1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * Ensure the correct size of various mbuf parameters. It could be off due 89 * to compiler-induced padding and alignment artifacts. 90 */ 91 CTASSERT(sizeof(struct mbuf) == MSIZE); 92 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 93 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 94 95 /* 96 * m_get2() allocates minimum mbuf that would fit "size" argument. 97 */ 98 struct mbuf * 99 m_get2(int size, int how, short type, int flags) 100 { 101 struct mb_args args; 102 struct mbuf *m, *n; 103 104 args.flags = flags; 105 args.type = type; 106 107 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 108 return (uma_zalloc_arg(zone_mbuf, &args, how)); 109 if (size <= MCLBYTES) 110 return (uma_zalloc_arg(zone_pack, &args, how)); 111 112 if (size > MJUMPAGESIZE) 113 return (NULL); 114 115 m = uma_zalloc_arg(zone_mbuf, &args, how); 116 if (m == NULL) 117 return (NULL); 118 119 n = uma_zalloc_arg(zone_jumbop, m, how); 120 if (n == NULL) { 121 uma_zfree(zone_mbuf, m); 122 return (NULL); 123 } 124 125 return (m); 126 } 127 128 /* 129 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 130 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 131 */ 132 struct mbuf * 133 m_getjcl(int how, short type, int flags, int size) 134 { 135 struct mb_args args; 136 struct mbuf *m, *n; 137 uma_zone_t zone; 138 139 if (size == MCLBYTES) 140 return m_getcl(how, type, flags); 141 142 args.flags = flags; 143 args.type = type; 144 145 m = uma_zalloc_arg(zone_mbuf, &args, how); 146 if (m == NULL) 147 return (NULL); 148 149 zone = m_getzone(size); 150 n = uma_zalloc_arg(zone, m, how); 151 if (n == NULL) { 152 uma_zfree(zone_mbuf, m); 153 return (NULL); 154 } 155 return (m); 156 } 157 158 /* 159 * Allocate a given length worth of mbufs and/or clusters (whatever fits 160 * best) and return a pointer to the top of the allocated chain. If an 161 * existing mbuf chain is provided, then we will append the new chain 162 * to the existing one but still return the top of the newly allocated 163 * chain. 164 */ 165 struct mbuf * 166 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 167 { 168 struct mbuf *mb, *nm = NULL, *mtail = NULL; 169 170 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 171 172 /* Validate flags. */ 173 flags &= (M_PKTHDR | M_EOR); 174 175 /* Packet header mbuf must be first in chain. */ 176 if ((flags & M_PKTHDR) && m != NULL) 177 flags &= ~M_PKTHDR; 178 179 /* Loop and append maximum sized mbufs to the chain tail. */ 180 while (len > 0) { 181 if (len > MCLBYTES) 182 mb = m_getjcl(how, type, (flags & M_PKTHDR), 183 MJUMPAGESIZE); 184 else if (len >= MINCLSIZE) 185 mb = m_getcl(how, type, (flags & M_PKTHDR)); 186 else if (flags & M_PKTHDR) 187 mb = m_gethdr(how, type); 188 else 189 mb = m_get(how, type); 190 191 /* Fail the whole operation if one mbuf can't be allocated. */ 192 if (mb == NULL) { 193 if (nm != NULL) 194 m_freem(nm); 195 return (NULL); 196 } 197 198 /* Book keeping. */ 199 len -= M_SIZE(mb); 200 if (mtail != NULL) 201 mtail->m_next = mb; 202 else 203 nm = mb; 204 mtail = mb; 205 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 206 } 207 if (flags & M_EOR) 208 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 209 210 /* If mbuf was supplied, append new chain to the end of it. */ 211 if (m != NULL) { 212 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 213 ; 214 mtail->m_next = nm; 215 mtail->m_flags &= ~M_EOR; 216 } else 217 m = nm; 218 219 return (m); 220 } 221 222 /* 223 * Free an entire chain of mbufs and associated external buffers, if 224 * applicable. 225 */ 226 void 227 m_freem(struct mbuf *mb) 228 { 229 230 while (mb != NULL) 231 mb = m_free(mb); 232 } 233 234 /*- 235 * Configure a provided mbuf to refer to the provided external storage 236 * buffer and setup a reference count for said buffer. If the setting 237 * up of the reference count fails, the M_EXT bit will not be set. If 238 * successfull, the M_EXT bit is set in the mbuf's flags. 239 * 240 * Arguments: 241 * mb The existing mbuf to which to attach the provided buffer. 242 * buf The address of the provided external storage buffer. 243 * size The size of the provided buffer. 244 * freef A pointer to a routine that is responsible for freeing the 245 * provided external storage buffer. 246 * args A pointer to an argument structure (of any type) to be passed 247 * to the provided freef routine (may be NULL). 248 * flags Any other flags to be passed to the provided mbuf. 249 * type The type that the external storage buffer should be 250 * labeled with. 251 * 252 * Returns: 253 * Nothing. 254 */ 255 int 256 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 257 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2, 258 int flags, int type, int wait) 259 { 260 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 261 262 if (type != EXT_EXTREF) 263 mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait); 264 265 if (mb->m_ext.ext_cnt == NULL) 266 return (ENOMEM); 267 268 *(mb->m_ext.ext_cnt) = 1; 269 mb->m_flags |= (M_EXT | flags); 270 mb->m_ext.ext_buf = buf; 271 mb->m_data = mb->m_ext.ext_buf; 272 mb->m_ext.ext_size = size; 273 mb->m_ext.ext_free = freef; 274 mb->m_ext.ext_arg1 = arg1; 275 mb->m_ext.ext_arg2 = arg2; 276 mb->m_ext.ext_type = type; 277 mb->m_ext.ext_flags = 0; 278 279 return (0); 280 } 281 282 /* 283 * Non-directly-exported function to clean up after mbufs with M_EXT 284 * storage attached to them if the reference count hits 1. 285 */ 286 void 287 mb_free_ext(struct mbuf *m) 288 { 289 int freembuf; 290 291 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 292 293 /* 294 * Check if the header is embedded in the cluster. 295 */ 296 freembuf = (m->m_flags & M_NOFREE) ? 0 : 1; 297 298 switch (m->m_ext.ext_type) { 299 case EXT_SFBUF: 300 sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 301 break; 302 default: 303 KASSERT(m->m_ext.ext_cnt != NULL, 304 ("%s: no refcounting pointer on %p", __func__, m)); 305 /* 306 * Free attached storage if this mbuf is the only 307 * reference to it. 308 */ 309 if (*(m->m_ext.ext_cnt) != 1) { 310 if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1) 311 break; 312 } 313 314 switch (m->m_ext.ext_type) { 315 case EXT_PACKET: /* The packet zone is special. */ 316 if (*(m->m_ext.ext_cnt) == 0) 317 *(m->m_ext.ext_cnt) = 1; 318 uma_zfree(zone_pack, m); 319 return; /* Job done. */ 320 case EXT_CLUSTER: 321 uma_zfree(zone_clust, m->m_ext.ext_buf); 322 break; 323 case EXT_JUMBOP: 324 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 325 break; 326 case EXT_JUMBO9: 327 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 328 break; 329 case EXT_JUMBO16: 330 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 331 break; 332 case EXT_NET_DRV: 333 case EXT_MOD_TYPE: 334 case EXT_DISPOSABLE: 335 *(m->m_ext.ext_cnt) = 0; 336 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 337 m->m_ext.ext_cnt)); 338 /* FALLTHROUGH */ 339 case EXT_EXTREF: 340 KASSERT(m->m_ext.ext_free != NULL, 341 ("%s: ext_free not set", __func__)); 342 (*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1, 343 m->m_ext.ext_arg2); 344 break; 345 default: 346 KASSERT(m->m_ext.ext_type == 0, 347 ("%s: unknown ext_type", __func__)); 348 } 349 } 350 351 if (freembuf) 352 uma_zfree(zone_mbuf, m); 353 } 354 355 /* 356 * Attach the cluster from *m to *n, set up m_ext in *n 357 * and bump the refcount of the cluster. 358 */ 359 static void 360 mb_dupcl(struct mbuf *n, struct mbuf *m) 361 { 362 363 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 364 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 365 366 switch (m->m_ext.ext_type) { 367 case EXT_SFBUF: 368 sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 369 break; 370 default: 371 KASSERT(m->m_ext.ext_cnt != NULL, 372 ("%s: no refcounting pointer on %p", __func__, m)); 373 if (*(m->m_ext.ext_cnt) == 1) 374 *(m->m_ext.ext_cnt) += 1; 375 else 376 atomic_add_int(m->m_ext.ext_cnt, 1); 377 } 378 379 n->m_ext = m->m_ext; 380 n->m_flags |= M_EXT; 381 n->m_flags |= m->m_flags & M_RDONLY; 382 } 383 384 /* 385 * Clean up mbuf (chain) from any tags and packet headers. 386 * If "all" is set then the first mbuf in the chain will be 387 * cleaned too. 388 */ 389 void 390 m_demote(struct mbuf *m0, int all, int flags) 391 { 392 struct mbuf *m; 393 394 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 395 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 396 __func__, m, m0)); 397 if (m->m_flags & M_PKTHDR) { 398 m_tag_delete_chain(m, NULL); 399 m->m_flags &= ~M_PKTHDR; 400 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 401 } 402 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags); 403 } 404 } 405 406 /* 407 * Sanity checks on mbuf (chain) for use in KASSERT() and general 408 * debugging. 409 * Returns 0 or panics when bad and 1 on all tests passed. 410 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 411 * blow up later. 412 */ 413 int 414 m_sanity(struct mbuf *m0, int sanitize) 415 { 416 struct mbuf *m; 417 caddr_t a, b; 418 int pktlen = 0; 419 420 #ifdef INVARIANTS 421 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 422 #else 423 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 424 #endif 425 426 for (m = m0; m != NULL; m = m->m_next) { 427 /* 428 * Basic pointer checks. If any of these fails then some 429 * unrelated kernel memory before or after us is trashed. 430 * No way to recover from that. 431 */ 432 a = M_START(m); 433 b = a + M_SIZE(m); 434 if ((caddr_t)m->m_data < a) 435 M_SANITY_ACTION("m_data outside mbuf data range left"); 436 if ((caddr_t)m->m_data > b) 437 M_SANITY_ACTION("m_data outside mbuf data range right"); 438 if ((caddr_t)m->m_data + m->m_len > b) 439 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 440 441 /* m->m_nextpkt may only be set on first mbuf in chain. */ 442 if (m != m0 && m->m_nextpkt != NULL) { 443 if (sanitize) { 444 m_freem(m->m_nextpkt); 445 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 446 } else 447 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 448 } 449 450 /* packet length (not mbuf length!) calculation */ 451 if (m0->m_flags & M_PKTHDR) 452 pktlen += m->m_len; 453 454 /* m_tags may only be attached to first mbuf in chain. */ 455 if (m != m0 && m->m_flags & M_PKTHDR && 456 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 457 if (sanitize) { 458 m_tag_delete_chain(m, NULL); 459 /* put in 0xDEADC0DE perhaps? */ 460 } else 461 M_SANITY_ACTION("m_tags on in-chain mbuf"); 462 } 463 464 /* M_PKTHDR may only be set on first mbuf in chain */ 465 if (m != m0 && m->m_flags & M_PKTHDR) { 466 if (sanitize) { 467 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 468 m->m_flags &= ~M_PKTHDR; 469 /* put in 0xDEADCODE and leave hdr flag in */ 470 } else 471 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 472 } 473 } 474 m = m0; 475 if (pktlen && pktlen != m->m_pkthdr.len) { 476 if (sanitize) 477 m->m_pkthdr.len = 0; 478 else 479 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 480 } 481 return 1; 482 483 #undef M_SANITY_ACTION 484 } 485 486 487 /* 488 * "Move" mbuf pkthdr from "from" to "to". 489 * "from" must have M_PKTHDR set, and "to" must be empty. 490 */ 491 void 492 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 493 { 494 495 #if 0 496 /* see below for why these are not enabled */ 497 M_ASSERTPKTHDR(to); 498 /* Note: with MAC, this may not be a good assertion. */ 499 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 500 ("m_move_pkthdr: to has tags")); 501 #endif 502 #ifdef MAC 503 /* 504 * XXXMAC: It could be this should also occur for non-MAC? 505 */ 506 if (to->m_flags & M_PKTHDR) 507 m_tag_delete_chain(to, NULL); 508 #endif 509 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 510 if ((to->m_flags & M_EXT) == 0) 511 to->m_data = to->m_pktdat; 512 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 513 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 514 from->m_flags &= ~M_PKTHDR; 515 } 516 517 /* 518 * Duplicate "from"'s mbuf pkthdr in "to". 519 * "from" must have M_PKTHDR set, and "to" must be empty. 520 * In particular, this does a deep copy of the packet tags. 521 */ 522 int 523 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how) 524 { 525 526 #if 0 527 /* 528 * The mbuf allocator only initializes the pkthdr 529 * when the mbuf is allocated with m_gethdr(). Many users 530 * (e.g. m_copy*, m_prepend) use m_get() and then 531 * smash the pkthdr as needed causing these 532 * assertions to trip. For now just disable them. 533 */ 534 M_ASSERTPKTHDR(to); 535 /* Note: with MAC, this may not be a good assertion. */ 536 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 537 #endif 538 MBUF_CHECKSLEEP(how); 539 #ifdef MAC 540 if (to->m_flags & M_PKTHDR) 541 m_tag_delete_chain(to, NULL); 542 #endif 543 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 544 if ((to->m_flags & M_EXT) == 0) 545 to->m_data = to->m_pktdat; 546 to->m_pkthdr = from->m_pkthdr; 547 SLIST_INIT(&to->m_pkthdr.tags); 548 return (m_tag_copy_chain(to, from, how)); 549 } 550 551 /* 552 * Lesser-used path for M_PREPEND: 553 * allocate new mbuf to prepend to chain, 554 * copy junk along. 555 */ 556 struct mbuf * 557 m_prepend(struct mbuf *m, int len, int how) 558 { 559 struct mbuf *mn; 560 561 if (m->m_flags & M_PKTHDR) 562 mn = m_gethdr(how, m->m_type); 563 else 564 mn = m_get(how, m->m_type); 565 if (mn == NULL) { 566 m_freem(m); 567 return (NULL); 568 } 569 if (m->m_flags & M_PKTHDR) 570 m_move_pkthdr(mn, m); 571 mn->m_next = m; 572 m = mn; 573 if (len < M_SIZE(m)) 574 M_ALIGN(m, len); 575 m->m_len = len; 576 return (m); 577 } 578 579 /* 580 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 581 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 582 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 583 * Note that the copy is read-only, because clusters are not copied, 584 * only their reference counts are incremented. 585 */ 586 struct mbuf * 587 m_copym(struct mbuf *m, int off0, int len, int wait) 588 { 589 struct mbuf *n, **np; 590 int off = off0; 591 struct mbuf *top; 592 int copyhdr = 0; 593 594 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 595 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 596 MBUF_CHECKSLEEP(wait); 597 if (off == 0 && m->m_flags & M_PKTHDR) 598 copyhdr = 1; 599 while (off > 0) { 600 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 601 if (off < m->m_len) 602 break; 603 off -= m->m_len; 604 m = m->m_next; 605 } 606 np = ⊤ 607 top = 0; 608 while (len > 0) { 609 if (m == NULL) { 610 KASSERT(len == M_COPYALL, 611 ("m_copym, length > size of mbuf chain")); 612 break; 613 } 614 if (copyhdr) 615 n = m_gethdr(wait, m->m_type); 616 else 617 n = m_get(wait, m->m_type); 618 *np = n; 619 if (n == NULL) 620 goto nospace; 621 if (copyhdr) { 622 if (!m_dup_pkthdr(n, m, wait)) 623 goto nospace; 624 if (len == M_COPYALL) 625 n->m_pkthdr.len -= off0; 626 else 627 n->m_pkthdr.len = len; 628 copyhdr = 0; 629 } 630 n->m_len = min(len, m->m_len - off); 631 if (m->m_flags & M_EXT) { 632 n->m_data = m->m_data + off; 633 mb_dupcl(n, m); 634 } else 635 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 636 (u_int)n->m_len); 637 if (len != M_COPYALL) 638 len -= n->m_len; 639 off = 0; 640 m = m->m_next; 641 np = &n->m_next; 642 } 643 644 return (top); 645 nospace: 646 m_freem(top); 647 return (NULL); 648 } 649 650 /* 651 * Returns mbuf chain with new head for the prepending case. 652 * Copies from mbuf (chain) n from off for len to mbuf (chain) m 653 * either prepending or appending the data. 654 * The resulting mbuf (chain) m is fully writeable. 655 * m is destination (is made writeable) 656 * n is source, off is offset in source, len is len from offset 657 * dir, 0 append, 1 prepend 658 * how, wait or nowait 659 */ 660 661 static int 662 m_bcopyxxx(void *s, void *t, u_int len) 663 { 664 bcopy(s, t, (size_t)len); 665 return 0; 666 } 667 668 struct mbuf * 669 m_copymdata(struct mbuf *m, struct mbuf *n, int off, int len, 670 int prep, int how) 671 { 672 struct mbuf *mm, *x, *z, *prev = NULL; 673 caddr_t p; 674 int i, nlen = 0; 675 caddr_t buf[MLEN]; 676 677 KASSERT(m != NULL && n != NULL, ("m_copymdata, no target or source")); 678 KASSERT(off >= 0, ("m_copymdata, negative off %d", off)); 679 KASSERT(len >= 0, ("m_copymdata, negative len %d", len)); 680 KASSERT(prep == 0 || prep == 1, ("m_copymdata, unknown direction %d", prep)); 681 682 mm = m; 683 if (!prep) { 684 while(mm->m_next) { 685 prev = mm; 686 mm = mm->m_next; 687 } 688 } 689 for (z = n; z != NULL; z = z->m_next) 690 nlen += z->m_len; 691 if (len == M_COPYALL) 692 len = nlen - off; 693 if (off + len > nlen || len < 1) 694 return NULL; 695 696 if (!M_WRITABLE(mm)) { 697 /* XXX: Use proper m_xxx function instead. */ 698 x = m_getcl(how, MT_DATA, mm->m_flags); 699 if (x == NULL) 700 return NULL; 701 bcopy(mm->m_ext.ext_buf, x->m_ext.ext_buf, x->m_ext.ext_size); 702 p = x->m_ext.ext_buf + (mm->m_data - mm->m_ext.ext_buf); 703 x->m_data = p; 704 mm->m_next = NULL; 705 if (mm != m) 706 prev->m_next = x; 707 m_free(mm); 708 mm = x; 709 } 710 711 /* 712 * Append/prepend the data. Allocating mbufs as necessary. 713 */ 714 /* Shortcut if enough free space in first/last mbuf. */ 715 if (!prep && M_TRAILINGSPACE(mm) >= len) { 716 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t) + 717 mm->m_len); 718 mm->m_len += len; 719 mm->m_pkthdr.len += len; 720 return m; 721 } 722 if (prep && M_LEADINGSPACE(mm) >= len) { 723 mm->m_data = mtod(mm, caddr_t) - len; 724 m_apply(n, off, len, m_bcopyxxx, mtod(mm, caddr_t)); 725 mm->m_len += len; 726 mm->m_pkthdr.len += len; 727 return mm; 728 } 729 730 /* Expand first/last mbuf to cluster if possible. */ 731 if (!prep && !(mm->m_flags & M_EXT) && len > M_TRAILINGSPACE(mm)) { 732 bcopy(mm->m_data, &buf, mm->m_len); 733 m_clget(mm, how); 734 if (!(mm->m_flags & M_EXT)) 735 return NULL; 736 bcopy(&buf, mm->m_ext.ext_buf, mm->m_len); 737 mm->m_data = mm->m_ext.ext_buf; 738 } 739 if (prep && !(mm->m_flags & M_EXT) && len > M_LEADINGSPACE(mm)) { 740 bcopy(mm->m_data, &buf, mm->m_len); 741 m_clget(mm, how); 742 if (!(mm->m_flags & M_EXT)) 743 return NULL; 744 bcopy(&buf, (caddr_t *)mm->m_ext.ext_buf + 745 mm->m_ext.ext_size - mm->m_len, mm->m_len); 746 mm->m_data = (caddr_t)mm->m_ext.ext_buf + 747 mm->m_ext.ext_size - mm->m_len; 748 } 749 750 /* Append/prepend as many mbuf (clusters) as necessary to fit len. */ 751 if (!prep && len > M_TRAILINGSPACE(mm)) { 752 if (!m_getm(mm, len - M_TRAILINGSPACE(mm), how, MT_DATA)) 753 return NULL; 754 } 755 if (prep && len > M_LEADINGSPACE(mm)) { 756 if (!(z = m_getm(NULL, len - M_LEADINGSPACE(mm), how, MT_DATA))) 757 return NULL; 758 i = 0; 759 for (x = z; x != NULL; x = x->m_next) { 760 i += x->m_flags & M_EXT ? x->m_ext.ext_size : 761 (x->m_flags & M_PKTHDR ? MHLEN : MLEN); 762 if (!x->m_next) 763 break; 764 } 765 z->m_data += i - len; 766 m_move_pkthdr(mm, z); 767 x->m_next = mm; 768 mm = z; 769 } 770 771 /* Seek to start position in source mbuf. Optimization for long chains. */ 772 while (off > 0) { 773 if (off < n->m_len) 774 break; 775 off -= n->m_len; 776 n = n->m_next; 777 } 778 779 /* Copy data into target mbuf. */ 780 z = mm; 781 while (len > 0) { 782 KASSERT(z != NULL, ("m_copymdata, falling off target edge")); 783 i = M_TRAILINGSPACE(z); 784 m_apply(n, off, i, m_bcopyxxx, mtod(z, caddr_t) + z->m_len); 785 z->m_len += i; 786 /* fixup pkthdr.len if necessary */ 787 if ((prep ? mm : m)->m_flags & M_PKTHDR) 788 (prep ? mm : m)->m_pkthdr.len += i; 789 off += i; 790 len -= i; 791 z = z->m_next; 792 } 793 return (prep ? mm : m); 794 } 795 796 /* 797 * Copy an entire packet, including header (which must be present). 798 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 799 * Note that the copy is read-only, because clusters are not copied, 800 * only their reference counts are incremented. 801 * Preserve alignment of the first mbuf so if the creator has left 802 * some room at the beginning (e.g. for inserting protocol headers) 803 * the copies still have the room available. 804 */ 805 struct mbuf * 806 m_copypacket(struct mbuf *m, int how) 807 { 808 struct mbuf *top, *n, *o; 809 810 MBUF_CHECKSLEEP(how); 811 n = m_get(how, m->m_type); 812 top = n; 813 if (n == NULL) 814 goto nospace; 815 816 if (!m_dup_pkthdr(n, m, how)) 817 goto nospace; 818 n->m_len = m->m_len; 819 if (m->m_flags & M_EXT) { 820 n->m_data = m->m_data; 821 mb_dupcl(n, m); 822 } else { 823 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 824 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 825 } 826 827 m = m->m_next; 828 while (m) { 829 o = m_get(how, m->m_type); 830 if (o == NULL) 831 goto nospace; 832 833 n->m_next = o; 834 n = n->m_next; 835 836 n->m_len = m->m_len; 837 if (m->m_flags & M_EXT) { 838 n->m_data = m->m_data; 839 mb_dupcl(n, m); 840 } else { 841 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 842 } 843 844 m = m->m_next; 845 } 846 return top; 847 nospace: 848 m_freem(top); 849 return (NULL); 850 } 851 852 /* 853 * Copy data from an mbuf chain starting "off" bytes from the beginning, 854 * continuing for "len" bytes, into the indicated buffer. 855 */ 856 void 857 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 858 { 859 u_int count; 860 861 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 862 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 863 while (off > 0) { 864 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 865 if (off < m->m_len) 866 break; 867 off -= m->m_len; 868 m = m->m_next; 869 } 870 while (len > 0) { 871 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 872 count = min(m->m_len - off, len); 873 bcopy(mtod(m, caddr_t) + off, cp, count); 874 len -= count; 875 cp += count; 876 off = 0; 877 m = m->m_next; 878 } 879 } 880 881 /* 882 * Copy a packet header mbuf chain into a completely new chain, including 883 * copying any mbuf clusters. Use this instead of m_copypacket() when 884 * you need a writable copy of an mbuf chain. 885 */ 886 struct mbuf * 887 m_dup(struct mbuf *m, int how) 888 { 889 struct mbuf **p, *top = NULL; 890 int remain, moff, nsize; 891 892 MBUF_CHECKSLEEP(how); 893 /* Sanity check */ 894 if (m == NULL) 895 return (NULL); 896 M_ASSERTPKTHDR(m); 897 898 /* While there's more data, get a new mbuf, tack it on, and fill it */ 899 remain = m->m_pkthdr.len; 900 moff = 0; 901 p = ⊤ 902 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 903 struct mbuf *n; 904 905 /* Get the next new mbuf */ 906 if (remain >= MINCLSIZE) { 907 n = m_getcl(how, m->m_type, 0); 908 nsize = MCLBYTES; 909 } else { 910 n = m_get(how, m->m_type); 911 nsize = MLEN; 912 } 913 if (n == NULL) 914 goto nospace; 915 916 if (top == NULL) { /* First one, must be PKTHDR */ 917 if (!m_dup_pkthdr(n, m, how)) { 918 m_free(n); 919 goto nospace; 920 } 921 if ((n->m_flags & M_EXT) == 0) 922 nsize = MHLEN; 923 } 924 n->m_len = 0; 925 926 /* Link it into the new chain */ 927 *p = n; 928 p = &n->m_next; 929 930 /* Copy data from original mbuf(s) into new mbuf */ 931 while (n->m_len < nsize && m != NULL) { 932 int chunk = min(nsize - n->m_len, m->m_len - moff); 933 934 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 935 moff += chunk; 936 n->m_len += chunk; 937 remain -= chunk; 938 if (moff == m->m_len) { 939 m = m->m_next; 940 moff = 0; 941 } 942 } 943 944 /* Check correct total mbuf length */ 945 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 946 ("%s: bogus m_pkthdr.len", __func__)); 947 } 948 return (top); 949 950 nospace: 951 m_freem(top); 952 return (NULL); 953 } 954 955 /* 956 * Concatenate mbuf chain n to m. 957 * Both chains must be of the same type (e.g. MT_DATA). 958 * Any m_pkthdr is not updated. 959 */ 960 void 961 m_cat(struct mbuf *m, struct mbuf *n) 962 { 963 while (m->m_next) 964 m = m->m_next; 965 while (n) { 966 if (!M_WRITABLE(m) || 967 M_TRAILINGSPACE(m) < n->m_len) { 968 /* just join the two chains */ 969 m->m_next = n; 970 return; 971 } 972 /* splat the data from one into the other */ 973 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 974 (u_int)n->m_len); 975 m->m_len += n->m_len; 976 n = m_free(n); 977 } 978 } 979 980 /* 981 * Concatenate two pkthdr mbuf chains. 982 */ 983 void 984 m_catpkt(struct mbuf *m, struct mbuf *n) 985 { 986 987 M_ASSERTPKTHDR(m); 988 M_ASSERTPKTHDR(n); 989 990 m->m_pkthdr.len += n->m_pkthdr.len; 991 m_demote(n, 1, 0); 992 993 m_cat(m, n); 994 } 995 996 void 997 m_adj(struct mbuf *mp, int req_len) 998 { 999 int len = req_len; 1000 struct mbuf *m; 1001 int count; 1002 1003 if ((m = mp) == NULL) 1004 return; 1005 if (len >= 0) { 1006 /* 1007 * Trim from head. 1008 */ 1009 while (m != NULL && len > 0) { 1010 if (m->m_len <= len) { 1011 len -= m->m_len; 1012 m->m_len = 0; 1013 m = m->m_next; 1014 } else { 1015 m->m_len -= len; 1016 m->m_data += len; 1017 len = 0; 1018 } 1019 } 1020 if (mp->m_flags & M_PKTHDR) 1021 mp->m_pkthdr.len -= (req_len - len); 1022 } else { 1023 /* 1024 * Trim from tail. Scan the mbuf chain, 1025 * calculating its length and finding the last mbuf. 1026 * If the adjustment only affects this mbuf, then just 1027 * adjust and return. Otherwise, rescan and truncate 1028 * after the remaining size. 1029 */ 1030 len = -len; 1031 count = 0; 1032 for (;;) { 1033 count += m->m_len; 1034 if (m->m_next == (struct mbuf *)0) 1035 break; 1036 m = m->m_next; 1037 } 1038 if (m->m_len >= len) { 1039 m->m_len -= len; 1040 if (mp->m_flags & M_PKTHDR) 1041 mp->m_pkthdr.len -= len; 1042 return; 1043 } 1044 count -= len; 1045 if (count < 0) 1046 count = 0; 1047 /* 1048 * Correct length for chain is "count". 1049 * Find the mbuf with last data, adjust its length, 1050 * and toss data from remaining mbufs on chain. 1051 */ 1052 m = mp; 1053 if (m->m_flags & M_PKTHDR) 1054 m->m_pkthdr.len = count; 1055 for (; m; m = m->m_next) { 1056 if (m->m_len >= count) { 1057 m->m_len = count; 1058 if (m->m_next != NULL) { 1059 m_freem(m->m_next); 1060 m->m_next = NULL; 1061 } 1062 break; 1063 } 1064 count -= m->m_len; 1065 } 1066 } 1067 } 1068 1069 /* 1070 * Rearange an mbuf chain so that len bytes are contiguous 1071 * and in the data area of an mbuf (so that mtod will work 1072 * for a structure of size len). Returns the resulting 1073 * mbuf chain on success, frees it and returns null on failure. 1074 * If there is room, it will add up to max_protohdr-len extra bytes to the 1075 * contiguous region in an attempt to avoid being called next time. 1076 */ 1077 struct mbuf * 1078 m_pullup(struct mbuf *n, int len) 1079 { 1080 struct mbuf *m; 1081 int count; 1082 int space; 1083 1084 /* 1085 * If first mbuf has no cluster, and has room for len bytes 1086 * without shifting current data, pullup into it, 1087 * otherwise allocate a new mbuf to prepend to the chain. 1088 */ 1089 if ((n->m_flags & M_EXT) == 0 && 1090 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 1091 if (n->m_len >= len) 1092 return (n); 1093 m = n; 1094 n = n->m_next; 1095 len -= m->m_len; 1096 } else { 1097 if (len > MHLEN) 1098 goto bad; 1099 m = m_get(M_NOWAIT, n->m_type); 1100 if (m == NULL) 1101 goto bad; 1102 if (n->m_flags & M_PKTHDR) 1103 m_move_pkthdr(m, n); 1104 } 1105 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1106 do { 1107 count = min(min(max(len, max_protohdr), space), n->m_len); 1108 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1109 (u_int)count); 1110 len -= count; 1111 m->m_len += count; 1112 n->m_len -= count; 1113 space -= count; 1114 if (n->m_len) 1115 n->m_data += count; 1116 else 1117 n = m_free(n); 1118 } while (len > 0 && n); 1119 if (len > 0) { 1120 (void) m_free(m); 1121 goto bad; 1122 } 1123 m->m_next = n; 1124 return (m); 1125 bad: 1126 m_freem(n); 1127 return (NULL); 1128 } 1129 1130 /* 1131 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1132 * the amount of empty space before the data in the new mbuf to be specified 1133 * (in the event that the caller expects to prepend later). 1134 */ 1135 int MSFail; 1136 1137 struct mbuf * 1138 m_copyup(struct mbuf *n, int len, int dstoff) 1139 { 1140 struct mbuf *m; 1141 int count, space; 1142 1143 if (len > (MHLEN - dstoff)) 1144 goto bad; 1145 m = m_get(M_NOWAIT, n->m_type); 1146 if (m == NULL) 1147 goto bad; 1148 if (n->m_flags & M_PKTHDR) 1149 m_move_pkthdr(m, n); 1150 m->m_data += dstoff; 1151 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1152 do { 1153 count = min(min(max(len, max_protohdr), space), n->m_len); 1154 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1155 (unsigned)count); 1156 len -= count; 1157 m->m_len += count; 1158 n->m_len -= count; 1159 space -= count; 1160 if (n->m_len) 1161 n->m_data += count; 1162 else 1163 n = m_free(n); 1164 } while (len > 0 && n); 1165 if (len > 0) { 1166 (void) m_free(m); 1167 goto bad; 1168 } 1169 m->m_next = n; 1170 return (m); 1171 bad: 1172 m_freem(n); 1173 MSFail++; 1174 return (NULL); 1175 } 1176 1177 /* 1178 * Partition an mbuf chain in two pieces, returning the tail -- 1179 * all but the first len0 bytes. In case of failure, it returns NULL and 1180 * attempts to restore the chain to its original state. 1181 * 1182 * Note that the resulting mbufs might be read-only, because the new 1183 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1184 * the "breaking point" happens to lie within a cluster mbuf. Use the 1185 * M_WRITABLE() macro to check for this case. 1186 */ 1187 struct mbuf * 1188 m_split(struct mbuf *m0, int len0, int wait) 1189 { 1190 struct mbuf *m, *n; 1191 u_int len = len0, remain; 1192 1193 MBUF_CHECKSLEEP(wait); 1194 for (m = m0; m && len > m->m_len; m = m->m_next) 1195 len -= m->m_len; 1196 if (m == NULL) 1197 return (NULL); 1198 remain = m->m_len - len; 1199 if (m0->m_flags & M_PKTHDR && remain == 0) { 1200 n = m_gethdr(wait, m0->m_type); 1201 if (n == NULL) 1202 return (NULL); 1203 n->m_next = m->m_next; 1204 m->m_next = NULL; 1205 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1206 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1207 m0->m_pkthdr.len = len0; 1208 return (n); 1209 } else if (m0->m_flags & M_PKTHDR) { 1210 n = m_gethdr(wait, m0->m_type); 1211 if (n == NULL) 1212 return (NULL); 1213 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1214 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1215 m0->m_pkthdr.len = len0; 1216 if (m->m_flags & M_EXT) 1217 goto extpacket; 1218 if (remain > MHLEN) { 1219 /* m can't be the lead packet */ 1220 M_ALIGN(n, 0); 1221 n->m_next = m_split(m, len, wait); 1222 if (n->m_next == NULL) { 1223 (void) m_free(n); 1224 return (NULL); 1225 } else { 1226 n->m_len = 0; 1227 return (n); 1228 } 1229 } else 1230 M_ALIGN(n, remain); 1231 } else if (remain == 0) { 1232 n = m->m_next; 1233 m->m_next = NULL; 1234 return (n); 1235 } else { 1236 n = m_get(wait, m->m_type); 1237 if (n == NULL) 1238 return (NULL); 1239 M_ALIGN(n, remain); 1240 } 1241 extpacket: 1242 if (m->m_flags & M_EXT) { 1243 n->m_data = m->m_data + len; 1244 mb_dupcl(n, m); 1245 } else { 1246 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1247 } 1248 n->m_len = remain; 1249 m->m_len = len; 1250 n->m_next = m->m_next; 1251 m->m_next = NULL; 1252 return (n); 1253 } 1254 /* 1255 * Routine to copy from device local memory into mbufs. 1256 * Note that `off' argument is offset into first mbuf of target chain from 1257 * which to begin copying the data to. 1258 */ 1259 struct mbuf * 1260 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1261 void (*copy)(char *from, caddr_t to, u_int len)) 1262 { 1263 struct mbuf *m; 1264 struct mbuf *top = NULL, **mp = ⊤ 1265 int len; 1266 1267 if (off < 0 || off > MHLEN) 1268 return (NULL); 1269 1270 while (totlen > 0) { 1271 if (top == NULL) { /* First one, must be PKTHDR */ 1272 if (totlen + off >= MINCLSIZE) { 1273 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1274 len = MCLBYTES; 1275 } else { 1276 m = m_gethdr(M_NOWAIT, MT_DATA); 1277 len = MHLEN; 1278 1279 /* Place initial small packet/header at end of mbuf */ 1280 if (m && totlen + off + max_linkhdr <= MLEN) { 1281 m->m_data += max_linkhdr; 1282 len -= max_linkhdr; 1283 } 1284 } 1285 if (m == NULL) 1286 return NULL; 1287 m->m_pkthdr.rcvif = ifp; 1288 m->m_pkthdr.len = totlen; 1289 } else { 1290 if (totlen + off >= MINCLSIZE) { 1291 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1292 len = MCLBYTES; 1293 } else { 1294 m = m_get(M_NOWAIT, MT_DATA); 1295 len = MLEN; 1296 } 1297 if (m == NULL) { 1298 m_freem(top); 1299 return NULL; 1300 } 1301 } 1302 if (off) { 1303 m->m_data += off; 1304 len -= off; 1305 off = 0; 1306 } 1307 m->m_len = len = min(totlen, len); 1308 if (copy) 1309 copy(buf, mtod(m, caddr_t), (u_int)len); 1310 else 1311 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1312 buf += len; 1313 *mp = m; 1314 mp = &m->m_next; 1315 totlen -= len; 1316 } 1317 return (top); 1318 } 1319 1320 /* 1321 * Copy data from a buffer back into the indicated mbuf chain, 1322 * starting "off" bytes from the beginning, extending the mbuf 1323 * chain if necessary. 1324 */ 1325 void 1326 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1327 { 1328 int mlen; 1329 struct mbuf *m = m0, *n; 1330 int totlen = 0; 1331 1332 if (m0 == NULL) 1333 return; 1334 while (off > (mlen = m->m_len)) { 1335 off -= mlen; 1336 totlen += mlen; 1337 if (m->m_next == NULL) { 1338 n = m_get(M_NOWAIT, m->m_type); 1339 if (n == NULL) 1340 goto out; 1341 bzero(mtod(n, caddr_t), MLEN); 1342 n->m_len = min(MLEN, len + off); 1343 m->m_next = n; 1344 } 1345 m = m->m_next; 1346 } 1347 while (len > 0) { 1348 if (m->m_next == NULL && (len > m->m_len - off)) { 1349 m->m_len += min(len - (m->m_len - off), 1350 M_TRAILINGSPACE(m)); 1351 } 1352 mlen = min (m->m_len - off, len); 1353 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1354 cp += mlen; 1355 len -= mlen; 1356 mlen += off; 1357 off = 0; 1358 totlen += mlen; 1359 if (len == 0) 1360 break; 1361 if (m->m_next == NULL) { 1362 n = m_get(M_NOWAIT, m->m_type); 1363 if (n == NULL) 1364 break; 1365 n->m_len = min(MLEN, len); 1366 m->m_next = n; 1367 } 1368 m = m->m_next; 1369 } 1370 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1371 m->m_pkthdr.len = totlen; 1372 } 1373 1374 /* 1375 * Append the specified data to the indicated mbuf chain, 1376 * Extend the mbuf chain if the new data does not fit in 1377 * existing space. 1378 * 1379 * Return 1 if able to complete the job; otherwise 0. 1380 */ 1381 int 1382 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1383 { 1384 struct mbuf *m, *n; 1385 int remainder, space; 1386 1387 for (m = m0; m->m_next != NULL; m = m->m_next) 1388 ; 1389 remainder = len; 1390 space = M_TRAILINGSPACE(m); 1391 if (space > 0) { 1392 /* 1393 * Copy into available space. 1394 */ 1395 if (space > remainder) 1396 space = remainder; 1397 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1398 m->m_len += space; 1399 cp += space, remainder -= space; 1400 } 1401 while (remainder > 0) { 1402 /* 1403 * Allocate a new mbuf; could check space 1404 * and allocate a cluster instead. 1405 */ 1406 n = m_get(M_NOWAIT, m->m_type); 1407 if (n == NULL) 1408 break; 1409 n->m_len = min(MLEN, remainder); 1410 bcopy(cp, mtod(n, caddr_t), n->m_len); 1411 cp += n->m_len, remainder -= n->m_len; 1412 m->m_next = n; 1413 m = n; 1414 } 1415 if (m0->m_flags & M_PKTHDR) 1416 m0->m_pkthdr.len += len - remainder; 1417 return (remainder == 0); 1418 } 1419 1420 /* 1421 * Apply function f to the data in an mbuf chain starting "off" bytes from 1422 * the beginning, continuing for "len" bytes. 1423 */ 1424 int 1425 m_apply(struct mbuf *m, int off, int len, 1426 int (*f)(void *, void *, u_int), void *arg) 1427 { 1428 u_int count; 1429 int rval; 1430 1431 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1432 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1433 while (off > 0) { 1434 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1435 if (off < m->m_len) 1436 break; 1437 off -= m->m_len; 1438 m = m->m_next; 1439 } 1440 while (len > 0) { 1441 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1442 count = min(m->m_len - off, len); 1443 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1444 if (rval) 1445 return (rval); 1446 len -= count; 1447 off = 0; 1448 m = m->m_next; 1449 } 1450 return (0); 1451 } 1452 1453 /* 1454 * Return a pointer to mbuf/offset of location in mbuf chain. 1455 */ 1456 struct mbuf * 1457 m_getptr(struct mbuf *m, int loc, int *off) 1458 { 1459 1460 while (loc >= 0) { 1461 /* Normal end of search. */ 1462 if (m->m_len > loc) { 1463 *off = loc; 1464 return (m); 1465 } else { 1466 loc -= m->m_len; 1467 if (m->m_next == NULL) { 1468 if (loc == 0) { 1469 /* Point at the end of valid data. */ 1470 *off = m->m_len; 1471 return (m); 1472 } 1473 return (NULL); 1474 } 1475 m = m->m_next; 1476 } 1477 } 1478 return (NULL); 1479 } 1480 1481 void 1482 m_print(const struct mbuf *m, int maxlen) 1483 { 1484 int len; 1485 int pdata; 1486 const struct mbuf *m2; 1487 1488 if (m == NULL) { 1489 printf("mbuf: %p\n", m); 1490 return; 1491 } 1492 1493 if (m->m_flags & M_PKTHDR) 1494 len = m->m_pkthdr.len; 1495 else 1496 len = -1; 1497 m2 = m; 1498 while (m2 != NULL && (len == -1 || len)) { 1499 pdata = m2->m_len; 1500 if (maxlen != -1 && pdata > maxlen) 1501 pdata = maxlen; 1502 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1503 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1504 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1505 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1506 if (pdata) 1507 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1508 if (len != -1) 1509 len -= m2->m_len; 1510 m2 = m2->m_next; 1511 } 1512 if (len > 0) 1513 printf("%d bytes unaccounted for.\n", len); 1514 return; 1515 } 1516 1517 u_int 1518 m_fixhdr(struct mbuf *m0) 1519 { 1520 u_int len; 1521 1522 len = m_length(m0, NULL); 1523 m0->m_pkthdr.len = len; 1524 return (len); 1525 } 1526 1527 u_int 1528 m_length(struct mbuf *m0, struct mbuf **last) 1529 { 1530 struct mbuf *m; 1531 u_int len; 1532 1533 len = 0; 1534 for (m = m0; m != NULL; m = m->m_next) { 1535 len += m->m_len; 1536 if (m->m_next == NULL) 1537 break; 1538 } 1539 if (last != NULL) 1540 *last = m; 1541 return (len); 1542 } 1543 1544 /* 1545 * Defragment a mbuf chain, returning the shortest possible 1546 * chain of mbufs and clusters. If allocation fails and 1547 * this cannot be completed, NULL will be returned, but 1548 * the passed in chain will be unchanged. Upon success, 1549 * the original chain will be freed, and the new chain 1550 * will be returned. 1551 * 1552 * If a non-packet header is passed in, the original 1553 * mbuf (chain?) will be returned unharmed. 1554 */ 1555 struct mbuf * 1556 m_defrag(struct mbuf *m0, int how) 1557 { 1558 struct mbuf *m_new = NULL, *m_final = NULL; 1559 int progress = 0, length; 1560 1561 MBUF_CHECKSLEEP(how); 1562 if (!(m0->m_flags & M_PKTHDR)) 1563 return (m0); 1564 1565 m_fixhdr(m0); /* Needed sanity check */ 1566 1567 #ifdef MBUF_STRESS_TEST 1568 if (m_defragrandomfailures) { 1569 int temp = arc4random() & 0xff; 1570 if (temp == 0xba) 1571 goto nospace; 1572 } 1573 #endif 1574 1575 if (m0->m_pkthdr.len > MHLEN) 1576 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1577 else 1578 m_final = m_gethdr(how, MT_DATA); 1579 1580 if (m_final == NULL) 1581 goto nospace; 1582 1583 if (m_dup_pkthdr(m_final, m0, how) == 0) 1584 goto nospace; 1585 1586 m_new = m_final; 1587 1588 while (progress < m0->m_pkthdr.len) { 1589 length = m0->m_pkthdr.len - progress; 1590 if (length > MCLBYTES) 1591 length = MCLBYTES; 1592 1593 if (m_new == NULL) { 1594 if (length > MLEN) 1595 m_new = m_getcl(how, MT_DATA, 0); 1596 else 1597 m_new = m_get(how, MT_DATA); 1598 if (m_new == NULL) 1599 goto nospace; 1600 } 1601 1602 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1603 progress += length; 1604 m_new->m_len = length; 1605 if (m_new != m_final) 1606 m_cat(m_final, m_new); 1607 m_new = NULL; 1608 } 1609 #ifdef MBUF_STRESS_TEST 1610 if (m0->m_next == NULL) 1611 m_defraguseless++; 1612 #endif 1613 m_freem(m0); 1614 m0 = m_final; 1615 #ifdef MBUF_STRESS_TEST 1616 m_defragpackets++; 1617 m_defragbytes += m0->m_pkthdr.len; 1618 #endif 1619 return (m0); 1620 nospace: 1621 #ifdef MBUF_STRESS_TEST 1622 m_defragfailure++; 1623 #endif 1624 if (m_final) 1625 m_freem(m_final); 1626 return (NULL); 1627 } 1628 1629 /* 1630 * Defragment an mbuf chain, returning at most maxfrags separate 1631 * mbufs+clusters. If this is not possible NULL is returned and 1632 * the original mbuf chain is left in it's present (potentially 1633 * modified) state. We use two techniques: collapsing consecutive 1634 * mbufs and replacing consecutive mbufs by a cluster. 1635 * 1636 * NB: this should really be named m_defrag but that name is taken 1637 */ 1638 struct mbuf * 1639 m_collapse(struct mbuf *m0, int how, int maxfrags) 1640 { 1641 struct mbuf *m, *n, *n2, **prev; 1642 u_int curfrags; 1643 1644 /* 1645 * Calculate the current number of frags. 1646 */ 1647 curfrags = 0; 1648 for (m = m0; m != NULL; m = m->m_next) 1649 curfrags++; 1650 /* 1651 * First, try to collapse mbufs. Note that we always collapse 1652 * towards the front so we don't need to deal with moving the 1653 * pkthdr. This may be suboptimal if the first mbuf has much 1654 * less data than the following. 1655 */ 1656 m = m0; 1657 again: 1658 for (;;) { 1659 n = m->m_next; 1660 if (n == NULL) 1661 break; 1662 if (M_WRITABLE(m) && 1663 n->m_len < M_TRAILINGSPACE(m)) { 1664 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1665 n->m_len); 1666 m->m_len += n->m_len; 1667 m->m_next = n->m_next; 1668 m_free(n); 1669 if (--curfrags <= maxfrags) 1670 return m0; 1671 } else 1672 m = n; 1673 } 1674 KASSERT(maxfrags > 1, 1675 ("maxfrags %u, but normal collapse failed", maxfrags)); 1676 /* 1677 * Collapse consecutive mbufs to a cluster. 1678 */ 1679 prev = &m0->m_next; /* NB: not the first mbuf */ 1680 while ((n = *prev) != NULL) { 1681 if ((n2 = n->m_next) != NULL && 1682 n->m_len + n2->m_len < MCLBYTES) { 1683 m = m_getcl(how, MT_DATA, 0); 1684 if (m == NULL) 1685 goto bad; 1686 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1687 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1688 n2->m_len); 1689 m->m_len = n->m_len + n2->m_len; 1690 m->m_next = n2->m_next; 1691 *prev = m; 1692 m_free(n); 1693 m_free(n2); 1694 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1695 return m0; 1696 /* 1697 * Still not there, try the normal collapse 1698 * again before we allocate another cluster. 1699 */ 1700 goto again; 1701 } 1702 prev = &n->m_next; 1703 } 1704 /* 1705 * No place where we can collapse to a cluster; punt. 1706 * This can occur if, for example, you request 2 frags 1707 * but the packet requires that both be clusters (we 1708 * never reallocate the first mbuf to avoid moving the 1709 * packet header). 1710 */ 1711 bad: 1712 return NULL; 1713 } 1714 1715 #ifdef MBUF_STRESS_TEST 1716 1717 /* 1718 * Fragment an mbuf chain. There's no reason you'd ever want to do 1719 * this in normal usage, but it's great for stress testing various 1720 * mbuf consumers. 1721 * 1722 * If fragmentation is not possible, the original chain will be 1723 * returned. 1724 * 1725 * Possible length values: 1726 * 0 no fragmentation will occur 1727 * > 0 each fragment will be of the specified length 1728 * -1 each fragment will be the same random value in length 1729 * -2 each fragment's length will be entirely random 1730 * (Random values range from 1 to 256) 1731 */ 1732 struct mbuf * 1733 m_fragment(struct mbuf *m0, int how, int length) 1734 { 1735 struct mbuf *m_new = NULL, *m_final = NULL; 1736 int progress = 0; 1737 1738 if (!(m0->m_flags & M_PKTHDR)) 1739 return (m0); 1740 1741 if ((length == 0) || (length < -2)) 1742 return (m0); 1743 1744 m_fixhdr(m0); /* Needed sanity check */ 1745 1746 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1747 1748 if (m_final == NULL) 1749 goto nospace; 1750 1751 if (m_dup_pkthdr(m_final, m0, how) == 0) 1752 goto nospace; 1753 1754 m_new = m_final; 1755 1756 if (length == -1) 1757 length = 1 + (arc4random() & 255); 1758 1759 while (progress < m0->m_pkthdr.len) { 1760 int fraglen; 1761 1762 if (length > 0) 1763 fraglen = length; 1764 else 1765 fraglen = 1 + (arc4random() & 255); 1766 if (fraglen > m0->m_pkthdr.len - progress) 1767 fraglen = m0->m_pkthdr.len - progress; 1768 1769 if (fraglen > MCLBYTES) 1770 fraglen = MCLBYTES; 1771 1772 if (m_new == NULL) { 1773 m_new = m_getcl(how, MT_DATA, 0); 1774 if (m_new == NULL) 1775 goto nospace; 1776 } 1777 1778 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1779 progress += fraglen; 1780 m_new->m_len = fraglen; 1781 if (m_new != m_final) 1782 m_cat(m_final, m_new); 1783 m_new = NULL; 1784 } 1785 m_freem(m0); 1786 m0 = m_final; 1787 return (m0); 1788 nospace: 1789 if (m_final) 1790 m_freem(m_final); 1791 /* Return the original chain on failure */ 1792 return (m0); 1793 } 1794 1795 #endif 1796 1797 /* 1798 * Copy the contents of uio into a properly sized mbuf chain. 1799 */ 1800 struct mbuf * 1801 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1802 { 1803 struct mbuf *m, *mb; 1804 int error, length; 1805 ssize_t total; 1806 int progress = 0; 1807 1808 /* 1809 * len can be zero or an arbitrary large value bound by 1810 * the total data supplied by the uio. 1811 */ 1812 if (len > 0) 1813 total = min(uio->uio_resid, len); 1814 else 1815 total = uio->uio_resid; 1816 1817 /* 1818 * The smallest unit returned by m_getm2() is a single mbuf 1819 * with pkthdr. We can't align past it. 1820 */ 1821 if (align >= MHLEN) 1822 return (NULL); 1823 1824 /* 1825 * Give us the full allocation or nothing. 1826 * If len is zero return the smallest empty mbuf. 1827 */ 1828 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1829 if (m == NULL) 1830 return (NULL); 1831 m->m_data += align; 1832 1833 /* Fill all mbufs with uio data and update header information. */ 1834 for (mb = m; mb != NULL; mb = mb->m_next) { 1835 length = min(M_TRAILINGSPACE(mb), total - progress); 1836 1837 error = uiomove(mtod(mb, void *), length, uio); 1838 if (error) { 1839 m_freem(m); 1840 return (NULL); 1841 } 1842 1843 mb->m_len = length; 1844 progress += length; 1845 if (flags & M_PKTHDR) 1846 m->m_pkthdr.len += length; 1847 } 1848 KASSERT(progress == total, ("%s: progress != total", __func__)); 1849 1850 return (m); 1851 } 1852 1853 /* 1854 * Copy an mbuf chain into a uio limited by len if set. 1855 */ 1856 int 1857 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1858 { 1859 int error, length, total; 1860 int progress = 0; 1861 1862 if (len > 0) 1863 total = min(uio->uio_resid, len); 1864 else 1865 total = uio->uio_resid; 1866 1867 /* Fill the uio with data from the mbufs. */ 1868 for (; m != NULL; m = m->m_next) { 1869 length = min(m->m_len, total - progress); 1870 1871 error = uiomove(mtod(m, void *), length, uio); 1872 if (error) 1873 return (error); 1874 1875 progress += length; 1876 } 1877 1878 return (0); 1879 } 1880 1881 /* 1882 * Create a writable copy of the mbuf chain. While doing this 1883 * we compact the chain with a goal of producing a chain with 1884 * at most two mbufs. The second mbuf in this chain is likely 1885 * to be a cluster. The primary purpose of this work is to create 1886 * a writable packet for encryption, compression, etc. The 1887 * secondary goal is to linearize the data so the data can be 1888 * passed to crypto hardware in the most efficient manner possible. 1889 */ 1890 struct mbuf * 1891 m_unshare(struct mbuf *m0, int how) 1892 { 1893 struct mbuf *m, *mprev; 1894 struct mbuf *n, *mfirst, *mlast; 1895 int len, off; 1896 1897 mprev = NULL; 1898 for (m = m0; m != NULL; m = mprev->m_next) { 1899 /* 1900 * Regular mbufs are ignored unless there's a cluster 1901 * in front of it that we can use to coalesce. We do 1902 * the latter mainly so later clusters can be coalesced 1903 * also w/o having to handle them specially (i.e. convert 1904 * mbuf+cluster -> cluster). This optimization is heavily 1905 * influenced by the assumption that we're running over 1906 * Ethernet where MCLBYTES is large enough that the max 1907 * packet size will permit lots of coalescing into a 1908 * single cluster. This in turn permits efficient 1909 * crypto operations, especially when using hardware. 1910 */ 1911 if ((m->m_flags & M_EXT) == 0) { 1912 if (mprev && (mprev->m_flags & M_EXT) && 1913 m->m_len <= M_TRAILINGSPACE(mprev)) { 1914 /* XXX: this ignores mbuf types */ 1915 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1916 mtod(m, caddr_t), m->m_len); 1917 mprev->m_len += m->m_len; 1918 mprev->m_next = m->m_next; /* unlink from chain */ 1919 m_free(m); /* reclaim mbuf */ 1920 #if 0 1921 newipsecstat.ips_mbcoalesced++; 1922 #endif 1923 } else { 1924 mprev = m; 1925 } 1926 continue; 1927 } 1928 /* 1929 * Writable mbufs are left alone (for now). 1930 */ 1931 if (M_WRITABLE(m)) { 1932 mprev = m; 1933 continue; 1934 } 1935 1936 /* 1937 * Not writable, replace with a copy or coalesce with 1938 * the previous mbuf if possible (since we have to copy 1939 * it anyway, we try to reduce the number of mbufs and 1940 * clusters so that future work is easier). 1941 */ 1942 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1943 /* NB: we only coalesce into a cluster or larger */ 1944 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1945 m->m_len <= M_TRAILINGSPACE(mprev)) { 1946 /* XXX: this ignores mbuf types */ 1947 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1948 mtod(m, caddr_t), m->m_len); 1949 mprev->m_len += m->m_len; 1950 mprev->m_next = m->m_next; /* unlink from chain */ 1951 m_free(m); /* reclaim mbuf */ 1952 #if 0 1953 newipsecstat.ips_clcoalesced++; 1954 #endif 1955 continue; 1956 } 1957 1958 /* 1959 * Allocate new space to hold the copy and copy the data. 1960 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1961 * splitting them into clusters. We could just malloc a 1962 * buffer and make it external but too many device drivers 1963 * don't know how to break up the non-contiguous memory when 1964 * doing DMA. 1965 */ 1966 n = m_getcl(how, m->m_type, m->m_flags); 1967 if (n == NULL) { 1968 m_freem(m0); 1969 return (NULL); 1970 } 1971 len = m->m_len; 1972 off = 0; 1973 mfirst = n; 1974 mlast = NULL; 1975 for (;;) { 1976 int cc = min(len, MCLBYTES); 1977 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1978 n->m_len = cc; 1979 if (mlast != NULL) 1980 mlast->m_next = n; 1981 mlast = n; 1982 #if 0 1983 newipsecstat.ips_clcopied++; 1984 #endif 1985 1986 len -= cc; 1987 if (len <= 0) 1988 break; 1989 off += cc; 1990 1991 n = m_getcl(how, m->m_type, m->m_flags); 1992 if (n == NULL) { 1993 m_freem(mfirst); 1994 m_freem(m0); 1995 return (NULL); 1996 } 1997 } 1998 n->m_next = m->m_next; 1999 if (mprev == NULL) 2000 m0 = mfirst; /* new head of chain */ 2001 else 2002 mprev->m_next = mfirst; /* replace old mbuf */ 2003 m_free(m); /* release old mbuf */ 2004 mprev = mfirst; 2005 } 2006 return (m0); 2007 } 2008 2009 #ifdef MBUF_PROFILING 2010 2011 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 2012 struct mbufprofile { 2013 uintmax_t wasted[MP_BUCKETS]; 2014 uintmax_t used[MP_BUCKETS]; 2015 uintmax_t segments[MP_BUCKETS]; 2016 } mbprof; 2017 2018 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 2019 #define MP_NUMLINES 6 2020 #define MP_NUMSPERLINE 16 2021 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 2022 /* work out max space needed and add a bit of spare space too */ 2023 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 2024 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 2025 2026 char mbprofbuf[MP_BUFSIZE]; 2027 2028 void 2029 m_profile(struct mbuf *m) 2030 { 2031 int segments = 0; 2032 int used = 0; 2033 int wasted = 0; 2034 2035 while (m) { 2036 segments++; 2037 used += m->m_len; 2038 if (m->m_flags & M_EXT) { 2039 wasted += MHLEN - sizeof(m->m_ext) + 2040 m->m_ext.ext_size - m->m_len; 2041 } else { 2042 if (m->m_flags & M_PKTHDR) 2043 wasted += MHLEN - m->m_len; 2044 else 2045 wasted += MLEN - m->m_len; 2046 } 2047 m = m->m_next; 2048 } 2049 /* be paranoid.. it helps */ 2050 if (segments > MP_BUCKETS - 1) 2051 segments = MP_BUCKETS - 1; 2052 if (used > 100000) 2053 used = 100000; 2054 if (wasted > 100000) 2055 wasted = 100000; 2056 /* store in the appropriate bucket */ 2057 /* don't bother locking. if it's slightly off, so what? */ 2058 mbprof.segments[segments]++; 2059 mbprof.used[fls(used)]++; 2060 mbprof.wasted[fls(wasted)]++; 2061 } 2062 2063 static void 2064 mbprof_textify(void) 2065 { 2066 int offset; 2067 char *c; 2068 uint64_t *p; 2069 2070 p = &mbprof.wasted[0]; 2071 c = mbprofbuf; 2072 offset = snprintf(c, MP_MAXLINE + 10, 2073 "wasted:\n" 2074 "%ju %ju %ju %ju %ju %ju %ju %ju " 2075 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2076 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2077 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2078 #ifdef BIG_ARRAY 2079 p = &mbprof.wasted[16]; 2080 c += offset; 2081 offset = snprintf(c, MP_MAXLINE, 2082 "%ju %ju %ju %ju %ju %ju %ju %ju " 2083 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2084 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2085 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2086 #endif 2087 p = &mbprof.used[0]; 2088 c += offset; 2089 offset = snprintf(c, MP_MAXLINE + 10, 2090 "used:\n" 2091 "%ju %ju %ju %ju %ju %ju %ju %ju " 2092 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2093 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2094 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2095 #ifdef BIG_ARRAY 2096 p = &mbprof.used[16]; 2097 c += offset; 2098 offset = snprintf(c, MP_MAXLINE, 2099 "%ju %ju %ju %ju %ju %ju %ju %ju " 2100 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2101 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2102 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2103 #endif 2104 p = &mbprof.segments[0]; 2105 c += offset; 2106 offset = snprintf(c, MP_MAXLINE + 10, 2107 "segments:\n" 2108 "%ju %ju %ju %ju %ju %ju %ju %ju " 2109 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2110 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2111 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2112 #ifdef BIG_ARRAY 2113 p = &mbprof.segments[16]; 2114 c += offset; 2115 offset = snprintf(c, MP_MAXLINE, 2116 "%ju %ju %ju %ju %ju %ju %ju %ju " 2117 "%ju %ju %ju %ju %ju %ju %ju %jju", 2118 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2119 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2120 #endif 2121 } 2122 2123 static int 2124 mbprof_handler(SYSCTL_HANDLER_ARGS) 2125 { 2126 int error; 2127 2128 mbprof_textify(); 2129 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2130 return (error); 2131 } 2132 2133 static int 2134 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2135 { 2136 int clear, error; 2137 2138 clear = 0; 2139 error = sysctl_handle_int(oidp, &clear, 0, req); 2140 if (error || !req->newptr) 2141 return (error); 2142 2143 if (clear) { 2144 bzero(&mbprof, sizeof(mbprof)); 2145 } 2146 2147 return (error); 2148 } 2149 2150 2151 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2152 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2153 2154 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2155 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2156 #endif 2157 2158