeing the
245  *           provided external storage buffer.
246  *    args   A pointer to an argument structure (of any type) to be passed
247  *           to the provided freef routine (may be NULL).
248  *    flags  Any other flags to be passed to the provided mbuf.
249  *    type   The type that the external storage buffer should be
250  *           labeled with.
251  *
252  * Returns:
253  *    Nothing.
254  */
255 int
256 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
257     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
258     int flags, int type, int wait)
259 {
260 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
261 
262 	if (type != EXT_EXTREF)
263 		mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait);
264 
265 	if (mb->m_ext.ext_cnt == NULL)
266 		return (ENOMEM);
267 
268 	*(mb->m_ext.ext_cnt) = 1;
269 	mb->m_flags |= (M_EXT | flags);
270 	mb->m_ext.ext_buf = buf;
271 	mb->m_data = mb->m_ext.ext_buf;
272 	mb->m_ext.ext_size = size;
273 	mb->m_ext.ext_free = freef;
274 	mb->m_ext.ext_arg1 = arg1;
275 	mb->m_ext.ext_arg2 = arg2;
276 	mb->m_ext.ext_type = type;
277 	mb->m_ext.ext_flags = 0;
278 
279 	return (0);
280 }
281 
282 /*
283  * Non-directly-exported function to clean up after mbufs with M_EXT
284  * storage attached to them if the reference count hits 1.
285  */
286 void
287 mb_free_ext(struct mbuf *m)
288 {
289 	int freembuf;
290 
291 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
292 
293 	/*
294 	 * Check if the header is embedded in the cluster.
295 	 */
296 	freembuf = (m->m_flags & M_NOFREE) ? 0 : 1;
297 
298 	switch (m->m_ext.ext_type) {
299 	case EXT_SFBUF:
300 		sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
301 		break;
302 	default:
303 		KASSERT(m->m_ext.ext_cnt != NULL,
304 		    ("%s: no refcounting pointer on %p", __func__, m));
305 		/*
306 		 * Free attached storage if this mbuf is the only
307 		 * reference to it.
308 		 */
309 		if (*(m->m_ext.ext_cnt) != 1) {
310 			if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1)
311 				break;
312 		}
313 
314 		switch (m->m_ext.ext_type) {
315 		case EXT_PACKET:	/* The packet zone is special. */
316 			if (*(m->m_ext.ext_cnt) == 0)
317 				*(m->m_ext.ext_cnt) = 1;
318 			uma_zfree(zone_pack, m);
319 			return;		/* Job done. */
320 		case EXT_CLUSTER:
321 			uma_zfree(zone_clust, m->m_ext.ext_buf);
322 			break;
323 		case EXT_JUMBOP:
324 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
325 			break;
326 		case EXT_JUMBO9:
327 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
328 			break;
329 		case EXT_JUMBO16:
330 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
331 			break;
332 		case EXT_NET_DRV:
333 		case EXT_MOD_TYPE:
334 		case EXT_DISPOSABLE:
335 			*(m->m_ext.ext_cnt) = 0;
336 			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
337 				m->m_ext.ext_cnt));
338 			/* FALLTHROUGH */
339 		case EXT_EXTREF:
340 			KASSERT(m->m_ext.ext_free != NULL,
341 				("%s: ext_free not set", __func__));
342 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
343 			    m->m_ext.ext_arg2);
344 			break;
345 		default:
346 			KASSERT(m->m_ext.ext_type == 0,
347 				("%s: unknown ext_type", __func__));
348 		}
349 	}
350 
351 	if (freembuf)
352 		uma_zfree(zone_mbuf, m);
353 }
354 
355 /*
356  * Attach the cluster from *m to *n, set up m_ext in *n
357  * and bump the refcount of the cluster.
358  */
359 static void
360 mb_dupcl(struct mbuf *n, struct mbuf *m)
361 {
362 
363 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
364 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
365 
366 	switch (m->m_ext.ext_type) {
367 	case EXT_SFBUF:
368 		sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
369 		break;
370 	default:
371 		KASSERT(m->m_ext.ext_cnt != NULL,
372 		    ("%s: no refcounting pointer on %p", __func__, m));
373 		if (*(m->m_ext.ext_cnt) == 1)
374 			*(m->m_ext.ext_cnt) += 1;
375 		else
376 			atomic_add_int(m->m_ext.ext_cnt, 1);
377 	}
378 
379 	n->m_ext = m->m_ext;
380 	n->m_flags |= M_EXT;
381 	n->m_flags |= m->m_flags & M_RDONLY;
382 }
383 
384 /*
385  * Clean up mbuf (chain) from any tags and packet headers.
386  * If "all" is set then the first mbuf in the chain will be
387  * cleaned too.
388  */
389 void
390 m_demote(struct mbuf *m0, int all, int flags)
391 {
392 	struct mbuf *m;
393 
394 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
395 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
396 		    __func__, m, m0));
397 		if (m->m_flags & M_PKTHDR) {
398 			m_tag_delete_chain(m, NULL);
399 			m->m_flags &= ~M_PKTHDR;
400 			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
401 		}
402 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
403 	}
404 }
405 
406 /*
407  * Sanity checks on mbuf (chain) for use in KASSERT() and general
408  * debugging.
409  * Returns 0 or panics when bad and 1 on all tests passed.
410  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
411  * blow up later.
412  */
413 int
414 m_sanity(struct mbuf *m0, int sanitize)
415 {
416 	struct mbuf *m;
417 	caddr_t a, b;
418 	int pktlen = 0;
419 
420 #ifdef INVARIANTS
421 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
422 #else
423 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
424 #endif
425 
426 	for (m = m0; m != NULL; m = m->m_next) {
427 		/*
428 		 * Basic pointer checks.  If any of these fails then some
429 		 * unrelated kernel memory before or after us is trashed.
430 		 * No way to recover from that.
431 		 */
432 		a = M_START(m);
433 		b = a + M_SIZE(m);
434 		if ((caddr_t)m->m_data < a)
435 			M_SANITY_ACTION("m_data outside mbuf data range left");
436 		if ((caddr_t)m->m_data > b)
437 			M_SANITY_ACTION("m_data outside mbuf data range right");
438 		if ((caddr_t)m->m_data + m->m_len > b)
439 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
440 
441 		/* m->m_nextpkt may only be set on first mbuf in chain. */
442 		if (m != m0 && m->m_nextpkt != NULL) {
443 			if (sanitize) {
444 				m_freem(m->m_nextpkt);
445 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
446 			} else
447 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
448 		}
449 
450 		/* packet length (not mbuf length!) calculation */
451 		if (m0->m_flags & M_PKTHDR)
452 			pktlen += m->m_len;
453 
454 		/* m_tags may only be attached to first mbuf in chain. */
455 		if (m != m0 && m->m_flags & M_PKTHDR &&
456 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
457 			if (sanitize) {
458 				m_tag_delete_chain(m, NULL);
459 				/* put in 0xDEADC0DE perhaps? */
460 			} else
461 				M_SANITY_ACTION("m_tags on in-chain mbuf");
462 		}
463 
464 		/* M_PKTHDR may only be set on first mbuf in chain */
465 		if (m != m0 && m->m_flags & M_PKTHDR) {
466 			if (sanitize) {
467 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
468 				m->m_flags &= ~M_PKTHDR;
469 				/* put in 0xDEADCODE and leave hdr flag in */
470 			} else
471 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
472 		}
473 	}
474 	m = m0;
475 	if (pktlen && pktlen != m->m_pkthdr.len) {
476 		if (sanitize)
477 			m->m_pkthdr.len = 0;
478 		else
479 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
480 	}
481 	return 1;
482 
483 #undef	M_SANITY_ACTION
484 }
485 
486 
487 /*
488  * "Move" mbuf pkthdr from "from" to "to".
489  * "from" must have M_PKTHDR set, and "to" must be empty.
490  */
491 void
492 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
493 {
494 
495 #if 0
496 	/* see below for why these are not enabled */
497 	M_ASSERTPKTHDR(to);
498 	/* Note: with MAC, this may not be a good assertion. */
499 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
500 	    ("m_move_pkthdr: to has tags"));
501 #endif
502 #ifdef MAC
503 	/*
504 	 * XXXMAC: It could be this should also occur for non-MAC?
505 	 */
506 	if (to->m_flags & M_PKTHDR)
507 		m_tag_delete_chain(to, NULL);
508 #endif
509 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
510 	if ((to->m_flags & M_EXT) == 0)
511 		to->m_data = to->m_pktdat;
512 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
513 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
514 	from->m_flags &= ~M_PKTHDR;
515 }
516 
517 /*
518  * Duplicate "from"'s mbuf pkthdr in "to".
519  * "from" must have M_PKTHDR set, and "to" must be empty.
520  * In particular, this does a deep copy of the packet tags.
521  */
522 int
523 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
524 {
525 
526 #if 0
527 	/*
528 	 * The mbuf allocator only initializes the pkthdr
529 	 * when the mbuf is allocated with m_gethdr(). Many users
530 	 * (e.g. m_copy*, m_prepend) use m_get() and then
531 	 * smash the pkthdr as needed causing these
532 	 * assertions to trip.  For now just disable them.
533 	 */
534 	M_ASSERTPKTHDR(to);
535 	/* Note: with MAC, this may not be a good assertion. */
536 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
537 #endif
538 	MBUF_CHECKSLEEP(how);
539 #ifdef MAC
540 	if (to->m_flags & M_PKTHDR)
541 		m_tag_delete_chain(to, NULL);
542 #endif
543 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
544 	if ((to->m_flags & M_EXT) == 0)
545 		to->m_data = to->m_pktdat;
546 	to->m_pkthdr = from->m_pkthdr;
547 	SLIST_INIT(&to->m_pkthdr.tags);
548 	return (m_tag_copy_chain(to, from, how));
549 }
550 
551 /*
552  * Lesser-used path for M_PREPEND:
553  * allocate new mbuf to prepend to chain,
554  * copy junk along.
555  */
556 struct mbuf *
557 m_prepend(struct mbuf *m, int len, int how)
558 {
559 	struct mbuf *mn;
560 
561 	if (m->m_flags & M_PKTHDR)
562 		mn = m_gethdr(how, m->m_type);
563 	else
564 		mn = m_get(how, m->m_type);
565 	if (mn == NULL) {
566 		m_freem(m);
567 		return (NULL);
568 	}
569 	if (m->m_flags & M_PKTHDR)
570 		m_move_pkthdr(mn, m);
571 	mn->m_next = m;
572 	m = mn;
573 	if (len < M_SIZE(m))
574 		M_ALIGN(m, len);
575 	m->m_len = len;
576 	return (m);
577 }
578 
579 /*
580  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
581  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
582  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
583  * Note that the copy is read-only, because clusters are not copied,
584  * only their reference counts are incremented.
585  */
586 struct mbuf *
587 m_copym(struct mbuf *m, int off0, int len, int wait)
588 {
589 	struct mbuf *n, **np;
590 	int off = off0;
591 	struct mbuf *top;
592 	int copyhdr = 0;
593 
594 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
595 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
596 	MBUF_CHECKSLEEP(wait);
597 	if (off == 0 && m->m_flags & M_PKTHDR)
598 		copyhdr = 1;
599 	while (off > 0) {
600 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
601 		if (off < m->m_len)
602 			break;
603 		off -= m->m_len;
604 		m = m->m_next;
605 	}
606 	np = &top;
607 	top = 0;
608 	while (len > 0) {
609 		if (m == NULL) {
610 			KASSERT(len == M_COPYALL,
611 			    ("m_copym, length > size of mbuf chain"));
612 			break;
613 		}
614 		if (copyhdr)
615 			n = m_gethdr(wait, m->m_type);
616 		else
617 			n = m_get(wait, m->m_type);
618 		*np = n;
619 		if (n == NULL)
620 			goto nospace;
621 		if (copyhdr) {
622 			if (!m_dup_pkthdr(n, m, wait))
623 				goto nospace;
624 			if (len == M_COPYALL)
625 				n->m_pkthdr.len -= off0;
626 			else
627 				n->m_pkthdr.len = len;
628 			copyhdr = 0;
629 		}
630 		n->m_len = min(len, m->m_len - off);
631 		if (m->m_flags & M_EXT) {
632 			n->m_data = m->m_data + off;
633 			mb_dupcl(n, m);
634 		} else
635 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
636 			    (u_int)n->m_len);
637 		if (len != M_COPYALL)
638 			len -= n->m_len;
639 		off = 0;
640 		m = m->m_next;
641 		np = &n->m_next;
642 	}
643 
644 	return (top);
645 nospace:
646 	m_freem(top);
647 	return (NULL);
648 }
649 
650 /*
651  * Returns mbuf chain with new head for the prepending case.
652  * Copies from mbuf (chain) n from off for len to mbuf (chain) m
653  * either prepending or appending the data.
654  * The resulting mbuf (chain) m is fully writeable.
655  * m is destination (is made writeable)
656  * n is source, off is offset in source, len is len from offset
657  * dir, 0 append, 1 prepend
658  * how, wait or nowait
659  */
660 
661 static int
662 m_bcopyxxx(void *s, void *t, u_int len)
663 {
664 	bcopy(s, t, (size_t)len);
665 	return 0;
666 }
667 
668 struct mbuf *
669 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len,
670     int prep, int how)
671 {
672 	struct mbuf *mm, *x, *z, *prev = NULL;
673 	caddr_t p;
674 	int i, nlen = 0;
675 	caddr_t buf[MLEN];
676 
677 	KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source"));
678 	KASSERT(off >= 0, ("m_copymdata, negative off %d", off));
679 	KASSERT(len >= 0, ("m_copymdata, negative len %d", len));
680 	KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep));
681 
682 	mm = m;
683 	if (!prep) {
684 		while(mm->m_next) {
685 			prev = mm;
686 			mm = mm->m_next;
687 		}
688 	}
689 	for (z = n; z != NULL; z = z->m_next)
690 		nlen += z->m_len;
691 	if (len == M_COPYALL)
692 		len = nlen - off;
693 	if (off + len > nlen || len < 1)
694 		return NULL;
695 
696 	if (!M_WRITABLE(mm)) {
697 		/* XXX: Use proper m_xxx function instead. */
698 		x = m_getcl(how, MT_DATA, mm->m_flags);
699 		if (x == NULL)
700 			return NULL;
701 		bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size);
702 		p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf);
703 		x->m_data = p;
704 		mm->m_next = NULL;
705 		if (mm != m)
706 			prev->m_next = x;
707 		m_free(mm);
708 		mm = x;
709 	}
710 
711 	/*
712 	 * Append/prepend the data.  Allocating mbufs as necessary.
713 	 */
714 	/* Shortcut if enough free space in first/last mbuf. */
715 	if (!prep && M_TRAILINGSPACE(mm) >= len) {
716 		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) +
717 			 mm->m_len);
718 		mm->m_len += len;
719 		mm->m_pkthdr.len += len;
720 		return m;
721 	}
722 	if (prep && M_LEADINGSPACE(mm) >= len) {
723 		mm->m_data = mtod(mm, caddr_t) - len;
724 		m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t));
725 		mm->m_len += len;
726 		mm->m_pkthdr.len += len;
727 		return mm;
728 	}
729 
730 	/* Expand first/last mbuf to cluster if possible. */
731 	if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) {
732 		bcopy(mm->m_data, &buf, mm->m_len);
733 		m_clget(mm, how);
734 		if (!(mm->m_flags & M_EXT))
735 			return NULL;
736 		bcopy(&buf, mm->m_ext.ext_buf, mm->m_len);
737 		mm->m_data = mm->m_ext.ext_buf;
738 	}
739 	if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) {
740 		bcopy(mm->m_data, &buf, mm->m_len);
741 		m_clget(mm, how);
742 		if (!(mm->m_flags & M_EXT))
743 			return NULL;
744 		bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf +
745 		    mm->m_ext.ext_size - mm->m_len, mm->m_len);
746 		mm->m_data = (caddr_t)mm->m_ext.ext_buf +
747 		    mm->m_ext.ext_size - mm->m_len;
748 	}
749 
750 	/* Append/prepend as many mbuf (clusters) as necessary to fit len. */
751 	if (!prep && len > M_TRAILINGSPACE(mm)) {
752 		if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA))
753 			return NULL;
754 	}
755 	if (prep && len > M_LEADINGSPACE(mm)) {
756 		if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA)))
757 			return NULL;
758 		i = 0;
759 		for (x = z; x != NULL; x = x->m_next) {
760 			i += x->m_flags & M_EXT ? x->m_ext.ext_size :
761 			    (x->m_flags & M_PKTHDR ? MHLEN : MLEN);
762 			if (!x->m_next)
763 				break;
764 		}
765 		z->m_data += i - len;
766 		m_move_pkthdr(mm, z);
767 		x->m_next = mm;
768 		mm = z;
769 	}
770 
771 	/* Seek to start position in source mbuf. Optimization for long chains. */
772 	while (off > 0) {
773 		if (off < n->m_len)
774 			break;
775 		off -= n->m_len;
776 		n = n->m_next;
777 	}
778 
779 	/* Copy data into target mbuf. */
780 	z = mm;
781 	while (len > 0) {
782 		KASSERT(z != NULL, ("m_copymdata, falling off target edge"));
783 		i = M_TRAILINGSPACE(z);
784 		m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len);
785 		z->m_len += i;
786 		/* fixup pkthdr.len if necessary */
787 		if ((prep ? mm : m)->m_flags & M_PKTHDR)
788 			(prep ? mm : m)->m_pkthdr.len += i;
789 		off += i;
790 		len -= i;
791 		z = z->m_next;
792 	}
793 	return (prep ? mm : m);
794 }
795 
796 /*
797  * Copy an entire packet, including header (which must be present).
798  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
799  * Note that the copy is read-only, because clusters are not copied,
800  * only their reference counts are incremented.
801  * Preserve alignment of the first mbuf so if the creator has left
802  * some room at the beginning (e.g. for inserting protocol headers)
803  * the copies still have the room available.
804  */
805 struct mbuf *
806 m_copypacket(struct mbuf *m, int how)
807 {
808 	struct mbuf *top, *n, *o;
809 
810 	MBUF_CHECKSLEEP(how);
811 	n = m_get(how, m->m_type);
812 	top = n;
813 	if (n == NULL)
814 		goto nospace;
815 
816 	if (!m_dup_pkthdr(n, m, how))
817 		goto nospace;
818 	n->m_len = m->m_len;
819 	if (m->m_flags & M_EXT) {
820 		n->m_data = m->m_data;
821 		mb_dupcl(n, m);
822 	} else {
823 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
824 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
825 	}
826 
827 	m = m->m_next;
828 	while (m) {
829 		o = m_get(how, m->m_type);
830 		if (o == NULL)
831 			goto nospace;
832 
833 		n->m_next = o;
834 		n = n->m_next;
835 
836 		n->m_len = m->m_len;
837 		if (m->m_flags & M_EXT) {
838 			n->m_data = m->m_data;
839 			mb_dupcl(n, m);
840 		} else {
841 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
842 		}
843 
844 		m = m->m_next;
845 	}
846 	return top;
847 nospace:
848 	m_freem(top);
849 	return (NULL);
850 }
851 
852 /*
853  * Copy data from an mbuf chain starting "off" bytes from the beginning,
854  * continuing for "len" bytes, into the indicated buffer.
855  */
856 void
857 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
858 {
859 	u_int count;
860 
861 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
862 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
863 	while (off > 0) {
864 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
865 		if (off < m->m_len)
866 			break;
867 		off -= m->m_len;
868 		m = m->m_next;
869 	}
870 	while (len > 0) {
871 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
872 		count = min(m->m_len - off, len);
873 		bcopy(mtod(m, caddr_t) + off, cp, count);
874 		len -= count;
875 		cp += count;
876 		off = 0;
877 		m = m->m_next;
878 	}
879 }
880 
881 /*
882  * Copy a packet header mbuf chain into a completely new chain, including
883  * copying any mbuf clusters.  Use this instead of m_copypacket() when
884  * you need a writable copy of an mbuf chain.
885  */
886 struct mbuf *
887 m_dup(struct mbuf *m, int how)
888 {
889 	struct mbuf **p, *top = NULL;
890 	int remain, moff, nsize;
891 
892 	MBUF_CHECKSLEEP(how);
893 	/* Sanity check */
894 	if (m == NULL)
895 		return (NULL);
896 	M_ASSERTPKTHDR(m);
897 
898 	/* While there's more data, get a new mbuf, tack it on, and fill it */
899 	remain = m->m_pkthdr.len;
900 	moff = 0;
901 	p = &top;
902 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
903 		struct mbuf *n;
904 
905 		/* Get the next new mbuf */
906 		if (remain >= MINCLSIZE) {
907 			n = m_getcl(how, m->m_type, 0);
908 			nsize = MCLBYTES;
909 		} else {
910 			n = m_get(how, m->m_type);
911 			nsize = MLEN;
912 		}
913 		if (n == NULL)
914 			goto nospace;
915 
916 		if (top == NULL) {		/* First one, must be PKTHDR */
917 			if (!m_dup_pkthdr(n, m, how)) {
918 				m_free(n);
919 				goto nospace;
920 			}
921 			if ((n->m_flags & M_EXT) == 0)
922 				nsize = MHLEN;
923 		}
924 		n->m_len = 0;
925 
926 		/* Link it into the new chain */
927 		*p = n;
928 		p = &n->m_next;
929 
930 		/* Copy data from original mbuf(s) into new mbuf */
931 		while (n->m_len < nsize && m != NULL) {
932 			int chunk = min(nsize - n->m_len, m->m_len - moff);
933 
934 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
935 			moff += chunk;
936 			n->m_len += chunk;
937 			remain -= chunk;
938 			if (moff == m->m_len) {
939 				m = m->m_next;
940 				moff = 0;
941 			}
942 		}
943 
944 		/* Check correct total mbuf length */
945 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
946 		    	("%s: bogus m_pkthdr.len", __func__));
947 	}
948 	return (top);
949 
950 nospace:
951 	m_freem(top);
952 	return (NULL);
953 }
954 
955 /*
956  * Concatenate mbuf chain n to m.
957  * Both chains must be of the same type (e.g. MT_DATA).
958  * Any m_pkthdr is not updated.
959  */
960 void
961 m_cat(struct mbuf *m, struct mbuf *n)
962 {
963 	while (m->m_next)
964 		m = m->m_next;
965 	while (n) {
966 		if (!M_WRITABLE(m) ||
967 		    M_TRAILINGSPACE(m) < n->m_len) {
968 			/* just join the two chains */
969 			m->m_next = n;
970 			return;
971 		}
972 		/* splat the data from one into the other */
973 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
974 		    (u_int)n->m_len);
975 		m->m_len += n->m_len;
976 		n = m_free(n);
977 	}
978 }
979 
980 /*
981  * Concatenate two pkthdr mbuf chains.
982  */
983 void
984 m_catpkt(struct mbuf *m, struct mbuf *n)
985 {
986 
987 	M_ASSERTPKTHDR(m);
988 	M_ASSERTPKTHDR(n);
989 
990 	m->m_pkthdr.len += n->m_pkthdr.len;
991 	m_demote(n, 1, 0);
992 
993 	m_cat(m, n);
994 }
995 
996 void
997 m_adj(struct mbuf *mp, int req_len)
998 {
999 	int len = req_len;
1000 	struct mbuf *m;
1001 	int count;
1002 
1003 	if ((m = mp) == NULL)
1004 		return;
1005 	if (len >= 0) {
1006 		/*
1007 		 * Trim from head.
1008 		 */
1009 		while (m != NULL && len > 0) {
1010 			if (m->m_len <= len) {
1011 				len -= m->m_len;
1012 				m->m_len = 0;
1013 				m = m->m_next;
1014 			} else {
1015 				m->m_len -= len;
1016 				m->m_data += len;
1017 				len = 0;
1018 			}
1019 		}
1020 		if (mp->m_flags & M_PKTHDR)
1021 			mp->m_pkthdr.len -= (req_len - len);
1022 	} else {
1023 		/*
1024 		 * Trim from tail.  Scan the mbuf chain,
1025 		 * calculating its length and finding the last mbuf.
1026 		 * If the adjustment only affects this mbuf, then just
1027 		 * adjust and return.  Otherwise, rescan and truncate
1028 		 * after the remaining size.
1029 		 */
1030 		len = -len;
1031 		count = 0;
1032 		for (;;) {
1033 			count += m->m_len;
1034 			if (m->m_next == (struct mbuf *)0)
1035 				break;
1036 			m = m->m_next;
1037 		}
1038 		if (m->m_len >= len) {
1039 			m->m_len -= len;
1040 			if (mp->m_flags & M_PKTHDR)
1041 				mp->m_pkthdr.len -= len;
1042 			return;
1043 		}
1044 		count -= len;
1045 		if (count < 0)
1046 			count = 0;
1047 		/*
1048 		 * Correct length for chain is "count".
1049 		 * Find the mbuf with last data, adjust its length,
1050 		 * and toss data from remaining mbufs on chain.
1051 		 */
1052 		m = mp;
1053 		if (m->m_flags & M_PKTHDR)
1054 			m->m_pkthdr.len = count;
1055 		for (; m; m = m->m_next) {
1056 			if (m->m_len >= count) {
1057 				m->m_len = count;
1058 				if (m->m_next != NULL) {
1059 					m_freem(m->m_next);
1060 					m->m_next = NULL;
1061 				}
1062 				break;
1063 			}
1064 			count -= m->m_len;
1065 		}
1066 	}
1067 }
1068 
1069 /*
1070  * Rearange an mbuf chain so that len bytes are contiguous
1071  * and in the data area of an mbuf (so that mtod will work
1072  * for a structure of size len).  Returns the resulting
1073  * mbuf chain on success, frees it and returns null on failure.
1074  * If there is room, it will add up to max_protohdr-len extra bytes to the
1075  * contiguous region in an attempt to avoid being called next time.
1076  */
1077 struct mbuf *
1078 m_pullup(struct mbuf *n, int len)
1079 {
1080 	struct mbuf *m;
1081 	int count;
1082 	int space;
1083 
1084 	/*
1085 	 * If first mbuf has no cluster, and has room for len bytes
1086 	 * without shifting current data, pullup into it,
1087 	 * otherwise allocate a new mbuf to prepend to the chain.
1088 	 */
1089 	if ((n->m_flags & M_EXT) == 0 &&
1090 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1091 		if (n->m_len >= len)
1092 			return (n);
1093 		m = n;
1094 		n = n->m_next;
1095 		len -= m->m_len;
1096 	} else {
1097 		if (len > MHLEN)
1098 			goto bad;
1099 		m = m_get(M_NOWAIT, n->m_type);
1100 		if (m == NULL)
1101 			goto bad;
1102 		if (n->m_flags & M_PKTHDR)
1103 			m_move_pkthdr(m, n);
1104 	}
1105 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1106 	do {
1107 		count = min(min(max(len, max_protohdr), space), n->m_len);
1108 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1109 		  (u_int)count);
1110 		len -= count;
1111 		m->m_len += count;
1112 		n->m_len -= count;
1113 		space -= count;
1114 		if (n->m_len)
1115 			n->m_data += count;
1116 		else
1117 			n = m_free(n);
1118 	} while (len > 0 && n);
1119 	if (len > 0) {
1120 		(void) m_free(m);
1121 		goto bad;
1122 	}
1123 	m->m_next = n;
1124 	return (m);
1125 bad:
1126 	m_freem(n);
1127 	return (NULL);
1128 }
1129 
1130 /*
1131  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1132  * the amount of empty space before the data in the new mbuf to be specified
1133  * (in the event that the caller expects to prepend later).
1134  */
1135 int MSFail;
1136 
1137 struct mbuf *
1138 m_copyup(struct mbuf *n, int len, int dstoff)
1139 {
1140 	struct mbuf *m;
1141 	int count, space;
1142 
1143 	if (len > (MHLEN - dstoff))
1144 		goto bad;
1145 	m = m_get(M_NOWAIT, n->m_type);
1146 	if (m == NULL)
1147 		goto bad;
1148 	if (n->m_flags & M_PKTHDR)
1149 		m_move_pkthdr(m, n);
1150 	m->m_data += dstoff;
1151 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1152 	do {
1153 		count = min(min(max(len, max_protohdr), space), n->m_len);
1154 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1155 		    (unsigned)count);
1156 		len -= count;
1157 		m->m_len += count;
1158 		n->m_len -= count;
1159 		space -= count;
1160 		if (n->m_len)
1161 			n->m_data += count;
1162 		else
1163 			n = m_free(n);
1164 	} while (len > 0 && n);
1165 	if (len > 0) {
1166 		(void) m_free(m);
1167 		goto bad;
1168 	}
1169 	m->m_next = n;
1170 	return (m);
1171  bad:
1172 	m_freem(n);
1173 	MSFail++;
1174 	return (NULL);
1175 }
1176 
1177 /*
1178  * Partition an mbuf chain in two pieces, returning the tail --
1179  * all but the first len0 bytes.  In case of failure, it returns NULL and
1180  * attempts to restore the chain to its original state.
1181  *
1182  * Note that the resulting mbufs might be read-only, because the new
1183  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1184  * the "breaking point" happens to lie within a cluster mbuf. Use the
1185  * M_WRITABLE() macro to check for this case.
1186  */
1187 struct mbuf *
1188 m_split(struct mbuf *m0, int len0, int wait)
1189 {
1190 	struct mbuf *m, *n;
1191 	u_int len = len0, remain;
1192 
1193 	MBUF_CHECKSLEEP(wait);
1194 	for (m = m0; m && len > m->m_len; m = m->m_next)
1195 		len -= m->m_len;
1196 	if (m == NULL)
1197 		return (NULL);
1198 	remain = m->m_len - len;
1199 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1200 		n = m_gethdr(wait, m0->m_type);
1201 		if (n == NULL)
1202 			return (NULL);
1203 		n->m_next = m->m_next;
1204 		m->m_next = NULL;
1205 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1206 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1207 		m0->m_pkthdr.len = len0;
1208 		return (n);
1209 	} else if (m0->m_flags & M_PKTHDR) {
1210 		n = m_gethdr(wait, m0->m_type);
1211 		if (n == NULL)
1212 			return (NULL);
1213 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1214 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1215 		m0->m_pkthdr.len = len0;
1216 		if (m->m_flags & M_EXT)
1217 			goto extpacket;
1218 		if (remain > MHLEN) {
1219 			/* m can't be the lead packet */
1220 			M_ALIGN(n, 0);
1221 			n->m_next = m_split(m, len, wait);
1222 			if (n->m_next == NULL) {
1223 				(void) m_free(n);
1224 				return (NULL);
1225 			} else {
1226 				n->m_len = 0;
1227 				return (n);
1228 			}
1229 		} else
1230 			M_ALIGN(n, remain);
1231 	} else if (remain == 0) {
1232 		n = m->m_next;
1233 		m->m_next = NULL;
1234 		return (n);
1235 	} else {
1236 		n = m_get(wait, m->m_type);
1237 		if (n == NULL)
1238 			return (NULL);
1239 		M_ALIGN(n, remain);
1240 	}
1241 extpacket:
1242 	if (m->m_flags & M_EXT) {
1243 		n->m_data = m->m_data + len;
1244 		mb_dupcl(n, m);
1245 	} else {
1246 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1247 	}
1248 	n->m_len = remain;
1249 	m->m_len = len;
1250 	n->m_next = m->m_next;
1251 	m->m_next = NULL;
1252 	return (n);
1253 }
1254 /*
1255  * Routine to copy from device local memory into mbufs.
1256  * Note that `off' argument is offset into first mbuf of target chain from
1257  * which to begin copying the data to.
1258  */
1259 struct mbuf *
1260 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1261     void (*copy)(char *from, caddr_t to, u_int len))
1262 {
1263 	struct mbuf *m;
1264 	struct mbuf *top = NULL, **mp = &top;
1265 	int len;
1266 
1267 	if (off < 0 || off > MHLEN)
1268 		return (NULL);
1269 
1270 	while (totlen > 0) {
1271 		if (top == NULL) {	/* First one, must be PKTHDR */
1272 			if (totlen + off >= MINCLSIZE) {
1273 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1274 				len = MCLBYTES;
1275 			} else {
1276 				m = m_gethdr(M_NOWAIT, MT_DATA);
1277 				len = MHLEN;
1278 
1279 				/* Place initial small packet/header at end of mbuf */
1280 				if (m && totlen + off + max_linkhdr <= MLEN) {
1281 					m->m_data += max_linkhdr;
1282 					len -= max_linkhdr;
1283 				}
1284 			}
1285 			if (m == NULL)
1286 				return NULL;
1287 			m->m_pkthdr.rcvif = ifp;
1288 			m->m_pkthdr.len = totlen;
1289 		} else {
1290 			if (totlen + off >= MINCLSIZE) {
1291 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1292 				len = MCLBYTES;
1293 			} else {
1294 				m = m_get(M_NOWAIT, MT_DATA);
1295 				len = MLEN;
1296 			}
1297 			if (m == NULL) {
1298 				m_freem(top);
1299 				return NULL;
1300 			}
1301 		}
1302 		if (off) {
1303 			m->m_data += off;
1304 			len -= off;
1305 			off = 0;
1306 		}
1307 		m->m_len = len = min(totlen, len);
1308 		if (copy)
1309 			copy(buf, mtod(m, caddr_t), (u_int)len);
1310 		else
1311 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1312 		buf += len;
1313 		*mp = m;
1314 		mp = &m->m_next;
1315 		totlen -= len;
1316 	}
1317 	return (top);
1318 }
1319 
1320 /*
1321  * Copy data from a buffer back into the indicated mbuf chain,
1322  * starting "off" bytes from the beginning, extending the mbuf
1323  * chain if necessary.
1324  */
1325 void
1326 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1327 {
1328 	int mlen;
1329 	struct mbuf *m = m0, *n;
1330 	int totlen = 0;
1331 
1332 	if (m0 == NULL)
1333 		return;
1334 	while (off > (mlen = m->m_len)) {
1335 		off -= mlen;
1336 		totlen += mlen;
1337 		if (m->m_next == NULL) {
1338 			n = m_get(M_NOWAIT, m->m_type);
1339 			if (n == NULL)
1340 				goto out;
1341 			bzero(mtod(n, caddr_t), MLEN);
1342 			n->m_len = min(MLEN, len + off);
1343 			m->m_next = n;
1344 		}
1345 		m = m->m_next;
1346 	}
1347 	while (len > 0) {
1348 		if (m->m_next == NULL && (len > m->m_len - off)) {
1349 			m->m_len += min(len - (m->m_len - off),
1350 			    M_TRAILINGSPACE(m));
1351 		}
1352 		mlen = min (m->m_len - off, len);
1353 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1354 		cp += mlen;
1355 		len -= mlen;
1356 		mlen += off;
1357 		off = 0;
1358 		totlen += mlen;
1359 		if (len == 0)
1360 			break;
1361 		if (m->m_next == NULL) {
1362 			n = m_get(M_NOWAIT, m->m_type);
1363 			if (n == NULL)
1364 				break;
1365 			n->m_len = min(MLEN, len);
1366 			m->m_next = n;
1367 		}
1368 		m = m->m_next;
1369 	}
1370 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1371 		m->m_pkthdr.len = totlen;
1372 }
1373 
1374 /*
1375  * Append the specified data to the indicated mbuf chain,
1376  * Extend the mbuf chain if the new data does not fit in
1377  * existing space.
1378  *
1379  * Return 1 if able to complete the job; otherwise 0.
1380  */
1381 int
1382 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1383 {
1384 	struct mbuf *m, *n;
1385 	int remainder, space;
1386 
1387 	for (m = m0; m->m_next != NULL; m = m->m_next)
1388 		;
1389 	remainder = len;
1390 	space = M_TRAILINGSPACE(m);
1391 	if (space > 0) {
1392 		/*
1393 		 * Copy into available space.
1394 		 */
1395 		if (space > remainder)
1396 			space = remainder;
1397 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1398 		m->m_len += space;
1399 		cp += space, remainder -= space;
1400 	}
1401 	while (remainder > 0) {
1402 		/*
1403 		 * Allocate a new mbuf; could check space
1404 		 * and allocate a cluster instead.
1405 		 */
1406 		n = m_get(M_NOWAIT, m->m_type);
1407 		if (n == NULL)
1408 			break;
1409 		n->m_len = min(MLEN, remainder);
1410 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1411 		cp += n->m_len, remainder -= n->m_len;
1412 		m->m_next = n;
1413 		m = n;
1414 	}
1415 	if (m0->m_flags & M_PKTHDR)
1416 		m0->m_pkthdr.len += len - remainder;
1417 	return (remainder == 0);
1418 }
1419 
1420 /*
1421  * Apply function f to the data in an mbuf chain starting "off" bytes from
1422  * the beginning, continuing for "len" bytes.
1423  */
1424 int
1425 m_apply(struct mbuf *m, int off, int len,
1426     int (*f)(void *, void *, u_int), void *arg)
1427 {
1428 	u_int count;
1429 	int rval;
1430 
1431 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1432 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1433 	while (off > 0) {
1434 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1435 		if (off < m->m_len)
1436 			break;
1437 		off -= m->m_len;
1438 		m = m->m_next;
1439 	}
1440 	while (len > 0) {
1441 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1442 		count = min(m->m_len - off, len);
1443 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1444 		if (rval)
1445 			return (rval);
1446 		len -= count;
1447 		off = 0;
1448 		m = m->m_next;
1449 	}
1450 	return (0);
1451 }
1452 
1453 /*
1454  * Return a pointer to mbuf/offset of location in mbuf chain.
1455  */
1456 struct mbuf *
1457 m_getptr(struct mbuf *m, int loc, int *off)
1458 {
1459 
1460 	while (loc >= 0) {
1461 		/* Normal end of search. */
1462 		if (m->m_len > loc) {
1463 			*off = loc;
1464 			return (m);
1465 		} else {
1466 			loc -= m->m_len;
1467 			if (m->m_next == NULL) {
1468 				if (loc == 0) {
1469 					/* Point at the end of valid data. */
1470 					*off = m->m_len;
1471 					return (m);
1472 				}
1473 				return (NULL);
1474 			}
1475 			m = m->m_next;
1476 		}
1477 	}
1478 	return (NULL);
1479 }
1480 
1481 void
1482 m_print(const struct mbuf *m, int maxlen)
1483 {
1484 	int len;
1485 	int pdata;
1486 	const struct mbuf *m2;
1487 
1488 	if (m == NULL) {
1489 		printf("mbuf: %p\n", m);
1490 		return;
1491 	}
1492 
1493 	if (m->m_flags & M_PKTHDR)
1494 		len = m->m_pkthdr.len;
1495 	else
1496 		len = -1;
1497 	m2 = m;
1498 	while (m2 != NULL && (len == -1 || len)) {
1499 		pdata = m2->m_len;
1500 		if (maxlen != -1 && pdata > maxlen)
1501 			pdata = maxlen;
1502 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1503 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1504 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1505 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1506 		if (pdata)
1507 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1508 		if (len != -1)
1509 			len -= m2->m_len;
1510 		m2 = m2->m_next;
1511 	}
1512 	if (len > 0)
1513 		printf("%d bytes unaccounted for.\n", len);
1514 	return;
1515 }
1516 
1517 u_int
1518 m_fixhdr(struct mbuf *m0)
1519 {
1520 	u_int len;
1521 
1522 	len = m_length(m0, NULL);
1523 	m0->m_pkthdr.len = len;
1524 	return (len);
1525 }
1526 
1527 u_int
1528 m_length(struct mbuf *m0, struct mbuf **last)
1529 {
1530 	struct mbuf *m;
1531 	u_int len;
1532 
1533 	len = 0;
1534 	for (m = m0; m != NULL; m = m->m_next) {
1535 		len += m->m_len;
1536 		if (m->m_next == NULL)
1537 			break;
1538 	}
1539 	if (last != NULL)
1540 		*last = m;
1541 	return (len);
1542 }
1543 
1544 /*
1545  * Defragment a mbuf chain, returning the shortest possible
1546  * chain of mbufs and clusters.  If allocation fails and
1547  * this cannot be completed, NULL will be returned, but
1548  * the passed in chain will be unchanged.  Upon success,
1549  * the original chain will be freed, and the new chain
1550  * will be returned.
1551  *
1552  * If a non-packet header is passed in, the original
1553  * mbuf (chain?) will be returned unharmed.
1554  */
1555 struct mbuf *
1556 m_defrag(struct mbuf *m0, int how)
1557 {
1558 	struct mbuf *m_new = NULL, *m_final = NULL;
1559 	int progress = 0, length;
1560 
1561 	MBUF_CHECKSLEEP(how);
1562 	if (!(m0->m_flags & M_PKTHDR))
1563 		return (m0);
1564 
1565 	m_fixhdr(m0); /* Needed sanity check */
1566 
1567 #ifdef MBUF_STRESS_TEST
1568 	if (m_defragrandomfailures) {
1569 		int temp = arc4random() & 0xff;
1570 		if (temp == 0xba)
1571 			goto nospace;
1572 	}
1573 #endif
1574 
1575 	if (m0->m_pkthdr.len > MHLEN)
1576 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1577 	else
1578 		m_final = m_gethdr(how, MT_DATA);
1579 
1580 	if (m_final == NULL)
1581 		goto nospace;
1582 
1583 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1584 		goto nospace;
1585 
1586 	m_new = m_final;
1587 
1588 	while (progress < m0->m_pkthdr.len) {
1589 		length = m0->m_pkthdr.len - progress;
1590 		if (length > MCLBYTES)
1591 			length = MCLBYTES;
1592 
1593 		if (m_new == NULL) {
1594 			if (length > MLEN)
1595 				m_new = m_getcl(how, MT_DATA, 0);
1596 			else
1597 				m_new = m_get(how, MT_DATA);
1598 			if (m_new == NULL)
1599 				goto nospace;
1600 		}
1601 
1602 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1603 		progress += length;
1604 		m_new->m_len = length;
1605 		if (m_new != m_final)
1606 			m_cat(m_final, m_new);
1607 		m_new = NULL;
1608 	}
1609 #ifdef MBUF_STRESS_TEST
1610 	if (m0->m_next == NULL)
1611 		m_defraguseless++;
1612 #endif
1613 	m_freem(m0);
1614 	m0 = m_final;
1615 #ifdef MBUF_STRESS_TEST
1616 	m_defragpackets++;
1617 	m_defragbytes += m0->m_pkthdr.len;
1618 #endif
1619 	return (m0);
1620 nospace:
1621 #ifdef MBUF_STRESS_TEST
1622 	m_defragfailure++;
1623 #endif
1624 	if (m_final)
1625 		m_freem(m_final);
1626 	return (NULL);
1627 }
1628 
1629 /*
1630  * Defragment an mbuf chain, returning at most maxfrags separate
1631  * mbufs+clusters.  If this is not possible NULL is returned and
1632  * the original mbuf chain is left in it's present (potentially
1633  * modified) state.  We use two techniques: collapsing consecutive
1634  * mbufs and replacing consecutive mbufs by a cluster.
1635  *
1636  * NB: this should really be named m_defrag but that name is taken
1637  */
1638 struct mbuf *
1639 m_collapse(struct mbuf *m0, int how, int maxfrags)
1640 {
1641 	struct mbuf *m, *n, *n2, **prev;
1642 	u_int curfrags;
1643 
1644 	/*
1645 	 * Calculate the current number of frags.
1646 	 */
1647 	curfrags = 0;
1648 	for (m = m0; m != NULL; m = m->m_next)
1649 		curfrags++;
1650 	/*
1651 	 * First, try to collapse mbufs.  Note that we always collapse
1652 	 * towards the front so we don't need to deal with moving the
1653 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1654 	 * less data than the following.
1655 	 */
1656 	m = m0;
1657 again:
1658 	for (;;) {
1659 		n = m->m_next;
1660 		if (n == NULL)
1661 			break;
1662 		if (M_WRITABLE(m) &&
1663 		    n->m_len < M_TRAILINGSPACE(m)) {
1664 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1665 				n->m_len);
1666 			m->m_len += n->m_len;
1667 			m->m_next = n->m_next;
1668 			m_free(n);
1669 			if (--curfrags <= maxfrags)
1670 				return m0;
1671 		} else
1672 			m = n;
1673 	}
1674 	KASSERT(maxfrags > 1,
1675 		("maxfrags %u, but normal collapse failed", maxfrags));
1676 	/*
1677 	 * Collapse consecutive mbufs to a cluster.
1678 	 */
1679 	prev = &m0->m_next;		/* NB: not the first mbuf */
1680 	while ((n = *prev) != NULL) {
1681 		if ((n2 = n->m_next) != NULL &&
1682 		    n->m_len + n2->m_len < MCLBYTES) {
1683 			m = m_getcl(how, MT_DATA, 0);
1684 			if (m == NULL)
1685 				goto bad;
1686 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1687 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1688 				n2->m_len);
1689 			m->m_len = n->m_len + n2->m_len;
1690 			m->m_next = n2->m_next;
1691 			*prev = m;
1692 			m_free(n);
1693 			m_free(n2);
1694 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1695 				return m0;
1696 			/*
1697 			 * Still not there, try the normal collapse
1698 			 * again before we allocate another cluster.
1699 			 */
1700 			goto again;
1701 		}
1702 		prev = &n->m_next;
1703 	}
1704 	/*
1705 	 * No place where we can collapse to a cluster; punt.
1706 	 * This can occur if, for example, you request 2 frags
1707 	 * but the packet requires that both be clusters (we
1708 	 * never reallocate the first mbuf to avoid moving the
1709 	 * packet header).
1710 	 */
1711 bad:
1712 	return NULL;
1713 }
1714 
1715 #ifdef MBUF_STRESS_TEST
1716 
1717 /*
1718  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1719  * this in normal usage, but it's great for stress testing various
1720  * mbuf consumers.
1721  *
1722  * If fragmentation is not possible, the original chain will be
1723  * returned.
1724  *
1725  * Possible length values:
1726  * 0	 no fragmentation will occur
1727  * > 0	each fragment will be of the specified length
1728  * -1	each fragment will be the same random value in length
1729  * -2	each fragment's length will be entirely random
1730  * (Random values range from 1 to 256)
1731  */
1732 struct mbuf *
1733 m_fragment(struct mbuf *m0, int how, int length)
1734 {
1735 	struct mbuf *m_new = NULL, *m_final = NULL;
1736 	int progress = 0;
1737 
1738 	if (!(m0->m_flags & M_PKTHDR))
1739 		return (m0);
1740 
1741 	if ((length == 0) || (length < -2))
1742 		return (m0);
1743 
1744 	m_fixhdr(m0); /* Needed sanity check */
1745 
1746 	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1747 
1748 	if (m_final == NULL)
1749 		goto nospace;
1750 
1751 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1752 		goto nospace;
1753 
1754 	m_new = m_final;
1755 
1756 	if (length == -1)
1757 		length = 1 + (arc4random() & 255);
1758 
1759 	while (progress < m0->m_pkthdr.len) {
1760 		int fraglen;
1761 
1762 		if (length > 0)
1763 			fraglen = length;
1764 		else
1765 			fraglen = 1 + (arc4random() & 255);
1766 		if (fraglen > m0->m_pkthdr.len - progress)
1767 			fraglen = m0->m_pkthdr.len - progress;
1768 
1769 		if (fraglen > MCLBYTES)
1770 			fraglen = MCLBYTES;
1771 
1772 		if (m_new == NULL) {
1773 			m_new = m_getcl(how, MT_DATA, 0);
1774 			if (m_new == NULL)
1775 				goto nospace;
1776 		}
1777 
1778 		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1779 		progress += fraglen;
1780 		m_new->m_len = fraglen;
1781 		if (m_new != m_final)
1782 			m_cat(m_final, m_new);
1783 		m_new = NULL;
1784 	}
1785 	m_freem(m0);
1786 	m0 = m_final;
1787 	return (m0);
1788 nospace:
1789 	if (m_final)
1790 		m_freem(m_final);
1791 	/* Return the original chain on failure */
1792 	return (m0);
1793 }
1794 
1795 #endif
1796 
1797 /*
1798  * Copy the contents of uio into a properly sized mbuf chain.
1799  */
1800 struct mbuf *
1801 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1802 {
1803 	struct mbuf *m, *mb;
1804 	int error, length;
1805 	ssize_t total;
1806 	int progress = 0;
1807 
1808 	/*
1809 	 * len can be zero or an arbitrary large value bound by
1810 	 * the total data supplied by the uio.
1811 	 */
1812 	if (len > 0)
1813 		total = min(uio->uio_resid, len);
1814 	else
1815 		total = uio->uio_resid;
1816 
1817 	/*
1818 	 * The smallest unit returned by m_getm2() is a single mbuf
1819 	 * with pkthdr.  We can't align past it.
1820 	 */
1821 	if (align >= MHLEN)
1822 		return (NULL);
1823 
1824 	/*
1825 	 * Give us the full allocation or nothing.
1826 	 * If len is zero return the smallest empty mbuf.
1827 	 */
1828 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1829 	if (m == NULL)
1830 		return (NULL);
1831 	m->m_data += align;
1832 
1833 	/* Fill all mbufs with uio data and update header information. */
1834 	for (mb = m; mb != NULL; mb = mb->m_next) {
1835 		length = min(M_TRAILINGSPACE(mb), total - progress);
1836 
1837 		error = uiomove(mtod(mb, void *), length, uio);
1838 		if (error) {
1839 			m_freem(m);
1840 			return (NULL);
1841 		}
1842 
1843 		mb->m_len = length;
1844 		progress += length;
1845 		if (flags & M_PKTHDR)
1846 			m->m_pkthdr.len += length;
1847 	}
1848 	KASSERT(progress == total, ("%s: progress != total", __func__));
1849 
1850 	return (m);
1851 }
1852 
1853 /*
1854  * Copy an mbuf chain into a uio limited by len if set.
1855  */
1856 int
1857 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1858 {
1859 	int error, length, total;
1860 	int progress = 0;
1861 
1862 	if (len > 0)
1863 		total = min(uio->uio_resid, len);
1864 	else
1865 		total = uio->uio_resid;
1866 
1867 	/* Fill the uio with data from the mbufs. */
1868 	for (; m != NULL; m = m->m_next) {
1869 		length = min(m->m_len, total - progress);
1870 
1871 		error = uiomove(mtod(m, void *), length, uio);
1872 		if (error)
1873 			return (error);
1874 
1875 		progress += length;
1876 	}
1877 
1878 	return (0);
1879 }
1880 
1881 /*
1882  * Create a writable copy of the mbuf chain.  While doing this
1883  * we compact the chain with a goal of producing a chain with
1884  * at most two mbufs.  The second mbuf in this chain is likely
1885  * to be a cluster.  The primary purpose of this work is to create
1886  * a writable packet for encryption, compression, etc.  The
1887  * secondary goal is to linearize the data so the data can be
1888  * passed to crypto hardware in the most efficient manner possible.
1889  */
1890 struct mbuf *
1891 m_unshare(struct mbuf *m0, int how)
1892 {
1893 	struct mbuf *m, *mprev;
1894 	struct mbuf *n, *mfirst, *mlast;
1895 	int len, off;
1896 
1897 	mprev = NULL;
1898 	for (m = m0; m != NULL; m = mprev->m_next) {
1899 		/*
1900 		 * Regular mbufs are ignored unless there's a cluster
1901 		 * in front of it that we can use to coalesce.  We do
1902 		 * the latter mainly so later clusters can be coalesced
1903 		 * also w/o having to handle them specially (i.e. convert
1904 		 * mbuf+cluster -> cluster).  This optimization is heavily
1905 		 * influenced by the assumption that we're running over
1906 		 * Ethernet where MCLBYTES is large enough that the max
1907 		 * packet size will permit lots of coalescing into a
1908 		 * single cluster.  This in turn permits efficient
1909 		 * crypto operations, especially when using hardware.
1910 		 */
1911 		if ((m->m_flags & M_EXT) == 0) {
1912 			if (mprev && (mprev->m_flags & M_EXT) &&
1913 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1914 				/* XXX: this ignores mbuf types */
1915 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1916 				    mtod(m, caddr_t), m->m_len);
1917 				mprev->m_len += m->m_len;
1918 				mprev->m_next = m->m_next;	/* unlink from chain */
1919 				m_free(m);			/* reclaim mbuf */
1920 #if 0
1921 				newipsecstat.ips_mbcoalesced++;
1922 #endif
1923 			} else {
1924 				mprev = m;
1925 			}
1926 			continue;
1927 		}
1928 		/*
1929 		 * Writable mbufs are left alone (for now).
1930 		 */
1931 		if (M_WRITABLE(m)) {
1932 			mprev = m;
1933 			continue;
1934 		}
1935 
1936 		/*
1937 		 * Not writable, replace with a copy or coalesce with
1938 		 * the previous mbuf if possible (since we have to copy
1939 		 * it anyway, we try to reduce the number of mbufs and
1940 		 * clusters so that future work is easier).
1941 		 */
1942 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1943 		/* NB: we only coalesce into a cluster or larger */
1944 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1945 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1946 			/* XXX: this ignores mbuf types */
1947 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1948 			    mtod(m, caddr_t), m->m_len);
1949 			mprev->m_len += m->m_len;
1950 			mprev->m_next = m->m_next;	/* unlink from chain */
1951 			m_free(m);			/* reclaim mbuf */
1952 #if 0
1953 			newipsecstat.ips_clcoalesced++;
1954 #endif
1955 			continue;
1956 		}
1957 
1958 		/*
1959 		 * Allocate new space to hold the copy and copy the data.
1960 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1961 		 * splitting them into clusters.  We could just malloc a
1962 		 * buffer and make it external but too many device drivers
1963 		 * don't know how to break up the non-contiguous memory when
1964 		 * doing DMA.
1965 		 */
1966 		n = m_getcl(how, m->m_type, m->m_flags);
1967 		if (n == NULL) {
1968 			m_freem(m0);
1969 			return (NULL);
1970 		}
1971 		len = m->m_len;
1972 		off = 0;
1973 		mfirst = n;
1974 		mlast = NULL;
1975 		for (;;) {
1976 			int cc = min(len, MCLBYTES);
1977 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1978 			n->m_len = cc;
1979 			if (mlast != NULL)
1980 				mlast->m_next = n;
1981 			mlast = n;
1982 #if 0
1983 			newipsecstat.ips_clcopied++;
1984 #endif
1985 
1986 			len -= cc;
1987 			if (len <= 0)
1988 				break;
1989 			off += cc;
1990 
1991 			n = m_getcl(how, m->m_type, m->m_flags);
1992 			if (n == NULL) {
1993 				m_freem(mfirst);
1994 				m_freem(m0);
1995 				return (NULL);
1996 			}
1997 		}
1998 		n->m_next = m->m_next;
1999 		if (mprev == NULL)
2000 			m0 = mfirst;		/* new head of chain */
2001 		else
2002 			mprev->m_next = mfirst;	/* replace old mbuf */
2003 		m_free(m);			/* release old mbuf */
2004 		mprev = mfirst;
2005 	}
2006 	return (m0);
2007 }
2008 
2009 #ifdef MBUF_PROFILING
2010 
2011 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2012 struct mbufprofile {
2013 	uintmax_t wasted[MP_BUCKETS];
2014 	uintmax_t used[MP_BUCKETS];
2015 	uintmax_t segments[MP_BUCKETS];
2016 } mbprof;
2017 
2018 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
2019 #define MP_NUMLINES 6
2020 #define MP_NUMSPERLINE 16
2021 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
2022 /* work out max space needed and add a bit of spare space too */
2023 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
2024 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
2025 
2026 char mbprofbuf[MP_BUFSIZE];
2027 
2028 void
2029 m_profile(struct mbuf *m)
2030 {
2031 	int segments = 0;
2032 	int used = 0;
2033 	int wasted = 0;
2034 
2035 	while (m) {
2036 		segments++;
2037 		used += m->m_len;
2038 		if (m->m_flags & M_EXT) {
2039 			wasted += MHLEN - sizeof(m->m_ext) +
2040 			    m->m_ext.ext_size - m->m_len;
2041 		} else {
2042 			if (m->m_flags & M_PKTHDR)
2043 				wasted += MHLEN - m->m_len;
2044 			else
2045 				wasted += MLEN - m->m_len;
2046 		}
2047 		m = m->m_next;
2048 	}
2049 	/* be paranoid.. it helps */
2050 	if (segments > MP_BUCKETS - 1)
2051 		segments = MP_BUCKETS - 1;
2052 	if (used > 100000)
2053 		used = 100000;
2054 	if (wasted > 100000)
2055 		wasted = 100000;
2056 	/* store in the appropriate bucket */
2057 	/* don't bother locking. if it's slightly off, so what? */
2058 	mbprof.segments[segments]++;
2059 	mbprof.used[fls(used)]++;
2060 	mbprof.wasted[fls(wasted)]++;
2061 }
2062 
2063 static void
2064 mbprof_textify(void)
2065 {
2066 	int offset;
2067 	char *c;
2068 	uint64_t *p;
2069 
2070 	p = &mbprof.wasted[0];
2071 	c = mbprofbuf;
2072 	offset = snprintf(c, MP_MAXLINE + 10,
2073 	    "wasted:\n"
2074 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2075 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2076 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2077 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2078 #ifdef BIG_ARRAY
2079 	p = &mbprof.wasted[16];
2080 	c += offset;
2081 	offset = snprintf(c, MP_MAXLINE,
2082 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2083 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2084 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2085 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2086 #endif
2087 	p = &mbprof.used[0];
2088 	c += offset;
2089 	offset = snprintf(c, MP_MAXLINE + 10,
2090 	    "used:\n"
2091 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2092 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2093 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2094 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2095 #ifdef BIG_ARRAY
2096 	p = &mbprof.used[16];
2097 	c += offset;
2098 	offset = snprintf(c, MP_MAXLINE,
2099 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2100 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2101 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2102 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2103 #endif
2104 	p = &mbprof.segments[0];
2105 	c += offset;
2106 	offset = snprintf(c, MP_MAXLINE + 10,
2107 	    "segments:\n"
2108 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2109 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2110 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2111 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2112 #ifdef BIG_ARRAY
2113 	p = &mbprof.segments[16];
2114 	c += offset;
2115 	offset = snprintf(c, MP_MAXLINE,
2116 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2117 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2118 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2119 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2120 #endif
2121 }
2122 
2123 static int
2124 mbprof_handler(SYSCTL_HANDLER_ARGS)
2125 {
2126 	int error;
2127 
2128 	mbprof_textify();
2129 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2130 	return (error);
2131 }
2132 
2133 static int
2134 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2135 {
2136 	int clear, error;
2137 
2138 	clear = 0;
2139 	error = sysctl_handle_int(oidp, &clear, 0, req);
2140 	if (error || !req->newptr)
2141 		return (error);
2142 
2143 	if (clear) {
2144 		bzero(&mbprof, sizeof(mbprof));
2145 	}
2146 
2147 	return (error);
2148 }
2149 
2150 
2151 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2152 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2153 
2154 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2155 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2156 #endif
2157 
2158