xref: /freebsd/sys/kern/uipc_mbuf.c (revision 26a222dc0c048fc071b548eadad7b80405a1b126)
1 /*-
2  * Copyright (c) 1982, 1986, 1988, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 
51 int	max_linkhdr;
52 int	max_protohdr;
53 int	max_hdr;
54 int	max_datalen;
55 #ifdef MBUF_STRESS_TEST
56 int	m_defragpackets;
57 int	m_defragbytes;
58 int	m_defraguseless;
59 int	m_defragfailure;
60 int	m_defragrandomfailures;
61 #endif
62 
63 /*
64  * sysctl(8) exported objects
65  */
66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
67 	   &max_linkhdr, 0, "Size of largest link layer header");
68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
69 	   &max_protohdr, 0, "Size of largest protocol layer header");
70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
71 	   &max_hdr, 0, "Size of largest link plus protocol header");
72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD,
73 	   &max_datalen, 0, "Minimum space left in mbuf after max_hdr");
74 #ifdef MBUF_STRESS_TEST
75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
76 	   &m_defragpackets, 0, "");
77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
78 	   &m_defragbytes, 0, "");
79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
80 	   &m_defraguseless, 0, "");
81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
82 	   &m_defragfailure, 0, "");
83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
84 	   &m_defragrandomfailures, 0, "");
85 #endif
86 
87 /*
88  * Ensure the correct size of various mbuf parameters.  It could be off due
89  * to compiler-induced padding and alignment artifacts.
90  */
91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
93 
94 /*
95  * mbuf data storage should be 64-bit aligned regardless of architectural
96  * pointer size; check this is the case with and without a packet header.
97  */
98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
100 
101 /*
102  * While the specific values here don't matter too much (i.e., +/- a few
103  * words), we do want to ensure that changes to these values are carefully
104  * reasoned about and properly documented.  This is especially the case as
105  * network-protocol and device-driver modules encode these layouts, and must
106  * be recompiled if the structures change.  Check these values at compile time
107  * against the ones documented in comments in mbuf.h.
108  *
109  * NB: Possibly they should be documented there via #define's and not just
110  * comments.
111  */
112 #if defined(__LP64__)
113 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
114 CTASSERT(sizeof(struct pkthdr) == 56);
115 CTASSERT(sizeof(struct m_ext) == 48);
116 #else
117 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
118 CTASSERT(sizeof(struct pkthdr) == 48);
119 CTASSERT(sizeof(struct m_ext) == 28);
120 #endif
121 
122 /*
123  * Assert that the queue(3) macros produce code of the same size as an old
124  * plain pointer does.
125  */
126 #ifdef INVARIANTS
127 static struct mbuf m_assertbuf;
128 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
129 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
130 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
131 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
132 #endif
133 
134 /*
135  * m_get2() allocates minimum mbuf that would fit "size" argument.
136  */
137 struct mbuf *
138 m_get2(int size, int how, short type, int flags)
139 {
140 	struct mb_args args;
141 	struct mbuf *m, *n;
142 
143 	args.flags = flags;
144 	args.type = type;
145 
146 	if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0))
147 		return (uma_zalloc_arg(zone_mbuf, &args, how));
148 	if (size <= MCLBYTES)
149 		return (uma_zalloc_arg(zone_pack, &args, how));
150 
151 	if (size > MJUMPAGESIZE)
152 		return (NULL);
153 
154 	m = uma_zalloc_arg(zone_mbuf, &args, how);
155 	if (m == NULL)
156 		return (NULL);
157 
158 	n = uma_zalloc_arg(zone_jumbop, m, how);
159 	if (n == NULL) {
160 		uma_zfree(zone_mbuf, m);
161 		return (NULL);
162 	}
163 
164 	return (m);
165 }
166 
167 /*
168  * m_getjcl() returns an mbuf with a cluster of the specified size attached.
169  * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES.
170  */
171 struct mbuf *
172 m_getjcl(int how, short type, int flags, int size)
173 {
174 	struct mb_args args;
175 	struct mbuf *m, *n;
176 	uma_zone_t zone;
177 
178 	if (size == MCLBYTES)
179 		return m_getcl(how, type, flags);
180 
181 	args.flags = flags;
182 	args.type = type;
183 
184 	m = uma_zalloc_arg(zone_mbuf, &args, how);
185 	if (m == NULL)
186 		return (NULL);
187 
188 	zone = m_getzone(size);
189 	n = uma_zalloc_arg(zone, m, how);
190 	if (n == NULL) {
191 		uma_zfree(zone_mbuf, m);
192 		return (NULL);
193 	}
194 	return (m);
195 }
196 
197 /*
198  * Allocate a given length worth of mbufs and/or clusters (whatever fits
199  * best) and return a pointer to the top of the allocated chain.  If an
200  * existing mbuf chain is provided, then we will append the new chain
201  * to the existing one but still return the top of the newly allocated
202  * chain.
203  */
204 struct mbuf *
205 m_getm2(struct mbuf *m, int len, int how, short type, int flags)
206 {
207 	struct mbuf *mb, *nm = NULL, *mtail = NULL;
208 
209 	KASSERT(len >= 0, ("%s: len is < 0", __func__));
210 
211 	/* Validate flags. */
212 	flags &= (M_PKTHDR | M_EOR);
213 
214 	/* Packet header mbuf must be first in chain. */
215 	if ((flags & M_PKTHDR) && m != NULL)
216 		flags &= ~M_PKTHDR;
217 
218 	/* Loop and append maximum sized mbufs to the chain tail. */
219 	while (len > 0) {
220 		if (len > MCLBYTES)
221 			mb = m_getjcl(how, type, (flags & M_PKTHDR),
222 			    MJUMPAGESIZE);
223 		else if (len >= MINCLSIZE)
224 			mb = m_getcl(how, type, (flags & M_PKTHDR));
225 		else if (flags & M_PKTHDR)
226 			mb = m_gethdr(how, type);
227 		else
228 			mb = m_get(how, type);
229 
230 		/* Fail the whole operation if one mbuf can't be allocated. */
231 		if (mb == NULL) {
232 			if (nm != NULL)
233 				m_freem(nm);
234 			return (NULL);
235 		}
236 
237 		/* Book keeping. */
238 		len -= M_SIZE(mb);
239 		if (mtail != NULL)
240 			mtail->m_next = mb;
241 		else
242 			nm = mb;
243 		mtail = mb;
244 		flags &= ~M_PKTHDR;	/* Only valid on the first mbuf. */
245 	}
246 	if (flags & M_EOR)
247 		mtail->m_flags |= M_EOR;  /* Only valid on the last mbuf. */
248 
249 	/* If mbuf was supplied, append new chain to the end of it. */
250 	if (m != NULL) {
251 		for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next)
252 			;
253 		mtail->m_next = nm;
254 		mtail->m_flags &= ~M_EOR;
255 	} else
256 		m = nm;
257 
258 	return (m);
259 }
260 
261 /*
262  * Free an entire chain of mbufs and associated external buffers, if
263  * applicable.
264  */
265 void
266 m_freem(struct mbuf *mb)
267 {
268 
269 	while (mb != NULL)
270 		mb = m_free(mb);
271 }
272 
273 /*-
274  * Configure a provided mbuf to refer to the provided external storage
275  * buffer and setup a reference count for said buffer.  If the setting
276  * up of the reference count fails, the M_EXT bit will not be set.  If
277  * successfull, the M_EXT bit is set in the mbuf's flags.
278  *
279  * Arguments:
280  *    mb     The existing mbuf to which to attach the provided buffer.
281  *    buf    The address of the provided external storage buffer.
282  *    size   The size of the provided buffer.
283  *    freef  A pointer to a routine that is responsible for freeing the
284  *           provided external storage buffer.
285  *    args   A pointer to an argument structure (of any type) to be passed
286  *           to the provided freef routine (may be NULL).
287  *    flags  Any other flags to be passed to the provided mbuf.
288  *    type   The type that the external storage buffer should be
289  *           labeled with.
290  *
291  * Returns:
292  *    Nothing.
293  */
294 int
295 m_extadd(struct mbuf *mb, caddr_t buf, u_int size,
296     void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2,
297     int flags, int type, int wait)
298 {
299 	KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__));
300 
301 	if (type != EXT_EXTREF)
302 		mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait);
303 
304 	if (mb->m_ext.ext_cnt == NULL)
305 		return (ENOMEM);
306 
307 	*(mb->m_ext.ext_cnt) = 1;
308 	mb->m_flags |= (M_EXT | flags);
309 	mb->m_ext.ext_buf = buf;
310 	mb->m_data = mb->m_ext.ext_buf;
311 	mb->m_ext.ext_size = size;
312 	mb->m_ext.ext_free = freef;
313 	mb->m_ext.ext_arg1 = arg1;
314 	mb->m_ext.ext_arg2 = arg2;
315 	mb->m_ext.ext_type = type;
316 	mb->m_ext.ext_flags = 0;
317 
318 	return (0);
319 }
320 
321 /*
322  * Non-directly-exported function to clean up after mbufs with M_EXT
323  * storage attached to them if the reference count hits 1.
324  */
325 void
326 mb_free_ext(struct mbuf *m)
327 {
328 	int freembuf;
329 
330 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
331 
332 	/*
333 	 * Check if the header is embedded in the cluster.
334 	 */
335 	freembuf = (m->m_flags & M_NOFREE) ? 0 : 1;
336 
337 	switch (m->m_ext.ext_type) {
338 	case EXT_SFBUF:
339 		sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
340 		break;
341 	default:
342 		KASSERT(m->m_ext.ext_cnt != NULL,
343 		    ("%s: no refcounting pointer on %p", __func__, m));
344 		/*
345 		 * Free attached storage if this mbuf is the only
346 		 * reference to it.
347 		 */
348 		if (*(m->m_ext.ext_cnt) != 1) {
349 			if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1)
350 				break;
351 		}
352 
353 		switch (m->m_ext.ext_type) {
354 		case EXT_PACKET:	/* The packet zone is special. */
355 			if (*(m->m_ext.ext_cnt) == 0)
356 				*(m->m_ext.ext_cnt) = 1;
357 			uma_zfree(zone_pack, m);
358 			return;		/* Job done. */
359 		case EXT_CLUSTER:
360 			uma_zfree(zone_clust, m->m_ext.ext_buf);
361 			break;
362 		case EXT_JUMBOP:
363 			uma_zfree(zone_jumbop, m->m_ext.ext_buf);
364 			break;
365 		case EXT_JUMBO9:
366 			uma_zfree(zone_jumbo9, m->m_ext.ext_buf);
367 			break;
368 		case EXT_JUMBO16:
369 			uma_zfree(zone_jumbo16, m->m_ext.ext_buf);
370 			break;
371 		case EXT_NET_DRV:
372 		case EXT_MOD_TYPE:
373 		case EXT_DISPOSABLE:
374 			*(m->m_ext.ext_cnt) = 0;
375 			uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *,
376 				m->m_ext.ext_cnt));
377 			/* FALLTHROUGH */
378 		case EXT_EXTREF:
379 			KASSERT(m->m_ext.ext_free != NULL,
380 				("%s: ext_free not set", __func__));
381 			(*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1,
382 			    m->m_ext.ext_arg2);
383 			break;
384 		default:
385 			KASSERT(m->m_ext.ext_type == 0,
386 				("%s: unknown ext_type", __func__));
387 		}
388 	}
389 
390 	if (freembuf)
391 		uma_zfree(zone_mbuf, m);
392 }
393 
394 /*
395  * Attach the cluster from *m to *n, set up m_ext in *n
396  * and bump the refcount of the cluster.
397  */
398 static void
399 mb_dupcl(struct mbuf *n, struct mbuf *m)
400 {
401 
402 	KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m));
403 	KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n));
404 
405 	switch (m->m_ext.ext_type) {
406 	case EXT_SFBUF:
407 		sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2);
408 		break;
409 	default:
410 		KASSERT(m->m_ext.ext_cnt != NULL,
411 		    ("%s: no refcounting pointer on %p", __func__, m));
412 		if (*(m->m_ext.ext_cnt) == 1)
413 			*(m->m_ext.ext_cnt) += 1;
414 		else
415 			atomic_add_int(m->m_ext.ext_cnt, 1);
416 	}
417 
418 	n->m_ext = m->m_ext;
419 	n->m_flags |= M_EXT;
420 	n->m_flags |= m->m_flags & M_RDONLY;
421 }
422 
423 /*
424  * Clean up mbuf (chain) from any tags and packet headers.
425  * If "all" is set then the first mbuf in the chain will be
426  * cleaned too.
427  */
428 void
429 m_demote(struct mbuf *m0, int all, int flags)
430 {
431 	struct mbuf *m;
432 
433 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
434 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
435 		    __func__, m, m0));
436 		if (m->m_flags & M_PKTHDR) {
437 			m_tag_delete_chain(m, NULL);
438 			m->m_flags &= ~M_PKTHDR;
439 			bzero(&m->m_pkthdr, sizeof(struct pkthdr));
440 		}
441 		m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags);
442 	}
443 }
444 
445 /*
446  * Sanity checks on mbuf (chain) for use in KASSERT() and general
447  * debugging.
448  * Returns 0 or panics when bad and 1 on all tests passed.
449  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
450  * blow up later.
451  */
452 int
453 m_sanity(struct mbuf *m0, int sanitize)
454 {
455 	struct mbuf *m;
456 	caddr_t a, b;
457 	int pktlen = 0;
458 
459 #ifdef INVARIANTS
460 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
461 #else
462 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
463 #endif
464 
465 	for (m = m0; m != NULL; m = m->m_next) {
466 		/*
467 		 * Basic pointer checks.  If any of these fails then some
468 		 * unrelated kernel memory before or after us is trashed.
469 		 * No way to recover from that.
470 		 */
471 		a = M_START(m);
472 		b = a + M_SIZE(m);
473 		if ((caddr_t)m->m_data < a)
474 			M_SANITY_ACTION("m_data outside mbuf data range left");
475 		if ((caddr_t)m->m_data > b)
476 			M_SANITY_ACTION("m_data outside mbuf data range right");
477 		if ((caddr_t)m->m_data + m->m_len > b)
478 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
479 
480 		/* m->m_nextpkt may only be set on first mbuf in chain. */
481 		if (m != m0 && m->m_nextpkt != NULL) {
482 			if (sanitize) {
483 				m_freem(m->m_nextpkt);
484 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
485 			} else
486 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
487 		}
488 
489 		/* packet length (not mbuf length!) calculation */
490 		if (m0->m_flags & M_PKTHDR)
491 			pktlen += m->m_len;
492 
493 		/* m_tags may only be attached to first mbuf in chain. */
494 		if (m != m0 && m->m_flags & M_PKTHDR &&
495 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
496 			if (sanitize) {
497 				m_tag_delete_chain(m, NULL);
498 				/* put in 0xDEADC0DE perhaps? */
499 			} else
500 				M_SANITY_ACTION("m_tags on in-chain mbuf");
501 		}
502 
503 		/* M_PKTHDR may only be set on first mbuf in chain */
504 		if (m != m0 && m->m_flags & M_PKTHDR) {
505 			if (sanitize) {
506 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
507 				m->m_flags &= ~M_PKTHDR;
508 				/* put in 0xDEADCODE and leave hdr flag in */
509 			} else
510 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
511 		}
512 	}
513 	m = m0;
514 	if (pktlen && pktlen != m->m_pkthdr.len) {
515 		if (sanitize)
516 			m->m_pkthdr.len = 0;
517 		else
518 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
519 	}
520 	return 1;
521 
522 #undef	M_SANITY_ACTION
523 }
524 
525 
526 /*
527  * "Move" mbuf pkthdr from "from" to "to".
528  * "from" must have M_PKTHDR set, and "to" must be empty.
529  */
530 void
531 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
532 {
533 
534 #if 0
535 	/* see below for why these are not enabled */
536 	M_ASSERTPKTHDR(to);
537 	/* Note: with MAC, this may not be a good assertion. */
538 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
539 	    ("m_move_pkthdr: to has tags"));
540 #endif
541 #ifdef MAC
542 	/*
543 	 * XXXMAC: It could be this should also occur for non-MAC?
544 	 */
545 	if (to->m_flags & M_PKTHDR)
546 		m_tag_delete_chain(to, NULL);
547 #endif
548 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
549 	if ((to->m_flags & M_EXT) == 0)
550 		to->m_data = to->m_pktdat;
551 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
552 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
553 	from->m_flags &= ~M_PKTHDR;
554 }
555 
556 /*
557  * Duplicate "from"'s mbuf pkthdr in "to".
558  * "from" must have M_PKTHDR set, and "to" must be empty.
559  * In particular, this does a deep copy of the packet tags.
560  */
561 int
562 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
563 {
564 
565 #if 0
566 	/*
567 	 * The mbuf allocator only initializes the pkthdr
568 	 * when the mbuf is allocated with m_gethdr(). Many users
569 	 * (e.g. m_copy*, m_prepend) use m_get() and then
570 	 * smash the pkthdr as needed causing these
571 	 * assertions to trip.  For now just disable them.
572 	 */
573 	M_ASSERTPKTHDR(to);
574 	/* Note: with MAC, this may not be a good assertion. */
575 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
576 #endif
577 	MBUF_CHECKSLEEP(how);
578 #ifdef MAC
579 	if (to->m_flags & M_PKTHDR)
580 		m_tag_delete_chain(to, NULL);
581 #endif
582 	to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
583 	if ((to->m_flags & M_EXT) == 0)
584 		to->m_data = to->m_pktdat;
585 	to->m_pkthdr = from->m_pkthdr;
586 	SLIST_INIT(&to->m_pkthdr.tags);
587 	return (m_tag_copy_chain(to, from, how));
588 }
589 
590 /*
591  * Lesser-used path for M_PREPEND:
592  * allocate new mbuf to prepend to chain,
593  * copy junk along.
594  */
595 struct mbuf *
596 m_prepend(struct mbuf *m, int len, int how)
597 {
598 	struct mbuf *mn;
599 
600 	if (m->m_flags & M_PKTHDR)
601 		mn = m_gethdr(how, m->m_type);
602 	else
603 		mn = m_get(how, m->m_type);
604 	if (mn == NULL) {
605 		m_freem(m);
606 		return (NULL);
607 	}
608 	if (m->m_flags & M_PKTHDR)
609 		m_move_pkthdr(mn, m);
610 	mn->m_next = m;
611 	m = mn;
612 	if (len < M_SIZE(m))
613 		M_ALIGN(m, len);
614 	m->m_len = len;
615 	return (m);
616 }
617 
618 /*
619  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
620  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
621  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
622  * Note that the copy is read-only, because clusters are not copied,
623  * only their reference counts are incremented.
624  */
625 struct mbuf *
626 m_copym(struct mbuf *m, int off0, int len, int wait)
627 {
628 	struct mbuf *n, **np;
629 	int off = off0;
630 	struct mbuf *top;
631 	int copyhdr = 0;
632 
633 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
634 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
635 	MBUF_CHECKSLEEP(wait);
636 	if (off == 0 && m->m_flags & M_PKTHDR)
637 		copyhdr = 1;
638 	while (off > 0) {
639 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
640 		if (off < m->m_len)
641 			break;
642 		off -= m->m_len;
643 		m = m->m_next;
644 	}
645 	np = &top;
646 	top = 0;
647 	while (len > 0) {
648 		if (m == NULL) {
649 			KASSERT(len == M_COPYALL,
650 			    ("m_copym, length > size of mbuf chain"));
651 			break;
652 		}
653 		if (copyhdr)
654 			n = m_gethdr(wait, m->m_type);
655 		else
656 			n = m_get(wait, m->m_type);
657 		*np = n;
658 		if (n == NULL)
659 			goto nospace;
660 		if (copyhdr) {
661 			if (!m_dup_pkthdr(n, m, wait))
662 				goto nospace;
663 			if (len == M_COPYALL)
664 				n->m_pkthdr.len -= off0;
665 			else
666 				n->m_pkthdr.len = len;
667 			copyhdr = 0;
668 		}
669 		n->m_len = min(len, m->m_len - off);
670 		if (m->m_flags & M_EXT) {
671 			n->m_data = m->m_data + off;
672 			mb_dupcl(n, m);
673 		} else
674 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
675 			    (u_int)n->m_len);
676 		if (len != M_COPYALL)
677 			len -= n->m_len;
678 		off = 0;
679 		m = m->m_next;
680 		np = &n->m_next;
681 	}
682 
683 	return (top);
684 nospace:
685 	m_freem(top);
686 	return (NULL);
687 }
688 
689 /*
690  * Copy an entire packet, including header (which must be present).
691  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
692  * Note that the copy is read-only, because clusters are not copied,
693  * only their reference counts are incremented.
694  * Preserve alignment of the first mbuf so if the creator has left
695  * some room at the beginning (e.g. for inserting protocol headers)
696  * the copies still have the room available.
697  */
698 struct mbuf *
699 m_copypacket(struct mbuf *m, int how)
700 {
701 	struct mbuf *top, *n, *o;
702 
703 	MBUF_CHECKSLEEP(how);
704 	n = m_get(how, m->m_type);
705 	top = n;
706 	if (n == NULL)
707 		goto nospace;
708 
709 	if (!m_dup_pkthdr(n, m, how))
710 		goto nospace;
711 	n->m_len = m->m_len;
712 	if (m->m_flags & M_EXT) {
713 		n->m_data = m->m_data;
714 		mb_dupcl(n, m);
715 	} else {
716 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
717 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
718 	}
719 
720 	m = m->m_next;
721 	while (m) {
722 		o = m_get(how, m->m_type);
723 		if (o == NULL)
724 			goto nospace;
725 
726 		n->m_next = o;
727 		n = n->m_next;
728 
729 		n->m_len = m->m_len;
730 		if (m->m_flags & M_EXT) {
731 			n->m_data = m->m_data;
732 			mb_dupcl(n, m);
733 		} else {
734 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
735 		}
736 
737 		m = m->m_next;
738 	}
739 	return top;
740 nospace:
741 	m_freem(top);
742 	return (NULL);
743 }
744 
745 /*
746  * Copy data from an mbuf chain starting "off" bytes from the beginning,
747  * continuing for "len" bytes, into the indicated buffer.
748  */
749 void
750 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
751 {
752 	u_int count;
753 
754 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
755 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
756 	while (off > 0) {
757 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
758 		if (off < m->m_len)
759 			break;
760 		off -= m->m_len;
761 		m = m->m_next;
762 	}
763 	while (len > 0) {
764 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
765 		count = min(m->m_len - off, len);
766 		bcopy(mtod(m, caddr_t) + off, cp, count);
767 		len -= count;
768 		cp += count;
769 		off = 0;
770 		m = m->m_next;
771 	}
772 }
773 
774 /*
775  * Copy a packet header mbuf chain into a completely new chain, including
776  * copying any mbuf clusters.  Use this instead of m_copypacket() when
777  * you need a writable copy of an mbuf chain.
778  */
779 struct mbuf *
780 m_dup(struct mbuf *m, int how)
781 {
782 	struct mbuf **p, *top = NULL;
783 	int remain, moff, nsize;
784 
785 	MBUF_CHECKSLEEP(how);
786 	/* Sanity check */
787 	if (m == NULL)
788 		return (NULL);
789 	M_ASSERTPKTHDR(m);
790 
791 	/* While there's more data, get a new mbuf, tack it on, and fill it */
792 	remain = m->m_pkthdr.len;
793 	moff = 0;
794 	p = &top;
795 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
796 		struct mbuf *n;
797 
798 		/* Get the next new mbuf */
799 		if (remain >= MINCLSIZE) {
800 			n = m_getcl(how, m->m_type, 0);
801 			nsize = MCLBYTES;
802 		} else {
803 			n = m_get(how, m->m_type);
804 			nsize = MLEN;
805 		}
806 		if (n == NULL)
807 			goto nospace;
808 
809 		if (top == NULL) {		/* First one, must be PKTHDR */
810 			if (!m_dup_pkthdr(n, m, how)) {
811 				m_free(n);
812 				goto nospace;
813 			}
814 			if ((n->m_flags & M_EXT) == 0)
815 				nsize = MHLEN;
816 		}
817 		n->m_len = 0;
818 
819 		/* Link it into the new chain */
820 		*p = n;
821 		p = &n->m_next;
822 
823 		/* Copy data from original mbuf(s) into new mbuf */
824 		while (n->m_len < nsize && m != NULL) {
825 			int chunk = min(nsize - n->m_len, m->m_len - moff);
826 
827 			bcopy(m->m_data + moff, n->m_data + n->m_len, chunk);
828 			moff += chunk;
829 			n->m_len += chunk;
830 			remain -= chunk;
831 			if (moff == m->m_len) {
832 				m = m->m_next;
833 				moff = 0;
834 			}
835 		}
836 
837 		/* Check correct total mbuf length */
838 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
839 		    	("%s: bogus m_pkthdr.len", __func__));
840 	}
841 	return (top);
842 
843 nospace:
844 	m_freem(top);
845 	return (NULL);
846 }
847 
848 /*
849  * Concatenate mbuf chain n to m.
850  * Both chains must be of the same type (e.g. MT_DATA).
851  * Any m_pkthdr is not updated.
852  */
853 void
854 m_cat(struct mbuf *m, struct mbuf *n)
855 {
856 	while (m->m_next)
857 		m = m->m_next;
858 	while (n) {
859 		if (!M_WRITABLE(m) ||
860 		    M_TRAILINGSPACE(m) < n->m_len) {
861 			/* just join the two chains */
862 			m->m_next = n;
863 			return;
864 		}
865 		/* splat the data from one into the other */
866 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
867 		    (u_int)n->m_len);
868 		m->m_len += n->m_len;
869 		n = m_free(n);
870 	}
871 }
872 
873 /*
874  * Concatenate two pkthdr mbuf chains.
875  */
876 void
877 m_catpkt(struct mbuf *m, struct mbuf *n)
878 {
879 
880 	M_ASSERTPKTHDR(m);
881 	M_ASSERTPKTHDR(n);
882 
883 	m->m_pkthdr.len += n->m_pkthdr.len;
884 	m_demote(n, 1, 0);
885 
886 	m_cat(m, n);
887 }
888 
889 void
890 m_adj(struct mbuf *mp, int req_len)
891 {
892 	int len = req_len;
893 	struct mbuf *m;
894 	int count;
895 
896 	if ((m = mp) == NULL)
897 		return;
898 	if (len >= 0) {
899 		/*
900 		 * Trim from head.
901 		 */
902 		while (m != NULL && len > 0) {
903 			if (m->m_len <= len) {
904 				len -= m->m_len;
905 				m->m_len = 0;
906 				m = m->m_next;
907 			} else {
908 				m->m_len -= len;
909 				m->m_data += len;
910 				len = 0;
911 			}
912 		}
913 		if (mp->m_flags & M_PKTHDR)
914 			mp->m_pkthdr.len -= (req_len - len);
915 	} else {
916 		/*
917 		 * Trim from tail.  Scan the mbuf chain,
918 		 * calculating its length and finding the last mbuf.
919 		 * If the adjustment only affects this mbuf, then just
920 		 * adjust and return.  Otherwise, rescan and truncate
921 		 * after the remaining size.
922 		 */
923 		len = -len;
924 		count = 0;
925 		for (;;) {
926 			count += m->m_len;
927 			if (m->m_next == (struct mbuf *)0)
928 				break;
929 			m = m->m_next;
930 		}
931 		if (m->m_len >= len) {
932 			m->m_len -= len;
933 			if (mp->m_flags & M_PKTHDR)
934 				mp->m_pkthdr.len -= len;
935 			return;
936 		}
937 		count -= len;
938 		if (count < 0)
939 			count = 0;
940 		/*
941 		 * Correct length for chain is "count".
942 		 * Find the mbuf with last data, adjust its length,
943 		 * and toss data from remaining mbufs on chain.
944 		 */
945 		m = mp;
946 		if (m->m_flags & M_PKTHDR)
947 			m->m_pkthdr.len = count;
948 		for (; m; m = m->m_next) {
949 			if (m->m_len >= count) {
950 				m->m_len = count;
951 				if (m->m_next != NULL) {
952 					m_freem(m->m_next);
953 					m->m_next = NULL;
954 				}
955 				break;
956 			}
957 			count -= m->m_len;
958 		}
959 	}
960 }
961 
962 /*
963  * Rearange an mbuf chain so that len bytes are contiguous
964  * and in the data area of an mbuf (so that mtod will work
965  * for a structure of size len).  Returns the resulting
966  * mbuf chain on success, frees it and returns null on failure.
967  * If there is room, it will add up to max_protohdr-len extra bytes to the
968  * contiguous region in an attempt to avoid being called next time.
969  */
970 struct mbuf *
971 m_pullup(struct mbuf *n, int len)
972 {
973 	struct mbuf *m;
974 	int count;
975 	int space;
976 
977 	/*
978 	 * If first mbuf has no cluster, and has room for len bytes
979 	 * without shifting current data, pullup into it,
980 	 * otherwise allocate a new mbuf to prepend to the chain.
981 	 */
982 	if ((n->m_flags & M_EXT) == 0 &&
983 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
984 		if (n->m_len >= len)
985 			return (n);
986 		m = n;
987 		n = n->m_next;
988 		len -= m->m_len;
989 	} else {
990 		if (len > MHLEN)
991 			goto bad;
992 		m = m_get(M_NOWAIT, n->m_type);
993 		if (m == NULL)
994 			goto bad;
995 		if (n->m_flags & M_PKTHDR)
996 			m_move_pkthdr(m, n);
997 	}
998 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
999 	do {
1000 		count = min(min(max(len, max_protohdr), space), n->m_len);
1001 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
1002 		  (u_int)count);
1003 		len -= count;
1004 		m->m_len += count;
1005 		n->m_len -= count;
1006 		space -= count;
1007 		if (n->m_len)
1008 			n->m_data += count;
1009 		else
1010 			n = m_free(n);
1011 	} while (len > 0 && n);
1012 	if (len > 0) {
1013 		(void) m_free(m);
1014 		goto bad;
1015 	}
1016 	m->m_next = n;
1017 	return (m);
1018 bad:
1019 	m_freem(n);
1020 	return (NULL);
1021 }
1022 
1023 /*
1024  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1025  * the amount of empty space before the data in the new mbuf to be specified
1026  * (in the event that the caller expects to prepend later).
1027  */
1028 int MSFail;
1029 
1030 struct mbuf *
1031 m_copyup(struct mbuf *n, int len, int dstoff)
1032 {
1033 	struct mbuf *m;
1034 	int count, space;
1035 
1036 	if (len > (MHLEN - dstoff))
1037 		goto bad;
1038 	m = m_get(M_NOWAIT, n->m_type);
1039 	if (m == NULL)
1040 		goto bad;
1041 	if (n->m_flags & M_PKTHDR)
1042 		m_move_pkthdr(m, n);
1043 	m->m_data += dstoff;
1044 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1045 	do {
1046 		count = min(min(max(len, max_protohdr), space), n->m_len);
1047 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1048 		    (unsigned)count);
1049 		len -= count;
1050 		m->m_len += count;
1051 		n->m_len -= count;
1052 		space -= count;
1053 		if (n->m_len)
1054 			n->m_data += count;
1055 		else
1056 			n = m_free(n);
1057 	} while (len > 0 && n);
1058 	if (len > 0) {
1059 		(void) m_free(m);
1060 		goto bad;
1061 	}
1062 	m->m_next = n;
1063 	return (m);
1064  bad:
1065 	m_freem(n);
1066 	MSFail++;
1067 	return (NULL);
1068 }
1069 
1070 /*
1071  * Partition an mbuf chain in two pieces, returning the tail --
1072  * all but the first len0 bytes.  In case of failure, it returns NULL and
1073  * attempts to restore the chain to its original state.
1074  *
1075  * Note that the resulting mbufs might be read-only, because the new
1076  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1077  * the "breaking point" happens to lie within a cluster mbuf. Use the
1078  * M_WRITABLE() macro to check for this case.
1079  */
1080 struct mbuf *
1081 m_split(struct mbuf *m0, int len0, int wait)
1082 {
1083 	struct mbuf *m, *n;
1084 	u_int len = len0, remain;
1085 
1086 	MBUF_CHECKSLEEP(wait);
1087 	for (m = m0; m && len > m->m_len; m = m->m_next)
1088 		len -= m->m_len;
1089 	if (m == NULL)
1090 		return (NULL);
1091 	remain = m->m_len - len;
1092 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1093 		n = m_gethdr(wait, m0->m_type);
1094 		if (n == NULL)
1095 			return (NULL);
1096 		n->m_next = m->m_next;
1097 		m->m_next = NULL;
1098 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1099 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1100 		m0->m_pkthdr.len = len0;
1101 		return (n);
1102 	} else if (m0->m_flags & M_PKTHDR) {
1103 		n = m_gethdr(wait, m0->m_type);
1104 		if (n == NULL)
1105 			return (NULL);
1106 		n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1107 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1108 		m0->m_pkthdr.len = len0;
1109 		if (m->m_flags & M_EXT)
1110 			goto extpacket;
1111 		if (remain > MHLEN) {
1112 			/* m can't be the lead packet */
1113 			M_ALIGN(n, 0);
1114 			n->m_next = m_split(m, len, wait);
1115 			if (n->m_next == NULL) {
1116 				(void) m_free(n);
1117 				return (NULL);
1118 			} else {
1119 				n->m_len = 0;
1120 				return (n);
1121 			}
1122 		} else
1123 			M_ALIGN(n, remain);
1124 	} else if (remain == 0) {
1125 		n = m->m_next;
1126 		m->m_next = NULL;
1127 		return (n);
1128 	} else {
1129 		n = m_get(wait, m->m_type);
1130 		if (n == NULL)
1131 			return (NULL);
1132 		M_ALIGN(n, remain);
1133 	}
1134 extpacket:
1135 	if (m->m_flags & M_EXT) {
1136 		n->m_data = m->m_data + len;
1137 		mb_dupcl(n, m);
1138 	} else {
1139 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1140 	}
1141 	n->m_len = remain;
1142 	m->m_len = len;
1143 	n->m_next = m->m_next;
1144 	m->m_next = NULL;
1145 	return (n);
1146 }
1147 /*
1148  * Routine to copy from device local memory into mbufs.
1149  * Note that `off' argument is offset into first mbuf of target chain from
1150  * which to begin copying the data to.
1151  */
1152 struct mbuf *
1153 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1154     void (*copy)(char *from, caddr_t to, u_int len))
1155 {
1156 	struct mbuf *m;
1157 	struct mbuf *top = NULL, **mp = &top;
1158 	int len;
1159 
1160 	if (off < 0 || off > MHLEN)
1161 		return (NULL);
1162 
1163 	while (totlen > 0) {
1164 		if (top == NULL) {	/* First one, must be PKTHDR */
1165 			if (totlen + off >= MINCLSIZE) {
1166 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1167 				len = MCLBYTES;
1168 			} else {
1169 				m = m_gethdr(M_NOWAIT, MT_DATA);
1170 				len = MHLEN;
1171 
1172 				/* Place initial small packet/header at end of mbuf */
1173 				if (m && totlen + off + max_linkhdr <= MLEN) {
1174 					m->m_data += max_linkhdr;
1175 					len -= max_linkhdr;
1176 				}
1177 			}
1178 			if (m == NULL)
1179 				return NULL;
1180 			m->m_pkthdr.rcvif = ifp;
1181 			m->m_pkthdr.len = totlen;
1182 		} else {
1183 			if (totlen + off >= MINCLSIZE) {
1184 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1185 				len = MCLBYTES;
1186 			} else {
1187 				m = m_get(M_NOWAIT, MT_DATA);
1188 				len = MLEN;
1189 			}
1190 			if (m == NULL) {
1191 				m_freem(top);
1192 				return NULL;
1193 			}
1194 		}
1195 		if (off) {
1196 			m->m_data += off;
1197 			len -= off;
1198 			off = 0;
1199 		}
1200 		m->m_len = len = min(totlen, len);
1201 		if (copy)
1202 			copy(buf, mtod(m, caddr_t), (u_int)len);
1203 		else
1204 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1205 		buf += len;
1206 		*mp = m;
1207 		mp = &m->m_next;
1208 		totlen -= len;
1209 	}
1210 	return (top);
1211 }
1212 
1213 /*
1214  * Copy data from a buffer back into the indicated mbuf chain,
1215  * starting "off" bytes from the beginning, extending the mbuf
1216  * chain if necessary.
1217  */
1218 void
1219 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1220 {
1221 	int mlen;
1222 	struct mbuf *m = m0, *n;
1223 	int totlen = 0;
1224 
1225 	if (m0 == NULL)
1226 		return;
1227 	while (off > (mlen = m->m_len)) {
1228 		off -= mlen;
1229 		totlen += mlen;
1230 		if (m->m_next == NULL) {
1231 			n = m_get(M_NOWAIT, m->m_type);
1232 			if (n == NULL)
1233 				goto out;
1234 			bzero(mtod(n, caddr_t), MLEN);
1235 			n->m_len = min(MLEN, len + off);
1236 			m->m_next = n;
1237 		}
1238 		m = m->m_next;
1239 	}
1240 	while (len > 0) {
1241 		if (m->m_next == NULL && (len > m->m_len - off)) {
1242 			m->m_len += min(len - (m->m_len - off),
1243 			    M_TRAILINGSPACE(m));
1244 		}
1245 		mlen = min (m->m_len - off, len);
1246 		bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1247 		cp += mlen;
1248 		len -= mlen;
1249 		mlen += off;
1250 		off = 0;
1251 		totlen += mlen;
1252 		if (len == 0)
1253 			break;
1254 		if (m->m_next == NULL) {
1255 			n = m_get(M_NOWAIT, m->m_type);
1256 			if (n == NULL)
1257 				break;
1258 			n->m_len = min(MLEN, len);
1259 			m->m_next = n;
1260 		}
1261 		m = m->m_next;
1262 	}
1263 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1264 		m->m_pkthdr.len = totlen;
1265 }
1266 
1267 /*
1268  * Append the specified data to the indicated mbuf chain,
1269  * Extend the mbuf chain if the new data does not fit in
1270  * existing space.
1271  *
1272  * Return 1 if able to complete the job; otherwise 0.
1273  */
1274 int
1275 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1276 {
1277 	struct mbuf *m, *n;
1278 	int remainder, space;
1279 
1280 	for (m = m0; m->m_next != NULL; m = m->m_next)
1281 		;
1282 	remainder = len;
1283 	space = M_TRAILINGSPACE(m);
1284 	if (space > 0) {
1285 		/*
1286 		 * Copy into available space.
1287 		 */
1288 		if (space > remainder)
1289 			space = remainder;
1290 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1291 		m->m_len += space;
1292 		cp += space, remainder -= space;
1293 	}
1294 	while (remainder > 0) {
1295 		/*
1296 		 * Allocate a new mbuf; could check space
1297 		 * and allocate a cluster instead.
1298 		 */
1299 		n = m_get(M_NOWAIT, m->m_type);
1300 		if (n == NULL)
1301 			break;
1302 		n->m_len = min(MLEN, remainder);
1303 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1304 		cp += n->m_len, remainder -= n->m_len;
1305 		m->m_next = n;
1306 		m = n;
1307 	}
1308 	if (m0->m_flags & M_PKTHDR)
1309 		m0->m_pkthdr.len += len - remainder;
1310 	return (remainder == 0);
1311 }
1312 
1313 /*
1314  * Apply function f to the data in an mbuf chain starting "off" bytes from
1315  * the beginning, continuing for "len" bytes.
1316  */
1317 int
1318 m_apply(struct mbuf *m, int off, int len,
1319     int (*f)(void *, void *, u_int), void *arg)
1320 {
1321 	u_int count;
1322 	int rval;
1323 
1324 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1325 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1326 	while (off > 0) {
1327 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1328 		if (off < m->m_len)
1329 			break;
1330 		off -= m->m_len;
1331 		m = m->m_next;
1332 	}
1333 	while (len > 0) {
1334 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1335 		count = min(m->m_len - off, len);
1336 		rval = (*f)(arg, mtod(m, caddr_t) + off, count);
1337 		if (rval)
1338 			return (rval);
1339 		len -= count;
1340 		off = 0;
1341 		m = m->m_next;
1342 	}
1343 	return (0);
1344 }
1345 
1346 /*
1347  * Return a pointer to mbuf/offset of location in mbuf chain.
1348  */
1349 struct mbuf *
1350 m_getptr(struct mbuf *m, int loc, int *off)
1351 {
1352 
1353 	while (loc >= 0) {
1354 		/* Normal end of search. */
1355 		if (m->m_len > loc) {
1356 			*off = loc;
1357 			return (m);
1358 		} else {
1359 			loc -= m->m_len;
1360 			if (m->m_next == NULL) {
1361 				if (loc == 0) {
1362 					/* Point at the end of valid data. */
1363 					*off = m->m_len;
1364 					return (m);
1365 				}
1366 				return (NULL);
1367 			}
1368 			m = m->m_next;
1369 		}
1370 	}
1371 	return (NULL);
1372 }
1373 
1374 void
1375 m_print(const struct mbuf *m, int maxlen)
1376 {
1377 	int len;
1378 	int pdata;
1379 	const struct mbuf *m2;
1380 
1381 	if (m == NULL) {
1382 		printf("mbuf: %p\n", m);
1383 		return;
1384 	}
1385 
1386 	if (m->m_flags & M_PKTHDR)
1387 		len = m->m_pkthdr.len;
1388 	else
1389 		len = -1;
1390 	m2 = m;
1391 	while (m2 != NULL && (len == -1 || len)) {
1392 		pdata = m2->m_len;
1393 		if (maxlen != -1 && pdata > maxlen)
1394 			pdata = maxlen;
1395 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1396 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1397 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1398 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1399 		if (pdata)
1400 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1401 		if (len != -1)
1402 			len -= m2->m_len;
1403 		m2 = m2->m_next;
1404 	}
1405 	if (len > 0)
1406 		printf("%d bytes unaccounted for.\n", len);
1407 	return;
1408 }
1409 
1410 u_int
1411 m_fixhdr(struct mbuf *m0)
1412 {
1413 	u_int len;
1414 
1415 	len = m_length(m0, NULL);
1416 	m0->m_pkthdr.len = len;
1417 	return (len);
1418 }
1419 
1420 u_int
1421 m_length(struct mbuf *m0, struct mbuf **last)
1422 {
1423 	struct mbuf *m;
1424 	u_int len;
1425 
1426 	len = 0;
1427 	for (m = m0; m != NULL; m = m->m_next) {
1428 		len += m->m_len;
1429 		if (m->m_next == NULL)
1430 			break;
1431 	}
1432 	if (last != NULL)
1433 		*last = m;
1434 	return (len);
1435 }
1436 
1437 /*
1438  * Defragment a mbuf chain, returning the shortest possible
1439  * chain of mbufs and clusters.  If allocation fails and
1440  * this cannot be completed, NULL will be returned, but
1441  * the passed in chain will be unchanged.  Upon success,
1442  * the original chain will be freed, and the new chain
1443  * will be returned.
1444  *
1445  * If a non-packet header is passed in, the original
1446  * mbuf (chain?) will be returned unharmed.
1447  */
1448 struct mbuf *
1449 m_defrag(struct mbuf *m0, int how)
1450 {
1451 	struct mbuf *m_new = NULL, *m_final = NULL;
1452 	int progress = 0, length;
1453 
1454 	MBUF_CHECKSLEEP(how);
1455 	if (!(m0->m_flags & M_PKTHDR))
1456 		return (m0);
1457 
1458 	m_fixhdr(m0); /* Needed sanity check */
1459 
1460 #ifdef MBUF_STRESS_TEST
1461 	if (m_defragrandomfailures) {
1462 		int temp = arc4random() & 0xff;
1463 		if (temp == 0xba)
1464 			goto nospace;
1465 	}
1466 #endif
1467 
1468 	if (m0->m_pkthdr.len > MHLEN)
1469 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1470 	else
1471 		m_final = m_gethdr(how, MT_DATA);
1472 
1473 	if (m_final == NULL)
1474 		goto nospace;
1475 
1476 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1477 		goto nospace;
1478 
1479 	m_new = m_final;
1480 
1481 	while (progress < m0->m_pkthdr.len) {
1482 		length = m0->m_pkthdr.len - progress;
1483 		if (length > MCLBYTES)
1484 			length = MCLBYTES;
1485 
1486 		if (m_new == NULL) {
1487 			if (length > MLEN)
1488 				m_new = m_getcl(how, MT_DATA, 0);
1489 			else
1490 				m_new = m_get(how, MT_DATA);
1491 			if (m_new == NULL)
1492 				goto nospace;
1493 		}
1494 
1495 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1496 		progress += length;
1497 		m_new->m_len = length;
1498 		if (m_new != m_final)
1499 			m_cat(m_final, m_new);
1500 		m_new = NULL;
1501 	}
1502 #ifdef MBUF_STRESS_TEST
1503 	if (m0->m_next == NULL)
1504 		m_defraguseless++;
1505 #endif
1506 	m_freem(m0);
1507 	m0 = m_final;
1508 #ifdef MBUF_STRESS_TEST
1509 	m_defragpackets++;
1510 	m_defragbytes += m0->m_pkthdr.len;
1511 #endif
1512 	return (m0);
1513 nospace:
1514 #ifdef MBUF_STRESS_TEST
1515 	m_defragfailure++;
1516 #endif
1517 	if (m_final)
1518 		m_freem(m_final);
1519 	return (NULL);
1520 }
1521 
1522 /*
1523  * Defragment an mbuf chain, returning at most maxfrags separate
1524  * mbufs+clusters.  If this is not possible NULL is returned and
1525  * the original mbuf chain is left in it's present (potentially
1526  * modified) state.  We use two techniques: collapsing consecutive
1527  * mbufs and replacing consecutive mbufs by a cluster.
1528  *
1529  * NB: this should really be named m_defrag but that name is taken
1530  */
1531 struct mbuf *
1532 m_collapse(struct mbuf *m0, int how, int maxfrags)
1533 {
1534 	struct mbuf *m, *n, *n2, **prev;
1535 	u_int curfrags;
1536 
1537 	/*
1538 	 * Calculate the current number of frags.
1539 	 */
1540 	curfrags = 0;
1541 	for (m = m0; m != NULL; m = m->m_next)
1542 		curfrags++;
1543 	/*
1544 	 * First, try to collapse mbufs.  Note that we always collapse
1545 	 * towards the front so we don't need to deal with moving the
1546 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1547 	 * less data than the following.
1548 	 */
1549 	m = m0;
1550 again:
1551 	for (;;) {
1552 		n = m->m_next;
1553 		if (n == NULL)
1554 			break;
1555 		if (M_WRITABLE(m) &&
1556 		    n->m_len < M_TRAILINGSPACE(m)) {
1557 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
1558 				n->m_len);
1559 			m->m_len += n->m_len;
1560 			m->m_next = n->m_next;
1561 			m_free(n);
1562 			if (--curfrags <= maxfrags)
1563 				return m0;
1564 		} else
1565 			m = n;
1566 	}
1567 	KASSERT(maxfrags > 1,
1568 		("maxfrags %u, but normal collapse failed", maxfrags));
1569 	/*
1570 	 * Collapse consecutive mbufs to a cluster.
1571 	 */
1572 	prev = &m0->m_next;		/* NB: not the first mbuf */
1573 	while ((n = *prev) != NULL) {
1574 		if ((n2 = n->m_next) != NULL &&
1575 		    n->m_len + n2->m_len < MCLBYTES) {
1576 			m = m_getcl(how, MT_DATA, 0);
1577 			if (m == NULL)
1578 				goto bad;
1579 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
1580 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
1581 				n2->m_len);
1582 			m->m_len = n->m_len + n2->m_len;
1583 			m->m_next = n2->m_next;
1584 			*prev = m;
1585 			m_free(n);
1586 			m_free(n2);
1587 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
1588 				return m0;
1589 			/*
1590 			 * Still not there, try the normal collapse
1591 			 * again before we allocate another cluster.
1592 			 */
1593 			goto again;
1594 		}
1595 		prev = &n->m_next;
1596 	}
1597 	/*
1598 	 * No place where we can collapse to a cluster; punt.
1599 	 * This can occur if, for example, you request 2 frags
1600 	 * but the packet requires that both be clusters (we
1601 	 * never reallocate the first mbuf to avoid moving the
1602 	 * packet header).
1603 	 */
1604 bad:
1605 	return NULL;
1606 }
1607 
1608 #ifdef MBUF_STRESS_TEST
1609 
1610 /*
1611  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1612  * this in normal usage, but it's great for stress testing various
1613  * mbuf consumers.
1614  *
1615  * If fragmentation is not possible, the original chain will be
1616  * returned.
1617  *
1618  * Possible length values:
1619  * 0	 no fragmentation will occur
1620  * > 0	each fragment will be of the specified length
1621  * -1	each fragment will be the same random value in length
1622  * -2	each fragment's length will be entirely random
1623  * (Random values range from 1 to 256)
1624  */
1625 struct mbuf *
1626 m_fragment(struct mbuf *m0, int how, int length)
1627 {
1628 	struct mbuf *m_new = NULL, *m_final = NULL;
1629 	int progress = 0;
1630 
1631 	if (!(m0->m_flags & M_PKTHDR))
1632 		return (m0);
1633 
1634 	if ((length == 0) || (length < -2))
1635 		return (m0);
1636 
1637 	m_fixhdr(m0); /* Needed sanity check */
1638 
1639 	m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1640 
1641 	if (m_final == NULL)
1642 		goto nospace;
1643 
1644 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1645 		goto nospace;
1646 
1647 	m_new = m_final;
1648 
1649 	if (length == -1)
1650 		length = 1 + (arc4random() & 255);
1651 
1652 	while (progress < m0->m_pkthdr.len) {
1653 		int fraglen;
1654 
1655 		if (length > 0)
1656 			fraglen = length;
1657 		else
1658 			fraglen = 1 + (arc4random() & 255);
1659 		if (fraglen > m0->m_pkthdr.len - progress)
1660 			fraglen = m0->m_pkthdr.len - progress;
1661 
1662 		if (fraglen > MCLBYTES)
1663 			fraglen = MCLBYTES;
1664 
1665 		if (m_new == NULL) {
1666 			m_new = m_getcl(how, MT_DATA, 0);
1667 			if (m_new == NULL)
1668 				goto nospace;
1669 		}
1670 
1671 		m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t));
1672 		progress += fraglen;
1673 		m_new->m_len = fraglen;
1674 		if (m_new != m_final)
1675 			m_cat(m_final, m_new);
1676 		m_new = NULL;
1677 	}
1678 	m_freem(m0);
1679 	m0 = m_final;
1680 	return (m0);
1681 nospace:
1682 	if (m_final)
1683 		m_freem(m_final);
1684 	/* Return the original chain on failure */
1685 	return (m0);
1686 }
1687 
1688 #endif
1689 
1690 /*
1691  * Copy the contents of uio into a properly sized mbuf chain.
1692  */
1693 struct mbuf *
1694 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1695 {
1696 	struct mbuf *m, *mb;
1697 	int error, length;
1698 	ssize_t total;
1699 	int progress = 0;
1700 
1701 	/*
1702 	 * len can be zero or an arbitrary large value bound by
1703 	 * the total data supplied by the uio.
1704 	 */
1705 	if (len > 0)
1706 		total = min(uio->uio_resid, len);
1707 	else
1708 		total = uio->uio_resid;
1709 
1710 	/*
1711 	 * The smallest unit returned by m_getm2() is a single mbuf
1712 	 * with pkthdr.  We can't align past it.
1713 	 */
1714 	if (align >= MHLEN)
1715 		return (NULL);
1716 
1717 	/*
1718 	 * Give us the full allocation or nothing.
1719 	 * If len is zero return the smallest empty mbuf.
1720 	 */
1721 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1722 	if (m == NULL)
1723 		return (NULL);
1724 	m->m_data += align;
1725 
1726 	/* Fill all mbufs with uio data and update header information. */
1727 	for (mb = m; mb != NULL; mb = mb->m_next) {
1728 		length = min(M_TRAILINGSPACE(mb), total - progress);
1729 
1730 		error = uiomove(mtod(mb, void *), length, uio);
1731 		if (error) {
1732 			m_freem(m);
1733 			return (NULL);
1734 		}
1735 
1736 		mb->m_len = length;
1737 		progress += length;
1738 		if (flags & M_PKTHDR)
1739 			m->m_pkthdr.len += length;
1740 	}
1741 	KASSERT(progress == total, ("%s: progress != total", __func__));
1742 
1743 	return (m);
1744 }
1745 
1746 /*
1747  * Copy an mbuf chain into a uio limited by len if set.
1748  */
1749 int
1750 m_mbuftouio(struct uio *uio, struct mbuf *m, int len)
1751 {
1752 	int error, length, total;
1753 	int progress = 0;
1754 
1755 	if (len > 0)
1756 		total = min(uio->uio_resid, len);
1757 	else
1758 		total = uio->uio_resid;
1759 
1760 	/* Fill the uio with data from the mbufs. */
1761 	for (; m != NULL; m = m->m_next) {
1762 		length = min(m->m_len, total - progress);
1763 
1764 		error = uiomove(mtod(m, void *), length, uio);
1765 		if (error)
1766 			return (error);
1767 
1768 		progress += length;
1769 	}
1770 
1771 	return (0);
1772 }
1773 
1774 /*
1775  * Create a writable copy of the mbuf chain.  While doing this
1776  * we compact the chain with a goal of producing a chain with
1777  * at most two mbufs.  The second mbuf in this chain is likely
1778  * to be a cluster.  The primary purpose of this work is to create
1779  * a writable packet for encryption, compression, etc.  The
1780  * secondary goal is to linearize the data so the data can be
1781  * passed to crypto hardware in the most efficient manner possible.
1782  */
1783 struct mbuf *
1784 m_unshare(struct mbuf *m0, int how)
1785 {
1786 	struct mbuf *m, *mprev;
1787 	struct mbuf *n, *mfirst, *mlast;
1788 	int len, off;
1789 
1790 	mprev = NULL;
1791 	for (m = m0; m != NULL; m = mprev->m_next) {
1792 		/*
1793 		 * Regular mbufs are ignored unless there's a cluster
1794 		 * in front of it that we can use to coalesce.  We do
1795 		 * the latter mainly so later clusters can be coalesced
1796 		 * also w/o having to handle them specially (i.e. convert
1797 		 * mbuf+cluster -> cluster).  This optimization is heavily
1798 		 * influenced by the assumption that we're running over
1799 		 * Ethernet where MCLBYTES is large enough that the max
1800 		 * packet size will permit lots of coalescing into a
1801 		 * single cluster.  This in turn permits efficient
1802 		 * crypto operations, especially when using hardware.
1803 		 */
1804 		if ((m->m_flags & M_EXT) == 0) {
1805 			if (mprev && (mprev->m_flags & M_EXT) &&
1806 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
1807 				/* XXX: this ignores mbuf types */
1808 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1809 				    mtod(m, caddr_t), m->m_len);
1810 				mprev->m_len += m->m_len;
1811 				mprev->m_next = m->m_next;	/* unlink from chain */
1812 				m_free(m);			/* reclaim mbuf */
1813 #if 0
1814 				newipsecstat.ips_mbcoalesced++;
1815 #endif
1816 			} else {
1817 				mprev = m;
1818 			}
1819 			continue;
1820 		}
1821 		/*
1822 		 * Writable mbufs are left alone (for now).
1823 		 */
1824 		if (M_WRITABLE(m)) {
1825 			mprev = m;
1826 			continue;
1827 		}
1828 
1829 		/*
1830 		 * Not writable, replace with a copy or coalesce with
1831 		 * the previous mbuf if possible (since we have to copy
1832 		 * it anyway, we try to reduce the number of mbufs and
1833 		 * clusters so that future work is easier).
1834 		 */
1835 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
1836 		/* NB: we only coalesce into a cluster or larger */
1837 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
1838 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
1839 			/* XXX: this ignores mbuf types */
1840 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
1841 			    mtod(m, caddr_t), m->m_len);
1842 			mprev->m_len += m->m_len;
1843 			mprev->m_next = m->m_next;	/* unlink from chain */
1844 			m_free(m);			/* reclaim mbuf */
1845 #if 0
1846 			newipsecstat.ips_clcoalesced++;
1847 #endif
1848 			continue;
1849 		}
1850 
1851 		/*
1852 		 * Allocate new space to hold the copy and copy the data.
1853 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
1854 		 * splitting them into clusters.  We could just malloc a
1855 		 * buffer and make it external but too many device drivers
1856 		 * don't know how to break up the non-contiguous memory when
1857 		 * doing DMA.
1858 		 */
1859 		n = m_getcl(how, m->m_type, m->m_flags);
1860 		if (n == NULL) {
1861 			m_freem(m0);
1862 			return (NULL);
1863 		}
1864 		len = m->m_len;
1865 		off = 0;
1866 		mfirst = n;
1867 		mlast = NULL;
1868 		for (;;) {
1869 			int cc = min(len, MCLBYTES);
1870 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
1871 			n->m_len = cc;
1872 			if (mlast != NULL)
1873 				mlast->m_next = n;
1874 			mlast = n;
1875 #if 0
1876 			newipsecstat.ips_clcopied++;
1877 #endif
1878 
1879 			len -= cc;
1880 			if (len <= 0)
1881 				break;
1882 			off += cc;
1883 
1884 			n = m_getcl(how, m->m_type, m->m_flags);
1885 			if (n == NULL) {
1886 				m_freem(mfirst);
1887 				m_freem(m0);
1888 				return (NULL);
1889 			}
1890 		}
1891 		n->m_next = m->m_next;
1892 		if (mprev == NULL)
1893 			m0 = mfirst;		/* new head of chain */
1894 		else
1895 			mprev->m_next = mfirst;	/* replace old mbuf */
1896 		m_free(m);			/* release old mbuf */
1897 		mprev = mfirst;
1898 	}
1899 	return (m0);
1900 }
1901 
1902 #ifdef MBUF_PROFILING
1903 
1904 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
1905 struct mbufprofile {
1906 	uintmax_t wasted[MP_BUCKETS];
1907 	uintmax_t used[MP_BUCKETS];
1908 	uintmax_t segments[MP_BUCKETS];
1909 } mbprof;
1910 
1911 #define MP_MAXDIGITS 21	/* strlen("16,000,000,000,000,000,000") == 21 */
1912 #define MP_NUMLINES 6
1913 #define MP_NUMSPERLINE 16
1914 #define MP_EXTRABYTES 64	/* > strlen("used:\nwasted:\nsegments:\n") */
1915 /* work out max space needed and add a bit of spare space too */
1916 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE)
1917 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES)
1918 
1919 char mbprofbuf[MP_BUFSIZE];
1920 
1921 void
1922 m_profile(struct mbuf *m)
1923 {
1924 	int segments = 0;
1925 	int used = 0;
1926 	int wasted = 0;
1927 
1928 	while (m) {
1929 		segments++;
1930 		used += m->m_len;
1931 		if (m->m_flags & M_EXT) {
1932 			wasted += MHLEN - sizeof(m->m_ext) +
1933 			    m->m_ext.ext_size - m->m_len;
1934 		} else {
1935 			if (m->m_flags & M_PKTHDR)
1936 				wasted += MHLEN - m->m_len;
1937 			else
1938 				wasted += MLEN - m->m_len;
1939 		}
1940 		m = m->m_next;
1941 	}
1942 	/* be paranoid.. it helps */
1943 	if (segments > MP_BUCKETS - 1)
1944 		segments = MP_BUCKETS - 1;
1945 	if (used > 100000)
1946 		used = 100000;
1947 	if (wasted > 100000)
1948 		wasted = 100000;
1949 	/* store in the appropriate bucket */
1950 	/* don't bother locking. if it's slightly off, so what? */
1951 	mbprof.segments[segments]++;
1952 	mbprof.used[fls(used)]++;
1953 	mbprof.wasted[fls(wasted)]++;
1954 }
1955 
1956 static void
1957 mbprof_textify(void)
1958 {
1959 	int offset;
1960 	char *c;
1961 	uint64_t *p;
1962 
1963 	p = &mbprof.wasted[0];
1964 	c = mbprofbuf;
1965 	offset = snprintf(c, MP_MAXLINE + 10,
1966 	    "wasted:\n"
1967 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1968 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1969 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1970 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1971 #ifdef BIG_ARRAY
1972 	p = &mbprof.wasted[16];
1973 	c += offset;
1974 	offset = snprintf(c, MP_MAXLINE,
1975 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1976 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1977 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1978 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1979 #endif
1980 	p = &mbprof.used[0];
1981 	c += offset;
1982 	offset = snprintf(c, MP_MAXLINE + 10,
1983 	    "used:\n"
1984 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1985 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1986 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1987 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1988 #ifdef BIG_ARRAY
1989 	p = &mbprof.used[16];
1990 	c += offset;
1991 	offset = snprintf(c, MP_MAXLINE,
1992 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
1993 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
1994 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
1995 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
1996 #endif
1997 	p = &mbprof.segments[0];
1998 	c += offset;
1999 	offset = snprintf(c, MP_MAXLINE + 10,
2000 	    "segments:\n"
2001 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2002 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2003 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2004 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2005 #ifdef BIG_ARRAY
2006 	p = &mbprof.segments[16];
2007 	c += offset;
2008 	offset = snprintf(c, MP_MAXLINE,
2009 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2010 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2011 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2012 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2013 #endif
2014 }
2015 
2016 static int
2017 mbprof_handler(SYSCTL_HANDLER_ARGS)
2018 {
2019 	int error;
2020 
2021 	mbprof_textify();
2022 	error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1);
2023 	return (error);
2024 }
2025 
2026 static int
2027 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2028 {
2029 	int clear, error;
2030 
2031 	clear = 0;
2032 	error = sysctl_handle_int(oidp, &clear, 0, req);
2033 	if (error || !req->newptr)
2034 		return (error);
2035 
2036 	if (clear) {
2037 		bzero(&mbprof, sizeof(mbprof));
2038 	}
2039 
2040 	return (error);
2041 }
2042 
2043 
2044 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD,
2045 	    NULL, 0, mbprof_handler, "A", "mbuf profiling statistics");
2046 
2047 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW,
2048 	    NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics");
2049 #endif
2050 
2051