1 /*- 2 * Copyright (c) 1982, 1986, 1988, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_param.h" 36 #include "opt_mbuf_stress_test.h" 37 #include "opt_mbuf_profiling.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/sysctl.h> 47 #include <sys/domain.h> 48 #include <sys/protosw.h> 49 #include <sys/uio.h> 50 51 int max_linkhdr; 52 int max_protohdr; 53 int max_hdr; 54 int max_datalen; 55 #ifdef MBUF_STRESS_TEST 56 int m_defragpackets; 57 int m_defragbytes; 58 int m_defraguseless; 59 int m_defragfailure; 60 int m_defragrandomfailures; 61 #endif 62 63 /* 64 * sysctl(8) exported objects 65 */ 66 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 67 &max_linkhdr, 0, "Size of largest link layer header"); 68 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 69 &max_protohdr, 0, "Size of largest protocol layer header"); 70 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 71 &max_hdr, 0, "Size of largest link plus protocol header"); 72 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 73 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 74 #ifdef MBUF_STRESS_TEST 75 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 76 &m_defragpackets, 0, ""); 77 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 78 &m_defragbytes, 0, ""); 79 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 80 &m_defraguseless, 0, ""); 81 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 82 &m_defragfailure, 0, ""); 83 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 84 &m_defragrandomfailures, 0, ""); 85 #endif 86 87 /* 88 * Ensure the correct size of various mbuf parameters. It could be off due 89 * to compiler-induced padding and alignment artifacts. 90 */ 91 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 92 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 93 94 /* 95 * mbuf data storage should be 64-bit aligned regardless of architectural 96 * pointer size; check this is the case with and without a packet header. 97 */ 98 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 99 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 100 101 /* 102 * While the specific values here don't matter too much (i.e., +/- a few 103 * words), we do want to ensure that changes to these values are carefully 104 * reasoned about and properly documented. This is especially the case as 105 * network-protocol and device-driver modules encode these layouts, and must 106 * be recompiled if the structures change. Check these values at compile time 107 * against the ones documented in comments in mbuf.h. 108 * 109 * NB: Possibly they should be documented there via #define's and not just 110 * comments. 111 */ 112 #if defined(__LP64__) 113 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 114 CTASSERT(sizeof(struct pkthdr) == 56); 115 CTASSERT(sizeof(struct m_ext) == 48); 116 #else 117 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 118 CTASSERT(sizeof(struct pkthdr) == 48); 119 CTASSERT(sizeof(struct m_ext) == 28); 120 #endif 121 122 /* 123 * Assert that the queue(3) macros produce code of the same size as an old 124 * plain pointer does. 125 */ 126 #ifdef INVARIANTS 127 static struct mbuf m_assertbuf; 128 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 129 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 130 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 131 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 132 #endif 133 134 /* 135 * m_get2() allocates minimum mbuf that would fit "size" argument. 136 */ 137 struct mbuf * 138 m_get2(int size, int how, short type, int flags) 139 { 140 struct mb_args args; 141 struct mbuf *m, *n; 142 143 args.flags = flags; 144 args.type = type; 145 146 if (size <= MHLEN || (size <= MLEN && (flags & M_PKTHDR) == 0)) 147 return (uma_zalloc_arg(zone_mbuf, &args, how)); 148 if (size <= MCLBYTES) 149 return (uma_zalloc_arg(zone_pack, &args, how)); 150 151 if (size > MJUMPAGESIZE) 152 return (NULL); 153 154 m = uma_zalloc_arg(zone_mbuf, &args, how); 155 if (m == NULL) 156 return (NULL); 157 158 n = uma_zalloc_arg(zone_jumbop, m, how); 159 if (n == NULL) { 160 uma_zfree(zone_mbuf, m); 161 return (NULL); 162 } 163 164 return (m); 165 } 166 167 /* 168 * m_getjcl() returns an mbuf with a cluster of the specified size attached. 169 * For size it takes MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, MJUM16BYTES. 170 */ 171 struct mbuf * 172 m_getjcl(int how, short type, int flags, int size) 173 { 174 struct mb_args args; 175 struct mbuf *m, *n; 176 uma_zone_t zone; 177 178 if (size == MCLBYTES) 179 return m_getcl(how, type, flags); 180 181 args.flags = flags; 182 args.type = type; 183 184 m = uma_zalloc_arg(zone_mbuf, &args, how); 185 if (m == NULL) 186 return (NULL); 187 188 zone = m_getzone(size); 189 n = uma_zalloc_arg(zone, m, how); 190 if (n == NULL) { 191 uma_zfree(zone_mbuf, m); 192 return (NULL); 193 } 194 return (m); 195 } 196 197 /* 198 * Allocate a given length worth of mbufs and/or clusters (whatever fits 199 * best) and return a pointer to the top of the allocated chain. If an 200 * existing mbuf chain is provided, then we will append the new chain 201 * to the existing one but still return the top of the newly allocated 202 * chain. 203 */ 204 struct mbuf * 205 m_getm2(struct mbuf *m, int len, int how, short type, int flags) 206 { 207 struct mbuf *mb, *nm = NULL, *mtail = NULL; 208 209 KASSERT(len >= 0, ("%s: len is < 0", __func__)); 210 211 /* Validate flags. */ 212 flags &= (M_PKTHDR | M_EOR); 213 214 /* Packet header mbuf must be first in chain. */ 215 if ((flags & M_PKTHDR) && m != NULL) 216 flags &= ~M_PKTHDR; 217 218 /* Loop and append maximum sized mbufs to the chain tail. */ 219 while (len > 0) { 220 if (len > MCLBYTES) 221 mb = m_getjcl(how, type, (flags & M_PKTHDR), 222 MJUMPAGESIZE); 223 else if (len >= MINCLSIZE) 224 mb = m_getcl(how, type, (flags & M_PKTHDR)); 225 else if (flags & M_PKTHDR) 226 mb = m_gethdr(how, type); 227 else 228 mb = m_get(how, type); 229 230 /* Fail the whole operation if one mbuf can't be allocated. */ 231 if (mb == NULL) { 232 if (nm != NULL) 233 m_freem(nm); 234 return (NULL); 235 } 236 237 /* Book keeping. */ 238 len -= M_SIZE(mb); 239 if (mtail != NULL) 240 mtail->m_next = mb; 241 else 242 nm = mb; 243 mtail = mb; 244 flags &= ~M_PKTHDR; /* Only valid on the first mbuf. */ 245 } 246 if (flags & M_EOR) 247 mtail->m_flags |= M_EOR; /* Only valid on the last mbuf. */ 248 249 /* If mbuf was supplied, append new chain to the end of it. */ 250 if (m != NULL) { 251 for (mtail = m; mtail->m_next != NULL; mtail = mtail->m_next) 252 ; 253 mtail->m_next = nm; 254 mtail->m_flags &= ~M_EOR; 255 } else 256 m = nm; 257 258 return (m); 259 } 260 261 /* 262 * Free an entire chain of mbufs and associated external buffers, if 263 * applicable. 264 */ 265 void 266 m_freem(struct mbuf *mb) 267 { 268 269 while (mb != NULL) 270 mb = m_free(mb); 271 } 272 273 /*- 274 * Configure a provided mbuf to refer to the provided external storage 275 * buffer and setup a reference count for said buffer. If the setting 276 * up of the reference count fails, the M_EXT bit will not be set. If 277 * successfull, the M_EXT bit is set in the mbuf's flags. 278 * 279 * Arguments: 280 * mb The existing mbuf to which to attach the provided buffer. 281 * buf The address of the provided external storage buffer. 282 * size The size of the provided buffer. 283 * freef A pointer to a routine that is responsible for freeing the 284 * provided external storage buffer. 285 * args A pointer to an argument structure (of any type) to be passed 286 * to the provided freef routine (may be NULL). 287 * flags Any other flags to be passed to the provided mbuf. 288 * type The type that the external storage buffer should be 289 * labeled with. 290 * 291 * Returns: 292 * Nothing. 293 */ 294 int 295 m_extadd(struct mbuf *mb, caddr_t buf, u_int size, 296 void (*freef)(struct mbuf *, void *, void *), void *arg1, void *arg2, 297 int flags, int type, int wait) 298 { 299 KASSERT(type != EXT_CLUSTER, ("%s: EXT_CLUSTER not allowed", __func__)); 300 301 if (type != EXT_EXTREF) 302 mb->m_ext.ext_cnt = uma_zalloc(zone_ext_refcnt, wait); 303 304 if (mb->m_ext.ext_cnt == NULL) 305 return (ENOMEM); 306 307 *(mb->m_ext.ext_cnt) = 1; 308 mb->m_flags |= (M_EXT | flags); 309 mb->m_ext.ext_buf = buf; 310 mb->m_data = mb->m_ext.ext_buf; 311 mb->m_ext.ext_size = size; 312 mb->m_ext.ext_free = freef; 313 mb->m_ext.ext_arg1 = arg1; 314 mb->m_ext.ext_arg2 = arg2; 315 mb->m_ext.ext_type = type; 316 mb->m_ext.ext_flags = 0; 317 318 return (0); 319 } 320 321 /* 322 * Non-directly-exported function to clean up after mbufs with M_EXT 323 * storage attached to them if the reference count hits 1. 324 */ 325 void 326 mb_free_ext(struct mbuf *m) 327 { 328 int freembuf; 329 330 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 331 332 /* 333 * Check if the header is embedded in the cluster. 334 */ 335 freembuf = (m->m_flags & M_NOFREE) ? 0 : 1; 336 337 switch (m->m_ext.ext_type) { 338 case EXT_SFBUF: 339 sf_ext_free(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 340 break; 341 case EXT_SFBUF_NOCACHE: 342 sf_ext_free_nocache(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 343 break; 344 default: 345 KASSERT(m->m_ext.ext_cnt != NULL, 346 ("%s: no refcounting pointer on %p", __func__, m)); 347 /* 348 * Free attached storage if this mbuf is the only 349 * reference to it. 350 */ 351 if (*(m->m_ext.ext_cnt) != 1) { 352 if (atomic_fetchadd_int(m->m_ext.ext_cnt, -1) != 1) 353 break; 354 } 355 356 switch (m->m_ext.ext_type) { 357 case EXT_PACKET: /* The packet zone is special. */ 358 if (*(m->m_ext.ext_cnt) == 0) 359 *(m->m_ext.ext_cnt) = 1; 360 uma_zfree(zone_pack, m); 361 return; /* Job done. */ 362 case EXT_CLUSTER: 363 uma_zfree(zone_clust, m->m_ext.ext_buf); 364 break; 365 case EXT_JUMBOP: 366 uma_zfree(zone_jumbop, m->m_ext.ext_buf); 367 break; 368 case EXT_JUMBO9: 369 uma_zfree(zone_jumbo9, m->m_ext.ext_buf); 370 break; 371 case EXT_JUMBO16: 372 uma_zfree(zone_jumbo16, m->m_ext.ext_buf); 373 break; 374 case EXT_NET_DRV: 375 case EXT_MOD_TYPE: 376 case EXT_DISPOSABLE: 377 *(m->m_ext.ext_cnt) = 0; 378 uma_zfree(zone_ext_refcnt, __DEVOLATILE(u_int *, 379 m->m_ext.ext_cnt)); 380 /* FALLTHROUGH */ 381 case EXT_EXTREF: 382 KASSERT(m->m_ext.ext_free != NULL, 383 ("%s: ext_free not set", __func__)); 384 (*(m->m_ext.ext_free))(m, m->m_ext.ext_arg1, 385 m->m_ext.ext_arg2); 386 break; 387 default: 388 KASSERT(m->m_ext.ext_type == 0, 389 ("%s: unknown ext_type", __func__)); 390 } 391 } 392 393 if (freembuf) 394 uma_zfree(zone_mbuf, m); 395 } 396 397 /* 398 * Attach the cluster from *m to *n, set up m_ext in *n 399 * and bump the refcount of the cluster. 400 */ 401 void 402 mb_dupcl(struct mbuf *n, const struct mbuf *m) 403 { 404 405 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 406 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 407 408 switch (m->m_ext.ext_type) { 409 case EXT_SFBUF: 410 case EXT_SFBUF_NOCACHE: 411 sf_ext_ref(m->m_ext.ext_arg1, m->m_ext.ext_arg2); 412 break; 413 default: 414 KASSERT(m->m_ext.ext_cnt != NULL, 415 ("%s: no refcounting pointer on %p", __func__, m)); 416 if (*(m->m_ext.ext_cnt) == 1) 417 *(m->m_ext.ext_cnt) += 1; 418 else 419 atomic_add_int(m->m_ext.ext_cnt, 1); 420 } 421 422 n->m_ext = m->m_ext; 423 n->m_flags |= M_EXT; 424 n->m_flags |= m->m_flags & M_RDONLY; 425 } 426 427 void 428 m_demote_pkthdr(struct mbuf *m) 429 { 430 431 M_ASSERTPKTHDR(m); 432 433 m_tag_delete_chain(m, NULL); 434 m->m_flags &= ~M_PKTHDR; 435 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 436 } 437 438 /* 439 * Clean up mbuf (chain) from any tags and packet headers. 440 * If "all" is set then the first mbuf in the chain will be 441 * cleaned too. 442 */ 443 void 444 m_demote(struct mbuf *m0, int all, int flags) 445 { 446 struct mbuf *m; 447 448 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 449 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 450 __func__, m, m0)); 451 if (m->m_flags & M_PKTHDR) 452 m_demote_pkthdr(m); 453 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | flags); 454 } 455 } 456 457 /* 458 * Sanity checks on mbuf (chain) for use in KASSERT() and general 459 * debugging. 460 * Returns 0 or panics when bad and 1 on all tests passed. 461 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 462 * blow up later. 463 */ 464 int 465 m_sanity(struct mbuf *m0, int sanitize) 466 { 467 struct mbuf *m; 468 caddr_t a, b; 469 int pktlen = 0; 470 471 #ifdef INVARIANTS 472 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 473 #else 474 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 475 #endif 476 477 for (m = m0; m != NULL; m = m->m_next) { 478 /* 479 * Basic pointer checks. If any of these fails then some 480 * unrelated kernel memory before or after us is trashed. 481 * No way to recover from that. 482 */ 483 a = M_START(m); 484 b = a + M_SIZE(m); 485 if ((caddr_t)m->m_data < a) 486 M_SANITY_ACTION("m_data outside mbuf data range left"); 487 if ((caddr_t)m->m_data > b) 488 M_SANITY_ACTION("m_data outside mbuf data range right"); 489 if ((caddr_t)m->m_data + m->m_len > b) 490 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 491 492 /* m->m_nextpkt may only be set on first mbuf in chain. */ 493 if (m != m0 && m->m_nextpkt != NULL) { 494 if (sanitize) { 495 m_freem(m->m_nextpkt); 496 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 497 } else 498 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 499 } 500 501 /* packet length (not mbuf length!) calculation */ 502 if (m0->m_flags & M_PKTHDR) 503 pktlen += m->m_len; 504 505 /* m_tags may only be attached to first mbuf in chain. */ 506 if (m != m0 && m->m_flags & M_PKTHDR && 507 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 508 if (sanitize) { 509 m_tag_delete_chain(m, NULL); 510 /* put in 0xDEADC0DE perhaps? */ 511 } else 512 M_SANITY_ACTION("m_tags on in-chain mbuf"); 513 } 514 515 /* M_PKTHDR may only be set on first mbuf in chain */ 516 if (m != m0 && m->m_flags & M_PKTHDR) { 517 if (sanitize) { 518 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 519 m->m_flags &= ~M_PKTHDR; 520 /* put in 0xDEADCODE and leave hdr flag in */ 521 } else 522 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 523 } 524 } 525 m = m0; 526 if (pktlen && pktlen != m->m_pkthdr.len) { 527 if (sanitize) 528 m->m_pkthdr.len = 0; 529 else 530 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 531 } 532 return 1; 533 534 #undef M_SANITY_ACTION 535 } 536 537 538 /* 539 * "Move" mbuf pkthdr from "from" to "to". 540 * "from" must have M_PKTHDR set, and "to" must be empty. 541 */ 542 void 543 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 544 { 545 546 #if 0 547 /* see below for why these are not enabled */ 548 M_ASSERTPKTHDR(to); 549 /* Note: with MAC, this may not be a good assertion. */ 550 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 551 ("m_move_pkthdr: to has tags")); 552 #endif 553 #ifdef MAC 554 /* 555 * XXXMAC: It could be this should also occur for non-MAC? 556 */ 557 if (to->m_flags & M_PKTHDR) 558 m_tag_delete_chain(to, NULL); 559 #endif 560 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 561 if ((to->m_flags & M_EXT) == 0) 562 to->m_data = to->m_pktdat; 563 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 564 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 565 from->m_flags &= ~M_PKTHDR; 566 } 567 568 /* 569 * Duplicate "from"'s mbuf pkthdr in "to". 570 * "from" must have M_PKTHDR set, and "to" must be empty. 571 * In particular, this does a deep copy of the packet tags. 572 */ 573 int 574 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 575 { 576 577 #if 0 578 /* 579 * The mbuf allocator only initializes the pkthdr 580 * when the mbuf is allocated with m_gethdr(). Many users 581 * (e.g. m_copy*, m_prepend) use m_get() and then 582 * smash the pkthdr as needed causing these 583 * assertions to trip. For now just disable them. 584 */ 585 M_ASSERTPKTHDR(to); 586 /* Note: with MAC, this may not be a good assertion. */ 587 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 588 #endif 589 MBUF_CHECKSLEEP(how); 590 #ifdef MAC 591 if (to->m_flags & M_PKTHDR) 592 m_tag_delete_chain(to, NULL); 593 #endif 594 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT); 595 if ((to->m_flags & M_EXT) == 0) 596 to->m_data = to->m_pktdat; 597 to->m_pkthdr = from->m_pkthdr; 598 SLIST_INIT(&to->m_pkthdr.tags); 599 return (m_tag_copy_chain(to, from, how)); 600 } 601 602 /* 603 * Lesser-used path for M_PREPEND: 604 * allocate new mbuf to prepend to chain, 605 * copy junk along. 606 */ 607 struct mbuf * 608 m_prepend(struct mbuf *m, int len, int how) 609 { 610 struct mbuf *mn; 611 612 if (m->m_flags & M_PKTHDR) 613 mn = m_gethdr(how, m->m_type); 614 else 615 mn = m_get(how, m->m_type); 616 if (mn == NULL) { 617 m_freem(m); 618 return (NULL); 619 } 620 if (m->m_flags & M_PKTHDR) 621 m_move_pkthdr(mn, m); 622 mn->m_next = m; 623 m = mn; 624 if (len < M_SIZE(m)) 625 M_ALIGN(m, len); 626 m->m_len = len; 627 return (m); 628 } 629 630 /* 631 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 632 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 633 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 634 * Note that the copy is read-only, because clusters are not copied, 635 * only their reference counts are incremented. 636 */ 637 struct mbuf * 638 m_copym(const struct mbuf *m, int off0, int len, int wait) 639 { 640 struct mbuf *n, **np; 641 int off = off0; 642 struct mbuf *top; 643 int copyhdr = 0; 644 645 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 646 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 647 MBUF_CHECKSLEEP(wait); 648 if (off == 0 && m->m_flags & M_PKTHDR) 649 copyhdr = 1; 650 while (off > 0) { 651 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 652 if (off < m->m_len) 653 break; 654 off -= m->m_len; 655 m = m->m_next; 656 } 657 np = ⊤ 658 top = 0; 659 while (len > 0) { 660 if (m == NULL) { 661 KASSERT(len == M_COPYALL, 662 ("m_copym, length > size of mbuf chain")); 663 break; 664 } 665 if (copyhdr) 666 n = m_gethdr(wait, m->m_type); 667 else 668 n = m_get(wait, m->m_type); 669 *np = n; 670 if (n == NULL) 671 goto nospace; 672 if (copyhdr) { 673 if (!m_dup_pkthdr(n, m, wait)) 674 goto nospace; 675 if (len == M_COPYALL) 676 n->m_pkthdr.len -= off0; 677 else 678 n->m_pkthdr.len = len; 679 copyhdr = 0; 680 } 681 n->m_len = min(len, m->m_len - off); 682 if (m->m_flags & M_EXT) { 683 n->m_data = m->m_data + off; 684 mb_dupcl(n, m); 685 } else 686 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 687 (u_int)n->m_len); 688 if (len != M_COPYALL) 689 len -= n->m_len; 690 off = 0; 691 m = m->m_next; 692 np = &n->m_next; 693 } 694 695 return (top); 696 nospace: 697 m_freem(top); 698 return (NULL); 699 } 700 701 /* 702 * Copy an entire packet, including header (which must be present). 703 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 704 * Note that the copy is read-only, because clusters are not copied, 705 * only their reference counts are incremented. 706 * Preserve alignment of the first mbuf so if the creator has left 707 * some room at the beginning (e.g. for inserting protocol headers) 708 * the copies still have the room available. 709 */ 710 struct mbuf * 711 m_copypacket(struct mbuf *m, int how) 712 { 713 struct mbuf *top, *n, *o; 714 715 MBUF_CHECKSLEEP(how); 716 n = m_get(how, m->m_type); 717 top = n; 718 if (n == NULL) 719 goto nospace; 720 721 if (!m_dup_pkthdr(n, m, how)) 722 goto nospace; 723 n->m_len = m->m_len; 724 if (m->m_flags & M_EXT) { 725 n->m_data = m->m_data; 726 mb_dupcl(n, m); 727 } else { 728 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 729 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 730 } 731 732 m = m->m_next; 733 while (m) { 734 o = m_get(how, m->m_type); 735 if (o == NULL) 736 goto nospace; 737 738 n->m_next = o; 739 n = n->m_next; 740 741 n->m_len = m->m_len; 742 if (m->m_flags & M_EXT) { 743 n->m_data = m->m_data; 744 mb_dupcl(n, m); 745 } else { 746 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 747 } 748 749 m = m->m_next; 750 } 751 return top; 752 nospace: 753 m_freem(top); 754 return (NULL); 755 } 756 757 /* 758 * Copy data from an mbuf chain starting "off" bytes from the beginning, 759 * continuing for "len" bytes, into the indicated buffer. 760 */ 761 void 762 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 763 { 764 u_int count; 765 766 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 767 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 768 while (off > 0) { 769 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 770 if (off < m->m_len) 771 break; 772 off -= m->m_len; 773 m = m->m_next; 774 } 775 while (len > 0) { 776 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 777 count = min(m->m_len - off, len); 778 bcopy(mtod(m, caddr_t) + off, cp, count); 779 len -= count; 780 cp += count; 781 off = 0; 782 m = m->m_next; 783 } 784 } 785 786 /* 787 * Copy a packet header mbuf chain into a completely new chain, including 788 * copying any mbuf clusters. Use this instead of m_copypacket() when 789 * you need a writable copy of an mbuf chain. 790 */ 791 struct mbuf * 792 m_dup(const struct mbuf *m, int how) 793 { 794 struct mbuf **p, *top = NULL; 795 int remain, moff, nsize; 796 797 MBUF_CHECKSLEEP(how); 798 /* Sanity check */ 799 if (m == NULL) 800 return (NULL); 801 M_ASSERTPKTHDR(m); 802 803 /* While there's more data, get a new mbuf, tack it on, and fill it */ 804 remain = m->m_pkthdr.len; 805 moff = 0; 806 p = ⊤ 807 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 808 struct mbuf *n; 809 810 /* Get the next new mbuf */ 811 if (remain >= MINCLSIZE) { 812 n = m_getcl(how, m->m_type, 0); 813 nsize = MCLBYTES; 814 } else { 815 n = m_get(how, m->m_type); 816 nsize = MLEN; 817 } 818 if (n == NULL) 819 goto nospace; 820 821 if (top == NULL) { /* First one, must be PKTHDR */ 822 if (!m_dup_pkthdr(n, m, how)) { 823 m_free(n); 824 goto nospace; 825 } 826 if ((n->m_flags & M_EXT) == 0) 827 nsize = MHLEN; 828 n->m_flags &= ~M_RDONLY; 829 } 830 n->m_len = 0; 831 832 /* Link it into the new chain */ 833 *p = n; 834 p = &n->m_next; 835 836 /* Copy data from original mbuf(s) into new mbuf */ 837 while (n->m_len < nsize && m != NULL) { 838 int chunk = min(nsize - n->m_len, m->m_len - moff); 839 840 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 841 moff += chunk; 842 n->m_len += chunk; 843 remain -= chunk; 844 if (moff == m->m_len) { 845 m = m->m_next; 846 moff = 0; 847 } 848 } 849 850 /* Check correct total mbuf length */ 851 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 852 ("%s: bogus m_pkthdr.len", __func__)); 853 } 854 return (top); 855 856 nospace: 857 m_freem(top); 858 return (NULL); 859 } 860 861 /* 862 * Concatenate mbuf chain n to m. 863 * Both chains must be of the same type (e.g. MT_DATA). 864 * Any m_pkthdr is not updated. 865 */ 866 void 867 m_cat(struct mbuf *m, struct mbuf *n) 868 { 869 while (m->m_next) 870 m = m->m_next; 871 while (n) { 872 if (!M_WRITABLE(m) || 873 M_TRAILINGSPACE(m) < n->m_len) { 874 /* just join the two chains */ 875 m->m_next = n; 876 return; 877 } 878 /* splat the data from one into the other */ 879 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 880 (u_int)n->m_len); 881 m->m_len += n->m_len; 882 n = m_free(n); 883 } 884 } 885 886 /* 887 * Concatenate two pkthdr mbuf chains. 888 */ 889 void 890 m_catpkt(struct mbuf *m, struct mbuf *n) 891 { 892 893 M_ASSERTPKTHDR(m); 894 M_ASSERTPKTHDR(n); 895 896 m->m_pkthdr.len += n->m_pkthdr.len; 897 m_demote(n, 1, 0); 898 899 m_cat(m, n); 900 } 901 902 void 903 m_adj(struct mbuf *mp, int req_len) 904 { 905 int len = req_len; 906 struct mbuf *m; 907 int count; 908 909 if ((m = mp) == NULL) 910 return; 911 if (len >= 0) { 912 /* 913 * Trim from head. 914 */ 915 while (m != NULL && len > 0) { 916 if (m->m_len <= len) { 917 len -= m->m_len; 918 m->m_len = 0; 919 m = m->m_next; 920 } else { 921 m->m_len -= len; 922 m->m_data += len; 923 len = 0; 924 } 925 } 926 if (mp->m_flags & M_PKTHDR) 927 mp->m_pkthdr.len -= (req_len - len); 928 } else { 929 /* 930 * Trim from tail. Scan the mbuf chain, 931 * calculating its length and finding the last mbuf. 932 * If the adjustment only affects this mbuf, then just 933 * adjust and return. Otherwise, rescan and truncate 934 * after the remaining size. 935 */ 936 len = -len; 937 count = 0; 938 for (;;) { 939 count += m->m_len; 940 if (m->m_next == (struct mbuf *)0) 941 break; 942 m = m->m_next; 943 } 944 if (m->m_len >= len) { 945 m->m_len -= len; 946 if (mp->m_flags & M_PKTHDR) 947 mp->m_pkthdr.len -= len; 948 return; 949 } 950 count -= len; 951 if (count < 0) 952 count = 0; 953 /* 954 * Correct length for chain is "count". 955 * Find the mbuf with last data, adjust its length, 956 * and toss data from remaining mbufs on chain. 957 */ 958 m = mp; 959 if (m->m_flags & M_PKTHDR) 960 m->m_pkthdr.len = count; 961 for (; m; m = m->m_next) { 962 if (m->m_len >= count) { 963 m->m_len = count; 964 if (m->m_next != NULL) { 965 m_freem(m->m_next); 966 m->m_next = NULL; 967 } 968 break; 969 } 970 count -= m->m_len; 971 } 972 } 973 } 974 975 /* 976 * Rearange an mbuf chain so that len bytes are contiguous 977 * and in the data area of an mbuf (so that mtod will work 978 * for a structure of size len). Returns the resulting 979 * mbuf chain on success, frees it and returns null on failure. 980 * If there is room, it will add up to max_protohdr-len extra bytes to the 981 * contiguous region in an attempt to avoid being called next time. 982 */ 983 struct mbuf * 984 m_pullup(struct mbuf *n, int len) 985 { 986 struct mbuf *m; 987 int count; 988 int space; 989 990 /* 991 * If first mbuf has no cluster, and has room for len bytes 992 * without shifting current data, pullup into it, 993 * otherwise allocate a new mbuf to prepend to the chain. 994 */ 995 if ((n->m_flags & M_EXT) == 0 && 996 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 997 if (n->m_len >= len) 998 return (n); 999 m = n; 1000 n = n->m_next; 1001 len -= m->m_len; 1002 } else { 1003 if (len > MHLEN) 1004 goto bad; 1005 m = m_get(M_NOWAIT, n->m_type); 1006 if (m == NULL) 1007 goto bad; 1008 if (n->m_flags & M_PKTHDR) 1009 m_move_pkthdr(m, n); 1010 } 1011 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1012 do { 1013 count = min(min(max(len, max_protohdr), space), n->m_len); 1014 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 1015 (u_int)count); 1016 len -= count; 1017 m->m_len += count; 1018 n->m_len -= count; 1019 space -= count; 1020 if (n->m_len) 1021 n->m_data += count; 1022 else 1023 n = m_free(n); 1024 } while (len > 0 && n); 1025 if (len > 0) { 1026 (void) m_free(m); 1027 goto bad; 1028 } 1029 m->m_next = n; 1030 return (m); 1031 bad: 1032 m_freem(n); 1033 return (NULL); 1034 } 1035 1036 /* 1037 * Like m_pullup(), except a new mbuf is always allocated, and we allow 1038 * the amount of empty space before the data in the new mbuf to be specified 1039 * (in the event that the caller expects to prepend later). 1040 */ 1041 struct mbuf * 1042 m_copyup(struct mbuf *n, int len, int dstoff) 1043 { 1044 struct mbuf *m; 1045 int count, space; 1046 1047 if (len > (MHLEN - dstoff)) 1048 goto bad; 1049 m = m_get(M_NOWAIT, n->m_type); 1050 if (m == NULL) 1051 goto bad; 1052 if (n->m_flags & M_PKTHDR) 1053 m_move_pkthdr(m, n); 1054 m->m_data += dstoff; 1055 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 1056 do { 1057 count = min(min(max(len, max_protohdr), space), n->m_len); 1058 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 1059 (unsigned)count); 1060 len -= count; 1061 m->m_len += count; 1062 n->m_len -= count; 1063 space -= count; 1064 if (n->m_len) 1065 n->m_data += count; 1066 else 1067 n = m_free(n); 1068 } while (len > 0 && n); 1069 if (len > 0) { 1070 (void) m_free(m); 1071 goto bad; 1072 } 1073 m->m_next = n; 1074 return (m); 1075 bad: 1076 m_freem(n); 1077 return (NULL); 1078 } 1079 1080 /* 1081 * Partition an mbuf chain in two pieces, returning the tail -- 1082 * all but the first len0 bytes. In case of failure, it returns NULL and 1083 * attempts to restore the chain to its original state. 1084 * 1085 * Note that the resulting mbufs might be read-only, because the new 1086 * mbuf can end up sharing an mbuf cluster with the original mbuf if 1087 * the "breaking point" happens to lie within a cluster mbuf. Use the 1088 * M_WRITABLE() macro to check for this case. 1089 */ 1090 struct mbuf * 1091 m_split(struct mbuf *m0, int len0, int wait) 1092 { 1093 struct mbuf *m, *n; 1094 u_int len = len0, remain; 1095 1096 MBUF_CHECKSLEEP(wait); 1097 for (m = m0; m && len > m->m_len; m = m->m_next) 1098 len -= m->m_len; 1099 if (m == NULL) 1100 return (NULL); 1101 remain = m->m_len - len; 1102 if (m0->m_flags & M_PKTHDR && remain == 0) { 1103 n = m_gethdr(wait, m0->m_type); 1104 if (n == NULL) 1105 return (NULL); 1106 n->m_next = m->m_next; 1107 m->m_next = NULL; 1108 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1109 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1110 m0->m_pkthdr.len = len0; 1111 return (n); 1112 } else if (m0->m_flags & M_PKTHDR) { 1113 n = m_gethdr(wait, m0->m_type); 1114 if (n == NULL) 1115 return (NULL); 1116 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 1117 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 1118 m0->m_pkthdr.len = len0; 1119 if (m->m_flags & M_EXT) 1120 goto extpacket; 1121 if (remain > MHLEN) { 1122 /* m can't be the lead packet */ 1123 M_ALIGN(n, 0); 1124 n->m_next = m_split(m, len, wait); 1125 if (n->m_next == NULL) { 1126 (void) m_free(n); 1127 return (NULL); 1128 } else { 1129 n->m_len = 0; 1130 return (n); 1131 } 1132 } else 1133 M_ALIGN(n, remain); 1134 } else if (remain == 0) { 1135 n = m->m_next; 1136 m->m_next = NULL; 1137 return (n); 1138 } else { 1139 n = m_get(wait, m->m_type); 1140 if (n == NULL) 1141 return (NULL); 1142 M_ALIGN(n, remain); 1143 } 1144 extpacket: 1145 if (m->m_flags & M_EXT) { 1146 n->m_data = m->m_data + len; 1147 mb_dupcl(n, m); 1148 } else { 1149 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1150 } 1151 n->m_len = remain; 1152 m->m_len = len; 1153 n->m_next = m->m_next; 1154 m->m_next = NULL; 1155 return (n); 1156 } 1157 /* 1158 * Routine to copy from device local memory into mbufs. 1159 * Note that `off' argument is offset into first mbuf of target chain from 1160 * which to begin copying the data to. 1161 */ 1162 struct mbuf * 1163 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1164 void (*copy)(char *from, caddr_t to, u_int len)) 1165 { 1166 struct mbuf *m; 1167 struct mbuf *top = NULL, **mp = ⊤ 1168 int len; 1169 1170 if (off < 0 || off > MHLEN) 1171 return (NULL); 1172 1173 while (totlen > 0) { 1174 if (top == NULL) { /* First one, must be PKTHDR */ 1175 if (totlen + off >= MINCLSIZE) { 1176 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1177 len = MCLBYTES; 1178 } else { 1179 m = m_gethdr(M_NOWAIT, MT_DATA); 1180 len = MHLEN; 1181 1182 /* Place initial small packet/header at end of mbuf */ 1183 if (m && totlen + off + max_linkhdr <= MLEN) { 1184 m->m_data += max_linkhdr; 1185 len -= max_linkhdr; 1186 } 1187 } 1188 if (m == NULL) 1189 return NULL; 1190 m->m_pkthdr.rcvif = ifp; 1191 m->m_pkthdr.len = totlen; 1192 } else { 1193 if (totlen + off >= MINCLSIZE) { 1194 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1195 len = MCLBYTES; 1196 } else { 1197 m = m_get(M_NOWAIT, MT_DATA); 1198 len = MLEN; 1199 } 1200 if (m == NULL) { 1201 m_freem(top); 1202 return NULL; 1203 } 1204 } 1205 if (off) { 1206 m->m_data += off; 1207 len -= off; 1208 off = 0; 1209 } 1210 m->m_len = len = min(totlen, len); 1211 if (copy) 1212 copy(buf, mtod(m, caddr_t), (u_int)len); 1213 else 1214 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1215 buf += len; 1216 *mp = m; 1217 mp = &m->m_next; 1218 totlen -= len; 1219 } 1220 return (top); 1221 } 1222 1223 /* 1224 * Copy data from a buffer back into the indicated mbuf chain, 1225 * starting "off" bytes from the beginning, extending the mbuf 1226 * chain if necessary. 1227 */ 1228 void 1229 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1230 { 1231 int mlen; 1232 struct mbuf *m = m0, *n; 1233 int totlen = 0; 1234 1235 if (m0 == NULL) 1236 return; 1237 while (off > (mlen = m->m_len)) { 1238 off -= mlen; 1239 totlen += mlen; 1240 if (m->m_next == NULL) { 1241 n = m_get(M_NOWAIT, m->m_type); 1242 if (n == NULL) 1243 goto out; 1244 bzero(mtod(n, caddr_t), MLEN); 1245 n->m_len = min(MLEN, len + off); 1246 m->m_next = n; 1247 } 1248 m = m->m_next; 1249 } 1250 while (len > 0) { 1251 if (m->m_next == NULL && (len > m->m_len - off)) { 1252 m->m_len += min(len - (m->m_len - off), 1253 M_TRAILINGSPACE(m)); 1254 } 1255 mlen = min (m->m_len - off, len); 1256 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1257 cp += mlen; 1258 len -= mlen; 1259 mlen += off; 1260 off = 0; 1261 totlen += mlen; 1262 if (len == 0) 1263 break; 1264 if (m->m_next == NULL) { 1265 n = m_get(M_NOWAIT, m->m_type); 1266 if (n == NULL) 1267 break; 1268 n->m_len = min(MLEN, len); 1269 m->m_next = n; 1270 } 1271 m = m->m_next; 1272 } 1273 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1274 m->m_pkthdr.len = totlen; 1275 } 1276 1277 /* 1278 * Append the specified data to the indicated mbuf chain, 1279 * Extend the mbuf chain if the new data does not fit in 1280 * existing space. 1281 * 1282 * Return 1 if able to complete the job; otherwise 0. 1283 */ 1284 int 1285 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1286 { 1287 struct mbuf *m, *n; 1288 int remainder, space; 1289 1290 for (m = m0; m->m_next != NULL; m = m->m_next) 1291 ; 1292 remainder = len; 1293 space = M_TRAILINGSPACE(m); 1294 if (space > 0) { 1295 /* 1296 * Copy into available space. 1297 */ 1298 if (space > remainder) 1299 space = remainder; 1300 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1301 m->m_len += space; 1302 cp += space, remainder -= space; 1303 } 1304 while (remainder > 0) { 1305 /* 1306 * Allocate a new mbuf; could check space 1307 * and allocate a cluster instead. 1308 */ 1309 n = m_get(M_NOWAIT, m->m_type); 1310 if (n == NULL) 1311 break; 1312 n->m_len = min(MLEN, remainder); 1313 bcopy(cp, mtod(n, caddr_t), n->m_len); 1314 cp += n->m_len, remainder -= n->m_len; 1315 m->m_next = n; 1316 m = n; 1317 } 1318 if (m0->m_flags & M_PKTHDR) 1319 m0->m_pkthdr.len += len - remainder; 1320 return (remainder == 0); 1321 } 1322 1323 /* 1324 * Apply function f to the data in an mbuf chain starting "off" bytes from 1325 * the beginning, continuing for "len" bytes. 1326 */ 1327 int 1328 m_apply(struct mbuf *m, int off, int len, 1329 int (*f)(void *, void *, u_int), void *arg) 1330 { 1331 u_int count; 1332 int rval; 1333 1334 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1335 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1336 while (off > 0) { 1337 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1338 if (off < m->m_len) 1339 break; 1340 off -= m->m_len; 1341 m = m->m_next; 1342 } 1343 while (len > 0) { 1344 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1345 count = min(m->m_len - off, len); 1346 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1347 if (rval) 1348 return (rval); 1349 len -= count; 1350 off = 0; 1351 m = m->m_next; 1352 } 1353 return (0); 1354 } 1355 1356 /* 1357 * Return a pointer to mbuf/offset of location in mbuf chain. 1358 */ 1359 struct mbuf * 1360 m_getptr(struct mbuf *m, int loc, int *off) 1361 { 1362 1363 while (loc >= 0) { 1364 /* Normal end of search. */ 1365 if (m->m_len > loc) { 1366 *off = loc; 1367 return (m); 1368 } else { 1369 loc -= m->m_len; 1370 if (m->m_next == NULL) { 1371 if (loc == 0) { 1372 /* Point at the end of valid data. */ 1373 *off = m->m_len; 1374 return (m); 1375 } 1376 return (NULL); 1377 } 1378 m = m->m_next; 1379 } 1380 } 1381 return (NULL); 1382 } 1383 1384 void 1385 m_print(const struct mbuf *m, int maxlen) 1386 { 1387 int len; 1388 int pdata; 1389 const struct mbuf *m2; 1390 1391 if (m == NULL) { 1392 printf("mbuf: %p\n", m); 1393 return; 1394 } 1395 1396 if (m->m_flags & M_PKTHDR) 1397 len = m->m_pkthdr.len; 1398 else 1399 len = -1; 1400 m2 = m; 1401 while (m2 != NULL && (len == -1 || len)) { 1402 pdata = m2->m_len; 1403 if (maxlen != -1 && pdata > maxlen) 1404 pdata = maxlen; 1405 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1406 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1407 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1408 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1409 if (pdata) 1410 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1411 if (len != -1) 1412 len -= m2->m_len; 1413 m2 = m2->m_next; 1414 } 1415 if (len > 0) 1416 printf("%d bytes unaccounted for.\n", len); 1417 return; 1418 } 1419 1420 u_int 1421 m_fixhdr(struct mbuf *m0) 1422 { 1423 u_int len; 1424 1425 len = m_length(m0, NULL); 1426 m0->m_pkthdr.len = len; 1427 return (len); 1428 } 1429 1430 u_int 1431 m_length(struct mbuf *m0, struct mbuf **last) 1432 { 1433 struct mbuf *m; 1434 u_int len; 1435 1436 len = 0; 1437 for (m = m0; m != NULL; m = m->m_next) { 1438 len += m->m_len; 1439 if (m->m_next == NULL) 1440 break; 1441 } 1442 if (last != NULL) 1443 *last = m; 1444 return (len); 1445 } 1446 1447 /* 1448 * Defragment a mbuf chain, returning the shortest possible 1449 * chain of mbufs and clusters. If allocation fails and 1450 * this cannot be completed, NULL will be returned, but 1451 * the passed in chain will be unchanged. Upon success, 1452 * the original chain will be freed, and the new chain 1453 * will be returned. 1454 * 1455 * If a non-packet header is passed in, the original 1456 * mbuf (chain?) will be returned unharmed. 1457 */ 1458 struct mbuf * 1459 m_defrag(struct mbuf *m0, int how) 1460 { 1461 struct mbuf *m_new = NULL, *m_final = NULL; 1462 int progress = 0, length; 1463 1464 MBUF_CHECKSLEEP(how); 1465 if (!(m0->m_flags & M_PKTHDR)) 1466 return (m0); 1467 1468 m_fixhdr(m0); /* Needed sanity check */ 1469 1470 #ifdef MBUF_STRESS_TEST 1471 if (m_defragrandomfailures) { 1472 int temp = arc4random() & 0xff; 1473 if (temp == 0xba) 1474 goto nospace; 1475 } 1476 #endif 1477 1478 if (m0->m_pkthdr.len > MHLEN) 1479 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1480 else 1481 m_final = m_gethdr(how, MT_DATA); 1482 1483 if (m_final == NULL) 1484 goto nospace; 1485 1486 if (m_dup_pkthdr(m_final, m0, how) == 0) 1487 goto nospace; 1488 1489 m_new = m_final; 1490 1491 while (progress < m0->m_pkthdr.len) { 1492 length = m0->m_pkthdr.len - progress; 1493 if (length > MCLBYTES) 1494 length = MCLBYTES; 1495 1496 if (m_new == NULL) { 1497 if (length > MLEN) 1498 m_new = m_getcl(how, MT_DATA, 0); 1499 else 1500 m_new = m_get(how, MT_DATA); 1501 if (m_new == NULL) 1502 goto nospace; 1503 } 1504 1505 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1506 progress += length; 1507 m_new->m_len = length; 1508 if (m_new != m_final) 1509 m_cat(m_final, m_new); 1510 m_new = NULL; 1511 } 1512 #ifdef MBUF_STRESS_TEST 1513 if (m0->m_next == NULL) 1514 m_defraguseless++; 1515 #endif 1516 m_freem(m0); 1517 m0 = m_final; 1518 #ifdef MBUF_STRESS_TEST 1519 m_defragpackets++; 1520 m_defragbytes += m0->m_pkthdr.len; 1521 #endif 1522 return (m0); 1523 nospace: 1524 #ifdef MBUF_STRESS_TEST 1525 m_defragfailure++; 1526 #endif 1527 if (m_final) 1528 m_freem(m_final); 1529 return (NULL); 1530 } 1531 1532 /* 1533 * Defragment an mbuf chain, returning at most maxfrags separate 1534 * mbufs+clusters. If this is not possible NULL is returned and 1535 * the original mbuf chain is left in it's present (potentially 1536 * modified) state. We use two techniques: collapsing consecutive 1537 * mbufs and replacing consecutive mbufs by a cluster. 1538 * 1539 * NB: this should really be named m_defrag but that name is taken 1540 */ 1541 struct mbuf * 1542 m_collapse(struct mbuf *m0, int how, int maxfrags) 1543 { 1544 struct mbuf *m, *n, *n2, **prev; 1545 u_int curfrags; 1546 1547 /* 1548 * Calculate the current number of frags. 1549 */ 1550 curfrags = 0; 1551 for (m = m0; m != NULL; m = m->m_next) 1552 curfrags++; 1553 /* 1554 * First, try to collapse mbufs. Note that we always collapse 1555 * towards the front so we don't need to deal with moving the 1556 * pkthdr. This may be suboptimal if the first mbuf has much 1557 * less data than the following. 1558 */ 1559 m = m0; 1560 again: 1561 for (;;) { 1562 n = m->m_next; 1563 if (n == NULL) 1564 break; 1565 if (M_WRITABLE(m) && 1566 n->m_len < M_TRAILINGSPACE(m)) { 1567 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 1568 n->m_len); 1569 m->m_len += n->m_len; 1570 m->m_next = n->m_next; 1571 m_free(n); 1572 if (--curfrags <= maxfrags) 1573 return m0; 1574 } else 1575 m = n; 1576 } 1577 KASSERT(maxfrags > 1, 1578 ("maxfrags %u, but normal collapse failed", maxfrags)); 1579 /* 1580 * Collapse consecutive mbufs to a cluster. 1581 */ 1582 prev = &m0->m_next; /* NB: not the first mbuf */ 1583 while ((n = *prev) != NULL) { 1584 if ((n2 = n->m_next) != NULL && 1585 n->m_len + n2->m_len < MCLBYTES) { 1586 m = m_getcl(how, MT_DATA, 0); 1587 if (m == NULL) 1588 goto bad; 1589 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 1590 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 1591 n2->m_len); 1592 m->m_len = n->m_len + n2->m_len; 1593 m->m_next = n2->m_next; 1594 *prev = m; 1595 m_free(n); 1596 m_free(n2); 1597 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 1598 return m0; 1599 /* 1600 * Still not there, try the normal collapse 1601 * again before we allocate another cluster. 1602 */ 1603 goto again; 1604 } 1605 prev = &n->m_next; 1606 } 1607 /* 1608 * No place where we can collapse to a cluster; punt. 1609 * This can occur if, for example, you request 2 frags 1610 * but the packet requires that both be clusters (we 1611 * never reallocate the first mbuf to avoid moving the 1612 * packet header). 1613 */ 1614 bad: 1615 return NULL; 1616 } 1617 1618 #ifdef MBUF_STRESS_TEST 1619 1620 /* 1621 * Fragment an mbuf chain. There's no reason you'd ever want to do 1622 * this in normal usage, but it's great for stress testing various 1623 * mbuf consumers. 1624 * 1625 * If fragmentation is not possible, the original chain will be 1626 * returned. 1627 * 1628 * Possible length values: 1629 * 0 no fragmentation will occur 1630 * > 0 each fragment will be of the specified length 1631 * -1 each fragment will be the same random value in length 1632 * -2 each fragment's length will be entirely random 1633 * (Random values range from 1 to 256) 1634 */ 1635 struct mbuf * 1636 m_fragment(struct mbuf *m0, int how, int length) 1637 { 1638 struct mbuf *m_new = NULL, *m_final = NULL; 1639 int progress = 0; 1640 1641 if (!(m0->m_flags & M_PKTHDR)) 1642 return (m0); 1643 1644 if ((length == 0) || (length < -2)) 1645 return (m0); 1646 1647 m_fixhdr(m0); /* Needed sanity check */ 1648 1649 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1650 1651 if (m_final == NULL) 1652 goto nospace; 1653 1654 if (m_dup_pkthdr(m_final, m0, how) == 0) 1655 goto nospace; 1656 1657 m_new = m_final; 1658 1659 if (length == -1) 1660 length = 1 + (arc4random() & 255); 1661 1662 while (progress < m0->m_pkthdr.len) { 1663 int fraglen; 1664 1665 if (length > 0) 1666 fraglen = length; 1667 else 1668 fraglen = 1 + (arc4random() & 255); 1669 if (fraglen > m0->m_pkthdr.len - progress) 1670 fraglen = m0->m_pkthdr.len - progress; 1671 1672 if (fraglen > MCLBYTES) 1673 fraglen = MCLBYTES; 1674 1675 if (m_new == NULL) { 1676 m_new = m_getcl(how, MT_DATA, 0); 1677 if (m_new == NULL) 1678 goto nospace; 1679 } 1680 1681 m_copydata(m0, progress, fraglen, mtod(m_new, caddr_t)); 1682 progress += fraglen; 1683 m_new->m_len = fraglen; 1684 if (m_new != m_final) 1685 m_cat(m_final, m_new); 1686 m_new = NULL; 1687 } 1688 m_freem(m0); 1689 m0 = m_final; 1690 return (m0); 1691 nospace: 1692 if (m_final) 1693 m_freem(m_final); 1694 /* Return the original chain on failure */ 1695 return (m0); 1696 } 1697 1698 #endif 1699 1700 /* 1701 * Copy the contents of uio into a properly sized mbuf chain. 1702 */ 1703 struct mbuf * 1704 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1705 { 1706 struct mbuf *m, *mb; 1707 int error, length; 1708 ssize_t total; 1709 int progress = 0; 1710 1711 /* 1712 * len can be zero or an arbitrary large value bound by 1713 * the total data supplied by the uio. 1714 */ 1715 if (len > 0) 1716 total = min(uio->uio_resid, len); 1717 else 1718 total = uio->uio_resid; 1719 1720 /* 1721 * The smallest unit returned by m_getm2() is a single mbuf 1722 * with pkthdr. We can't align past it. 1723 */ 1724 if (align >= MHLEN) 1725 return (NULL); 1726 1727 /* 1728 * Give us the full allocation or nothing. 1729 * If len is zero return the smallest empty mbuf. 1730 */ 1731 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1732 if (m == NULL) 1733 return (NULL); 1734 m->m_data += align; 1735 1736 /* Fill all mbufs with uio data and update header information. */ 1737 for (mb = m; mb != NULL; mb = mb->m_next) { 1738 length = min(M_TRAILINGSPACE(mb), total - progress); 1739 1740 error = uiomove(mtod(mb, void *), length, uio); 1741 if (error) { 1742 m_freem(m); 1743 return (NULL); 1744 } 1745 1746 mb->m_len = length; 1747 progress += length; 1748 if (flags & M_PKTHDR) 1749 m->m_pkthdr.len += length; 1750 } 1751 KASSERT(progress == total, ("%s: progress != total", __func__)); 1752 1753 return (m); 1754 } 1755 1756 /* 1757 * Copy an mbuf chain into a uio limited by len if set. 1758 */ 1759 int 1760 m_mbuftouio(struct uio *uio, struct mbuf *m, int len) 1761 { 1762 int error, length, total; 1763 int progress = 0; 1764 1765 if (len > 0) 1766 total = min(uio->uio_resid, len); 1767 else 1768 total = uio->uio_resid; 1769 1770 /* Fill the uio with data from the mbufs. */ 1771 for (; m != NULL; m = m->m_next) { 1772 length = min(m->m_len, total - progress); 1773 1774 error = uiomove(mtod(m, void *), length, uio); 1775 if (error) 1776 return (error); 1777 1778 progress += length; 1779 } 1780 1781 return (0); 1782 } 1783 1784 /* 1785 * Create a writable copy of the mbuf chain. While doing this 1786 * we compact the chain with a goal of producing a chain with 1787 * at most two mbufs. The second mbuf in this chain is likely 1788 * to be a cluster. The primary purpose of this work is to create 1789 * a writable packet for encryption, compression, etc. The 1790 * secondary goal is to linearize the data so the data can be 1791 * passed to crypto hardware in the most efficient manner possible. 1792 */ 1793 struct mbuf * 1794 m_unshare(struct mbuf *m0, int how) 1795 { 1796 struct mbuf *m, *mprev; 1797 struct mbuf *n, *mfirst, *mlast; 1798 int len, off; 1799 1800 mprev = NULL; 1801 for (m = m0; m != NULL; m = mprev->m_next) { 1802 /* 1803 * Regular mbufs are ignored unless there's a cluster 1804 * in front of it that we can use to coalesce. We do 1805 * the latter mainly so later clusters can be coalesced 1806 * also w/o having to handle them specially (i.e. convert 1807 * mbuf+cluster -> cluster). This optimization is heavily 1808 * influenced by the assumption that we're running over 1809 * Ethernet where MCLBYTES is large enough that the max 1810 * packet size will permit lots of coalescing into a 1811 * single cluster. This in turn permits efficient 1812 * crypto operations, especially when using hardware. 1813 */ 1814 if ((m->m_flags & M_EXT) == 0) { 1815 if (mprev && (mprev->m_flags & M_EXT) && 1816 m->m_len <= M_TRAILINGSPACE(mprev)) { 1817 /* XXX: this ignores mbuf types */ 1818 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1819 mtod(m, caddr_t), m->m_len); 1820 mprev->m_len += m->m_len; 1821 mprev->m_next = m->m_next; /* unlink from chain */ 1822 m_free(m); /* reclaim mbuf */ 1823 #if 0 1824 newipsecstat.ips_mbcoalesced++; 1825 #endif 1826 } else { 1827 mprev = m; 1828 } 1829 continue; 1830 } 1831 /* 1832 * Writable mbufs are left alone (for now). 1833 */ 1834 if (M_WRITABLE(m)) { 1835 mprev = m; 1836 continue; 1837 } 1838 1839 /* 1840 * Not writable, replace with a copy or coalesce with 1841 * the previous mbuf if possible (since we have to copy 1842 * it anyway, we try to reduce the number of mbufs and 1843 * clusters so that future work is easier). 1844 */ 1845 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1846 /* NB: we only coalesce into a cluster or larger */ 1847 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1848 m->m_len <= M_TRAILINGSPACE(mprev)) { 1849 /* XXX: this ignores mbuf types */ 1850 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1851 mtod(m, caddr_t), m->m_len); 1852 mprev->m_len += m->m_len; 1853 mprev->m_next = m->m_next; /* unlink from chain */ 1854 m_free(m); /* reclaim mbuf */ 1855 #if 0 1856 newipsecstat.ips_clcoalesced++; 1857 #endif 1858 continue; 1859 } 1860 1861 /* 1862 * Allocate new space to hold the copy and copy the data. 1863 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1864 * splitting them into clusters. We could just malloc a 1865 * buffer and make it external but too many device drivers 1866 * don't know how to break up the non-contiguous memory when 1867 * doing DMA. 1868 */ 1869 n = m_getcl(how, m->m_type, m->m_flags); 1870 if (n == NULL) { 1871 m_freem(m0); 1872 return (NULL); 1873 } 1874 if (m->m_flags & M_PKTHDR) { 1875 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1876 __func__, m0, m)); 1877 m_move_pkthdr(n, m); 1878 } 1879 len = m->m_len; 1880 off = 0; 1881 mfirst = n; 1882 mlast = NULL; 1883 for (;;) { 1884 int cc = min(len, MCLBYTES); 1885 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1886 n->m_len = cc; 1887 if (mlast != NULL) 1888 mlast->m_next = n; 1889 mlast = n; 1890 #if 0 1891 newipsecstat.ips_clcopied++; 1892 #endif 1893 1894 len -= cc; 1895 if (len <= 0) 1896 break; 1897 off += cc; 1898 1899 n = m_getcl(how, m->m_type, m->m_flags); 1900 if (n == NULL) { 1901 m_freem(mfirst); 1902 m_freem(m0); 1903 return (NULL); 1904 } 1905 } 1906 n->m_next = m->m_next; 1907 if (mprev == NULL) 1908 m0 = mfirst; /* new head of chain */ 1909 else 1910 mprev->m_next = mfirst; /* replace old mbuf */ 1911 m_free(m); /* release old mbuf */ 1912 mprev = mfirst; 1913 } 1914 return (m0); 1915 } 1916 1917 #ifdef MBUF_PROFILING 1918 1919 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1920 struct mbufprofile { 1921 uintmax_t wasted[MP_BUCKETS]; 1922 uintmax_t used[MP_BUCKETS]; 1923 uintmax_t segments[MP_BUCKETS]; 1924 } mbprof; 1925 1926 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1927 #define MP_NUMLINES 6 1928 #define MP_NUMSPERLINE 16 1929 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1930 /* work out max space needed and add a bit of spare space too */ 1931 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1932 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1933 1934 char mbprofbuf[MP_BUFSIZE]; 1935 1936 void 1937 m_profile(struct mbuf *m) 1938 { 1939 int segments = 0; 1940 int used = 0; 1941 int wasted = 0; 1942 1943 while (m) { 1944 segments++; 1945 used += m->m_len; 1946 if (m->m_flags & M_EXT) { 1947 wasted += MHLEN - sizeof(m->m_ext) + 1948 m->m_ext.ext_size - m->m_len; 1949 } else { 1950 if (m->m_flags & M_PKTHDR) 1951 wasted += MHLEN - m->m_len; 1952 else 1953 wasted += MLEN - m->m_len; 1954 } 1955 m = m->m_next; 1956 } 1957 /* be paranoid.. it helps */ 1958 if (segments > MP_BUCKETS - 1) 1959 segments = MP_BUCKETS - 1; 1960 if (used > 100000) 1961 used = 100000; 1962 if (wasted > 100000) 1963 wasted = 100000; 1964 /* store in the appropriate bucket */ 1965 /* don't bother locking. if it's slightly off, so what? */ 1966 mbprof.segments[segments]++; 1967 mbprof.used[fls(used)]++; 1968 mbprof.wasted[fls(wasted)]++; 1969 } 1970 1971 static void 1972 mbprof_textify(void) 1973 { 1974 int offset; 1975 char *c; 1976 uint64_t *p; 1977 1978 p = &mbprof.wasted[0]; 1979 c = mbprofbuf; 1980 offset = snprintf(c, MP_MAXLINE + 10, 1981 "wasted:\n" 1982 "%ju %ju %ju %ju %ju %ju %ju %ju " 1983 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1984 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1985 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1986 #ifdef BIG_ARRAY 1987 p = &mbprof.wasted[16]; 1988 c += offset; 1989 offset = snprintf(c, MP_MAXLINE, 1990 "%ju %ju %ju %ju %ju %ju %ju %ju " 1991 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 1992 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 1993 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 1994 #endif 1995 p = &mbprof.used[0]; 1996 c += offset; 1997 offset = snprintf(c, MP_MAXLINE + 10, 1998 "used:\n" 1999 "%ju %ju %ju %ju %ju %ju %ju %ju " 2000 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2001 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2002 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2003 #ifdef BIG_ARRAY 2004 p = &mbprof.used[16]; 2005 c += offset; 2006 offset = snprintf(c, MP_MAXLINE, 2007 "%ju %ju %ju %ju %ju %ju %ju %ju " 2008 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2009 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2010 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2011 #endif 2012 p = &mbprof.segments[0]; 2013 c += offset; 2014 offset = snprintf(c, MP_MAXLINE + 10, 2015 "segments:\n" 2016 "%ju %ju %ju %ju %ju %ju %ju %ju " 2017 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2018 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2019 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2020 #ifdef BIG_ARRAY 2021 p = &mbprof.segments[16]; 2022 c += offset; 2023 offset = snprintf(c, MP_MAXLINE, 2024 "%ju %ju %ju %ju %ju %ju %ju %ju " 2025 "%ju %ju %ju %ju %ju %ju %ju %jju", 2026 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2027 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2028 #endif 2029 } 2030 2031 static int 2032 mbprof_handler(SYSCTL_HANDLER_ARGS) 2033 { 2034 int error; 2035 2036 mbprof_textify(); 2037 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2038 return (error); 2039 } 2040 2041 static int 2042 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2043 { 2044 int clear, error; 2045 2046 clear = 0; 2047 error = sysctl_handle_int(oidp, &clear, 0, req); 2048 if (error || !req->newptr) 2049 return (error); 2050 2051 if (clear) { 2052 bzero(&mbprof, sizeof(mbprof)); 2053 } 2054 2055 return (error); 2056 } 2057 2058 2059 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2060 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2061 2062 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2063 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2064 #endif 2065 2066