xref: /freebsd/sys/kern/uipc_mbuf.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_mbuf.c	8.2 (Berkeley) 1/4/94
32  */
33 
34 #include <sys/cdefs.h>
35 #include "opt_param.h"
36 #include "opt_mbuf_stress_test.h"
37 #include "opt_mbuf_profiling.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/domain.h>
48 #include <sys/protosw.h>
49 #include <sys/uio.h>
50 #include <sys/vmmeter.h>
51 #include <sys/sbuf.h>
52 #include <sys/sdt.h>
53 #include <vm/vm.h>
54 #include <vm/vm_pageout.h>
55 #include <vm/vm_page.h>
56 
57 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
58     "struct mbuf *", "mbufinfo_t *",
59     "uint32_t", "uint32_t",
60     "uint16_t", "uint16_t",
61     "uint32_t", "uint32_t",
62     "uint32_t", "uint32_t");
63 
64 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
65     "uint32_t", "uint32_t",
66     "uint16_t", "uint16_t",
67     "struct mbuf *", "mbufinfo_t *");
68 
69 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
70     "uint32_t", "uint32_t",
71     "uint16_t", "uint16_t",
72     "struct mbuf *", "mbufinfo_t *");
73 
74 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
75     "uint32_t", "uint32_t",
76     "uint16_t", "uint16_t",
77     "struct mbuf *", "mbufinfo_t *");
78 
79 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
80     "uint32_t", "uint32_t",
81     "uint16_t", "uint16_t",
82     "struct mbuf *", "mbufinfo_t *");
83 
84 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
85     "uint32_t", "uint32_t",
86     "uint16_t", "uint16_t",
87     "uint32_t", "uint32_t",
88     "struct mbuf *", "mbufinfo_t *");
89 
90 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
91     "uint32_t", "uint32_t",
92     "uint16_t", "uint16_t",
93     "uint32_t", "uint32_t",
94     "uint32_t", "uint32_t",
95     "struct mbuf *", "mbufinfo_t *");
96 
97 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
98     "struct mbuf *", "mbufinfo_t *",
99     "uint32_t", "uint32_t",
100     "uint32_t", "uint32_t");
101 
102 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
103     "struct mbuf *", "mbufinfo_t *",
104     "uint32_t", "uint32_t",
105     "uint32_t", "uint32_t",
106     "void*", "void*");
107 
108 SDT_PROBE_DEFINE(sdt, , , m__cljset);
109 
110 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
111         "struct mbuf *", "mbufinfo_t *");
112 
113 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
114     "struct mbuf *", "mbufinfo_t *");
115 
116 #include <security/mac/mac_framework.h>
117 
118 /*
119  * Provide minimum possible defaults for link and protocol header space,
120  * assuming IPv4 over Ethernet.  Enabling IPv6, IEEE802.11 or some other
121  * protocol may grow these values.
122  */
123 u_int	max_linkhdr = 16;
124 u_int	max_protohdr = 40;
125 u_int	max_hdr = 16 + 40;
126 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
127 	   &max_linkhdr, 16, "Size of largest link layer header");
128 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
129 	   &max_protohdr, 40, "Size of largest protocol layer header");
130 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
131 	   &max_hdr, 16 + 40, "Size of largest link plus protocol header");
132 
133 static void
134 max_hdr_grow(void)
135 {
136 
137 	max_hdr = max_linkhdr + max_protohdr;
138 	MPASS(max_hdr <= MHLEN);
139 }
140 
141 void
142 max_linkhdr_grow(u_int new)
143 {
144 
145 	if (new > max_linkhdr) {
146 		max_linkhdr = new;
147 		max_hdr_grow();
148 	}
149 }
150 
151 void
152 max_protohdr_grow(u_int new)
153 {
154 
155 	if (new > max_protohdr) {
156 		max_protohdr = new;
157 		max_hdr_grow();
158 	}
159 }
160 
161 #ifdef MBUF_STRESS_TEST
162 int	m_defragpackets;
163 int	m_defragbytes;
164 int	m_defraguseless;
165 int	m_defragfailure;
166 int	m_defragrandomfailures;
167 
168 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
169 	   &m_defragpackets, 0, "");
170 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
171 	   &m_defragbytes, 0, "");
172 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
173 	   &m_defraguseless, 0, "");
174 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
175 	   &m_defragfailure, 0, "");
176 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
177 	   &m_defragrandomfailures, 0, "");
178 #endif
179 
180 /*
181  * Ensure the correct size of various mbuf parameters.  It could be off due
182  * to compiler-induced padding and alignment artifacts.
183  */
184 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
185 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
186 
187 /*
188  * mbuf data storage should be 64-bit aligned regardless of architectural
189  * pointer size; check this is the case with and without a packet header.
190  */
191 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
192 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
193 
194 /*
195  * While the specific values here don't matter too much (i.e., +/- a few
196  * words), we do want to ensure that changes to these values are carefully
197  * reasoned about and properly documented.  This is especially the case as
198  * network-protocol and device-driver modules encode these layouts, and must
199  * be recompiled if the structures change.  Check these values at compile time
200  * against the ones documented in comments in mbuf.h.
201  *
202  * NB: Possibly they should be documented there via #define's and not just
203  * comments.
204  */
205 #if defined(__LP64__)
206 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
207 CTASSERT(sizeof(struct pkthdr) == 64);
208 CTASSERT(sizeof(struct m_ext) == 160);
209 #else
210 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
211 CTASSERT(sizeof(struct pkthdr) == 56);
212 #if defined(__powerpc__) && defined(BOOKE)
213 /* PowerPC booke has 64-bit physical pointers. */
214 CTASSERT(sizeof(struct m_ext) == 176);
215 #else
216 CTASSERT(sizeof(struct m_ext) == 172);
217 #endif
218 #endif
219 
220 /*
221  * Assert that the queue(3) macros produce code of the same size as an old
222  * plain pointer does.
223  */
224 #ifdef INVARIANTS
225 static struct mbuf __used m_assertbuf;
226 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
227 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
228 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
229 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
230 #endif
231 
232 /*
233  * Attach the cluster from *m to *n, set up m_ext in *n
234  * and bump the refcount of the cluster.
235  */
236 void
237 mb_dupcl(struct mbuf *n, struct mbuf *m)
238 {
239 	volatile u_int *refcnt;
240 
241 	KASSERT(m->m_flags & (M_EXT|M_EXTPG),
242 	    ("%s: M_EXT|M_EXTPG not set on %p", __func__, m));
243 	KASSERT(!(n->m_flags & (M_EXT|M_EXTPG)),
244 	    ("%s: M_EXT|M_EXTPG set on %p", __func__, n));
245 
246 	/*
247 	 * Cache access optimization.
248 	 *
249 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
250 	 *   the holder of the 'ext_count' is responsible to carry the free
251 	 *   routine and its arguments.
252 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
253 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
254 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
255 	 *   special - it needs full copy of m_ext into each mbuf, since any
256 	 *   copy could end up as the last to free.
257 	 */
258 	if (m->m_flags & M_EXTPG) {
259 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
260 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
261 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
262 	} else if (m->m_ext.ext_type == EXT_EXTREF)
263 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
264 	else
265 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
266 
267 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
268 
269 	/* See if this is the mbuf that holds the embedded refcount. */
270 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
271 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
272 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
273 	} else {
274 		KASSERT(m->m_ext.ext_cnt != NULL,
275 		    ("%s: no refcounting pointer on %p", __func__, m));
276 		refcnt = m->m_ext.ext_cnt;
277 	}
278 
279 	if (*refcnt == 1)
280 		*refcnt += 1;
281 	else
282 		atomic_add_int(refcnt, 1);
283 }
284 
285 void
286 m_demote_pkthdr(struct mbuf *m)
287 {
288 
289 	M_ASSERTPKTHDR(m);
290 	M_ASSERT_NO_SND_TAG(m);
291 
292 	m_tag_delete_chain(m, NULL);
293 	m->m_flags &= ~M_PKTHDR;
294 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
295 }
296 
297 /*
298  * Clean up mbuf (chain) from any tags and packet headers.
299  * If "all" is set then the first mbuf in the chain will be
300  * cleaned too.
301  */
302 void
303 m_demote(struct mbuf *m0, int all, int flags)
304 {
305 	struct mbuf *m;
306 
307 	flags |= M_DEMOTEFLAGS;
308 
309 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
310 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
311 		    __func__, m, m0));
312 		if (m->m_flags & M_PKTHDR)
313 			m_demote_pkthdr(m);
314 		m->m_flags &= flags;
315 	}
316 }
317 
318 /*
319  * Sanity checks on mbuf (chain) for use in KASSERT() and general
320  * debugging.
321  * Returns 0 or panics when bad and 1 on all tests passed.
322  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
323  * blow up later.
324  */
325 int
326 m_sanity(struct mbuf *m0, int sanitize)
327 {
328 	struct mbuf *m;
329 	caddr_t a, b;
330 	int pktlen = 0;
331 
332 #ifdef INVARIANTS
333 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
334 #else
335 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
336 #endif
337 
338 	for (m = m0; m != NULL; m = m->m_next) {
339 		/*
340 		 * Basic pointer checks.  If any of these fails then some
341 		 * unrelated kernel memory before or after us is trashed.
342 		 * No way to recover from that.
343 		 */
344 		a = M_START(m);
345 		b = a + M_SIZE(m);
346 		if ((caddr_t)m->m_data < a)
347 			M_SANITY_ACTION("m_data outside mbuf data range left");
348 		if ((caddr_t)m->m_data > b)
349 			M_SANITY_ACTION("m_data outside mbuf data range right");
350 		if ((caddr_t)m->m_data + m->m_len > b)
351 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
352 
353 		/* m->m_nextpkt may only be set on first mbuf in chain. */
354 		if (m != m0 && m->m_nextpkt != NULL) {
355 			if (sanitize) {
356 				m_freem(m->m_nextpkt);
357 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
358 			} else
359 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
360 		}
361 
362 		/* packet length (not mbuf length!) calculation */
363 		if (m0->m_flags & M_PKTHDR)
364 			pktlen += m->m_len;
365 
366 		/* m_tags may only be attached to first mbuf in chain. */
367 		if (m != m0 && m->m_flags & M_PKTHDR &&
368 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
369 			if (sanitize) {
370 				m_tag_delete_chain(m, NULL);
371 				/* put in 0xDEADC0DE perhaps? */
372 			} else
373 				M_SANITY_ACTION("m_tags on in-chain mbuf");
374 		}
375 
376 		/* M_PKTHDR may only be set on first mbuf in chain */
377 		if (m != m0 && m->m_flags & M_PKTHDR) {
378 			if (sanitize) {
379 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
380 				m->m_flags &= ~M_PKTHDR;
381 				/* put in 0xDEADCODE and leave hdr flag in */
382 			} else
383 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
384 		}
385 	}
386 	m = m0;
387 	if (pktlen && pktlen != m->m_pkthdr.len) {
388 		if (sanitize)
389 			m->m_pkthdr.len = 0;
390 		else
391 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
392 	}
393 	return 1;
394 
395 #undef	M_SANITY_ACTION
396 }
397 
398 /*
399  * Non-inlined part of m_init().
400  */
401 int
402 m_pkthdr_init(struct mbuf *m, int how)
403 {
404 #ifdef MAC
405 	int error;
406 #endif
407 	m->m_data = m->m_pktdat;
408 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
409 #ifdef NUMA
410 	m->m_pkthdr.numa_domain = M_NODOM;
411 #endif
412 #ifdef MAC
413 	/* If the label init fails, fail the alloc */
414 	error = mac_mbuf_init(m, how);
415 	if (error)
416 		return (error);
417 #endif
418 
419 	return (0);
420 }
421 
422 /*
423  * "Move" mbuf pkthdr from "from" to "to".
424  * "from" must have M_PKTHDR set, and "to" must be empty.
425  */
426 void
427 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
428 {
429 
430 #if 0
431 	/* see below for why these are not enabled */
432 	M_ASSERTPKTHDR(to);
433 	/* Note: with MAC, this may not be a good assertion. */
434 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
435 	    ("m_move_pkthdr: to has tags"));
436 #endif
437 #ifdef MAC
438 	/*
439 	 * XXXMAC: It could be this should also occur for non-MAC?
440 	 */
441 	if (to->m_flags & M_PKTHDR)
442 		m_tag_delete_chain(to, NULL);
443 #endif
444 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
445 	    (to->m_flags & (M_EXT | M_EXTPG));
446 	if ((to->m_flags & M_EXT) == 0)
447 		to->m_data = to->m_pktdat;
448 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
449 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
450 	from->m_flags &= ~M_PKTHDR;
451 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
452 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
453 		from->m_pkthdr.snd_tag = NULL;
454 	}
455 }
456 
457 /*
458  * Duplicate "from"'s mbuf pkthdr in "to".
459  * "from" must have M_PKTHDR set, and "to" must be empty.
460  * In particular, this does a deep copy of the packet tags.
461  */
462 int
463 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
464 {
465 
466 #if 0
467 	/*
468 	 * The mbuf allocator only initializes the pkthdr
469 	 * when the mbuf is allocated with m_gethdr(). Many users
470 	 * (e.g. m_copy*, m_prepend) use m_get() and then
471 	 * smash the pkthdr as needed causing these
472 	 * assertions to trip.  For now just disable them.
473 	 */
474 	M_ASSERTPKTHDR(to);
475 	/* Note: with MAC, this may not be a good assertion. */
476 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
477 #endif
478 	MBUF_CHECKSLEEP(how);
479 #ifdef MAC
480 	if (to->m_flags & M_PKTHDR)
481 		m_tag_delete_chain(to, NULL);
482 #endif
483 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
484 	    (to->m_flags & (M_EXT | M_EXTPG));
485 	if ((to->m_flags & M_EXT) == 0)
486 		to->m_data = to->m_pktdat;
487 	to->m_pkthdr = from->m_pkthdr;
488 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
489 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
490 	SLIST_INIT(&to->m_pkthdr.tags);
491 	return (m_tag_copy_chain(to, from, how));
492 }
493 
494 /*
495  * Lesser-used path for M_PREPEND:
496  * allocate new mbuf to prepend to chain,
497  * copy junk along.
498  */
499 struct mbuf *
500 m_prepend(struct mbuf *m, int len, int how)
501 {
502 	struct mbuf *mn;
503 
504 	if (m->m_flags & M_PKTHDR)
505 		mn = m_gethdr(how, m->m_type);
506 	else
507 		mn = m_get(how, m->m_type);
508 	if (mn == NULL) {
509 		m_freem(m);
510 		return (NULL);
511 	}
512 	if (m->m_flags & M_PKTHDR)
513 		m_move_pkthdr(mn, m);
514 	mn->m_next = m;
515 	m = mn;
516 	if (len < M_SIZE(m))
517 		M_ALIGN(m, len);
518 	m->m_len = len;
519 	return (m);
520 }
521 
522 /*
523  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
524  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
525  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
526  * Note that the copy is read-only, because clusters are not copied,
527  * only their reference counts are incremented.
528  */
529 struct mbuf *
530 m_copym(struct mbuf *m, int off0, int len, int wait)
531 {
532 	struct mbuf *n, **np;
533 	int off = off0;
534 	struct mbuf *top;
535 	int copyhdr = 0;
536 
537 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
538 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
539 	MBUF_CHECKSLEEP(wait);
540 	if (off == 0 && m->m_flags & M_PKTHDR)
541 		copyhdr = 1;
542 	while (off > 0) {
543 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
544 		if (off < m->m_len)
545 			break;
546 		off -= m->m_len;
547 		m = m->m_next;
548 	}
549 	np = &top;
550 	top = NULL;
551 	while (len > 0) {
552 		if (m == NULL) {
553 			KASSERT(len == M_COPYALL,
554 			    ("m_copym, length > size of mbuf chain"));
555 			break;
556 		}
557 		if (copyhdr)
558 			n = m_gethdr(wait, m->m_type);
559 		else
560 			n = m_get(wait, m->m_type);
561 		*np = n;
562 		if (n == NULL)
563 			goto nospace;
564 		if (copyhdr) {
565 			if (!m_dup_pkthdr(n, m, wait))
566 				goto nospace;
567 			if (len == M_COPYALL)
568 				n->m_pkthdr.len -= off0;
569 			else
570 				n->m_pkthdr.len = len;
571 			copyhdr = 0;
572 		}
573 		n->m_len = min(len, m->m_len - off);
574 		if (m->m_flags & (M_EXT|M_EXTPG)) {
575 			n->m_data = m->m_data + off;
576 			mb_dupcl(n, m);
577 		} else
578 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
579 			    (u_int)n->m_len);
580 		if (len != M_COPYALL)
581 			len -= n->m_len;
582 		off = 0;
583 		m = m->m_next;
584 		np = &n->m_next;
585 	}
586 
587 	return (top);
588 nospace:
589 	m_freem(top);
590 	return (NULL);
591 }
592 
593 /*
594  * Copy an entire packet, including header (which must be present).
595  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
596  * Note that the copy is read-only, because clusters are not copied,
597  * only their reference counts are incremented.
598  * Preserve alignment of the first mbuf so if the creator has left
599  * some room at the beginning (e.g. for inserting protocol headers)
600  * the copies still have the room available.
601  */
602 struct mbuf *
603 m_copypacket(struct mbuf *m, int how)
604 {
605 	struct mbuf *top, *n, *o;
606 
607 	MBUF_CHECKSLEEP(how);
608 	n = m_get(how, m->m_type);
609 	top = n;
610 	if (n == NULL)
611 		goto nospace;
612 
613 	if (!m_dup_pkthdr(n, m, how))
614 		goto nospace;
615 	n->m_len = m->m_len;
616 	if (m->m_flags & (M_EXT|M_EXTPG)) {
617 		n->m_data = m->m_data;
618 		mb_dupcl(n, m);
619 	} else {
620 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
621 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
622 	}
623 
624 	m = m->m_next;
625 	while (m) {
626 		o = m_get(how, m->m_type);
627 		if (o == NULL)
628 			goto nospace;
629 
630 		n->m_next = o;
631 		n = n->m_next;
632 
633 		n->m_len = m->m_len;
634 		if (m->m_flags & (M_EXT|M_EXTPG)) {
635 			n->m_data = m->m_data;
636 			mb_dupcl(n, m);
637 		} else {
638 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
639 		}
640 
641 		m = m->m_next;
642 	}
643 	return top;
644 nospace:
645 	m_freem(top);
646 	return (NULL);
647 }
648 
649 static void
650 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
651 {
652 	struct iovec iov;
653 	struct uio uio;
654 	int error __diagused;
655 
656 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
657 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
658 	KASSERT(off < m->m_len,
659 	    ("m_copyfromunmapped: len exceeds mbuf length"));
660 	iov.iov_base = cp;
661 	iov.iov_len = len;
662 	uio.uio_resid = len;
663 	uio.uio_iov = &iov;
664 	uio.uio_segflg = UIO_SYSSPACE;
665 	uio.uio_iovcnt = 1;
666 	uio.uio_offset = 0;
667 	uio.uio_rw = UIO_READ;
668 	error = m_unmapped_uiomove(m, off, &uio, len);
669 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
670 	   len));
671 }
672 
673 /*
674  * Copy data from an mbuf chain starting "off" bytes from the beginning,
675  * continuing for "len" bytes, into the indicated buffer.
676  */
677 void
678 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
679 {
680 	u_int count;
681 
682 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
683 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
684 	while (off > 0) {
685 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
686 		if (off < m->m_len)
687 			break;
688 		off -= m->m_len;
689 		m = m->m_next;
690 	}
691 	while (len > 0) {
692 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
693 		count = min(m->m_len - off, len);
694 		if ((m->m_flags & M_EXTPG) != 0)
695 			m_copyfromunmapped(m, off, count, cp);
696 		else
697 			bcopy(mtod(m, caddr_t) + off, cp, count);
698 		len -= count;
699 		cp += count;
700 		off = 0;
701 		m = m->m_next;
702 	}
703 }
704 
705 /*
706  * Copy a packet header mbuf chain into a completely new chain, including
707  * copying any mbuf clusters.  Use this instead of m_copypacket() when
708  * you need a writable copy of an mbuf chain.
709  */
710 struct mbuf *
711 m_dup(const struct mbuf *m, int how)
712 {
713 	struct mbuf **p, *top = NULL;
714 	int remain, moff, nsize;
715 
716 	MBUF_CHECKSLEEP(how);
717 	/* Sanity check */
718 	if (m == NULL)
719 		return (NULL);
720 	M_ASSERTPKTHDR(m);
721 
722 	/* While there's more data, get a new mbuf, tack it on, and fill it */
723 	remain = m->m_pkthdr.len;
724 	moff = 0;
725 	p = &top;
726 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
727 		struct mbuf *n;
728 
729 		/* Get the next new mbuf */
730 		if (remain >= MINCLSIZE) {
731 			n = m_getcl(how, m->m_type, 0);
732 			nsize = MCLBYTES;
733 		} else {
734 			n = m_get(how, m->m_type);
735 			nsize = MLEN;
736 		}
737 		if (n == NULL)
738 			goto nospace;
739 
740 		if (top == NULL) {		/* First one, must be PKTHDR */
741 			if (!m_dup_pkthdr(n, m, how)) {
742 				m_free(n);
743 				goto nospace;
744 			}
745 			if ((n->m_flags & M_EXT) == 0)
746 				nsize = MHLEN;
747 			n->m_flags &= ~M_RDONLY;
748 		}
749 		n->m_len = 0;
750 
751 		/* Link it into the new chain */
752 		*p = n;
753 		p = &n->m_next;
754 
755 		/* Copy data from original mbuf(s) into new mbuf */
756 		while (n->m_len < nsize && m != NULL) {
757 			int chunk = min(nsize - n->m_len, m->m_len - moff);
758 
759 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
760 			moff += chunk;
761 			n->m_len += chunk;
762 			remain -= chunk;
763 			if (moff == m->m_len) {
764 				m = m->m_next;
765 				moff = 0;
766 			}
767 		}
768 
769 		/* Check correct total mbuf length */
770 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
771 		    	("%s: bogus m_pkthdr.len", __func__));
772 	}
773 	return (top);
774 
775 nospace:
776 	m_freem(top);
777 	return (NULL);
778 }
779 
780 /*
781  * Concatenate mbuf chain n to m.
782  * Both chains must be of the same type (e.g. MT_DATA).
783  * Any m_pkthdr is not updated.
784  */
785 void
786 m_cat(struct mbuf *m, struct mbuf *n)
787 {
788 	while (m->m_next)
789 		m = m->m_next;
790 	while (n) {
791 		if (!M_WRITABLE(m) ||
792 		    (n->m_flags & M_EXTPG) != 0 ||
793 		    M_TRAILINGSPACE(m) < n->m_len) {
794 			/* just join the two chains */
795 			m->m_next = n;
796 			return;
797 		}
798 		/* splat the data from one into the other */
799 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
800 		    (u_int)n->m_len);
801 		m->m_len += n->m_len;
802 		n = m_free(n);
803 	}
804 }
805 
806 /*
807  * Concatenate two pkthdr mbuf chains.
808  */
809 void
810 m_catpkt(struct mbuf *m, struct mbuf *n)
811 {
812 
813 	M_ASSERTPKTHDR(m);
814 	M_ASSERTPKTHDR(n);
815 
816 	m->m_pkthdr.len += n->m_pkthdr.len;
817 	m_demote(n, 1, 0);
818 
819 	m_cat(m, n);
820 }
821 
822 void
823 m_adj(struct mbuf *mp, int req_len)
824 {
825 	int len = req_len;
826 	struct mbuf *m;
827 	int count;
828 
829 	if ((m = mp) == NULL)
830 		return;
831 	if (len >= 0) {
832 		/*
833 		 * Trim from head.
834 		 */
835 		while (m != NULL && len > 0) {
836 			if (m->m_len <= len) {
837 				len -= m->m_len;
838 				m->m_len = 0;
839 				m = m->m_next;
840 			} else {
841 				m->m_len -= len;
842 				m->m_data += len;
843 				len = 0;
844 			}
845 		}
846 		if (mp->m_flags & M_PKTHDR)
847 			mp->m_pkthdr.len -= (req_len - len);
848 	} else {
849 		/*
850 		 * Trim from tail.  Scan the mbuf chain,
851 		 * calculating its length and finding the last mbuf.
852 		 * If the adjustment only affects this mbuf, then just
853 		 * adjust and return.  Otherwise, rescan and truncate
854 		 * after the remaining size.
855 		 */
856 		len = -len;
857 		count = 0;
858 		for (;;) {
859 			count += m->m_len;
860 			if (m->m_next == (struct mbuf *)0)
861 				break;
862 			m = m->m_next;
863 		}
864 		if (m->m_len >= len) {
865 			m->m_len -= len;
866 			if (mp->m_flags & M_PKTHDR)
867 				mp->m_pkthdr.len -= len;
868 			return;
869 		}
870 		count -= len;
871 		if (count < 0)
872 			count = 0;
873 		/*
874 		 * Correct length for chain is "count".
875 		 * Find the mbuf with last data, adjust its length,
876 		 * and toss data from remaining mbufs on chain.
877 		 */
878 		m = mp;
879 		if (m->m_flags & M_PKTHDR)
880 			m->m_pkthdr.len = count;
881 		for (; m; m = m->m_next) {
882 			if (m->m_len >= count) {
883 				m->m_len = count;
884 				if (m->m_next != NULL) {
885 					m_freem(m->m_next);
886 					m->m_next = NULL;
887 				}
888 				break;
889 			}
890 			count -= m->m_len;
891 		}
892 	}
893 }
894 
895 void
896 m_adj_decap(struct mbuf *mp, int len)
897 {
898 	uint8_t rsstype;
899 
900 	m_adj(mp, len);
901 	if ((mp->m_flags & M_PKTHDR) != 0) {
902 		/*
903 		 * If flowid was calculated by card from the inner
904 		 * headers, move flowid to the decapsulated mbuf
905 		 * chain, otherwise clear.  This depends on the
906 		 * internals of m_adj, which keeps pkthdr as is, in
907 		 * particular not changing rsstype and flowid.
908 		 */
909 		rsstype = mp->m_pkthdr.rsstype;
910 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
911 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
912 		} else {
913 			M_HASHTYPE_CLEAR(mp);
914 		}
915 	}
916 }
917 
918 /*
919  * Rearange an mbuf chain so that len bytes are contiguous
920  * and in the data area of an mbuf (so that mtod will work
921  * for a structure of size len).  Returns the resulting
922  * mbuf chain on success, frees it and returns null on failure.
923  * If there is room, it will add up to max_protohdr-len extra bytes to the
924  * contiguous region in an attempt to avoid being called next time.
925  */
926 struct mbuf *
927 m_pullup(struct mbuf *n, int len)
928 {
929 	struct mbuf *m;
930 	int count;
931 	int space;
932 
933 	KASSERT((n->m_flags & M_EXTPG) == 0,
934 	    ("%s: unmapped mbuf %p", __func__, n));
935 
936 	/*
937 	 * If first mbuf has no cluster, and has room for len bytes
938 	 * without shifting current data, pullup into it,
939 	 * otherwise allocate a new mbuf to prepend to the chain.
940 	 */
941 	if ((n->m_flags & M_EXT) == 0 &&
942 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
943 		if (n->m_len >= len)
944 			return (n);
945 		m = n;
946 		n = n->m_next;
947 		len -= m->m_len;
948 	} else {
949 		if (len > MHLEN)
950 			goto bad;
951 		m = m_get(M_NOWAIT, n->m_type);
952 		if (m == NULL)
953 			goto bad;
954 		if (n->m_flags & M_PKTHDR)
955 			m_move_pkthdr(m, n);
956 	}
957 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
958 	do {
959 		count = min(min(max(len, max_protohdr), space), n->m_len);
960 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
961 		  (u_int)count);
962 		len -= count;
963 		m->m_len += count;
964 		n->m_len -= count;
965 		space -= count;
966 		if (n->m_len)
967 			n->m_data += count;
968 		else
969 			n = m_free(n);
970 	} while (len > 0 && n);
971 	if (len > 0) {
972 		(void) m_free(m);
973 		goto bad;
974 	}
975 	m->m_next = n;
976 	return (m);
977 bad:
978 	m_freem(n);
979 	return (NULL);
980 }
981 
982 /*
983  * Like m_pullup(), except a new mbuf is always allocated, and we allow
984  * the amount of empty space before the data in the new mbuf to be specified
985  * (in the event that the caller expects to prepend later).
986  */
987 struct mbuf *
988 m_copyup(struct mbuf *n, int len, int dstoff)
989 {
990 	struct mbuf *m;
991 	int count, space;
992 
993 	if (len > (MHLEN - dstoff))
994 		goto bad;
995 	m = m_get(M_NOWAIT, n->m_type);
996 	if (m == NULL)
997 		goto bad;
998 	if (n->m_flags & M_PKTHDR)
999 		m_move_pkthdr(m, n);
1000 	m->m_data += dstoff;
1001 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1002 	do {
1003 		count = min(min(max(len, max_protohdr), space), n->m_len);
1004 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
1005 		    (unsigned)count);
1006 		len -= count;
1007 		m->m_len += count;
1008 		n->m_len -= count;
1009 		space -= count;
1010 		if (n->m_len)
1011 			n->m_data += count;
1012 		else
1013 			n = m_free(n);
1014 	} while (len > 0 && n);
1015 	if (len > 0) {
1016 		(void) m_free(m);
1017 		goto bad;
1018 	}
1019 	m->m_next = n;
1020 	return (m);
1021  bad:
1022 	m_freem(n);
1023 	return (NULL);
1024 }
1025 
1026 /*
1027  * Partition an mbuf chain in two pieces, returning the tail --
1028  * all but the first len0 bytes.  In case of failure, it returns NULL and
1029  * attempts to restore the chain to its original state.
1030  *
1031  * Note that the resulting mbufs might be read-only, because the new
1032  * mbuf can end up sharing an mbuf cluster with the original mbuf if
1033  * the "breaking point" happens to lie within a cluster mbuf. Use the
1034  * M_WRITABLE() macro to check for this case.
1035  */
1036 struct mbuf *
1037 m_split(struct mbuf *m0, int len0, int wait)
1038 {
1039 	struct mbuf *m, *n;
1040 	u_int len = len0, remain;
1041 
1042 	MBUF_CHECKSLEEP(wait);
1043 	for (m = m0; m && len > m->m_len; m = m->m_next)
1044 		len -= m->m_len;
1045 	if (m == NULL)
1046 		return (NULL);
1047 	remain = m->m_len - len;
1048 	if (m0->m_flags & M_PKTHDR && remain == 0) {
1049 		n = m_gethdr(wait, m0->m_type);
1050 		if (n == NULL)
1051 			return (NULL);
1052 		n->m_next = m->m_next;
1053 		m->m_next = NULL;
1054 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1055 			n->m_pkthdr.snd_tag =
1056 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1057 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1058 		} else
1059 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1060 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1061 		m0->m_pkthdr.len = len0;
1062 		return (n);
1063 	} else if (m0->m_flags & M_PKTHDR) {
1064 		n = m_gethdr(wait, m0->m_type);
1065 		if (n == NULL)
1066 			return (NULL);
1067 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1068 			n->m_pkthdr.snd_tag =
1069 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
1070 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
1071 		} else
1072 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1073 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1074 		m0->m_pkthdr.len = len0;
1075 		if (m->m_flags & (M_EXT|M_EXTPG))
1076 			goto extpacket;
1077 		if (remain > MHLEN) {
1078 			/* m can't be the lead packet */
1079 			M_ALIGN(n, 0);
1080 			n->m_next = m_split(m, len, wait);
1081 			if (n->m_next == NULL) {
1082 				(void) m_free(n);
1083 				return (NULL);
1084 			} else {
1085 				n->m_len = 0;
1086 				return (n);
1087 			}
1088 		} else
1089 			M_ALIGN(n, remain);
1090 	} else if (remain == 0) {
1091 		n = m->m_next;
1092 		m->m_next = NULL;
1093 		return (n);
1094 	} else {
1095 		n = m_get(wait, m->m_type);
1096 		if (n == NULL)
1097 			return (NULL);
1098 		M_ALIGN(n, remain);
1099 	}
1100 extpacket:
1101 	if (m->m_flags & (M_EXT|M_EXTPG)) {
1102 		n->m_data = m->m_data + len;
1103 		mb_dupcl(n, m);
1104 	} else {
1105 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
1106 	}
1107 	n->m_len = remain;
1108 	m->m_len = len;
1109 	n->m_next = m->m_next;
1110 	m->m_next = NULL;
1111 	return (n);
1112 }
1113 /*
1114  * Routine to copy from device local memory into mbufs.
1115  * Note that `off' argument is offset into first mbuf of target chain from
1116  * which to begin copying the data to.
1117  */
1118 struct mbuf *
1119 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
1120     void (*copy)(char *from, caddr_t to, u_int len))
1121 {
1122 	struct mbuf *m;
1123 	struct mbuf *top = NULL, **mp = &top;
1124 	int len;
1125 
1126 	if (off < 0 || off > MHLEN)
1127 		return (NULL);
1128 
1129 	while (totlen > 0) {
1130 		if (top == NULL) {	/* First one, must be PKTHDR */
1131 			if (totlen + off >= MINCLSIZE) {
1132 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1133 				len = MCLBYTES;
1134 			} else {
1135 				m = m_gethdr(M_NOWAIT, MT_DATA);
1136 				len = MHLEN;
1137 
1138 				/* Place initial small packet/header at end of mbuf */
1139 				if (m && totlen + off + max_linkhdr <= MHLEN) {
1140 					m->m_data += max_linkhdr;
1141 					len -= max_linkhdr;
1142 				}
1143 			}
1144 			if (m == NULL)
1145 				return NULL;
1146 			m->m_pkthdr.rcvif = ifp;
1147 			m->m_pkthdr.len = totlen;
1148 		} else {
1149 			if (totlen + off >= MINCLSIZE) {
1150 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
1151 				len = MCLBYTES;
1152 			} else {
1153 				m = m_get(M_NOWAIT, MT_DATA);
1154 				len = MLEN;
1155 			}
1156 			if (m == NULL) {
1157 				m_freem(top);
1158 				return NULL;
1159 			}
1160 		}
1161 		if (off) {
1162 			m->m_data += off;
1163 			len -= off;
1164 			off = 0;
1165 		}
1166 		m->m_len = len = min(totlen, len);
1167 		if (copy)
1168 			copy(buf, mtod(m, caddr_t), (u_int)len);
1169 		else
1170 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
1171 		buf += len;
1172 		*mp = m;
1173 		mp = &m->m_next;
1174 		totlen -= len;
1175 	}
1176 	return (top);
1177 }
1178 
1179 static void
1180 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
1181 {
1182 	struct iovec iov;
1183 	struct uio uio;
1184 	int error __diagused;
1185 
1186 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
1187 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
1188 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
1189 	iov.iov_base = __DECONST(caddr_t, cp);
1190 	iov.iov_len = len;
1191 	uio.uio_resid = len;
1192 	uio.uio_iov = &iov;
1193 	uio.uio_segflg = UIO_SYSSPACE;
1194 	uio.uio_iovcnt = 1;
1195 	uio.uio_offset = 0;
1196 	uio.uio_rw = UIO_WRITE;
1197 	error = m_unmapped_uiomove(m, off, &uio, len);
1198 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
1199 	   len));
1200 }
1201 
1202 /*
1203  * Copy data from a buffer back into the indicated mbuf chain,
1204  * starting "off" bytes from the beginning, extending the mbuf
1205  * chain if necessary.
1206  */
1207 void
1208 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
1209 {
1210 	int mlen;
1211 	struct mbuf *m = m0, *n;
1212 	int totlen = 0;
1213 
1214 	if (m0 == NULL)
1215 		return;
1216 	while (off > (mlen = m->m_len)) {
1217 		off -= mlen;
1218 		totlen += mlen;
1219 		if (m->m_next == NULL) {
1220 			n = m_get(M_NOWAIT, m->m_type);
1221 			if (n == NULL)
1222 				goto out;
1223 			bzero(mtod(n, caddr_t), MLEN);
1224 			n->m_len = min(MLEN, len + off);
1225 			m->m_next = n;
1226 		}
1227 		m = m->m_next;
1228 	}
1229 	while (len > 0) {
1230 		if (m->m_next == NULL && (len > m->m_len - off)) {
1231 			m->m_len += min(len - (m->m_len - off),
1232 			    M_TRAILINGSPACE(m));
1233 		}
1234 		mlen = min (m->m_len - off, len);
1235 		if ((m->m_flags & M_EXTPG) != 0)
1236 			m_copytounmapped(m, off, mlen, cp);
1237 		else
1238 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
1239 		cp += mlen;
1240 		len -= mlen;
1241 		mlen += off;
1242 		off = 0;
1243 		totlen += mlen;
1244 		if (len == 0)
1245 			break;
1246 		if (m->m_next == NULL) {
1247 			n = m_get(M_NOWAIT, m->m_type);
1248 			if (n == NULL)
1249 				break;
1250 			n->m_len = min(MLEN, len);
1251 			m->m_next = n;
1252 		}
1253 		m = m->m_next;
1254 	}
1255 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
1256 		m->m_pkthdr.len = totlen;
1257 }
1258 
1259 /*
1260  * Append the specified data to the indicated mbuf chain,
1261  * Extend the mbuf chain if the new data does not fit in
1262  * existing space.
1263  *
1264  * Return 1 if able to complete the job; otherwise 0.
1265  */
1266 int
1267 m_append(struct mbuf *m0, int len, c_caddr_t cp)
1268 {
1269 	struct mbuf *m, *n;
1270 	int remainder, space;
1271 
1272 	for (m = m0; m->m_next != NULL; m = m->m_next)
1273 		;
1274 	remainder = len;
1275 	space = M_TRAILINGSPACE(m);
1276 	if (space > 0) {
1277 		/*
1278 		 * Copy into available space.
1279 		 */
1280 		if (space > remainder)
1281 			space = remainder;
1282 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
1283 		m->m_len += space;
1284 		cp += space, remainder -= space;
1285 	}
1286 	while (remainder > 0) {
1287 		/*
1288 		 * Allocate a new mbuf; could check space
1289 		 * and allocate a cluster instead.
1290 		 */
1291 		n = m_get(M_NOWAIT, m->m_type);
1292 		if (n == NULL)
1293 			break;
1294 		n->m_len = min(MLEN, remainder);
1295 		bcopy(cp, mtod(n, caddr_t), n->m_len);
1296 		cp += n->m_len, remainder -= n->m_len;
1297 		m->m_next = n;
1298 		m = n;
1299 	}
1300 	if (m0->m_flags & M_PKTHDR)
1301 		m0->m_pkthdr.len += len - remainder;
1302 	return (remainder == 0);
1303 }
1304 
1305 static int
1306 m_apply_extpg_one(struct mbuf *m, int off, int len,
1307     int (*f)(void *, void *, u_int), void *arg)
1308 {
1309 	void *p;
1310 	u_int i, count, pgoff, pglen;
1311 	int rval;
1312 
1313 	KASSERT(PMAP_HAS_DMAP,
1314 	    ("m_apply_extpg_one does not support unmapped mbufs"));
1315 	off += mtod(m, vm_offset_t);
1316 	if (off < m->m_epg_hdrlen) {
1317 		count = min(m->m_epg_hdrlen - off, len);
1318 		rval = f(arg, m->m_epg_hdr + off, count);
1319 		if (rval)
1320 			return (rval);
1321 		len -= count;
1322 		off = 0;
1323 	} else
1324 		off -= m->m_epg_hdrlen;
1325 	pgoff = m->m_epg_1st_off;
1326 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
1327 		pglen = m_epg_pagelen(m, i, pgoff);
1328 		if (off < pglen) {
1329 			count = min(pglen - off, len);
1330 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
1331 			rval = f(arg, p, count);
1332 			if (rval)
1333 				return (rval);
1334 			len -= count;
1335 			off = 0;
1336 		} else
1337 			off -= pglen;
1338 		pgoff = 0;
1339 	}
1340 	if (len > 0) {
1341 		KASSERT(off < m->m_epg_trllen,
1342 		    ("m_apply_extpg_one: offset beyond trailer"));
1343 		KASSERT(len <= m->m_epg_trllen - off,
1344 		    ("m_apply_extpg_one: length beyond trailer"));
1345 		return (f(arg, m->m_epg_trail + off, len));
1346 	}
1347 	return (0);
1348 }
1349 
1350 /* Apply function f to the data in a single mbuf. */
1351 static int
1352 m_apply_one(struct mbuf *m, int off, int len,
1353     int (*f)(void *, void *, u_int), void *arg)
1354 {
1355 	if ((m->m_flags & M_EXTPG) != 0)
1356 		return (m_apply_extpg_one(m, off, len, f, arg));
1357 	else
1358 		return (f(arg, mtod(m, caddr_t) + off, len));
1359 }
1360 
1361 /*
1362  * Apply function f to the data in an mbuf chain starting "off" bytes from
1363  * the beginning, continuing for "len" bytes.
1364  */
1365 int
1366 m_apply(struct mbuf *m, int off, int len,
1367     int (*f)(void *, void *, u_int), void *arg)
1368 {
1369 	u_int count;
1370 	int rval;
1371 
1372 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
1373 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
1374 	while (off > 0) {
1375 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1376 		if (off < m->m_len)
1377 			break;
1378 		off -= m->m_len;
1379 		m = m->m_next;
1380 	}
1381 	while (len > 0) {
1382 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain"));
1383 		count = min(m->m_len - off, len);
1384 		rval = m_apply_one(m, off, count, f, arg);
1385 		if (rval)
1386 			return (rval);
1387 		len -= count;
1388 		off = 0;
1389 		m = m->m_next;
1390 	}
1391 	return (0);
1392 }
1393 
1394 /*
1395  * Return a pointer to mbuf/offset of location in mbuf chain.
1396  */
1397 struct mbuf *
1398 m_getptr(struct mbuf *m, int loc, int *off)
1399 {
1400 
1401 	while (loc >= 0) {
1402 		/* Normal end of search. */
1403 		if (m->m_len > loc) {
1404 			*off = loc;
1405 			return (m);
1406 		} else {
1407 			loc -= m->m_len;
1408 			if (m->m_next == NULL) {
1409 				if (loc == 0) {
1410 					/* Point at the end of valid data. */
1411 					*off = m->m_len;
1412 					return (m);
1413 				}
1414 				return (NULL);
1415 			}
1416 			m = m->m_next;
1417 		}
1418 	}
1419 	return (NULL);
1420 }
1421 
1422 void
1423 m_print(const struct mbuf *m, int maxlen)
1424 {
1425 	int len;
1426 	int pdata;
1427 	const struct mbuf *m2;
1428 
1429 	if (m == NULL) {
1430 		printf("mbuf: %p\n", m);
1431 		return;
1432 	}
1433 
1434 	if (m->m_flags & M_PKTHDR)
1435 		len = m->m_pkthdr.len;
1436 	else
1437 		len = -1;
1438 	m2 = m;
1439 	while (m2 != NULL && (len == -1 || len)) {
1440 		pdata = m2->m_len;
1441 		if (maxlen != -1 && pdata > maxlen)
1442 			pdata = maxlen;
1443 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
1444 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
1445 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
1446 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
1447 		if (pdata)
1448 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
1449 		if (len != -1)
1450 			len -= m2->m_len;
1451 		m2 = m2->m_next;
1452 	}
1453 	if (len > 0)
1454 		printf("%d bytes unaccounted for.\n", len);
1455 	return;
1456 }
1457 
1458 u_int
1459 m_fixhdr(struct mbuf *m0)
1460 {
1461 	u_int len;
1462 
1463 	len = m_length(m0, NULL);
1464 	m0->m_pkthdr.len = len;
1465 	return (len);
1466 }
1467 
1468 u_int
1469 m_length(struct mbuf *m0, struct mbuf **last)
1470 {
1471 	struct mbuf *m;
1472 	u_int len;
1473 
1474 	len = 0;
1475 	for (m = m0; m != NULL; m = m->m_next) {
1476 		len += m->m_len;
1477 		if (m->m_next == NULL)
1478 			break;
1479 	}
1480 	if (last != NULL)
1481 		*last = m;
1482 	return (len);
1483 }
1484 
1485 /*
1486  * Defragment a mbuf chain, returning the shortest possible
1487  * chain of mbufs and clusters.  If allocation fails and
1488  * this cannot be completed, NULL will be returned, but
1489  * the passed in chain will be unchanged.  Upon success,
1490  * the original chain will be freed, and the new chain
1491  * will be returned.
1492  *
1493  * If a non-packet header is passed in, the original
1494  * mbuf (chain?) will be returned unharmed.
1495  */
1496 struct mbuf *
1497 m_defrag(struct mbuf *m0, int how)
1498 {
1499 	struct mbuf *m_new = NULL, *m_final = NULL;
1500 	int progress = 0, length;
1501 
1502 	MBUF_CHECKSLEEP(how);
1503 	if (!(m0->m_flags & M_PKTHDR))
1504 		return (m0);
1505 
1506 	m_fixhdr(m0); /* Needed sanity check */
1507 
1508 #ifdef MBUF_STRESS_TEST
1509 	if (m_defragrandomfailures) {
1510 		int temp = arc4random() & 0xff;
1511 		if (temp == 0xba)
1512 			goto nospace;
1513 	}
1514 #endif
1515 
1516 	if (m0->m_pkthdr.len > MHLEN)
1517 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
1518 	else
1519 		m_final = m_gethdr(how, MT_DATA);
1520 
1521 	if (m_final == NULL)
1522 		goto nospace;
1523 
1524 	if (m_dup_pkthdr(m_final, m0, how) == 0)
1525 		goto nospace;
1526 
1527 	m_new = m_final;
1528 
1529 	while (progress < m0->m_pkthdr.len) {
1530 		length = m0->m_pkthdr.len - progress;
1531 		if (length > MCLBYTES)
1532 			length = MCLBYTES;
1533 
1534 		if (m_new == NULL) {
1535 			if (length > MLEN)
1536 				m_new = m_getcl(how, MT_DATA, 0);
1537 			else
1538 				m_new = m_get(how, MT_DATA);
1539 			if (m_new == NULL)
1540 				goto nospace;
1541 		}
1542 
1543 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
1544 		progress += length;
1545 		m_new->m_len = length;
1546 		if (m_new != m_final)
1547 			m_cat(m_final, m_new);
1548 		m_new = NULL;
1549 	}
1550 #ifdef MBUF_STRESS_TEST
1551 	if (m0->m_next == NULL)
1552 		m_defraguseless++;
1553 #endif
1554 	m_freem(m0);
1555 	m0 = m_final;
1556 #ifdef MBUF_STRESS_TEST
1557 	m_defragpackets++;
1558 	m_defragbytes += m0->m_pkthdr.len;
1559 #endif
1560 	return (m0);
1561 nospace:
1562 #ifdef MBUF_STRESS_TEST
1563 	m_defragfailure++;
1564 #endif
1565 	if (m_final)
1566 		m_freem(m_final);
1567 	return (NULL);
1568 }
1569 
1570 /*
1571  * Return the number of fragments an mbuf will use.  This is usually
1572  * used as a proxy for the number of scatter/gather elements needed by
1573  * a DMA engine to access an mbuf.  In general mapped mbufs are
1574  * assumed to be backed by physically contiguous buffers that only
1575  * need a single fragment.  Unmapped mbufs, on the other hand, can
1576  * span disjoint physical pages.
1577  */
1578 static int
1579 frags_per_mbuf(struct mbuf *m)
1580 {
1581 	int frags;
1582 
1583 	if ((m->m_flags & M_EXTPG) == 0)
1584 		return (1);
1585 
1586 	/*
1587 	 * The header and trailer are counted as a single fragment
1588 	 * each when present.
1589 	 *
1590 	 * XXX: This overestimates the number of fragments by assuming
1591 	 * all the backing physical pages are disjoint.
1592 	 */
1593 	frags = 0;
1594 	if (m->m_epg_hdrlen != 0)
1595 		frags++;
1596 	frags += m->m_epg_npgs;
1597 	if (m->m_epg_trllen != 0)
1598 		frags++;
1599 
1600 	return (frags);
1601 }
1602 
1603 /*
1604  * Defragment an mbuf chain, returning at most maxfrags separate
1605  * mbufs+clusters.  If this is not possible NULL is returned and
1606  * the original mbuf chain is left in its present (potentially
1607  * modified) state.  We use two techniques: collapsing consecutive
1608  * mbufs and replacing consecutive mbufs by a cluster.
1609  *
1610  * NB: this should really be named m_defrag but that name is taken
1611  */
1612 struct mbuf *
1613 m_collapse(struct mbuf *m0, int how, int maxfrags)
1614 {
1615 	struct mbuf *m, *n, *n2, **prev;
1616 	u_int curfrags;
1617 
1618 	/*
1619 	 * Calculate the current number of frags.
1620 	 */
1621 	curfrags = 0;
1622 	for (m = m0; m != NULL; m = m->m_next)
1623 		curfrags += frags_per_mbuf(m);
1624 	/*
1625 	 * First, try to collapse mbufs.  Note that we always collapse
1626 	 * towards the front so we don't need to deal with moving the
1627 	 * pkthdr.  This may be suboptimal if the first mbuf has much
1628 	 * less data than the following.
1629 	 */
1630 	m = m0;
1631 again:
1632 	for (;;) {
1633 		n = m->m_next;
1634 		if (n == NULL)
1635 			break;
1636 		if (M_WRITABLE(m) &&
1637 		    n->m_len < M_TRAILINGSPACE(m)) {
1638 			m_copydata(n, 0, n->m_len,
1639 			    mtod(m, char *) + m->m_len);
1640 			m->m_len += n->m_len;
1641 			m->m_next = n->m_next;
1642 			curfrags -= frags_per_mbuf(n);
1643 			m_free(n);
1644 			if (curfrags <= maxfrags)
1645 				return m0;
1646 		} else
1647 			m = n;
1648 	}
1649 	KASSERT(maxfrags > 1,
1650 		("maxfrags %u, but normal collapse failed", maxfrags));
1651 	/*
1652 	 * Collapse consecutive mbufs to a cluster.
1653 	 */
1654 	prev = &m0->m_next;		/* NB: not the first mbuf */
1655 	while ((n = *prev) != NULL) {
1656 		if ((n2 = n->m_next) != NULL &&
1657 		    n->m_len + n2->m_len < MCLBYTES) {
1658 			m = m_getcl(how, MT_DATA, 0);
1659 			if (m == NULL)
1660 				goto bad;
1661 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
1662 			m_copydata(n2, 0,  n2->m_len,
1663 			    mtod(m, char *) + n->m_len);
1664 			m->m_len = n->m_len + n2->m_len;
1665 			m->m_next = n2->m_next;
1666 			*prev = m;
1667 			curfrags += 1;  /* For the new cluster */
1668 			curfrags -= frags_per_mbuf(n);
1669 			curfrags -= frags_per_mbuf(n2);
1670 			m_free(n);
1671 			m_free(n2);
1672 			if (curfrags <= maxfrags)
1673 				return m0;
1674 			/*
1675 			 * Still not there, try the normal collapse
1676 			 * again before we allocate another cluster.
1677 			 */
1678 			goto again;
1679 		}
1680 		prev = &n->m_next;
1681 	}
1682 	/*
1683 	 * No place where we can collapse to a cluster; punt.
1684 	 * This can occur if, for example, you request 2 frags
1685 	 * but the packet requires that both be clusters (we
1686 	 * never reallocate the first mbuf to avoid moving the
1687 	 * packet header).
1688 	 */
1689 bad:
1690 	return NULL;
1691 }
1692 
1693 #ifdef MBUF_STRESS_TEST
1694 
1695 /*
1696  * Fragment an mbuf chain.  There's no reason you'd ever want to do
1697  * this in normal usage, but it's great for stress testing various
1698  * mbuf consumers.
1699  *
1700  * If fragmentation is not possible, the original chain will be
1701  * returned.
1702  *
1703  * Possible length values:
1704  * 0	 no fragmentation will occur
1705  * > 0	each fragment will be of the specified length
1706  * -1	each fragment will be the same random value in length
1707  * -2	each fragment's length will be entirely random
1708  * (Random values range from 1 to 256)
1709  */
1710 struct mbuf *
1711 m_fragment(struct mbuf *m0, int how, int length)
1712 {
1713 	struct mbuf *m_first, *m_last;
1714 	int divisor = 255, progress = 0, fraglen;
1715 
1716 	if (!(m0->m_flags & M_PKTHDR))
1717 		return (m0);
1718 
1719 	if (length == 0 || length < -2)
1720 		return (m0);
1721 	if (length > MCLBYTES)
1722 		length = MCLBYTES;
1723 	if (length < 0 && divisor > MCLBYTES)
1724 		divisor = MCLBYTES;
1725 	if (length == -1)
1726 		length = 1 + (arc4random() % divisor);
1727 	if (length > 0)
1728 		fraglen = length;
1729 
1730 	m_fixhdr(m0); /* Needed sanity check */
1731 
1732 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
1733 	if (m_first == NULL)
1734 		goto nospace;
1735 
1736 	if (m_dup_pkthdr(m_first, m0, how) == 0)
1737 		goto nospace;
1738 
1739 	m_last = m_first;
1740 
1741 	while (progress < m0->m_pkthdr.len) {
1742 		if (length == -2)
1743 			fraglen = 1 + (arc4random() % divisor);
1744 		if (fraglen > m0->m_pkthdr.len - progress)
1745 			fraglen = m0->m_pkthdr.len - progress;
1746 
1747 		if (progress != 0) {
1748 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
1749 			if (m_new == NULL)
1750 				goto nospace;
1751 
1752 			m_last->m_next = m_new;
1753 			m_last = m_new;
1754 		}
1755 
1756 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
1757 		progress += fraglen;
1758 		m_last->m_len = fraglen;
1759 	}
1760 	m_freem(m0);
1761 	m0 = m_first;
1762 	return (m0);
1763 nospace:
1764 	if (m_first)
1765 		m_freem(m_first);
1766 	/* Return the original chain on failure */
1767 	return (m0);
1768 }
1769 
1770 #endif
1771 
1772 /*
1773  * Free pages from mbuf_ext_pgs, assuming they were allocated via
1774  * vm_page_alloc() and aren't associated with any object.  Complement
1775  * to allocator from m_uiotombuf_nomap().
1776  */
1777 void
1778 mb_free_mext_pgs(struct mbuf *m)
1779 {
1780 	vm_page_t pg;
1781 
1782 	M_ASSERTEXTPG(m);
1783 	for (int i = 0; i < m->m_epg_npgs; i++) {
1784 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1785 		vm_page_unwire_noq(pg);
1786 		vm_page_free(pg);
1787 	}
1788 }
1789 
1790 static struct mbuf *
1791 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
1792 {
1793 	struct mbuf *m, *mb, *prev;
1794 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
1795 	int error, length, i, needed;
1796 	ssize_t total;
1797 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
1798 
1799 	MPASS((flags & M_PKTHDR) == 0);
1800 	MPASS((how & M_ZERO) == 0);
1801 
1802 	/*
1803 	 * len can be zero or an arbitrary large value bound by
1804 	 * the total data supplied by the uio.
1805 	 */
1806 	if (len > 0)
1807 		total = MIN(uio->uio_resid, len);
1808 	else
1809 		total = uio->uio_resid;
1810 
1811 	if (maxseg == 0)
1812 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
1813 
1814 	/*
1815 	 * If total is zero, return an empty mbuf.  This can occur
1816 	 * for TLS 1.0 connections which send empty fragments as
1817 	 * a countermeasure against the known-IV weakness in CBC
1818 	 * ciphersuites.
1819 	 */
1820 	if (__predict_false(total == 0)) {
1821 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1822 		if (mb == NULL)
1823 			return (NULL);
1824 		mb->m_epg_flags = EPG_FLAG_ANON;
1825 		return (mb);
1826 	}
1827 
1828 	/*
1829 	 * Allocate the pages
1830 	 */
1831 	m = NULL;
1832 	while (total > 0) {
1833 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
1834 		if (mb == NULL)
1835 			goto failed;
1836 		if (m == NULL)
1837 			m = mb;
1838 		else
1839 			prev->m_next = mb;
1840 		prev = mb;
1841 		mb->m_epg_flags = EPG_FLAG_ANON;
1842 		needed = length = MIN(maxseg, total);
1843 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
1844 retry_page:
1845 			pg_array[i] = vm_page_alloc_noobj(pflags);
1846 			if (pg_array[i] == NULL) {
1847 				if (how & M_NOWAIT) {
1848 					goto failed;
1849 				} else {
1850 					vm_wait(NULL);
1851 					goto retry_page;
1852 				}
1853 			}
1854 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
1855 			mb->m_epg_npgs++;
1856 		}
1857 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
1858 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
1859 		total -= length;
1860 		error = uiomove_fromphys(pg_array, 0, length, uio);
1861 		if (error != 0)
1862 			goto failed;
1863 		mb->m_len = length;
1864 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
1865 		if (flags & M_PKTHDR)
1866 			m->m_pkthdr.len += length;
1867 	}
1868 	return (m);
1869 
1870 failed:
1871 	m_freem(m);
1872 	return (NULL);
1873 }
1874 
1875 /*
1876  * Copy the contents of uio into a properly sized mbuf chain.
1877  */
1878 struct mbuf *
1879 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags)
1880 {
1881 	struct mbuf *m, *mb;
1882 	int error, length;
1883 	ssize_t total;
1884 	int progress = 0;
1885 
1886 	if (flags & M_EXTPG)
1887 		return (m_uiotombuf_nomap(uio, how, len, align, flags));
1888 
1889 	/*
1890 	 * len can be zero or an arbitrary large value bound by
1891 	 * the total data supplied by the uio.
1892 	 */
1893 	if (len > 0)
1894 		total = (uio->uio_resid < len) ? uio->uio_resid : len;
1895 	else
1896 		total = uio->uio_resid;
1897 
1898 	/*
1899 	 * The smallest unit returned by m_getm2() is a single mbuf
1900 	 * with pkthdr.  We can't align past it.
1901 	 */
1902 	if (align >= MHLEN)
1903 		return (NULL);
1904 
1905 	/*
1906 	 * Give us the full allocation or nothing.
1907 	 * If len is zero return the smallest empty mbuf.
1908 	 */
1909 	m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags);
1910 	if (m == NULL)
1911 		return (NULL);
1912 	m->m_data += align;
1913 
1914 	/* Fill all mbufs with uio data and update header information. */
1915 	for (mb = m; mb != NULL; mb = mb->m_next) {
1916 		length = min(M_TRAILINGSPACE(mb), total - progress);
1917 
1918 		error = uiomove(mtod(mb, void *), length, uio);
1919 		if (error) {
1920 			m_freem(m);
1921 			return (NULL);
1922 		}
1923 
1924 		mb->m_len = length;
1925 		progress += length;
1926 		if (flags & M_PKTHDR) {
1927 			m->m_pkthdr.len += length;
1928 			m->m_pkthdr.memlen += MSIZE;
1929 			if (mb->m_flags & M_EXT)
1930 				m->m_pkthdr.memlen += mb->m_ext.ext_size;
1931 		}
1932 	}
1933 	KASSERT(progress == total, ("%s: progress != total", __func__));
1934 
1935 	return (m);
1936 }
1937 
1938 /*
1939  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
1940  */
1941 int
1942 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
1943 {
1944 	vm_page_t pg;
1945 	int error, i, off, pglen, pgoff, seglen, segoff;
1946 
1947 	M_ASSERTEXTPG(m);
1948 	error = 0;
1949 
1950 	/* Skip over any data removed from the front. */
1951 	off = mtod(m, vm_offset_t);
1952 
1953 	off += m_off;
1954 	if (m->m_epg_hdrlen != 0) {
1955 		if (off >= m->m_epg_hdrlen) {
1956 			off -= m->m_epg_hdrlen;
1957 		} else {
1958 			seglen = m->m_epg_hdrlen - off;
1959 			segoff = off;
1960 			seglen = min(seglen, len);
1961 			off = 0;
1962 			len -= seglen;
1963 			error = uiomove(__DECONST(void *,
1964 			    &m->m_epg_hdr[segoff]), seglen, uio);
1965 		}
1966 	}
1967 	pgoff = m->m_epg_1st_off;
1968 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
1969 		pglen = m_epg_pagelen(m, i, pgoff);
1970 		if (off >= pglen) {
1971 			off -= pglen;
1972 			pgoff = 0;
1973 			continue;
1974 		}
1975 		seglen = pglen - off;
1976 		segoff = pgoff + off;
1977 		off = 0;
1978 		seglen = min(seglen, len);
1979 		len -= seglen;
1980 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
1981 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
1982 		pgoff = 0;
1983 	};
1984 	if (len != 0 && error == 0) {
1985 		KASSERT((off + len) <= m->m_epg_trllen,
1986 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
1987 		    m->m_epg_trllen, m_off));
1988 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
1989 		    len, uio);
1990 	}
1991 	return (error);
1992 }
1993 
1994 /*
1995  * Copy an mbuf chain into a uio limited by len if set.
1996  */
1997 int
1998 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
1999 {
2000 	int error, length, total;
2001 	int progress = 0;
2002 
2003 	if (len > 0)
2004 		total = min(uio->uio_resid, len);
2005 	else
2006 		total = uio->uio_resid;
2007 
2008 	/* Fill the uio with data from the mbufs. */
2009 	for (; m != NULL; m = m->m_next) {
2010 		length = min(m->m_len, total - progress);
2011 
2012 		if ((m->m_flags & M_EXTPG) != 0)
2013 			error = m_unmapped_uiomove(m, 0, uio, length);
2014 		else
2015 			error = uiomove(mtod(m, void *), length, uio);
2016 		if (error)
2017 			return (error);
2018 
2019 		progress += length;
2020 	}
2021 
2022 	return (0);
2023 }
2024 
2025 /*
2026  * Create a writable copy of the mbuf chain.  While doing this
2027  * we compact the chain with a goal of producing a chain with
2028  * at most two mbufs.  The second mbuf in this chain is likely
2029  * to be a cluster.  The primary purpose of this work is to create
2030  * a writable packet for encryption, compression, etc.  The
2031  * secondary goal is to linearize the data so the data can be
2032  * passed to crypto hardware in the most efficient manner possible.
2033  */
2034 struct mbuf *
2035 m_unshare(struct mbuf *m0, int how)
2036 {
2037 	struct mbuf *m, *mprev;
2038 	struct mbuf *n, *mfirst, *mlast;
2039 	int len, off;
2040 
2041 	mprev = NULL;
2042 	for (m = m0; m != NULL; m = mprev->m_next) {
2043 		/*
2044 		 * Regular mbufs are ignored unless there's a cluster
2045 		 * in front of it that we can use to coalesce.  We do
2046 		 * the latter mainly so later clusters can be coalesced
2047 		 * also w/o having to handle them specially (i.e. convert
2048 		 * mbuf+cluster -> cluster).  This optimization is heavily
2049 		 * influenced by the assumption that we're running over
2050 		 * Ethernet where MCLBYTES is large enough that the max
2051 		 * packet size will permit lots of coalescing into a
2052 		 * single cluster.  This in turn permits efficient
2053 		 * crypto operations, especially when using hardware.
2054 		 */
2055 		if ((m->m_flags & M_EXT) == 0) {
2056 			if (mprev && (mprev->m_flags & M_EXT) &&
2057 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
2058 				/* XXX: this ignores mbuf types */
2059 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2060 				    mtod(m, caddr_t), m->m_len);
2061 				mprev->m_len += m->m_len;
2062 				mprev->m_next = m->m_next;	/* unlink from chain */
2063 				m_free(m);			/* reclaim mbuf */
2064 			} else {
2065 				mprev = m;
2066 			}
2067 			continue;
2068 		}
2069 		/*
2070 		 * Writable mbufs are left alone (for now).
2071 		 */
2072 		if (M_WRITABLE(m)) {
2073 			mprev = m;
2074 			continue;
2075 		}
2076 
2077 		/*
2078 		 * Not writable, replace with a copy or coalesce with
2079 		 * the previous mbuf if possible (since we have to copy
2080 		 * it anyway, we try to reduce the number of mbufs and
2081 		 * clusters so that future work is easier).
2082 		 */
2083 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
2084 		/* NB: we only coalesce into a cluster or larger */
2085 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
2086 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
2087 			/* XXX: this ignores mbuf types */
2088 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
2089 			    mtod(m, caddr_t), m->m_len);
2090 			mprev->m_len += m->m_len;
2091 			mprev->m_next = m->m_next;	/* unlink from chain */
2092 			m_free(m);			/* reclaim mbuf */
2093 			continue;
2094 		}
2095 
2096 		/*
2097 		 * Allocate new space to hold the copy and copy the data.
2098 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
2099 		 * splitting them into clusters.  We could just malloc a
2100 		 * buffer and make it external but too many device drivers
2101 		 * don't know how to break up the non-contiguous memory when
2102 		 * doing DMA.
2103 		 */
2104 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2105 		if (n == NULL) {
2106 			m_freem(m0);
2107 			return (NULL);
2108 		}
2109 		if (m->m_flags & M_PKTHDR) {
2110 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
2111 			    __func__, m0, m));
2112 			m_move_pkthdr(n, m);
2113 		}
2114 		len = m->m_len;
2115 		off = 0;
2116 		mfirst = n;
2117 		mlast = NULL;
2118 		for (;;) {
2119 			int cc = min(len, MCLBYTES);
2120 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
2121 			n->m_len = cc;
2122 			if (mlast != NULL)
2123 				mlast->m_next = n;
2124 			mlast = n;
2125 #if 0
2126 			newipsecstat.ips_clcopied++;
2127 #endif
2128 
2129 			len -= cc;
2130 			if (len <= 0)
2131 				break;
2132 			off += cc;
2133 
2134 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
2135 			if (n == NULL) {
2136 				m_freem(mfirst);
2137 				m_freem(m0);
2138 				return (NULL);
2139 			}
2140 		}
2141 		n->m_next = m->m_next;
2142 		if (mprev == NULL)
2143 			m0 = mfirst;		/* new head of chain */
2144 		else
2145 			mprev->m_next = mfirst;	/* replace old mbuf */
2146 		m_free(m);			/* release old mbuf */
2147 		mprev = mfirst;
2148 	}
2149 	return (m0);
2150 }
2151 
2152 #ifdef MBUF_PROFILING
2153 
2154 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
2155 struct mbufprofile {
2156 	uintmax_t wasted[MP_BUCKETS];
2157 	uintmax_t used[MP_BUCKETS];
2158 	uintmax_t segments[MP_BUCKETS];
2159 } mbprof;
2160 
2161 void
2162 m_profile(struct mbuf *m)
2163 {
2164 	int segments = 0;
2165 	int used = 0;
2166 	int wasted = 0;
2167 
2168 	while (m) {
2169 		segments++;
2170 		used += m->m_len;
2171 		if (m->m_flags & M_EXT) {
2172 			wasted += MHLEN - sizeof(m->m_ext) +
2173 			    m->m_ext.ext_size - m->m_len;
2174 		} else {
2175 			if (m->m_flags & M_PKTHDR)
2176 				wasted += MHLEN - m->m_len;
2177 			else
2178 				wasted += MLEN - m->m_len;
2179 		}
2180 		m = m->m_next;
2181 	}
2182 	/* be paranoid.. it helps */
2183 	if (segments > MP_BUCKETS - 1)
2184 		segments = MP_BUCKETS - 1;
2185 	if (used > 100000)
2186 		used = 100000;
2187 	if (wasted > 100000)
2188 		wasted = 100000;
2189 	/* store in the appropriate bucket */
2190 	/* don't bother locking. if it's slightly off, so what? */
2191 	mbprof.segments[segments]++;
2192 	mbprof.used[fls(used)]++;
2193 	mbprof.wasted[fls(wasted)]++;
2194 }
2195 
2196 static int
2197 mbprof_handler(SYSCTL_HANDLER_ARGS)
2198 {
2199 	char buf[256];
2200 	struct sbuf sb;
2201 	int error;
2202 	uint64_t *p;
2203 
2204 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
2205 
2206 	p = &mbprof.wasted[0];
2207 	sbuf_printf(&sb,
2208 	    "wasted:\n"
2209 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2210 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2211 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2212 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2213 #ifdef BIG_ARRAY
2214 	p = &mbprof.wasted[16];
2215 	sbuf_printf(&sb,
2216 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2217 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2218 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2219 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2220 #endif
2221 	p = &mbprof.used[0];
2222 	sbuf_printf(&sb,
2223 	    "used:\n"
2224 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2225 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2226 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2227 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2228 #ifdef BIG_ARRAY
2229 	p = &mbprof.used[16];
2230 	sbuf_printf(&sb,
2231 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2232 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2233 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2234 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2235 #endif
2236 	p = &mbprof.segments[0];
2237 	sbuf_printf(&sb,
2238 	    "segments:\n"
2239 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2240 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
2241 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2242 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2243 #ifdef BIG_ARRAY
2244 	p = &mbprof.segments[16];
2245 	sbuf_printf(&sb,
2246 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
2247 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
2248 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
2249 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
2250 #endif
2251 
2252 	error = sbuf_finish(&sb);
2253 	sbuf_delete(&sb);
2254 	return (error);
2255 }
2256 
2257 static int
2258 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
2259 {
2260 	int clear, error;
2261 
2262 	clear = 0;
2263 	error = sysctl_handle_int(oidp, &clear, 0, req);
2264 	if (error || !req->newptr)
2265 		return (error);
2266 
2267 	if (clear) {
2268 		bzero(&mbprof, sizeof(mbprof));
2269 	}
2270 
2271 	return (error);
2272 }
2273 
2274 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
2275     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
2276     mbprof_handler, "A",
2277     "mbuf profiling statistics");
2278 
2279 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
2280     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
2281     mbprof_clr_handler, "I",
2282     "clear mbuf profiling statistics");
2283 #endif
2284