1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_param.h" 38 #include "opt_mbuf_stress_test.h" 39 #include "opt_mbuf_profiling.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #include <sys/sdt.h> 54 #include <vm/vm.h> 55 #include <vm/vm_pageout.h> 56 #include <vm/vm_page.h> 57 58 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init, 59 "struct mbuf *", "mbufinfo_t *", 60 "uint32_t", "uint32_t", 61 "uint16_t", "uint16_t", 62 "uint32_t", "uint32_t", 63 "uint32_t", "uint32_t"); 64 65 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr, 66 "uint32_t", "uint32_t", 67 "uint16_t", "uint16_t", 68 "struct mbuf *", "mbufinfo_t *"); 69 70 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get, 71 "uint32_t", "uint32_t", 72 "uint16_t", "uint16_t", 73 "struct mbuf *", "mbufinfo_t *"); 74 75 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl, 76 "uint32_t", "uint32_t", 77 "uint16_t", "uint16_t", 78 "uint32_t", "uint32_t", 79 "struct mbuf *", "mbufinfo_t *"); 80 81 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget, 82 "struct mbuf *", "mbufinfo_t *", 83 "uint32_t", "uint32_t", 84 "uint32_t", "uint32_t"); 85 86 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget, 87 "struct mbuf *", "mbufinfo_t *", 88 "uint32_t", "uint32_t", 89 "uint32_t", "uint32_t", 90 "void*", "void*"); 91 92 SDT_PROBE_DEFINE(sdt, , , m__cljset); 93 94 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free, 95 "struct mbuf *", "mbufinfo_t *"); 96 97 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem, 98 "struct mbuf *", "mbufinfo_t *"); 99 100 #include <security/mac/mac_framework.h> 101 102 int max_linkhdr; 103 int max_protohdr; 104 int max_hdr; 105 int max_datalen; 106 #ifdef MBUF_STRESS_TEST 107 int m_defragpackets; 108 int m_defragbytes; 109 int m_defraguseless; 110 int m_defragfailure; 111 int m_defragrandomfailures; 112 #endif 113 114 /* 115 * sysctl(8) exported objects 116 */ 117 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD, 118 &max_linkhdr, 0, "Size of largest link layer header"); 119 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD, 120 &max_protohdr, 0, "Size of largest protocol layer header"); 121 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD, 122 &max_hdr, 0, "Size of largest link plus protocol header"); 123 SYSCTL_INT(_kern_ipc, KIPC_MAX_DATALEN, max_datalen, CTLFLAG_RD, 124 &max_datalen, 0, "Minimum space left in mbuf after max_hdr"); 125 #ifdef MBUF_STRESS_TEST 126 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD, 127 &m_defragpackets, 0, ""); 128 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD, 129 &m_defragbytes, 0, ""); 130 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD, 131 &m_defraguseless, 0, ""); 132 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD, 133 &m_defragfailure, 0, ""); 134 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW, 135 &m_defragrandomfailures, 0, ""); 136 #endif 137 138 /* 139 * Ensure the correct size of various mbuf parameters. It could be off due 140 * to compiler-induced padding and alignment artifacts. 141 */ 142 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN); 143 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN); 144 145 /* 146 * mbuf data storage should be 64-bit aligned regardless of architectural 147 * pointer size; check this is the case with and without a packet header. 148 */ 149 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0); 150 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0); 151 152 /* 153 * While the specific values here don't matter too much (i.e., +/- a few 154 * words), we do want to ensure that changes to these values are carefully 155 * reasoned about and properly documented. This is especially the case as 156 * network-protocol and device-driver modules encode these layouts, and must 157 * be recompiled if the structures change. Check these values at compile time 158 * against the ones documented in comments in mbuf.h. 159 * 160 * NB: Possibly they should be documented there via #define's and not just 161 * comments. 162 */ 163 #if defined(__LP64__) 164 CTASSERT(offsetof(struct mbuf, m_dat) == 32); 165 CTASSERT(sizeof(struct pkthdr) == 56); 166 CTASSERT(sizeof(struct m_ext) == 48); 167 #else 168 CTASSERT(offsetof(struct mbuf, m_dat) == 24); 169 CTASSERT(sizeof(struct pkthdr) == 48); 170 CTASSERT(sizeof(struct m_ext) == 28); 171 #endif 172 173 /* 174 * Assert that the queue(3) macros produce code of the same size as an old 175 * plain pointer does. 176 */ 177 #ifdef INVARIANTS 178 static struct mbuf __used m_assertbuf; 179 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next)); 180 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next)); 181 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt)); 182 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt)); 183 #endif 184 185 /* 186 * Attach the cluster from *m to *n, set up m_ext in *n 187 * and bump the refcount of the cluster. 188 */ 189 void 190 mb_dupcl(struct mbuf *n, struct mbuf *m) 191 { 192 volatile u_int *refcnt; 193 194 KASSERT(m->m_flags & M_EXT, ("%s: M_EXT not set on %p", __func__, m)); 195 KASSERT(!(n->m_flags & M_EXT), ("%s: M_EXT set on %p", __func__, n)); 196 197 /* 198 * Cache access optimization. For most kinds of external 199 * storage we don't need full copy of m_ext, since the 200 * holder of the 'ext_count' is responsible to carry the 201 * free routine and its arguments. Exclusion is EXT_EXTREF, 202 * where 'ext_cnt' doesn't point into mbuf at all. 203 */ 204 if (m->m_ext.ext_type == EXT_EXTREF) 205 bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext)); 206 else 207 bcopy(&m->m_ext, &n->m_ext, m_ext_copylen); 208 n->m_flags |= M_EXT; 209 n->m_flags |= m->m_flags & (M_RDONLY | M_NOMAP); 210 211 /* See if this is the mbuf that holds the embedded refcount. */ 212 if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) { 213 refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count; 214 n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF; 215 } else { 216 KASSERT(m->m_ext.ext_cnt != NULL, 217 ("%s: no refcounting pointer on %p", __func__, m)); 218 refcnt = m->m_ext.ext_cnt; 219 } 220 221 if (*refcnt == 1) 222 *refcnt += 1; 223 else 224 atomic_add_int(refcnt, 1); 225 } 226 227 void 228 m_demote_pkthdr(struct mbuf *m) 229 { 230 231 M_ASSERTPKTHDR(m); 232 233 m_tag_delete_chain(m, NULL); 234 m->m_flags &= ~M_PKTHDR; 235 bzero(&m->m_pkthdr, sizeof(struct pkthdr)); 236 } 237 238 /* 239 * Clean up mbuf (chain) from any tags and packet headers. 240 * If "all" is set then the first mbuf in the chain will be 241 * cleaned too. 242 */ 243 void 244 m_demote(struct mbuf *m0, int all, int flags) 245 { 246 struct mbuf *m; 247 248 for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) { 249 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p", 250 __func__, m, m0)); 251 if (m->m_flags & M_PKTHDR) 252 m_demote_pkthdr(m); 253 m->m_flags = m->m_flags & (M_EXT | M_RDONLY | M_NOFREE | 254 M_NOMAP | flags); 255 } 256 } 257 258 /* 259 * Sanity checks on mbuf (chain) for use in KASSERT() and general 260 * debugging. 261 * Returns 0 or panics when bad and 1 on all tests passed. 262 * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they 263 * blow up later. 264 */ 265 int 266 m_sanity(struct mbuf *m0, int sanitize) 267 { 268 struct mbuf *m; 269 caddr_t a, b; 270 int pktlen = 0; 271 272 #ifdef INVARIANTS 273 #define M_SANITY_ACTION(s) panic("mbuf %p: " s, m) 274 #else 275 #define M_SANITY_ACTION(s) printf("mbuf %p: " s, m) 276 #endif 277 278 for (m = m0; m != NULL; m = m->m_next) { 279 /* 280 * Basic pointer checks. If any of these fails then some 281 * unrelated kernel memory before or after us is trashed. 282 * No way to recover from that. 283 */ 284 a = M_START(m); 285 b = a + M_SIZE(m); 286 if ((caddr_t)m->m_data < a) 287 M_SANITY_ACTION("m_data outside mbuf data range left"); 288 if ((caddr_t)m->m_data > b) 289 M_SANITY_ACTION("m_data outside mbuf data range right"); 290 if ((caddr_t)m->m_data + m->m_len > b) 291 M_SANITY_ACTION("m_data + m_len exeeds mbuf space"); 292 293 /* m->m_nextpkt may only be set on first mbuf in chain. */ 294 if (m != m0 && m->m_nextpkt != NULL) { 295 if (sanitize) { 296 m_freem(m->m_nextpkt); 297 m->m_nextpkt = (struct mbuf *)0xDEADC0DE; 298 } else 299 M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf"); 300 } 301 302 /* packet length (not mbuf length!) calculation */ 303 if (m0->m_flags & M_PKTHDR) 304 pktlen += m->m_len; 305 306 /* m_tags may only be attached to first mbuf in chain. */ 307 if (m != m0 && m->m_flags & M_PKTHDR && 308 !SLIST_EMPTY(&m->m_pkthdr.tags)) { 309 if (sanitize) { 310 m_tag_delete_chain(m, NULL); 311 /* put in 0xDEADC0DE perhaps? */ 312 } else 313 M_SANITY_ACTION("m_tags on in-chain mbuf"); 314 } 315 316 /* M_PKTHDR may only be set on first mbuf in chain */ 317 if (m != m0 && m->m_flags & M_PKTHDR) { 318 if (sanitize) { 319 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 320 m->m_flags &= ~M_PKTHDR; 321 /* put in 0xDEADCODE and leave hdr flag in */ 322 } else 323 M_SANITY_ACTION("M_PKTHDR on in-chain mbuf"); 324 } 325 } 326 m = m0; 327 if (pktlen && pktlen != m->m_pkthdr.len) { 328 if (sanitize) 329 m->m_pkthdr.len = 0; 330 else 331 M_SANITY_ACTION("m_pkthdr.len != mbuf chain length"); 332 } 333 return 1; 334 335 #undef M_SANITY_ACTION 336 } 337 338 /* 339 * Non-inlined part of m_init(). 340 */ 341 int 342 m_pkthdr_init(struct mbuf *m, int how) 343 { 344 #ifdef MAC 345 int error; 346 #endif 347 m->m_data = m->m_pktdat; 348 bzero(&m->m_pkthdr, sizeof(m->m_pkthdr)); 349 #ifdef NUMA 350 m->m_pkthdr.numa_domain = M_NODOM; 351 #endif 352 #ifdef MAC 353 /* If the label init fails, fail the alloc */ 354 error = mac_mbuf_init(m, how); 355 if (error) 356 return (error); 357 #endif 358 359 return (0); 360 } 361 362 /* 363 * "Move" mbuf pkthdr from "from" to "to". 364 * "from" must have M_PKTHDR set, and "to" must be empty. 365 */ 366 void 367 m_move_pkthdr(struct mbuf *to, struct mbuf *from) 368 { 369 370 #if 0 371 /* see below for why these are not enabled */ 372 M_ASSERTPKTHDR(to); 373 /* Note: with MAC, this may not be a good assertion. */ 374 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), 375 ("m_move_pkthdr: to has tags")); 376 #endif 377 #ifdef MAC 378 /* 379 * XXXMAC: It could be this should also occur for non-MAC? 380 */ 381 if (to->m_flags & M_PKTHDR) 382 m_tag_delete_chain(to, NULL); 383 #endif 384 to->m_flags = (from->m_flags & M_COPYFLAGS) | 385 (to->m_flags & (M_EXT | M_NOMAP)); 386 if ((to->m_flags & M_EXT) == 0) 387 to->m_data = to->m_pktdat; 388 to->m_pkthdr = from->m_pkthdr; /* especially tags */ 389 SLIST_INIT(&from->m_pkthdr.tags); /* purge tags from src */ 390 from->m_flags &= ~M_PKTHDR; 391 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) { 392 from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG; 393 from->m_pkthdr.snd_tag = NULL; 394 } 395 } 396 397 /* 398 * Duplicate "from"'s mbuf pkthdr in "to". 399 * "from" must have M_PKTHDR set, and "to" must be empty. 400 * In particular, this does a deep copy of the packet tags. 401 */ 402 int 403 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how) 404 { 405 406 #if 0 407 /* 408 * The mbuf allocator only initializes the pkthdr 409 * when the mbuf is allocated with m_gethdr(). Many users 410 * (e.g. m_copy*, m_prepend) use m_get() and then 411 * smash the pkthdr as needed causing these 412 * assertions to trip. For now just disable them. 413 */ 414 M_ASSERTPKTHDR(to); 415 /* Note: with MAC, this may not be a good assertion. */ 416 KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags")); 417 #endif 418 MBUF_CHECKSLEEP(how); 419 #ifdef MAC 420 if (to->m_flags & M_PKTHDR) 421 m_tag_delete_chain(to, NULL); 422 #endif 423 to->m_flags = (from->m_flags & M_COPYFLAGS) | 424 (to->m_flags & (M_EXT | M_NOMAP)); 425 if ((to->m_flags & M_EXT) == 0) 426 to->m_data = to->m_pktdat; 427 to->m_pkthdr = from->m_pkthdr; 428 if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) 429 m_snd_tag_ref(from->m_pkthdr.snd_tag); 430 SLIST_INIT(&to->m_pkthdr.tags); 431 return (m_tag_copy_chain(to, from, how)); 432 } 433 434 /* 435 * Lesser-used path for M_PREPEND: 436 * allocate new mbuf to prepend to chain, 437 * copy junk along. 438 */ 439 struct mbuf * 440 m_prepend(struct mbuf *m, int len, int how) 441 { 442 struct mbuf *mn; 443 444 if (m->m_flags & M_PKTHDR) 445 mn = m_gethdr(how, m->m_type); 446 else 447 mn = m_get(how, m->m_type); 448 if (mn == NULL) { 449 m_freem(m); 450 return (NULL); 451 } 452 if (m->m_flags & M_PKTHDR) 453 m_move_pkthdr(mn, m); 454 mn->m_next = m; 455 m = mn; 456 if (len < M_SIZE(m)) 457 M_ALIGN(m, len); 458 m->m_len = len; 459 return (m); 460 } 461 462 /* 463 * Make a copy of an mbuf chain starting "off0" bytes from the beginning, 464 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf. 465 * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller. 466 * Note that the copy is read-only, because clusters are not copied, 467 * only their reference counts are incremented. 468 */ 469 struct mbuf * 470 m_copym(struct mbuf *m, int off0, int len, int wait) 471 { 472 struct mbuf *n, **np; 473 int off = off0; 474 struct mbuf *top; 475 int copyhdr = 0; 476 477 KASSERT(off >= 0, ("m_copym, negative off %d", off)); 478 KASSERT(len >= 0, ("m_copym, negative len %d", len)); 479 MBUF_CHECKSLEEP(wait); 480 if (off == 0 && m->m_flags & M_PKTHDR) 481 copyhdr = 1; 482 while (off > 0) { 483 KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain")); 484 if (off < m->m_len) 485 break; 486 off -= m->m_len; 487 m = m->m_next; 488 } 489 np = ⊤ 490 top = NULL; 491 while (len > 0) { 492 if (m == NULL) { 493 KASSERT(len == M_COPYALL, 494 ("m_copym, length > size of mbuf chain")); 495 break; 496 } 497 if (copyhdr) 498 n = m_gethdr(wait, m->m_type); 499 else 500 n = m_get(wait, m->m_type); 501 *np = n; 502 if (n == NULL) 503 goto nospace; 504 if (copyhdr) { 505 if (!m_dup_pkthdr(n, m, wait)) 506 goto nospace; 507 if (len == M_COPYALL) 508 n->m_pkthdr.len -= off0; 509 else 510 n->m_pkthdr.len = len; 511 copyhdr = 0; 512 } 513 n->m_len = min(len, m->m_len - off); 514 if (m->m_flags & M_EXT) { 515 n->m_data = m->m_data + off; 516 mb_dupcl(n, m); 517 } else 518 bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t), 519 (u_int)n->m_len); 520 if (len != M_COPYALL) 521 len -= n->m_len; 522 off = 0; 523 m = m->m_next; 524 np = &n->m_next; 525 } 526 527 return (top); 528 nospace: 529 m_freem(top); 530 return (NULL); 531 } 532 533 /* 534 * Copy an entire packet, including header (which must be present). 535 * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'. 536 * Note that the copy is read-only, because clusters are not copied, 537 * only their reference counts are incremented. 538 * Preserve alignment of the first mbuf so if the creator has left 539 * some room at the beginning (e.g. for inserting protocol headers) 540 * the copies still have the room available. 541 */ 542 struct mbuf * 543 m_copypacket(struct mbuf *m, int how) 544 { 545 struct mbuf *top, *n, *o; 546 547 MBUF_CHECKSLEEP(how); 548 n = m_get(how, m->m_type); 549 top = n; 550 if (n == NULL) 551 goto nospace; 552 553 if (!m_dup_pkthdr(n, m, how)) 554 goto nospace; 555 n->m_len = m->m_len; 556 if (m->m_flags & M_EXT) { 557 n->m_data = m->m_data; 558 mb_dupcl(n, m); 559 } else { 560 n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat ); 561 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 562 } 563 564 m = m->m_next; 565 while (m) { 566 o = m_get(how, m->m_type); 567 if (o == NULL) 568 goto nospace; 569 570 n->m_next = o; 571 n = n->m_next; 572 573 n->m_len = m->m_len; 574 if (m->m_flags & M_EXT) { 575 n->m_data = m->m_data; 576 mb_dupcl(n, m); 577 } else { 578 bcopy(mtod(m, char *), mtod(n, char *), n->m_len); 579 } 580 581 m = m->m_next; 582 } 583 return top; 584 nospace: 585 m_freem(top); 586 return (NULL); 587 } 588 589 static void 590 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp) 591 { 592 struct iovec iov; 593 struct uio uio; 594 int error; 595 596 KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off)); 597 KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len)); 598 KASSERT(off < m->m_len, 599 ("m_copyfromunmapped: len exceeds mbuf length")); 600 iov.iov_base = cp; 601 iov.iov_len = len; 602 uio.uio_resid = len; 603 uio.uio_iov = &iov; 604 uio.uio_segflg = UIO_SYSSPACE; 605 uio.uio_iovcnt = 1; 606 uio.uio_offset = 0; 607 uio.uio_rw = UIO_READ; 608 error = m_unmappedtouio(m, off, &uio, len); 609 KASSERT(error == 0, ("m_unmappedtouio failed: off %d, len %d", off, 610 len)); 611 } 612 613 /* 614 * Copy data from an mbuf chain starting "off" bytes from the beginning, 615 * continuing for "len" bytes, into the indicated buffer. 616 */ 617 void 618 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp) 619 { 620 u_int count; 621 622 KASSERT(off >= 0, ("m_copydata, negative off %d", off)); 623 KASSERT(len >= 0, ("m_copydata, negative len %d", len)); 624 while (off > 0) { 625 KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain")); 626 if (off < m->m_len) 627 break; 628 off -= m->m_len; 629 m = m->m_next; 630 } 631 while (len > 0) { 632 KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain")); 633 count = min(m->m_len - off, len); 634 if ((m->m_flags & M_NOMAP) != 0) 635 m_copyfromunmapped(m, off, count, cp); 636 else 637 bcopy(mtod(m, caddr_t) + off, cp, count); 638 len -= count; 639 cp += count; 640 off = 0; 641 m = m->m_next; 642 } 643 } 644 645 /* 646 * Copy a packet header mbuf chain into a completely new chain, including 647 * copying any mbuf clusters. Use this instead of m_copypacket() when 648 * you need a writable copy of an mbuf chain. 649 */ 650 struct mbuf * 651 m_dup(const struct mbuf *m, int how) 652 { 653 struct mbuf **p, *top = NULL; 654 int remain, moff, nsize; 655 656 MBUF_CHECKSLEEP(how); 657 /* Sanity check */ 658 if (m == NULL) 659 return (NULL); 660 M_ASSERTPKTHDR(m); 661 662 /* While there's more data, get a new mbuf, tack it on, and fill it */ 663 remain = m->m_pkthdr.len; 664 moff = 0; 665 p = ⊤ 666 while (remain > 0 || top == NULL) { /* allow m->m_pkthdr.len == 0 */ 667 struct mbuf *n; 668 669 /* Get the next new mbuf */ 670 if (remain >= MINCLSIZE) { 671 n = m_getcl(how, m->m_type, 0); 672 nsize = MCLBYTES; 673 } else { 674 n = m_get(how, m->m_type); 675 nsize = MLEN; 676 } 677 if (n == NULL) 678 goto nospace; 679 680 if (top == NULL) { /* First one, must be PKTHDR */ 681 if (!m_dup_pkthdr(n, m, how)) { 682 m_free(n); 683 goto nospace; 684 } 685 if ((n->m_flags & M_EXT) == 0) 686 nsize = MHLEN; 687 n->m_flags &= ~M_RDONLY; 688 } 689 n->m_len = 0; 690 691 /* Link it into the new chain */ 692 *p = n; 693 p = &n->m_next; 694 695 /* Copy data from original mbuf(s) into new mbuf */ 696 while (n->m_len < nsize && m != NULL) { 697 int chunk = min(nsize - n->m_len, m->m_len - moff); 698 699 bcopy(m->m_data + moff, n->m_data + n->m_len, chunk); 700 moff += chunk; 701 n->m_len += chunk; 702 remain -= chunk; 703 if (moff == m->m_len) { 704 m = m->m_next; 705 moff = 0; 706 } 707 } 708 709 /* Check correct total mbuf length */ 710 KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL), 711 ("%s: bogus m_pkthdr.len", __func__)); 712 } 713 return (top); 714 715 nospace: 716 m_freem(top); 717 return (NULL); 718 } 719 720 /* 721 * Concatenate mbuf chain n to m. 722 * Both chains must be of the same type (e.g. MT_DATA). 723 * Any m_pkthdr is not updated. 724 */ 725 void 726 m_cat(struct mbuf *m, struct mbuf *n) 727 { 728 while (m->m_next) 729 m = m->m_next; 730 while (n) { 731 if (!M_WRITABLE(m) || 732 (n->m_flags & M_NOMAP) != 0 || 733 M_TRAILINGSPACE(m) < n->m_len) { 734 /* just join the two chains */ 735 m->m_next = n; 736 return; 737 } 738 /* splat the data from one into the other */ 739 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 740 (u_int)n->m_len); 741 m->m_len += n->m_len; 742 n = m_free(n); 743 } 744 } 745 746 /* 747 * Concatenate two pkthdr mbuf chains. 748 */ 749 void 750 m_catpkt(struct mbuf *m, struct mbuf *n) 751 { 752 753 M_ASSERTPKTHDR(m); 754 M_ASSERTPKTHDR(n); 755 756 m->m_pkthdr.len += n->m_pkthdr.len; 757 m_demote(n, 1, 0); 758 759 m_cat(m, n); 760 } 761 762 void 763 m_adj(struct mbuf *mp, int req_len) 764 { 765 int len = req_len; 766 struct mbuf *m; 767 int count; 768 769 if ((m = mp) == NULL) 770 return; 771 if (len >= 0) { 772 /* 773 * Trim from head. 774 */ 775 while (m != NULL && len > 0) { 776 if (m->m_len <= len) { 777 len -= m->m_len; 778 m->m_len = 0; 779 m = m->m_next; 780 } else { 781 m->m_len -= len; 782 m->m_data += len; 783 len = 0; 784 } 785 } 786 if (mp->m_flags & M_PKTHDR) 787 mp->m_pkthdr.len -= (req_len - len); 788 } else { 789 /* 790 * Trim from tail. Scan the mbuf chain, 791 * calculating its length and finding the last mbuf. 792 * If the adjustment only affects this mbuf, then just 793 * adjust and return. Otherwise, rescan and truncate 794 * after the remaining size. 795 */ 796 len = -len; 797 count = 0; 798 for (;;) { 799 count += m->m_len; 800 if (m->m_next == (struct mbuf *)0) 801 break; 802 m = m->m_next; 803 } 804 if (m->m_len >= len) { 805 m->m_len -= len; 806 if (mp->m_flags & M_PKTHDR) 807 mp->m_pkthdr.len -= len; 808 return; 809 } 810 count -= len; 811 if (count < 0) 812 count = 0; 813 /* 814 * Correct length for chain is "count". 815 * Find the mbuf with last data, adjust its length, 816 * and toss data from remaining mbufs on chain. 817 */ 818 m = mp; 819 if (m->m_flags & M_PKTHDR) 820 m->m_pkthdr.len = count; 821 for (; m; m = m->m_next) { 822 if (m->m_len >= count) { 823 m->m_len = count; 824 if (m->m_next != NULL) { 825 m_freem(m->m_next); 826 m->m_next = NULL; 827 } 828 break; 829 } 830 count -= m->m_len; 831 } 832 } 833 } 834 835 /* 836 * Rearange an mbuf chain so that len bytes are contiguous 837 * and in the data area of an mbuf (so that mtod will work 838 * for a structure of size len). Returns the resulting 839 * mbuf chain on success, frees it and returns null on failure. 840 * If there is room, it will add up to max_protohdr-len extra bytes to the 841 * contiguous region in an attempt to avoid being called next time. 842 */ 843 struct mbuf * 844 m_pullup(struct mbuf *n, int len) 845 { 846 struct mbuf *m; 847 int count; 848 int space; 849 850 KASSERT((n->m_flags & M_NOMAP) == 0, 851 ("%s: unmapped mbuf %p", __func__, n)); 852 853 /* 854 * If first mbuf has no cluster, and has room for len bytes 855 * without shifting current data, pullup into it, 856 * otherwise allocate a new mbuf to prepend to the chain. 857 */ 858 if ((n->m_flags & M_EXT) == 0 && 859 n->m_data + len < &n->m_dat[MLEN] && n->m_next) { 860 if (n->m_len >= len) 861 return (n); 862 m = n; 863 n = n->m_next; 864 len -= m->m_len; 865 } else { 866 if (len > MHLEN) 867 goto bad; 868 m = m_get(M_NOWAIT, n->m_type); 869 if (m == NULL) 870 goto bad; 871 if (n->m_flags & M_PKTHDR) 872 m_move_pkthdr(m, n); 873 } 874 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 875 do { 876 count = min(min(max(len, max_protohdr), space), n->m_len); 877 bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len, 878 (u_int)count); 879 len -= count; 880 m->m_len += count; 881 n->m_len -= count; 882 space -= count; 883 if (n->m_len) 884 n->m_data += count; 885 else 886 n = m_free(n); 887 } while (len > 0 && n); 888 if (len > 0) { 889 (void) m_free(m); 890 goto bad; 891 } 892 m->m_next = n; 893 return (m); 894 bad: 895 m_freem(n); 896 return (NULL); 897 } 898 899 /* 900 * Like m_pullup(), except a new mbuf is always allocated, and we allow 901 * the amount of empty space before the data in the new mbuf to be specified 902 * (in the event that the caller expects to prepend later). 903 */ 904 struct mbuf * 905 m_copyup(struct mbuf *n, int len, int dstoff) 906 { 907 struct mbuf *m; 908 int count, space; 909 910 if (len > (MHLEN - dstoff)) 911 goto bad; 912 m = m_get(M_NOWAIT, n->m_type); 913 if (m == NULL) 914 goto bad; 915 if (n->m_flags & M_PKTHDR) 916 m_move_pkthdr(m, n); 917 m->m_data += dstoff; 918 space = &m->m_dat[MLEN] - (m->m_data + m->m_len); 919 do { 920 count = min(min(max(len, max_protohdr), space), n->m_len); 921 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t), 922 (unsigned)count); 923 len -= count; 924 m->m_len += count; 925 n->m_len -= count; 926 space -= count; 927 if (n->m_len) 928 n->m_data += count; 929 else 930 n = m_free(n); 931 } while (len > 0 && n); 932 if (len > 0) { 933 (void) m_free(m); 934 goto bad; 935 } 936 m->m_next = n; 937 return (m); 938 bad: 939 m_freem(n); 940 return (NULL); 941 } 942 943 /* 944 * Partition an mbuf chain in two pieces, returning the tail -- 945 * all but the first len0 bytes. In case of failure, it returns NULL and 946 * attempts to restore the chain to its original state. 947 * 948 * Note that the resulting mbufs might be read-only, because the new 949 * mbuf can end up sharing an mbuf cluster with the original mbuf if 950 * the "breaking point" happens to lie within a cluster mbuf. Use the 951 * M_WRITABLE() macro to check for this case. 952 */ 953 struct mbuf * 954 m_split(struct mbuf *m0, int len0, int wait) 955 { 956 struct mbuf *m, *n; 957 u_int len = len0, remain; 958 959 MBUF_CHECKSLEEP(wait); 960 for (m = m0; m && len > m->m_len; m = m->m_next) 961 len -= m->m_len; 962 if (m == NULL) 963 return (NULL); 964 remain = m->m_len - len; 965 if (m0->m_flags & M_PKTHDR && remain == 0) { 966 n = m_gethdr(wait, m0->m_type); 967 if (n == NULL) 968 return (NULL); 969 n->m_next = m->m_next; 970 m->m_next = NULL; 971 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 972 n->m_pkthdr.snd_tag = 973 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 974 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 975 } else 976 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 977 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 978 m0->m_pkthdr.len = len0; 979 return (n); 980 } else if (m0->m_flags & M_PKTHDR) { 981 n = m_gethdr(wait, m0->m_type); 982 if (n == NULL) 983 return (NULL); 984 if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) { 985 n->m_pkthdr.snd_tag = 986 m_snd_tag_ref(m0->m_pkthdr.snd_tag); 987 n->m_pkthdr.csum_flags |= CSUM_SND_TAG; 988 } else 989 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif; 990 n->m_pkthdr.len = m0->m_pkthdr.len - len0; 991 m0->m_pkthdr.len = len0; 992 if (m->m_flags & M_EXT) 993 goto extpacket; 994 if (remain > MHLEN) { 995 /* m can't be the lead packet */ 996 M_ALIGN(n, 0); 997 n->m_next = m_split(m, len, wait); 998 if (n->m_next == NULL) { 999 (void) m_free(n); 1000 return (NULL); 1001 } else { 1002 n->m_len = 0; 1003 return (n); 1004 } 1005 } else 1006 M_ALIGN(n, remain); 1007 } else if (remain == 0) { 1008 n = m->m_next; 1009 m->m_next = NULL; 1010 return (n); 1011 } else { 1012 n = m_get(wait, m->m_type); 1013 if (n == NULL) 1014 return (NULL); 1015 M_ALIGN(n, remain); 1016 } 1017 extpacket: 1018 if (m->m_flags & M_EXT) { 1019 n->m_data = m->m_data + len; 1020 mb_dupcl(n, m); 1021 } else { 1022 bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain); 1023 } 1024 n->m_len = remain; 1025 m->m_len = len; 1026 n->m_next = m->m_next; 1027 m->m_next = NULL; 1028 return (n); 1029 } 1030 /* 1031 * Routine to copy from device local memory into mbufs. 1032 * Note that `off' argument is offset into first mbuf of target chain from 1033 * which to begin copying the data to. 1034 */ 1035 struct mbuf * 1036 m_devget(char *buf, int totlen, int off, struct ifnet *ifp, 1037 void (*copy)(char *from, caddr_t to, u_int len)) 1038 { 1039 struct mbuf *m; 1040 struct mbuf *top = NULL, **mp = ⊤ 1041 int len; 1042 1043 if (off < 0 || off > MHLEN) 1044 return (NULL); 1045 1046 while (totlen > 0) { 1047 if (top == NULL) { /* First one, must be PKTHDR */ 1048 if (totlen + off >= MINCLSIZE) { 1049 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1050 len = MCLBYTES; 1051 } else { 1052 m = m_gethdr(M_NOWAIT, MT_DATA); 1053 len = MHLEN; 1054 1055 /* Place initial small packet/header at end of mbuf */ 1056 if (m && totlen + off + max_linkhdr <= MHLEN) { 1057 m->m_data += max_linkhdr; 1058 len -= max_linkhdr; 1059 } 1060 } 1061 if (m == NULL) 1062 return NULL; 1063 m->m_pkthdr.rcvif = ifp; 1064 m->m_pkthdr.len = totlen; 1065 } else { 1066 if (totlen + off >= MINCLSIZE) { 1067 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1068 len = MCLBYTES; 1069 } else { 1070 m = m_get(M_NOWAIT, MT_DATA); 1071 len = MLEN; 1072 } 1073 if (m == NULL) { 1074 m_freem(top); 1075 return NULL; 1076 } 1077 } 1078 if (off) { 1079 m->m_data += off; 1080 len -= off; 1081 off = 0; 1082 } 1083 m->m_len = len = min(totlen, len); 1084 if (copy) 1085 copy(buf, mtod(m, caddr_t), (u_int)len); 1086 else 1087 bcopy(buf, mtod(m, caddr_t), (u_int)len); 1088 buf += len; 1089 *mp = m; 1090 mp = &m->m_next; 1091 totlen -= len; 1092 } 1093 return (top); 1094 } 1095 1096 /* 1097 * Copy data from a buffer back into the indicated mbuf chain, 1098 * starting "off" bytes from the beginning, extending the mbuf 1099 * chain if necessary. 1100 */ 1101 void 1102 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp) 1103 { 1104 int mlen; 1105 struct mbuf *m = m0, *n; 1106 int totlen = 0; 1107 1108 if (m0 == NULL) 1109 return; 1110 while (off > (mlen = m->m_len)) { 1111 off -= mlen; 1112 totlen += mlen; 1113 if (m->m_next == NULL) { 1114 n = m_get(M_NOWAIT, m->m_type); 1115 if (n == NULL) 1116 goto out; 1117 bzero(mtod(n, caddr_t), MLEN); 1118 n->m_len = min(MLEN, len + off); 1119 m->m_next = n; 1120 } 1121 m = m->m_next; 1122 } 1123 while (len > 0) { 1124 if (m->m_next == NULL && (len > m->m_len - off)) { 1125 m->m_len += min(len - (m->m_len - off), 1126 M_TRAILINGSPACE(m)); 1127 } 1128 mlen = min (m->m_len - off, len); 1129 bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen); 1130 cp += mlen; 1131 len -= mlen; 1132 mlen += off; 1133 off = 0; 1134 totlen += mlen; 1135 if (len == 0) 1136 break; 1137 if (m->m_next == NULL) { 1138 n = m_get(M_NOWAIT, m->m_type); 1139 if (n == NULL) 1140 break; 1141 n->m_len = min(MLEN, len); 1142 m->m_next = n; 1143 } 1144 m = m->m_next; 1145 } 1146 out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) 1147 m->m_pkthdr.len = totlen; 1148 } 1149 1150 /* 1151 * Append the specified data to the indicated mbuf chain, 1152 * Extend the mbuf chain if the new data does not fit in 1153 * existing space. 1154 * 1155 * Return 1 if able to complete the job; otherwise 0. 1156 */ 1157 int 1158 m_append(struct mbuf *m0, int len, c_caddr_t cp) 1159 { 1160 struct mbuf *m, *n; 1161 int remainder, space; 1162 1163 for (m = m0; m->m_next != NULL; m = m->m_next) 1164 ; 1165 remainder = len; 1166 space = M_TRAILINGSPACE(m); 1167 if (space > 0) { 1168 /* 1169 * Copy into available space. 1170 */ 1171 if (space > remainder) 1172 space = remainder; 1173 bcopy(cp, mtod(m, caddr_t) + m->m_len, space); 1174 m->m_len += space; 1175 cp += space, remainder -= space; 1176 } 1177 while (remainder > 0) { 1178 /* 1179 * Allocate a new mbuf; could check space 1180 * and allocate a cluster instead. 1181 */ 1182 n = m_get(M_NOWAIT, m->m_type); 1183 if (n == NULL) 1184 break; 1185 n->m_len = min(MLEN, remainder); 1186 bcopy(cp, mtod(n, caddr_t), n->m_len); 1187 cp += n->m_len, remainder -= n->m_len; 1188 m->m_next = n; 1189 m = n; 1190 } 1191 if (m0->m_flags & M_PKTHDR) 1192 m0->m_pkthdr.len += len - remainder; 1193 return (remainder == 0); 1194 } 1195 1196 /* 1197 * Apply function f to the data in an mbuf chain starting "off" bytes from 1198 * the beginning, continuing for "len" bytes. 1199 */ 1200 int 1201 m_apply(struct mbuf *m, int off, int len, 1202 int (*f)(void *, void *, u_int), void *arg) 1203 { 1204 u_int count; 1205 int rval; 1206 1207 KASSERT(off >= 0, ("m_apply, negative off %d", off)); 1208 KASSERT(len >= 0, ("m_apply, negative len %d", len)); 1209 while (off > 0) { 1210 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1211 if (off < m->m_len) 1212 break; 1213 off -= m->m_len; 1214 m = m->m_next; 1215 } 1216 while (len > 0) { 1217 KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain")); 1218 count = min(m->m_len - off, len); 1219 rval = (*f)(arg, mtod(m, caddr_t) + off, count); 1220 if (rval) 1221 return (rval); 1222 len -= count; 1223 off = 0; 1224 m = m->m_next; 1225 } 1226 return (0); 1227 } 1228 1229 /* 1230 * Return a pointer to mbuf/offset of location in mbuf chain. 1231 */ 1232 struct mbuf * 1233 m_getptr(struct mbuf *m, int loc, int *off) 1234 { 1235 1236 while (loc >= 0) { 1237 /* Normal end of search. */ 1238 if (m->m_len > loc) { 1239 *off = loc; 1240 return (m); 1241 } else { 1242 loc -= m->m_len; 1243 if (m->m_next == NULL) { 1244 if (loc == 0) { 1245 /* Point at the end of valid data. */ 1246 *off = m->m_len; 1247 return (m); 1248 } 1249 return (NULL); 1250 } 1251 m = m->m_next; 1252 } 1253 } 1254 return (NULL); 1255 } 1256 1257 void 1258 m_print(const struct mbuf *m, int maxlen) 1259 { 1260 int len; 1261 int pdata; 1262 const struct mbuf *m2; 1263 1264 if (m == NULL) { 1265 printf("mbuf: %p\n", m); 1266 return; 1267 } 1268 1269 if (m->m_flags & M_PKTHDR) 1270 len = m->m_pkthdr.len; 1271 else 1272 len = -1; 1273 m2 = m; 1274 while (m2 != NULL && (len == -1 || len)) { 1275 pdata = m2->m_len; 1276 if (maxlen != -1 && pdata > maxlen) 1277 pdata = maxlen; 1278 printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len, 1279 m2->m_next, m2->m_flags, "\20\20freelist\17skipfw" 1280 "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly" 1281 "\3eor\2pkthdr\1ext", pdata ? "" : "\n"); 1282 if (pdata) 1283 printf(", %*D\n", pdata, (u_char *)m2->m_data, "-"); 1284 if (len != -1) 1285 len -= m2->m_len; 1286 m2 = m2->m_next; 1287 } 1288 if (len > 0) 1289 printf("%d bytes unaccounted for.\n", len); 1290 return; 1291 } 1292 1293 u_int 1294 m_fixhdr(struct mbuf *m0) 1295 { 1296 u_int len; 1297 1298 len = m_length(m0, NULL); 1299 m0->m_pkthdr.len = len; 1300 return (len); 1301 } 1302 1303 u_int 1304 m_length(struct mbuf *m0, struct mbuf **last) 1305 { 1306 struct mbuf *m; 1307 u_int len; 1308 1309 len = 0; 1310 for (m = m0; m != NULL; m = m->m_next) { 1311 len += m->m_len; 1312 if (m->m_next == NULL) 1313 break; 1314 } 1315 if (last != NULL) 1316 *last = m; 1317 return (len); 1318 } 1319 1320 /* 1321 * Defragment a mbuf chain, returning the shortest possible 1322 * chain of mbufs and clusters. If allocation fails and 1323 * this cannot be completed, NULL will be returned, but 1324 * the passed in chain will be unchanged. Upon success, 1325 * the original chain will be freed, and the new chain 1326 * will be returned. 1327 * 1328 * If a non-packet header is passed in, the original 1329 * mbuf (chain?) will be returned unharmed. 1330 */ 1331 struct mbuf * 1332 m_defrag(struct mbuf *m0, int how) 1333 { 1334 struct mbuf *m_new = NULL, *m_final = NULL; 1335 int progress = 0, length; 1336 1337 MBUF_CHECKSLEEP(how); 1338 if (!(m0->m_flags & M_PKTHDR)) 1339 return (m0); 1340 1341 m_fixhdr(m0); /* Needed sanity check */ 1342 1343 #ifdef MBUF_STRESS_TEST 1344 if (m_defragrandomfailures) { 1345 int temp = arc4random() & 0xff; 1346 if (temp == 0xba) 1347 goto nospace; 1348 } 1349 #endif 1350 1351 if (m0->m_pkthdr.len > MHLEN) 1352 m_final = m_getcl(how, MT_DATA, M_PKTHDR); 1353 else 1354 m_final = m_gethdr(how, MT_DATA); 1355 1356 if (m_final == NULL) 1357 goto nospace; 1358 1359 if (m_dup_pkthdr(m_final, m0, how) == 0) 1360 goto nospace; 1361 1362 m_new = m_final; 1363 1364 while (progress < m0->m_pkthdr.len) { 1365 length = m0->m_pkthdr.len - progress; 1366 if (length > MCLBYTES) 1367 length = MCLBYTES; 1368 1369 if (m_new == NULL) { 1370 if (length > MLEN) 1371 m_new = m_getcl(how, MT_DATA, 0); 1372 else 1373 m_new = m_get(how, MT_DATA); 1374 if (m_new == NULL) 1375 goto nospace; 1376 } 1377 1378 m_copydata(m0, progress, length, mtod(m_new, caddr_t)); 1379 progress += length; 1380 m_new->m_len = length; 1381 if (m_new != m_final) 1382 m_cat(m_final, m_new); 1383 m_new = NULL; 1384 } 1385 #ifdef MBUF_STRESS_TEST 1386 if (m0->m_next == NULL) 1387 m_defraguseless++; 1388 #endif 1389 m_freem(m0); 1390 m0 = m_final; 1391 #ifdef MBUF_STRESS_TEST 1392 m_defragpackets++; 1393 m_defragbytes += m0->m_pkthdr.len; 1394 #endif 1395 return (m0); 1396 nospace: 1397 #ifdef MBUF_STRESS_TEST 1398 m_defragfailure++; 1399 #endif 1400 if (m_final) 1401 m_freem(m_final); 1402 return (NULL); 1403 } 1404 1405 /* 1406 * Return the number of fragments an mbuf will use. This is usually 1407 * used as a proxy for the number of scatter/gather elements needed by 1408 * a DMA engine to access an mbuf. In general mapped mbufs are 1409 * assumed to be backed by physically contiguous buffers that only 1410 * need a single fragment. Unmapped mbufs, on the other hand, can 1411 * span disjoint physical pages. 1412 */ 1413 static int 1414 frags_per_mbuf(struct mbuf *m) 1415 { 1416 struct mbuf_ext_pgs *ext_pgs; 1417 int frags; 1418 1419 if ((m->m_flags & M_NOMAP) == 0) 1420 return (1); 1421 1422 /* 1423 * The header and trailer are counted as a single fragment 1424 * each when present. 1425 * 1426 * XXX: This overestimates the number of fragments by assuming 1427 * all the backing physical pages are disjoint. 1428 */ 1429 ext_pgs = m->m_ext.ext_pgs; 1430 frags = 0; 1431 if (ext_pgs->hdr_len != 0) 1432 frags++; 1433 frags += ext_pgs->npgs; 1434 if (ext_pgs->trail_len != 0) 1435 frags++; 1436 1437 return (frags); 1438 } 1439 1440 /* 1441 * Defragment an mbuf chain, returning at most maxfrags separate 1442 * mbufs+clusters. If this is not possible NULL is returned and 1443 * the original mbuf chain is left in its present (potentially 1444 * modified) state. We use two techniques: collapsing consecutive 1445 * mbufs and replacing consecutive mbufs by a cluster. 1446 * 1447 * NB: this should really be named m_defrag but that name is taken 1448 */ 1449 struct mbuf * 1450 m_collapse(struct mbuf *m0, int how, int maxfrags) 1451 { 1452 struct mbuf *m, *n, *n2, **prev; 1453 u_int curfrags; 1454 1455 /* 1456 * Calculate the current number of frags. 1457 */ 1458 curfrags = 0; 1459 for (m = m0; m != NULL; m = m->m_next) 1460 curfrags += frags_per_mbuf(m); 1461 /* 1462 * First, try to collapse mbufs. Note that we always collapse 1463 * towards the front so we don't need to deal with moving the 1464 * pkthdr. This may be suboptimal if the first mbuf has much 1465 * less data than the following. 1466 */ 1467 m = m0; 1468 again: 1469 for (;;) { 1470 n = m->m_next; 1471 if (n == NULL) 1472 break; 1473 if (M_WRITABLE(m) && 1474 n->m_len < M_TRAILINGSPACE(m)) { 1475 m_copydata(n, 0, n->m_len, 1476 mtod(m, char *) + m->m_len); 1477 m->m_len += n->m_len; 1478 m->m_next = n->m_next; 1479 curfrags -= frags_per_mbuf(n); 1480 m_free(n); 1481 if (curfrags <= maxfrags) 1482 return m0; 1483 } else 1484 m = n; 1485 } 1486 KASSERT(maxfrags > 1, 1487 ("maxfrags %u, but normal collapse failed", maxfrags)); 1488 /* 1489 * Collapse consecutive mbufs to a cluster. 1490 */ 1491 prev = &m0->m_next; /* NB: not the first mbuf */ 1492 while ((n = *prev) != NULL) { 1493 if ((n2 = n->m_next) != NULL && 1494 n->m_len + n2->m_len < MCLBYTES) { 1495 m = m_getcl(how, MT_DATA, 0); 1496 if (m == NULL) 1497 goto bad; 1498 m_copydata(n, 0, n->m_len, mtod(m, char *)); 1499 m_copydata(n2, 0, n2->m_len, 1500 mtod(m, char *) + n->m_len); 1501 m->m_len = n->m_len + n2->m_len; 1502 m->m_next = n2->m_next; 1503 *prev = m; 1504 curfrags += 1; /* For the new cluster */ 1505 curfrags -= frags_per_mbuf(n); 1506 curfrags -= frags_per_mbuf(n2); 1507 m_free(n); 1508 m_free(n2); 1509 if (curfrags <= maxfrags) 1510 return m0; 1511 /* 1512 * Still not there, try the normal collapse 1513 * again before we allocate another cluster. 1514 */ 1515 goto again; 1516 } 1517 prev = &n->m_next; 1518 } 1519 /* 1520 * No place where we can collapse to a cluster; punt. 1521 * This can occur if, for example, you request 2 frags 1522 * but the packet requires that both be clusters (we 1523 * never reallocate the first mbuf to avoid moving the 1524 * packet header). 1525 */ 1526 bad: 1527 return NULL; 1528 } 1529 1530 #ifdef MBUF_STRESS_TEST 1531 1532 /* 1533 * Fragment an mbuf chain. There's no reason you'd ever want to do 1534 * this in normal usage, but it's great for stress testing various 1535 * mbuf consumers. 1536 * 1537 * If fragmentation is not possible, the original chain will be 1538 * returned. 1539 * 1540 * Possible length values: 1541 * 0 no fragmentation will occur 1542 * > 0 each fragment will be of the specified length 1543 * -1 each fragment will be the same random value in length 1544 * -2 each fragment's length will be entirely random 1545 * (Random values range from 1 to 256) 1546 */ 1547 struct mbuf * 1548 m_fragment(struct mbuf *m0, int how, int length) 1549 { 1550 struct mbuf *m_first, *m_last; 1551 int divisor = 255, progress = 0, fraglen; 1552 1553 if (!(m0->m_flags & M_PKTHDR)) 1554 return (m0); 1555 1556 if (length == 0 || length < -2) 1557 return (m0); 1558 if (length > MCLBYTES) 1559 length = MCLBYTES; 1560 if (length < 0 && divisor > MCLBYTES) 1561 divisor = MCLBYTES; 1562 if (length == -1) 1563 length = 1 + (arc4random() % divisor); 1564 if (length > 0) 1565 fraglen = length; 1566 1567 m_fixhdr(m0); /* Needed sanity check */ 1568 1569 m_first = m_getcl(how, MT_DATA, M_PKTHDR); 1570 if (m_first == NULL) 1571 goto nospace; 1572 1573 if (m_dup_pkthdr(m_first, m0, how) == 0) 1574 goto nospace; 1575 1576 m_last = m_first; 1577 1578 while (progress < m0->m_pkthdr.len) { 1579 if (length == -2) 1580 fraglen = 1 + (arc4random() % divisor); 1581 if (fraglen > m0->m_pkthdr.len - progress) 1582 fraglen = m0->m_pkthdr.len - progress; 1583 1584 if (progress != 0) { 1585 struct mbuf *m_new = m_getcl(how, MT_DATA, 0); 1586 if (m_new == NULL) 1587 goto nospace; 1588 1589 m_last->m_next = m_new; 1590 m_last = m_new; 1591 } 1592 1593 m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t)); 1594 progress += fraglen; 1595 m_last->m_len = fraglen; 1596 } 1597 m_freem(m0); 1598 m0 = m_first; 1599 return (m0); 1600 nospace: 1601 if (m_first) 1602 m_freem(m_first); 1603 /* Return the original chain on failure */ 1604 return (m0); 1605 } 1606 1607 #endif 1608 1609 /* 1610 * Free pages from mbuf_ext_pgs, assuming they were allocated via 1611 * vm_page_alloc() and aren't associated with any object. Complement 1612 * to allocator from m_uiotombuf_nomap(). 1613 */ 1614 void 1615 mb_free_mext_pgs(struct mbuf *m) 1616 { 1617 struct mbuf_ext_pgs *ext_pgs; 1618 vm_page_t pg; 1619 1620 MBUF_EXT_PGS_ASSERT(m); 1621 ext_pgs = m->m_ext.ext_pgs; 1622 for (int i = 0; i < ext_pgs->npgs; i++) { 1623 pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]); 1624 vm_page_unwire_noq(pg); 1625 vm_page_free(pg); 1626 } 1627 } 1628 1629 static struct mbuf * 1630 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags) 1631 { 1632 struct mbuf *m, *mb, *prev; 1633 struct mbuf_ext_pgs *pgs; 1634 vm_page_t pg_array[MBUF_PEXT_MAX_PGS]; 1635 int error, length, i, needed; 1636 ssize_t total; 1637 int pflags = malloc2vm_flags(how) | VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 1638 VM_ALLOC_WIRED; 1639 1640 /* 1641 * len can be zero or an arbitrary large value bound by 1642 * the total data supplied by the uio. 1643 */ 1644 if (len > 0) 1645 total = MIN(uio->uio_resid, len); 1646 else 1647 total = uio->uio_resid; 1648 1649 if (maxseg == 0) 1650 maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE; 1651 1652 /* 1653 * Allocate the pages 1654 */ 1655 m = NULL; 1656 while (total > 0) { 1657 mb = mb_alloc_ext_pgs(how, (flags & M_PKTHDR), 1658 mb_free_mext_pgs); 1659 if (mb == NULL) 1660 goto failed; 1661 if (m == NULL) 1662 m = mb; 1663 else 1664 prev->m_next = mb; 1665 prev = mb; 1666 pgs = mb->m_ext.ext_pgs; 1667 pgs->flags = MBUF_PEXT_FLAG_ANON; 1668 needed = length = MIN(maxseg, total); 1669 for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) { 1670 retry_page: 1671 pg_array[i] = vm_page_alloc(NULL, 0, pflags); 1672 if (pg_array[i] == NULL) { 1673 if (how & M_NOWAIT) { 1674 goto failed; 1675 } else { 1676 vm_wait(NULL); 1677 goto retry_page; 1678 } 1679 } 1680 pg_array[i]->flags &= ~PG_ZERO; 1681 pgs->pa[i] = VM_PAGE_TO_PHYS(pg_array[i]); 1682 pgs->npgs++; 1683 } 1684 pgs->last_pg_len = length - PAGE_SIZE * (pgs->npgs - 1); 1685 MBUF_EXT_PGS_ASSERT_SANITY(pgs); 1686 total -= length; 1687 error = uiomove_fromphys(pg_array, 0, length, uio); 1688 if (error != 0) 1689 goto failed; 1690 mb->m_len = length; 1691 mb->m_ext.ext_size += PAGE_SIZE * pgs->npgs; 1692 if (flags & M_PKTHDR) 1693 m->m_pkthdr.len += length; 1694 } 1695 return (m); 1696 1697 failed: 1698 m_freem(m); 1699 return (NULL); 1700 } 1701 1702 /* 1703 * Copy the contents of uio into a properly sized mbuf chain. 1704 */ 1705 struct mbuf * 1706 m_uiotombuf(struct uio *uio, int how, int len, int align, int flags) 1707 { 1708 struct mbuf *m, *mb; 1709 int error, length; 1710 ssize_t total; 1711 int progress = 0; 1712 1713 if (flags & M_NOMAP) 1714 return (m_uiotombuf_nomap(uio, how, len, align, flags)); 1715 1716 /* 1717 * len can be zero or an arbitrary large value bound by 1718 * the total data supplied by the uio. 1719 */ 1720 if (len > 0) 1721 total = (uio->uio_resid < len) ? uio->uio_resid : len; 1722 else 1723 total = uio->uio_resid; 1724 1725 /* 1726 * The smallest unit returned by m_getm2() is a single mbuf 1727 * with pkthdr. We can't align past it. 1728 */ 1729 if (align >= MHLEN) 1730 return (NULL); 1731 1732 /* 1733 * Give us the full allocation or nothing. 1734 * If len is zero return the smallest empty mbuf. 1735 */ 1736 m = m_getm2(NULL, max(total + align, 1), how, MT_DATA, flags); 1737 if (m == NULL) 1738 return (NULL); 1739 m->m_data += align; 1740 1741 /* Fill all mbufs with uio data and update header information. */ 1742 for (mb = m; mb != NULL; mb = mb->m_next) { 1743 length = min(M_TRAILINGSPACE(mb), total - progress); 1744 1745 error = uiomove(mtod(mb, void *), length, uio); 1746 if (error) { 1747 m_freem(m); 1748 return (NULL); 1749 } 1750 1751 mb->m_len = length; 1752 progress += length; 1753 if (flags & M_PKTHDR) 1754 m->m_pkthdr.len += length; 1755 } 1756 KASSERT(progress == total, ("%s: progress != total", __func__)); 1757 1758 return (m); 1759 } 1760 1761 /* 1762 * Copy data from an unmapped mbuf into a uio limited by len if set. 1763 */ 1764 int 1765 m_unmappedtouio(const struct mbuf *m, int m_off, struct uio *uio, int len) 1766 { 1767 struct mbuf_ext_pgs *ext_pgs; 1768 vm_page_t pg; 1769 int error, i, off, pglen, pgoff, seglen, segoff; 1770 1771 MBUF_EXT_PGS_ASSERT(m); 1772 ext_pgs = m->m_ext.ext_pgs; 1773 error = 0; 1774 1775 /* Skip over any data removed from the front. */ 1776 off = mtod(m, vm_offset_t); 1777 1778 off += m_off; 1779 if (ext_pgs->hdr_len != 0) { 1780 if (off >= ext_pgs->hdr_len) { 1781 off -= ext_pgs->hdr_len; 1782 } else { 1783 seglen = ext_pgs->hdr_len - off; 1784 segoff = off; 1785 seglen = min(seglen, len); 1786 off = 0; 1787 len -= seglen; 1788 error = uiomove(&ext_pgs->hdr[segoff], seglen, uio); 1789 } 1790 } 1791 pgoff = ext_pgs->first_pg_off; 1792 for (i = 0; i < ext_pgs->npgs && error == 0 && len > 0; i++) { 1793 pglen = mbuf_ext_pg_len(ext_pgs, i, pgoff); 1794 if (off >= pglen) { 1795 off -= pglen; 1796 pgoff = 0; 1797 continue; 1798 } 1799 seglen = pglen - off; 1800 segoff = pgoff + off; 1801 off = 0; 1802 seglen = min(seglen, len); 1803 len -= seglen; 1804 pg = PHYS_TO_VM_PAGE(ext_pgs->pa[i]); 1805 error = uiomove_fromphys(&pg, segoff, seglen, uio); 1806 pgoff = 0; 1807 }; 1808 if (len != 0 && error == 0) { 1809 KASSERT((off + len) <= ext_pgs->trail_len, 1810 ("off + len > trail (%d + %d > %d, m_off = %d)", off, len, 1811 ext_pgs->trail_len, m_off)); 1812 error = uiomove(&ext_pgs->trail[off], len, uio); 1813 } 1814 return (error); 1815 } 1816 1817 /* 1818 * Copy an mbuf chain into a uio limited by len if set. 1819 */ 1820 int 1821 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len) 1822 { 1823 int error, length, total; 1824 int progress = 0; 1825 1826 if (len > 0) 1827 total = min(uio->uio_resid, len); 1828 else 1829 total = uio->uio_resid; 1830 1831 /* Fill the uio with data from the mbufs. */ 1832 for (; m != NULL; m = m->m_next) { 1833 length = min(m->m_len, total - progress); 1834 1835 if ((m->m_flags & M_NOMAP) != 0) 1836 error = m_unmappedtouio(m, 0, uio, length); 1837 else 1838 error = uiomove(mtod(m, void *), length, uio); 1839 if (error) 1840 return (error); 1841 1842 progress += length; 1843 } 1844 1845 return (0); 1846 } 1847 1848 /* 1849 * Create a writable copy of the mbuf chain. While doing this 1850 * we compact the chain with a goal of producing a chain with 1851 * at most two mbufs. The second mbuf in this chain is likely 1852 * to be a cluster. The primary purpose of this work is to create 1853 * a writable packet for encryption, compression, etc. The 1854 * secondary goal is to linearize the data so the data can be 1855 * passed to crypto hardware in the most efficient manner possible. 1856 */ 1857 struct mbuf * 1858 m_unshare(struct mbuf *m0, int how) 1859 { 1860 struct mbuf *m, *mprev; 1861 struct mbuf *n, *mfirst, *mlast; 1862 int len, off; 1863 1864 mprev = NULL; 1865 for (m = m0; m != NULL; m = mprev->m_next) { 1866 /* 1867 * Regular mbufs are ignored unless there's a cluster 1868 * in front of it that we can use to coalesce. We do 1869 * the latter mainly so later clusters can be coalesced 1870 * also w/o having to handle them specially (i.e. convert 1871 * mbuf+cluster -> cluster). This optimization is heavily 1872 * influenced by the assumption that we're running over 1873 * Ethernet where MCLBYTES is large enough that the max 1874 * packet size will permit lots of coalescing into a 1875 * single cluster. This in turn permits efficient 1876 * crypto operations, especially when using hardware. 1877 */ 1878 if ((m->m_flags & M_EXT) == 0) { 1879 if (mprev && (mprev->m_flags & M_EXT) && 1880 m->m_len <= M_TRAILINGSPACE(mprev)) { 1881 /* XXX: this ignores mbuf types */ 1882 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1883 mtod(m, caddr_t), m->m_len); 1884 mprev->m_len += m->m_len; 1885 mprev->m_next = m->m_next; /* unlink from chain */ 1886 m_free(m); /* reclaim mbuf */ 1887 } else { 1888 mprev = m; 1889 } 1890 continue; 1891 } 1892 /* 1893 * Writable mbufs are left alone (for now). 1894 */ 1895 if (M_WRITABLE(m)) { 1896 mprev = m; 1897 continue; 1898 } 1899 1900 /* 1901 * Not writable, replace with a copy or coalesce with 1902 * the previous mbuf if possible (since we have to copy 1903 * it anyway, we try to reduce the number of mbufs and 1904 * clusters so that future work is easier). 1905 */ 1906 KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags)); 1907 /* NB: we only coalesce into a cluster or larger */ 1908 if (mprev != NULL && (mprev->m_flags & M_EXT) && 1909 m->m_len <= M_TRAILINGSPACE(mprev)) { 1910 /* XXX: this ignores mbuf types */ 1911 memcpy(mtod(mprev, caddr_t) + mprev->m_len, 1912 mtod(m, caddr_t), m->m_len); 1913 mprev->m_len += m->m_len; 1914 mprev->m_next = m->m_next; /* unlink from chain */ 1915 m_free(m); /* reclaim mbuf */ 1916 continue; 1917 } 1918 1919 /* 1920 * Allocate new space to hold the copy and copy the data. 1921 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by 1922 * splitting them into clusters. We could just malloc a 1923 * buffer and make it external but too many device drivers 1924 * don't know how to break up the non-contiguous memory when 1925 * doing DMA. 1926 */ 1927 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1928 if (n == NULL) { 1929 m_freem(m0); 1930 return (NULL); 1931 } 1932 if (m->m_flags & M_PKTHDR) { 1933 KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR", 1934 __func__, m0, m)); 1935 m_move_pkthdr(n, m); 1936 } 1937 len = m->m_len; 1938 off = 0; 1939 mfirst = n; 1940 mlast = NULL; 1941 for (;;) { 1942 int cc = min(len, MCLBYTES); 1943 memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc); 1944 n->m_len = cc; 1945 if (mlast != NULL) 1946 mlast->m_next = n; 1947 mlast = n; 1948 #if 0 1949 newipsecstat.ips_clcopied++; 1950 #endif 1951 1952 len -= cc; 1953 if (len <= 0) 1954 break; 1955 off += cc; 1956 1957 n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS); 1958 if (n == NULL) { 1959 m_freem(mfirst); 1960 m_freem(m0); 1961 return (NULL); 1962 } 1963 } 1964 n->m_next = m->m_next; 1965 if (mprev == NULL) 1966 m0 = mfirst; /* new head of chain */ 1967 else 1968 mprev->m_next = mfirst; /* replace old mbuf */ 1969 m_free(m); /* release old mbuf */ 1970 mprev = mfirst; 1971 } 1972 return (m0); 1973 } 1974 1975 #ifdef MBUF_PROFILING 1976 1977 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/ 1978 struct mbufprofile { 1979 uintmax_t wasted[MP_BUCKETS]; 1980 uintmax_t used[MP_BUCKETS]; 1981 uintmax_t segments[MP_BUCKETS]; 1982 } mbprof; 1983 1984 #define MP_MAXDIGITS 21 /* strlen("16,000,000,000,000,000,000") == 21 */ 1985 #define MP_NUMLINES 6 1986 #define MP_NUMSPERLINE 16 1987 #define MP_EXTRABYTES 64 /* > strlen("used:\nwasted:\nsegments:\n") */ 1988 /* work out max space needed and add a bit of spare space too */ 1989 #define MP_MAXLINE ((MP_MAXDIGITS+1) * MP_NUMSPERLINE) 1990 #define MP_BUFSIZE ((MP_MAXLINE * MP_NUMLINES) + 1 + MP_EXTRABYTES) 1991 1992 char mbprofbuf[MP_BUFSIZE]; 1993 1994 void 1995 m_profile(struct mbuf *m) 1996 { 1997 int segments = 0; 1998 int used = 0; 1999 int wasted = 0; 2000 2001 while (m) { 2002 segments++; 2003 used += m->m_len; 2004 if (m->m_flags & M_EXT) { 2005 wasted += MHLEN - sizeof(m->m_ext) + 2006 m->m_ext.ext_size - m->m_len; 2007 } else { 2008 if (m->m_flags & M_PKTHDR) 2009 wasted += MHLEN - m->m_len; 2010 else 2011 wasted += MLEN - m->m_len; 2012 } 2013 m = m->m_next; 2014 } 2015 /* be paranoid.. it helps */ 2016 if (segments > MP_BUCKETS - 1) 2017 segments = MP_BUCKETS - 1; 2018 if (used > 100000) 2019 used = 100000; 2020 if (wasted > 100000) 2021 wasted = 100000; 2022 /* store in the appropriate bucket */ 2023 /* don't bother locking. if it's slightly off, so what? */ 2024 mbprof.segments[segments]++; 2025 mbprof.used[fls(used)]++; 2026 mbprof.wasted[fls(wasted)]++; 2027 } 2028 2029 static void 2030 mbprof_textify(void) 2031 { 2032 int offset; 2033 char *c; 2034 uint64_t *p; 2035 2036 p = &mbprof.wasted[0]; 2037 c = mbprofbuf; 2038 offset = snprintf(c, MP_MAXLINE + 10, 2039 "wasted:\n" 2040 "%ju %ju %ju %ju %ju %ju %ju %ju " 2041 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2042 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2043 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2044 #ifdef BIG_ARRAY 2045 p = &mbprof.wasted[16]; 2046 c += offset; 2047 offset = snprintf(c, MP_MAXLINE, 2048 "%ju %ju %ju %ju %ju %ju %ju %ju " 2049 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2050 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2051 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2052 #endif 2053 p = &mbprof.used[0]; 2054 c += offset; 2055 offset = snprintf(c, MP_MAXLINE + 10, 2056 "used:\n" 2057 "%ju %ju %ju %ju %ju %ju %ju %ju " 2058 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2059 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2060 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2061 #ifdef BIG_ARRAY 2062 p = &mbprof.used[16]; 2063 c += offset; 2064 offset = snprintf(c, MP_MAXLINE, 2065 "%ju %ju %ju %ju %ju %ju %ju %ju " 2066 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2067 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2068 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2069 #endif 2070 p = &mbprof.segments[0]; 2071 c += offset; 2072 offset = snprintf(c, MP_MAXLINE + 10, 2073 "segments:\n" 2074 "%ju %ju %ju %ju %ju %ju %ju %ju " 2075 "%ju %ju %ju %ju %ju %ju %ju %ju\n", 2076 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2077 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2078 #ifdef BIG_ARRAY 2079 p = &mbprof.segments[16]; 2080 c += offset; 2081 offset = snprintf(c, MP_MAXLINE, 2082 "%ju %ju %ju %ju %ju %ju %ju %ju " 2083 "%ju %ju %ju %ju %ju %ju %ju %jju", 2084 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 2085 p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); 2086 #endif 2087 } 2088 2089 static int 2090 mbprof_handler(SYSCTL_HANDLER_ARGS) 2091 { 2092 int error; 2093 2094 mbprof_textify(); 2095 error = SYSCTL_OUT(req, mbprofbuf, strlen(mbprofbuf) + 1); 2096 return (error); 2097 } 2098 2099 static int 2100 mbprof_clr_handler(SYSCTL_HANDLER_ARGS) 2101 { 2102 int clear, error; 2103 2104 clear = 0; 2105 error = sysctl_handle_int(oidp, &clear, 0, req); 2106 if (error || !req->newptr) 2107 return (error); 2108 2109 if (clear) { 2110 bzero(&mbprof, sizeof(mbprof)); 2111 } 2112 2113 return (error); 2114 } 2115 2116 2117 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile, CTLTYPE_STRING|CTLFLAG_RD, 2118 NULL, 0, mbprof_handler, "A", "mbuf profiling statistics"); 2119 2120 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr, CTLTYPE_INT|CTLFLAG_RW, 2121 NULL, 0, mbprof_clr_handler, "I", "clear mbuf profiling statistics"); 2122 #endif 2123 2124