xref: /freebsd/sys/kern/uipc_ktls.c (revision f2d48b5e2c3b45850585e4d7aee324fe148afbf2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_rss.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/domainset.h>
38 #include <sys/ktls.h>
39 #include <sys/lock.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/proc.h>
44 #include <sys/protosw.h>
45 #include <sys/refcount.h>
46 #include <sys/smp.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/sysctl.h>
50 #include <sys/taskqueue.h>
51 #include <sys/kthread.h>
52 #include <sys/uio.h>
53 #include <sys/vmmeter.h>
54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
55 #include <machine/pcb.h>
56 #endif
57 #include <machine/vmparam.h>
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #ifdef RSS
61 #include <net/netisr.h>
62 #include <net/rss_config.h>
63 #endif
64 #include <net/route.h>
65 #include <net/route/nhop.h>
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #endif
70 #include <netinet/tcp_var.h>
71 #ifdef TCP_OFFLOAD
72 #include <netinet/tcp_offload.h>
73 #endif
74 #include <opencrypto/xform.h>
75 #include <vm/uma_dbg.h>
76 #include <vm/vm.h>
77 #include <vm/vm_pageout.h>
78 #include <vm/vm_page.h>
79 
80 struct ktls_wq {
81 	struct mtx	mtx;
82 	STAILQ_HEAD(, mbuf) m_head;
83 	STAILQ_HEAD(, socket) so_head;
84 	bool		running;
85 } __aligned(CACHE_LINE_SIZE);
86 
87 struct ktls_domain_info {
88 	int count;
89 	int cpu[MAXCPU];
90 };
91 
92 struct ktls_domain_info ktls_domains[MAXMEMDOM];
93 static struct ktls_wq *ktls_wq;
94 static struct proc *ktls_proc;
95 LIST_HEAD(, ktls_crypto_backend) ktls_backends;
96 static struct rmlock ktls_backends_lock;
97 static uma_zone_t ktls_session_zone;
98 static uint16_t ktls_cpuid_lookup[MAXCPU];
99 
100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
101     "Kernel TLS offload");
102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
103     "Kernel TLS offload stats");
104 
105 static int ktls_allow_unload;
106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
107     &ktls_allow_unload, 0, "Allow software crypto modules to unload");
108 
109 #ifdef RSS
110 static int ktls_bind_threads = 1;
111 #else
112 static int ktls_bind_threads;
113 #endif
114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
115     &ktls_bind_threads, 0,
116     "Bind crypto threads to cores or domains at boot");
117 
118 static u_int ktls_maxlen = 16384;
119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
120     &ktls_maxlen, 0, "Maximum TLS record size");
121 
122 static int ktls_number_threads;
123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
124     &ktls_number_threads, 0,
125     "Number of TLS threads in thread-pool");
126 
127 static bool ktls_offload_enable;
128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
129     &ktls_offload_enable, 0,
130     "Enable support for kernel TLS offload");
131 
132 static bool ktls_cbc_enable = true;
133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
134     &ktls_cbc_enable, 1,
135     "Enable Support of AES-CBC crypto for kernel TLS");
136 
137 static counter_u64_t ktls_tasks_active;
138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
139     &ktls_tasks_active, "Number of active tasks");
140 
141 static counter_u64_t ktls_cnt_tx_queued;
142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
143     &ktls_cnt_tx_queued,
144     "Number of TLS records in queue to tasks for SW encryption");
145 
146 static counter_u64_t ktls_cnt_rx_queued;
147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
148     &ktls_cnt_rx_queued,
149     "Number of TLS sockets in queue to tasks for SW decryption");
150 
151 static counter_u64_t ktls_offload_total;
152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
153     CTLFLAG_RD, &ktls_offload_total,
154     "Total successful TLS setups (parameters set)");
155 
156 static counter_u64_t ktls_offload_enable_calls;
157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
158     CTLFLAG_RD, &ktls_offload_enable_calls,
159     "Total number of TLS enable calls made");
160 
161 static counter_u64_t ktls_offload_active;
162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
163     &ktls_offload_active, "Total Active TLS sessions");
164 
165 static counter_u64_t ktls_offload_corrupted_records;
166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
167     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
168 
169 static counter_u64_t ktls_offload_failed_crypto;
170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
171     &ktls_offload_failed_crypto, "Total TLS crypto failures");
172 
173 static counter_u64_t ktls_switch_to_ifnet;
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
175     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
176 
177 static counter_u64_t ktls_switch_to_sw;
178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
179     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
180 
181 static counter_u64_t ktls_switch_failed;
182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
183     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
184 
185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
186     "Software TLS session stats");
187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
188     "Hardware (ifnet) TLS session stats");
189 #ifdef TCP_OFFLOAD
190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
191     "TOE TLS session stats");
192 #endif
193 
194 static counter_u64_t ktls_sw_cbc;
195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
196     "Active number of software TLS sessions using AES-CBC");
197 
198 static counter_u64_t ktls_sw_gcm;
199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
200     "Active number of software TLS sessions using AES-GCM");
201 
202 static counter_u64_t ktls_ifnet_cbc;
203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
204     &ktls_ifnet_cbc,
205     "Active number of ifnet TLS sessions using AES-CBC");
206 
207 static counter_u64_t ktls_ifnet_gcm;
208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
209     &ktls_ifnet_gcm,
210     "Active number of ifnet TLS sessions using AES-GCM");
211 
212 static counter_u64_t ktls_ifnet_reset;
213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
214     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
215 
216 static counter_u64_t ktls_ifnet_reset_dropped;
217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
218     &ktls_ifnet_reset_dropped,
219     "TLS sessions dropped after failing to update ifnet send tag");
220 
221 static counter_u64_t ktls_ifnet_reset_failed;
222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
223     &ktls_ifnet_reset_failed,
224     "TLS sessions that failed to allocate a new ifnet send tag");
225 
226 static int ktls_ifnet_permitted;
227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
228     &ktls_ifnet_permitted, 1,
229     "Whether to permit hardware (ifnet) TLS sessions");
230 
231 #ifdef TCP_OFFLOAD
232 static counter_u64_t ktls_toe_cbc;
233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
234     &ktls_toe_cbc,
235     "Active number of TOE TLS sessions using AES-CBC");
236 
237 static counter_u64_t ktls_toe_gcm;
238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
239     &ktls_toe_gcm,
240     "Active number of TOE TLS sessions using AES-GCM");
241 #endif
242 
243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
244 
245 static void ktls_cleanup(struct ktls_session *tls);
246 #if defined(INET) || defined(INET6)
247 static void ktls_reset_send_tag(void *context, int pending);
248 #endif
249 static void ktls_work_thread(void *ctx);
250 
251 int
252 ktls_crypto_backend_register(struct ktls_crypto_backend *be)
253 {
254 	struct ktls_crypto_backend *curr_be, *tmp;
255 
256 	if (be->api_version != KTLS_API_VERSION) {
257 		printf("KTLS: API version mismatch (%d vs %d) for %s\n",
258 		    be->api_version, KTLS_API_VERSION,
259 		    be->name);
260 		return (EINVAL);
261 	}
262 
263 	rm_wlock(&ktls_backends_lock);
264 	printf("KTLS: Registering crypto method %s with prio %d\n",
265 	       be->name, be->prio);
266 	if (LIST_EMPTY(&ktls_backends)) {
267 		LIST_INSERT_HEAD(&ktls_backends, be, next);
268 	} else {
269 		LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
270 			if (curr_be->prio < be->prio) {
271 				LIST_INSERT_BEFORE(curr_be, be, next);
272 				break;
273 			}
274 			if (LIST_NEXT(curr_be, next) == NULL) {
275 				LIST_INSERT_AFTER(curr_be, be, next);
276 				break;
277 			}
278 		}
279 	}
280 	rm_wunlock(&ktls_backends_lock);
281 	return (0);
282 }
283 
284 int
285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
286 {
287 	struct ktls_crypto_backend *tmp;
288 
289 	/*
290 	 * Don't error if the backend isn't registered.  This permits
291 	 * MOD_UNLOAD handlers to use this function unconditionally.
292 	 */
293 	rm_wlock(&ktls_backends_lock);
294 	LIST_FOREACH(tmp, &ktls_backends, next) {
295 		if (tmp == be)
296 			break;
297 	}
298 	if (tmp == NULL) {
299 		rm_wunlock(&ktls_backends_lock);
300 		return (0);
301 	}
302 
303 	if (!ktls_allow_unload) {
304 		rm_wunlock(&ktls_backends_lock);
305 		printf(
306 		    "KTLS: Deregistering crypto method %s is not supported\n",
307 		    be->name);
308 		return (EBUSY);
309 	}
310 
311 	if (be->use_count) {
312 		rm_wunlock(&ktls_backends_lock);
313 		return (EBUSY);
314 	}
315 
316 	LIST_REMOVE(be, next);
317 	rm_wunlock(&ktls_backends_lock);
318 	return (0);
319 }
320 
321 #if defined(INET) || defined(INET6)
322 static u_int
323 ktls_get_cpu(struct socket *so)
324 {
325 	struct inpcb *inp;
326 #ifdef NUMA
327 	struct ktls_domain_info *di;
328 #endif
329 	u_int cpuid;
330 
331 	inp = sotoinpcb(so);
332 #ifdef RSS
333 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
334 	if (cpuid != NETISR_CPUID_NONE)
335 		return (cpuid);
336 #endif
337 	/*
338 	 * Just use the flowid to shard connections in a repeatable
339 	 * fashion.  Note that some crypto backends rely on the
340 	 * serialization provided by having the same connection use
341 	 * the same queue.
342 	 */
343 #ifdef NUMA
344 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
345 		di = &ktls_domains[inp->inp_numa_domain];
346 		cpuid = di->cpu[inp->inp_flowid % di->count];
347 	} else
348 #endif
349 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
350 	return (cpuid);
351 }
352 #endif
353 
354 static void
355 ktls_init(void *dummy __unused)
356 {
357 	struct thread *td;
358 	struct pcpu *pc;
359 	cpuset_t mask;
360 	int count, domain, error, i;
361 
362 	ktls_tasks_active = counter_u64_alloc(M_WAITOK);
363 	ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK);
364 	ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK);
365 	ktls_offload_total = counter_u64_alloc(M_WAITOK);
366 	ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
367 	ktls_offload_active = counter_u64_alloc(M_WAITOK);
368 	ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK);
369 	ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
370 	ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
371 	ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
372 	ktls_switch_failed = counter_u64_alloc(M_WAITOK);
373 	ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
374 	ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
375 	ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
376 	ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
377 	ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
378 	ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
379 	ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
380 #ifdef TCP_OFFLOAD
381 	ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
382 	ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
383 #endif
384 
385 	rm_init(&ktls_backends_lock, "ktls backends");
386 	LIST_INIT(&ktls_backends);
387 
388 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
389 	    M_WAITOK | M_ZERO);
390 
391 	ktls_session_zone = uma_zcreate("ktls_session",
392 	    sizeof(struct ktls_session),
393 	    NULL, NULL, NULL, NULL,
394 	    UMA_ALIGN_CACHE, 0);
395 
396 	/*
397 	 * Initialize the workqueues to run the TLS work.  We create a
398 	 * work queue for each CPU.
399 	 */
400 	CPU_FOREACH(i) {
401 		STAILQ_INIT(&ktls_wq[i].m_head);
402 		STAILQ_INIT(&ktls_wq[i].so_head);
403 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
404 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
405 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
406 		if (error)
407 			panic("Can't add KTLS thread %d error %d", i, error);
408 
409 		/*
410 		 * Bind threads to cores.  If ktls_bind_threads is >
411 		 * 1, then we bind to the NUMA domain.
412 		 */
413 		if (ktls_bind_threads) {
414 			if (ktls_bind_threads > 1) {
415 				pc = pcpu_find(i);
416 				domain = pc->pc_domain;
417 				CPU_COPY(&cpuset_domain[domain], &mask);
418 				count = ktls_domains[domain].count;
419 				ktls_domains[domain].cpu[count] = i;
420 				ktls_domains[domain].count++;
421 			} else {
422 				CPU_SETOF(i, &mask);
423 			}
424 			error = cpuset_setthread(td->td_tid, &mask);
425 			if (error)
426 				panic(
427 			    "Unable to bind KTLS thread for CPU %d error %d",
428 				     i, error);
429 		}
430 		ktls_cpuid_lookup[ktls_number_threads] = i;
431 		ktls_number_threads++;
432 	}
433 
434 	/*
435 	 * If we somehow have an empty domain, fall back to choosing
436 	 * among all KTLS threads.
437 	 */
438 	for (i = 0; i < vm_ndomains; i++) {
439 		if (ktls_domains[i].count == 0) {
440 			ktls_bind_threads = 0;
441 			break;
442 		}
443 	}
444 
445 	printf("KTLS: Initialized %d threads\n", ktls_number_threads);
446 }
447 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
448 
449 #if defined(INET) || defined(INET6)
450 static int
451 ktls_create_session(struct socket *so, struct tls_enable *en,
452     struct ktls_session **tlsp)
453 {
454 	struct ktls_session *tls;
455 	int error;
456 
457 	/* Only TLS 1.0 - 1.3 are supported. */
458 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
459 		return (EINVAL);
460 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
461 	    en->tls_vminor > TLS_MINOR_VER_THREE)
462 		return (EINVAL);
463 
464 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
465 		return (EINVAL);
466 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
467 		return (EINVAL);
468 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
469 		return (EINVAL);
470 
471 	/* All supported algorithms require a cipher key. */
472 	if (en->cipher_key_len == 0)
473 		return (EINVAL);
474 
475 	/* No flags are currently supported. */
476 	if (en->flags != 0)
477 		return (EINVAL);
478 
479 	/* Common checks for supported algorithms. */
480 	switch (en->cipher_algorithm) {
481 	case CRYPTO_AES_NIST_GCM_16:
482 		/*
483 		 * auth_algorithm isn't used, but permit GMAC values
484 		 * for compatibility.
485 		 */
486 		switch (en->auth_algorithm) {
487 		case 0:
488 #ifdef COMPAT_FREEBSD12
489 		/* XXX: Really 13.0-current COMPAT. */
490 		case CRYPTO_AES_128_NIST_GMAC:
491 		case CRYPTO_AES_192_NIST_GMAC:
492 		case CRYPTO_AES_256_NIST_GMAC:
493 #endif
494 			break;
495 		default:
496 			return (EINVAL);
497 		}
498 		if (en->auth_key_len != 0)
499 			return (EINVAL);
500 		if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
501 			en->iv_len != TLS_AEAD_GCM_LEN) ||
502 		    (en->tls_vminor == TLS_MINOR_VER_THREE &&
503 			en->iv_len != TLS_1_3_GCM_IV_LEN))
504 			return (EINVAL);
505 		break;
506 	case CRYPTO_AES_CBC:
507 		switch (en->auth_algorithm) {
508 		case CRYPTO_SHA1_HMAC:
509 			/*
510 			 * TLS 1.0 requires an implicit IV.  TLS 1.1+
511 			 * all use explicit IVs.
512 			 */
513 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
514 				if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
515 					return (EINVAL);
516 				break;
517 			}
518 
519 			/* FALLTHROUGH */
520 		case CRYPTO_SHA2_256_HMAC:
521 		case CRYPTO_SHA2_384_HMAC:
522 			/* Ignore any supplied IV. */
523 			en->iv_len = 0;
524 			break;
525 		default:
526 			return (EINVAL);
527 		}
528 		if (en->auth_key_len == 0)
529 			return (EINVAL);
530 		break;
531 	default:
532 		return (EINVAL);
533 	}
534 
535 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
536 
537 	counter_u64_add(ktls_offload_active, 1);
538 
539 	refcount_init(&tls->refcount, 1);
540 	TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
541 
542 	tls->wq_index = ktls_get_cpu(so);
543 
544 	tls->params.cipher_algorithm = en->cipher_algorithm;
545 	tls->params.auth_algorithm = en->auth_algorithm;
546 	tls->params.tls_vmajor = en->tls_vmajor;
547 	tls->params.tls_vminor = en->tls_vminor;
548 	tls->params.flags = en->flags;
549 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
550 
551 	/* Set the header and trailer lengths. */
552 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
553 	switch (en->cipher_algorithm) {
554 	case CRYPTO_AES_NIST_GCM_16:
555 		/*
556 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
557 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
558 		 */
559 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
560 			tls->params.tls_hlen += sizeof(uint64_t);
561 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
562 
563 		/*
564 		 * TLS 1.3 includes optional padding which we
565 		 * do not support, and also puts the "real" record
566 		 * type at the end of the encrypted data.
567 		 */
568 		if (en->tls_vminor == TLS_MINOR_VER_THREE)
569 			tls->params.tls_tlen += sizeof(uint8_t);
570 
571 		tls->params.tls_bs = 1;
572 		break;
573 	case CRYPTO_AES_CBC:
574 		switch (en->auth_algorithm) {
575 		case CRYPTO_SHA1_HMAC:
576 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
577 				/* Implicit IV, no nonce. */
578 			} else {
579 				tls->params.tls_hlen += AES_BLOCK_LEN;
580 			}
581 			tls->params.tls_tlen = AES_BLOCK_LEN +
582 			    SHA1_HASH_LEN;
583 			break;
584 		case CRYPTO_SHA2_256_HMAC:
585 			tls->params.tls_hlen += AES_BLOCK_LEN;
586 			tls->params.tls_tlen = AES_BLOCK_LEN +
587 			    SHA2_256_HASH_LEN;
588 			break;
589 		case CRYPTO_SHA2_384_HMAC:
590 			tls->params.tls_hlen += AES_BLOCK_LEN;
591 			tls->params.tls_tlen = AES_BLOCK_LEN +
592 			    SHA2_384_HASH_LEN;
593 			break;
594 		default:
595 			panic("invalid hmac");
596 		}
597 		tls->params.tls_bs = AES_BLOCK_LEN;
598 		break;
599 	default:
600 		panic("invalid cipher");
601 	}
602 
603 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
604 	    ("TLS header length too long: %d", tls->params.tls_hlen));
605 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
606 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
607 
608 	if (en->auth_key_len != 0) {
609 		tls->params.auth_key_len = en->auth_key_len;
610 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
611 		    M_WAITOK);
612 		error = copyin(en->auth_key, tls->params.auth_key,
613 		    en->auth_key_len);
614 		if (error)
615 			goto out;
616 	}
617 
618 	tls->params.cipher_key_len = en->cipher_key_len;
619 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
620 	error = copyin(en->cipher_key, tls->params.cipher_key,
621 	    en->cipher_key_len);
622 	if (error)
623 		goto out;
624 
625 	/*
626 	 * This holds the implicit portion of the nonce for GCM and
627 	 * the initial implicit IV for TLS 1.0.  The explicit portions
628 	 * of the IV are generated in ktls_frame().
629 	 */
630 	if (en->iv_len != 0) {
631 		tls->params.iv_len = en->iv_len;
632 		error = copyin(en->iv, tls->params.iv, en->iv_len);
633 		if (error)
634 			goto out;
635 
636 		/*
637 		 * For TLS 1.2, generate an 8-byte nonce as a counter
638 		 * to generate unique explicit IVs.
639 		 *
640 		 * Store this counter in the last 8 bytes of the IV
641 		 * array so that it is 8-byte aligned.
642 		 */
643 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
644 		    en->tls_vminor == TLS_MINOR_VER_TWO)
645 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
646 	}
647 
648 	*tlsp = tls;
649 	return (0);
650 
651 out:
652 	ktls_cleanup(tls);
653 	return (error);
654 }
655 
656 static struct ktls_session *
657 ktls_clone_session(struct ktls_session *tls)
658 {
659 	struct ktls_session *tls_new;
660 
661 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
662 
663 	counter_u64_add(ktls_offload_active, 1);
664 
665 	refcount_init(&tls_new->refcount, 1);
666 
667 	/* Copy fields from existing session. */
668 	tls_new->params = tls->params;
669 	tls_new->wq_index = tls->wq_index;
670 
671 	/* Deep copy keys. */
672 	if (tls_new->params.auth_key != NULL) {
673 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
674 		    M_KTLS, M_WAITOK);
675 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
676 		    tls->params.auth_key_len);
677 	}
678 
679 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
680 	    M_WAITOK);
681 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
682 	    tls->params.cipher_key_len);
683 
684 	return (tls_new);
685 }
686 #endif
687 
688 static void
689 ktls_cleanup(struct ktls_session *tls)
690 {
691 
692 	counter_u64_add(ktls_offload_active, -1);
693 	switch (tls->mode) {
694 	case TCP_TLS_MODE_SW:
695 		MPASS(tls->be != NULL);
696 		switch (tls->params.cipher_algorithm) {
697 		case CRYPTO_AES_CBC:
698 			counter_u64_add(ktls_sw_cbc, -1);
699 			break;
700 		case CRYPTO_AES_NIST_GCM_16:
701 			counter_u64_add(ktls_sw_gcm, -1);
702 			break;
703 		}
704 		tls->free(tls);
705 		break;
706 	case TCP_TLS_MODE_IFNET:
707 		switch (tls->params.cipher_algorithm) {
708 		case CRYPTO_AES_CBC:
709 			counter_u64_add(ktls_ifnet_cbc, -1);
710 			break;
711 		case CRYPTO_AES_NIST_GCM_16:
712 			counter_u64_add(ktls_ifnet_gcm, -1);
713 			break;
714 		}
715 		if (tls->snd_tag != NULL)
716 			m_snd_tag_rele(tls->snd_tag);
717 		break;
718 #ifdef TCP_OFFLOAD
719 	case TCP_TLS_MODE_TOE:
720 		switch (tls->params.cipher_algorithm) {
721 		case CRYPTO_AES_CBC:
722 			counter_u64_add(ktls_toe_cbc, -1);
723 			break;
724 		case CRYPTO_AES_NIST_GCM_16:
725 			counter_u64_add(ktls_toe_gcm, -1);
726 			break;
727 		}
728 		break;
729 #endif
730 	}
731 	if (tls->params.auth_key != NULL) {
732 		zfree(tls->params.auth_key, M_KTLS);
733 		tls->params.auth_key = NULL;
734 		tls->params.auth_key_len = 0;
735 	}
736 	if (tls->params.cipher_key != NULL) {
737 		zfree(tls->params.cipher_key, M_KTLS);
738 		tls->params.cipher_key = NULL;
739 		tls->params.cipher_key_len = 0;
740 	}
741 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
742 }
743 
744 #if defined(INET) || defined(INET6)
745 
746 #ifdef TCP_OFFLOAD
747 static int
748 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
749 {
750 	struct inpcb *inp;
751 	struct tcpcb *tp;
752 	int error;
753 
754 	inp = so->so_pcb;
755 	INP_WLOCK(inp);
756 	if (inp->inp_flags2 & INP_FREED) {
757 		INP_WUNLOCK(inp);
758 		return (ECONNRESET);
759 	}
760 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
761 		INP_WUNLOCK(inp);
762 		return (ECONNRESET);
763 	}
764 	if (inp->inp_socket == NULL) {
765 		INP_WUNLOCK(inp);
766 		return (ECONNRESET);
767 	}
768 	tp = intotcpcb(inp);
769 	if (!(tp->t_flags & TF_TOE)) {
770 		INP_WUNLOCK(inp);
771 		return (EOPNOTSUPP);
772 	}
773 
774 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
775 	INP_WUNLOCK(inp);
776 	if (error == 0) {
777 		tls->mode = TCP_TLS_MODE_TOE;
778 		switch (tls->params.cipher_algorithm) {
779 		case CRYPTO_AES_CBC:
780 			counter_u64_add(ktls_toe_cbc, 1);
781 			break;
782 		case CRYPTO_AES_NIST_GCM_16:
783 			counter_u64_add(ktls_toe_gcm, 1);
784 			break;
785 		}
786 	}
787 	return (error);
788 }
789 #endif
790 
791 /*
792  * Common code used when first enabling ifnet TLS on a connection or
793  * when allocating a new ifnet TLS session due to a routing change.
794  * This function allocates a new TLS send tag on whatever interface
795  * the connection is currently routed over.
796  */
797 static int
798 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
799     struct m_snd_tag **mstp)
800 {
801 	union if_snd_tag_alloc_params params;
802 	struct ifnet *ifp;
803 	struct nhop_object *nh;
804 	struct tcpcb *tp;
805 	int error;
806 
807 	INP_RLOCK(inp);
808 	if (inp->inp_flags2 & INP_FREED) {
809 		INP_RUNLOCK(inp);
810 		return (ECONNRESET);
811 	}
812 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
813 		INP_RUNLOCK(inp);
814 		return (ECONNRESET);
815 	}
816 	if (inp->inp_socket == NULL) {
817 		INP_RUNLOCK(inp);
818 		return (ECONNRESET);
819 	}
820 	tp = intotcpcb(inp);
821 
822 	/*
823 	 * Check administrative controls on ifnet TLS to determine if
824 	 * ifnet TLS should be denied.
825 	 *
826 	 * - Always permit 'force' requests.
827 	 * - ktls_ifnet_permitted == 0: always deny.
828 	 */
829 	if (!force && ktls_ifnet_permitted == 0) {
830 		INP_RUNLOCK(inp);
831 		return (ENXIO);
832 	}
833 
834 	/*
835 	 * XXX: Use the cached route in the inpcb to find the
836 	 * interface.  This should perhaps instead use
837 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
838 	 * enabled after a connection has completed key negotiation in
839 	 * userland, the cached route will be present in practice.
840 	 */
841 	nh = inp->inp_route.ro_nh;
842 	if (nh == NULL) {
843 		INP_RUNLOCK(inp);
844 		return (ENXIO);
845 	}
846 	ifp = nh->nh_ifp;
847 	if_ref(ifp);
848 
849 	/*
850 	 * Allocate a TLS + ratelimit tag if the connection has an
851 	 * existing pacing rate.
852 	 */
853 	if (tp->t_pacing_rate != -1 &&
854 	    (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
855 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
856 		params.tls_rate_limit.inp = inp;
857 		params.tls_rate_limit.tls = tls;
858 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
859 	} else {
860 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
861 		params.tls.inp = inp;
862 		params.tls.tls = tls;
863 	}
864 	params.hdr.flowid = inp->inp_flowid;
865 	params.hdr.flowtype = inp->inp_flowtype;
866 	params.hdr.numa_domain = inp->inp_numa_domain;
867 	INP_RUNLOCK(inp);
868 
869 	if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {
870 		error = EOPNOTSUPP;
871 		goto out;
872 	}
873 	if (inp->inp_vflag & INP_IPV6) {
874 		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
875 			error = EOPNOTSUPP;
876 			goto out;
877 		}
878 	} else {
879 		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
880 			error = EOPNOTSUPP;
881 			goto out;
882 		}
883 	}
884 	error = m_snd_tag_alloc(ifp, &params, mstp);
885 out:
886 	if_rele(ifp);
887 	return (error);
888 }
889 
890 static int
891 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
892 {
893 	struct m_snd_tag *mst;
894 	int error;
895 
896 	error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
897 	if (error == 0) {
898 		tls->mode = TCP_TLS_MODE_IFNET;
899 		tls->snd_tag = mst;
900 		switch (tls->params.cipher_algorithm) {
901 		case CRYPTO_AES_CBC:
902 			counter_u64_add(ktls_ifnet_cbc, 1);
903 			break;
904 		case CRYPTO_AES_NIST_GCM_16:
905 			counter_u64_add(ktls_ifnet_gcm, 1);
906 			break;
907 		}
908 	}
909 	return (error);
910 }
911 
912 static int
913 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
914 {
915 	struct rm_priotracker prio;
916 	struct ktls_crypto_backend *be;
917 
918 	/*
919 	 * Choose the best software crypto backend.  Backends are
920 	 * stored in sorted priority order (larget value == most
921 	 * important at the head of the list), so this just stops on
922 	 * the first backend that claims the session by returning
923 	 * success.
924 	 */
925 	if (ktls_allow_unload)
926 		rm_rlock(&ktls_backends_lock, &prio);
927 	LIST_FOREACH(be, &ktls_backends, next) {
928 		if (be->try(so, tls, direction) == 0)
929 			break;
930 		KASSERT(tls->cipher == NULL,
931 		    ("ktls backend leaked a cipher pointer"));
932 	}
933 	if (be != NULL) {
934 		if (ktls_allow_unload)
935 			be->use_count++;
936 		tls->be = be;
937 	}
938 	if (ktls_allow_unload)
939 		rm_runlock(&ktls_backends_lock, &prio);
940 	if (be == NULL)
941 		return (EOPNOTSUPP);
942 	tls->mode = TCP_TLS_MODE_SW;
943 	switch (tls->params.cipher_algorithm) {
944 	case CRYPTO_AES_CBC:
945 		counter_u64_add(ktls_sw_cbc, 1);
946 		break;
947 	case CRYPTO_AES_NIST_GCM_16:
948 		counter_u64_add(ktls_sw_gcm, 1);
949 		break;
950 	}
951 	return (0);
952 }
953 
954 /*
955  * KTLS RX stores data in the socket buffer as a list of TLS records,
956  * where each record is stored as a control message containg the TLS
957  * header followed by data mbufs containing the decrypted data.  This
958  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
959  * both encrypted and decrypted data.  TLS records decrypted by a NIC
960  * should be queued to the socket buffer as records, but encrypted
961  * data which needs to be decrypted by software arrives as a stream of
962  * regular mbufs which need to be converted.  In addition, there may
963  * already be pending encrypted data in the socket buffer when KTLS RX
964  * is enabled.
965  *
966  * To manage not-yet-decrypted data for KTLS RX, the following scheme
967  * is used:
968  *
969  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
970  *
971  * - ktls_check_rx checks this chain of mbufs reading the TLS header
972  *   from the first mbuf.  Once all of the data for that TLS record is
973  *   queued, the socket is queued to a worker thread.
974  *
975  * - The worker thread calls ktls_decrypt to decrypt TLS records in
976  *   the TLS chain.  Each TLS record is detached from the TLS chain,
977  *   decrypted, and inserted into the regular socket buffer chain as
978  *   record starting with a control message holding the TLS header and
979  *   a chain of mbufs holding the encrypted data.
980  */
981 
982 static void
983 sb_mark_notready(struct sockbuf *sb)
984 {
985 	struct mbuf *m;
986 
987 	m = sb->sb_mb;
988 	sb->sb_mtls = m;
989 	sb->sb_mb = NULL;
990 	sb->sb_mbtail = NULL;
991 	sb->sb_lastrecord = NULL;
992 	for (; m != NULL; m = m->m_next) {
993 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
994 		    __func__));
995 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
996 		    __func__));
997 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
998 		    __func__));
999 		m->m_flags |= M_NOTREADY;
1000 		sb->sb_acc -= m->m_len;
1001 		sb->sb_tlscc += m->m_len;
1002 		sb->sb_mtlstail = m;
1003 	}
1004 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1005 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1006 	    sb->sb_ccc));
1007 }
1008 
1009 int
1010 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1011 {
1012 	struct ktls_session *tls;
1013 	int error;
1014 
1015 	if (!ktls_offload_enable)
1016 		return (ENOTSUP);
1017 
1018 	counter_u64_add(ktls_offload_enable_calls, 1);
1019 
1020 	/*
1021 	 * This should always be true since only the TCP socket option
1022 	 * invokes this function.
1023 	 */
1024 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1025 		return (EINVAL);
1026 
1027 	/*
1028 	 * XXX: Don't overwrite existing sessions.  We should permit
1029 	 * this to support rekeying in the future.
1030 	 */
1031 	if (so->so_rcv.sb_tls_info != NULL)
1032 		return (EALREADY);
1033 
1034 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1035 		return (ENOTSUP);
1036 
1037 	/* TLS 1.3 is not yet supported. */
1038 	if (en->tls_vmajor == TLS_MAJOR_VER_ONE &&
1039 	    en->tls_vminor == TLS_MINOR_VER_THREE)
1040 		return (ENOTSUP);
1041 
1042 	error = ktls_create_session(so, en, &tls);
1043 	if (error)
1044 		return (error);
1045 
1046 #ifdef TCP_OFFLOAD
1047 	error = ktls_try_toe(so, tls, KTLS_RX);
1048 	if (error)
1049 #endif
1050 		error = ktls_try_sw(so, tls, KTLS_RX);
1051 
1052 	if (error) {
1053 		ktls_cleanup(tls);
1054 		return (error);
1055 	}
1056 
1057 	/* Mark the socket as using TLS offload. */
1058 	SOCKBUF_LOCK(&so->so_rcv);
1059 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1060 	so->so_rcv.sb_tls_info = tls;
1061 	so->so_rcv.sb_flags |= SB_TLS_RX;
1062 
1063 	/* Mark existing data as not ready until it can be decrypted. */
1064 	sb_mark_notready(&so->so_rcv);
1065 	ktls_check_rx(&so->so_rcv);
1066 	SOCKBUF_UNLOCK(&so->so_rcv);
1067 
1068 	counter_u64_add(ktls_offload_total, 1);
1069 
1070 	return (0);
1071 }
1072 
1073 int
1074 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1075 {
1076 	struct ktls_session *tls;
1077 	struct inpcb *inp;
1078 	int error;
1079 
1080 	if (!ktls_offload_enable)
1081 		return (ENOTSUP);
1082 
1083 	counter_u64_add(ktls_offload_enable_calls, 1);
1084 
1085 	/*
1086 	 * This should always be true since only the TCP socket option
1087 	 * invokes this function.
1088 	 */
1089 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1090 		return (EINVAL);
1091 
1092 	/*
1093 	 * XXX: Don't overwrite existing sessions.  We should permit
1094 	 * this to support rekeying in the future.
1095 	 */
1096 	if (so->so_snd.sb_tls_info != NULL)
1097 		return (EALREADY);
1098 
1099 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1100 		return (ENOTSUP);
1101 
1102 	/* TLS requires ext pgs */
1103 	if (mb_use_ext_pgs == 0)
1104 		return (ENXIO);
1105 
1106 	error = ktls_create_session(so, en, &tls);
1107 	if (error)
1108 		return (error);
1109 
1110 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1111 #ifdef TCP_OFFLOAD
1112 	error = ktls_try_toe(so, tls, KTLS_TX);
1113 	if (error)
1114 #endif
1115 		error = ktls_try_ifnet(so, tls, false);
1116 	if (error)
1117 		error = ktls_try_sw(so, tls, KTLS_TX);
1118 
1119 	if (error) {
1120 		ktls_cleanup(tls);
1121 		return (error);
1122 	}
1123 
1124 	error = sblock(&so->so_snd, SBL_WAIT);
1125 	if (error) {
1126 		ktls_cleanup(tls);
1127 		return (error);
1128 	}
1129 
1130 	/*
1131 	 * Write lock the INP when setting sb_tls_info so that
1132 	 * routines in tcp_ratelimit.c can read sb_tls_info while
1133 	 * holding the INP lock.
1134 	 */
1135 	inp = so->so_pcb;
1136 	INP_WLOCK(inp);
1137 	SOCKBUF_LOCK(&so->so_snd);
1138 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1139 	so->so_snd.sb_tls_info = tls;
1140 	if (tls->mode != TCP_TLS_MODE_SW)
1141 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1142 	SOCKBUF_UNLOCK(&so->so_snd);
1143 	INP_WUNLOCK(inp);
1144 	sbunlock(&so->so_snd);
1145 
1146 	counter_u64_add(ktls_offload_total, 1);
1147 
1148 	return (0);
1149 }
1150 
1151 int
1152 ktls_get_rx_mode(struct socket *so)
1153 {
1154 	struct ktls_session *tls;
1155 	struct inpcb *inp;
1156 	int mode;
1157 
1158 	inp = so->so_pcb;
1159 	INP_WLOCK_ASSERT(inp);
1160 	SOCKBUF_LOCK(&so->so_rcv);
1161 	tls = so->so_rcv.sb_tls_info;
1162 	if (tls == NULL)
1163 		mode = TCP_TLS_MODE_NONE;
1164 	else
1165 		mode = tls->mode;
1166 	SOCKBUF_UNLOCK(&so->so_rcv);
1167 	return (mode);
1168 }
1169 
1170 int
1171 ktls_get_tx_mode(struct socket *so)
1172 {
1173 	struct ktls_session *tls;
1174 	struct inpcb *inp;
1175 	int mode;
1176 
1177 	inp = so->so_pcb;
1178 	INP_WLOCK_ASSERT(inp);
1179 	SOCKBUF_LOCK(&so->so_snd);
1180 	tls = so->so_snd.sb_tls_info;
1181 	if (tls == NULL)
1182 		mode = TCP_TLS_MODE_NONE;
1183 	else
1184 		mode = tls->mode;
1185 	SOCKBUF_UNLOCK(&so->so_snd);
1186 	return (mode);
1187 }
1188 
1189 /*
1190  * Switch between SW and ifnet TLS sessions as requested.
1191  */
1192 int
1193 ktls_set_tx_mode(struct socket *so, int mode)
1194 {
1195 	struct ktls_session *tls, *tls_new;
1196 	struct inpcb *inp;
1197 	int error;
1198 
1199 	switch (mode) {
1200 	case TCP_TLS_MODE_SW:
1201 	case TCP_TLS_MODE_IFNET:
1202 		break;
1203 	default:
1204 		return (EINVAL);
1205 	}
1206 
1207 	inp = so->so_pcb;
1208 	INP_WLOCK_ASSERT(inp);
1209 	SOCKBUF_LOCK(&so->so_snd);
1210 	tls = so->so_snd.sb_tls_info;
1211 	if (tls == NULL) {
1212 		SOCKBUF_UNLOCK(&so->so_snd);
1213 		return (0);
1214 	}
1215 
1216 	if (tls->mode == mode) {
1217 		SOCKBUF_UNLOCK(&so->so_snd);
1218 		return (0);
1219 	}
1220 
1221 	tls = ktls_hold(tls);
1222 	SOCKBUF_UNLOCK(&so->so_snd);
1223 	INP_WUNLOCK(inp);
1224 
1225 	tls_new = ktls_clone_session(tls);
1226 
1227 	if (mode == TCP_TLS_MODE_IFNET)
1228 		error = ktls_try_ifnet(so, tls_new, true);
1229 	else
1230 		error = ktls_try_sw(so, tls_new, KTLS_TX);
1231 	if (error) {
1232 		counter_u64_add(ktls_switch_failed, 1);
1233 		ktls_free(tls_new);
1234 		ktls_free(tls);
1235 		INP_WLOCK(inp);
1236 		return (error);
1237 	}
1238 
1239 	error = sblock(&so->so_snd, SBL_WAIT);
1240 	if (error) {
1241 		counter_u64_add(ktls_switch_failed, 1);
1242 		ktls_free(tls_new);
1243 		ktls_free(tls);
1244 		INP_WLOCK(inp);
1245 		return (error);
1246 	}
1247 
1248 	/*
1249 	 * If we raced with another session change, keep the existing
1250 	 * session.
1251 	 */
1252 	if (tls != so->so_snd.sb_tls_info) {
1253 		counter_u64_add(ktls_switch_failed, 1);
1254 		sbunlock(&so->so_snd);
1255 		ktls_free(tls_new);
1256 		ktls_free(tls);
1257 		INP_WLOCK(inp);
1258 		return (EBUSY);
1259 	}
1260 
1261 	SOCKBUF_LOCK(&so->so_snd);
1262 	so->so_snd.sb_tls_info = tls_new;
1263 	if (tls_new->mode != TCP_TLS_MODE_SW)
1264 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1265 	SOCKBUF_UNLOCK(&so->so_snd);
1266 	sbunlock(&so->so_snd);
1267 
1268 	/*
1269 	 * Drop two references on 'tls'.  The first is for the
1270 	 * ktls_hold() above.  The second drops the reference from the
1271 	 * socket buffer.
1272 	 */
1273 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1274 	ktls_free(tls);
1275 	ktls_free(tls);
1276 
1277 	if (mode == TCP_TLS_MODE_IFNET)
1278 		counter_u64_add(ktls_switch_to_ifnet, 1);
1279 	else
1280 		counter_u64_add(ktls_switch_to_sw, 1);
1281 
1282 	INP_WLOCK(inp);
1283 	return (0);
1284 }
1285 
1286 /*
1287  * Try to allocate a new TLS send tag.  This task is scheduled when
1288  * ip_output detects a route change while trying to transmit a packet
1289  * holding a TLS record.  If a new tag is allocated, replace the tag
1290  * in the TLS session.  Subsequent packets on the connection will use
1291  * the new tag.  If a new tag cannot be allocated, drop the
1292  * connection.
1293  */
1294 static void
1295 ktls_reset_send_tag(void *context, int pending)
1296 {
1297 	struct epoch_tracker et;
1298 	struct ktls_session *tls;
1299 	struct m_snd_tag *old, *new;
1300 	struct inpcb *inp;
1301 	struct tcpcb *tp;
1302 	int error;
1303 
1304 	MPASS(pending == 1);
1305 
1306 	tls = context;
1307 	inp = tls->inp;
1308 
1309 	/*
1310 	 * Free the old tag first before allocating a new one.
1311 	 * ip[6]_output_send() will treat a NULL send tag the same as
1312 	 * an ifp mismatch and drop packets until a new tag is
1313 	 * allocated.
1314 	 *
1315 	 * Write-lock the INP when changing tls->snd_tag since
1316 	 * ip[6]_output_send() holds a read-lock when reading the
1317 	 * pointer.
1318 	 */
1319 	INP_WLOCK(inp);
1320 	old = tls->snd_tag;
1321 	tls->snd_tag = NULL;
1322 	INP_WUNLOCK(inp);
1323 	if (old != NULL)
1324 		m_snd_tag_rele(old);
1325 
1326 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1327 
1328 	if (error == 0) {
1329 		INP_WLOCK(inp);
1330 		tls->snd_tag = new;
1331 		mtx_pool_lock(mtxpool_sleep, tls);
1332 		tls->reset_pending = false;
1333 		mtx_pool_unlock(mtxpool_sleep, tls);
1334 		if (!in_pcbrele_wlocked(inp))
1335 			INP_WUNLOCK(inp);
1336 
1337 		counter_u64_add(ktls_ifnet_reset, 1);
1338 
1339 		/*
1340 		 * XXX: Should we kick tcp_output explicitly now that
1341 		 * the send tag is fixed or just rely on timers?
1342 		 */
1343 	} else {
1344 		NET_EPOCH_ENTER(et);
1345 		INP_WLOCK(inp);
1346 		if (!in_pcbrele_wlocked(inp)) {
1347 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1348 			    !(inp->inp_flags & INP_DROPPED)) {
1349 				tp = intotcpcb(inp);
1350 				CURVNET_SET(tp->t_vnet);
1351 				tp = tcp_drop(tp, ECONNABORTED);
1352 				CURVNET_RESTORE();
1353 				if (tp != NULL)
1354 					INP_WUNLOCK(inp);
1355 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1356 			} else
1357 				INP_WUNLOCK(inp);
1358 		}
1359 		NET_EPOCH_EXIT(et);
1360 
1361 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1362 
1363 		/*
1364 		 * Leave reset_pending true to avoid future tasks while
1365 		 * the socket goes away.
1366 		 */
1367 	}
1368 
1369 	ktls_free(tls);
1370 }
1371 
1372 int
1373 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1374 {
1375 
1376 	if (inp == NULL)
1377 		return (ENOBUFS);
1378 
1379 	INP_LOCK_ASSERT(inp);
1380 
1381 	/*
1382 	 * See if we should schedule a task to update the send tag for
1383 	 * this session.
1384 	 */
1385 	mtx_pool_lock(mtxpool_sleep, tls);
1386 	if (!tls->reset_pending) {
1387 		(void) ktls_hold(tls);
1388 		in_pcbref(inp);
1389 		tls->inp = inp;
1390 		tls->reset_pending = true;
1391 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1392 	}
1393 	mtx_pool_unlock(mtxpool_sleep, tls);
1394 	return (ENOBUFS);
1395 }
1396 
1397 #ifdef RATELIMIT
1398 int
1399 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1400 {
1401 	union if_snd_tag_modify_params params = {
1402 		.rate_limit.max_rate = max_pacing_rate,
1403 		.rate_limit.flags = M_NOWAIT,
1404 	};
1405 	struct m_snd_tag *mst;
1406 	struct ifnet *ifp;
1407 	int error;
1408 
1409 	/* Can't get to the inp, but it should be locked. */
1410 	/* INP_LOCK_ASSERT(inp); */
1411 
1412 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1413 
1414 	if (tls->snd_tag == NULL) {
1415 		/*
1416 		 * Resetting send tag, ignore this change.  The
1417 		 * pending reset may or may not see this updated rate
1418 		 * in the tcpcb.  If it doesn't, we will just lose
1419 		 * this rate change.
1420 		 */
1421 		return (0);
1422 	}
1423 
1424 	MPASS(tls->snd_tag != NULL);
1425 	MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1426 
1427 	mst = tls->snd_tag;
1428 	ifp = mst->ifp;
1429 	return (ifp->if_snd_tag_modify(mst, &params));
1430 }
1431 #endif
1432 #endif
1433 
1434 void
1435 ktls_destroy(struct ktls_session *tls)
1436 {
1437 	struct rm_priotracker prio;
1438 
1439 	ktls_cleanup(tls);
1440 	if (tls->be != NULL && ktls_allow_unload) {
1441 		rm_rlock(&ktls_backends_lock, &prio);
1442 		tls->be->use_count--;
1443 		rm_runlock(&ktls_backends_lock, &prio);
1444 	}
1445 	uma_zfree(ktls_session_zone, tls);
1446 }
1447 
1448 void
1449 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1450 {
1451 
1452 	for (; m != NULL; m = m->m_next) {
1453 		KASSERT((m->m_flags & M_EXTPG) != 0,
1454 		    ("ktls_seq: mapped mbuf %p", m));
1455 
1456 		m->m_epg_seqno = sb->sb_tls_seqno;
1457 		sb->sb_tls_seqno++;
1458 	}
1459 }
1460 
1461 /*
1462  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1463  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1464  * mbuf must be populated with the payload of each TLS record.
1465  *
1466  * The record_type argument specifies the TLS record type used when
1467  * populating the TLS header.
1468  *
1469  * The enq_count argument on return is set to the number of pages of
1470  * payload data for this entire chain that need to be encrypted via SW
1471  * encryption.  The returned value should be passed to ktls_enqueue
1472  * when scheduling encryption of this chain of mbufs.  To handle the
1473  * special case of empty fragments for TLS 1.0 sessions, an empty
1474  * fragment counts as one page.
1475  */
1476 void
1477 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1478     uint8_t record_type)
1479 {
1480 	struct tls_record_layer *tlshdr;
1481 	struct mbuf *m;
1482 	uint64_t *noncep;
1483 	uint16_t tls_len;
1484 	int maxlen;
1485 
1486 	maxlen = tls->params.max_frame_len;
1487 	*enq_cnt = 0;
1488 	for (m = top; m != NULL; m = m->m_next) {
1489 		/*
1490 		 * All mbufs in the chain should be TLS records whose
1491 		 * payload does not exceed the maximum frame length.
1492 		 *
1493 		 * Empty TLS records are permitted when using CBC.
1494 		 */
1495 		KASSERT(m->m_len <= maxlen &&
1496 		    (tls->params.cipher_algorithm == CRYPTO_AES_CBC ?
1497 		    m->m_len >= 0 : m->m_len > 0),
1498 		    ("ktls_frame: m %p len %d\n", m, m->m_len));
1499 
1500 		/*
1501 		 * TLS frames require unmapped mbufs to store session
1502 		 * info.
1503 		 */
1504 		KASSERT((m->m_flags & M_EXTPG) != 0,
1505 		    ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
1506 
1507 		tls_len = m->m_len;
1508 
1509 		/* Save a reference to the session. */
1510 		m->m_epg_tls = ktls_hold(tls);
1511 
1512 		m->m_epg_hdrlen = tls->params.tls_hlen;
1513 		m->m_epg_trllen = tls->params.tls_tlen;
1514 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1515 			int bs, delta;
1516 
1517 			/*
1518 			 * AES-CBC pads messages to a multiple of the
1519 			 * block size.  Note that the padding is
1520 			 * applied after the digest and the encryption
1521 			 * is done on the "plaintext || mac || padding".
1522 			 * At least one byte of padding is always
1523 			 * present.
1524 			 *
1525 			 * Compute the final trailer length assuming
1526 			 * at most one block of padding.
1527 			 * tls->params.sb_tls_tlen is the maximum
1528 			 * possible trailer length (padding + digest).
1529 			 * delta holds the number of excess padding
1530 			 * bytes if the maximum were used.  Those
1531 			 * extra bytes are removed.
1532 			 */
1533 			bs = tls->params.tls_bs;
1534 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1535 			m->m_epg_trllen -= delta;
1536 		}
1537 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1538 
1539 		/* Populate the TLS header. */
1540 		tlshdr = (void *)m->m_epg_hdr;
1541 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
1542 
1543 		/*
1544 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
1545 		 * of TLS_RLTYPE_APP.
1546 		 */
1547 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1548 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1549 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1550 			tlshdr->tls_type = TLS_RLTYPE_APP;
1551 			/* save the real record type for later */
1552 			m->m_epg_record_type = record_type;
1553 			m->m_epg_trail[0] = record_type;
1554 		} else {
1555 			tlshdr->tls_vminor = tls->params.tls_vminor;
1556 			tlshdr->tls_type = record_type;
1557 		}
1558 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1559 
1560 		/*
1561 		 * Store nonces / explicit IVs after the end of the
1562 		 * TLS header.
1563 		 *
1564 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
1565 		 * from the end of the IV.  The nonce is then
1566 		 * incremented for use by the next record.
1567 		 *
1568 		 * For CBC, a random nonce is inserted for TLS 1.1+.
1569 		 */
1570 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1571 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1572 			noncep = (uint64_t *)(tls->params.iv + 8);
1573 			be64enc(tlshdr + 1, *noncep);
1574 			(*noncep)++;
1575 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1576 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1577 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1578 
1579 		/*
1580 		 * When using SW encryption, mark the mbuf not ready.
1581 		 * It will be marked ready via sbready() after the
1582 		 * record has been encrypted.
1583 		 *
1584 		 * When using ifnet TLS, unencrypted TLS records are
1585 		 * sent down the stack to the NIC.
1586 		 */
1587 		if (tls->mode == TCP_TLS_MODE_SW) {
1588 			m->m_flags |= M_NOTREADY;
1589 			m->m_epg_nrdy = m->m_epg_npgs;
1590 			if (__predict_false(tls_len == 0)) {
1591 				/* TLS 1.0 empty fragment. */
1592 				*enq_cnt += 1;
1593 			} else
1594 				*enq_cnt += m->m_epg_npgs;
1595 		}
1596 	}
1597 }
1598 
1599 void
1600 ktls_check_rx(struct sockbuf *sb)
1601 {
1602 	struct tls_record_layer hdr;
1603 	struct ktls_wq *wq;
1604 	struct socket *so;
1605 	bool running;
1606 
1607 	SOCKBUF_LOCK_ASSERT(sb);
1608 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1609 	    __func__, sb));
1610 	so = __containerof(sb, struct socket, so_rcv);
1611 
1612 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
1613 		return;
1614 
1615 	/* Is there enough queued for a TLS header? */
1616 	if (sb->sb_tlscc < sizeof(hdr)) {
1617 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1618 			so->so_error = EMSGSIZE;
1619 		return;
1620 	}
1621 
1622 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1623 
1624 	/* Is the entire record queued? */
1625 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1626 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1627 			so->so_error = EMSGSIZE;
1628 		return;
1629 	}
1630 
1631 	sb->sb_flags |= SB_TLS_RX_RUNNING;
1632 
1633 	soref(so);
1634 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1635 	mtx_lock(&wq->mtx);
1636 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1637 	running = wq->running;
1638 	mtx_unlock(&wq->mtx);
1639 	if (!running)
1640 		wakeup(wq);
1641 	counter_u64_add(ktls_cnt_rx_queued, 1);
1642 }
1643 
1644 static struct mbuf *
1645 ktls_detach_record(struct sockbuf *sb, int len)
1646 {
1647 	struct mbuf *m, *n, *top;
1648 	int remain;
1649 
1650 	SOCKBUF_LOCK_ASSERT(sb);
1651 	MPASS(len <= sb->sb_tlscc);
1652 
1653 	/*
1654 	 * If TLS chain is the exact size of the record,
1655 	 * just grab the whole record.
1656 	 */
1657 	top = sb->sb_mtls;
1658 	if (sb->sb_tlscc == len) {
1659 		sb->sb_mtls = NULL;
1660 		sb->sb_mtlstail = NULL;
1661 		goto out;
1662 	}
1663 
1664 	/*
1665 	 * While it would be nice to use m_split() here, we need
1666 	 * to know exactly what m_split() allocates to update the
1667 	 * accounting, so do it inline instead.
1668 	 */
1669 	remain = len;
1670 	for (m = top; remain > m->m_len; m = m->m_next)
1671 		remain -= m->m_len;
1672 
1673 	/* Easy case: don't have to split 'm'. */
1674 	if (remain == m->m_len) {
1675 		sb->sb_mtls = m->m_next;
1676 		if (sb->sb_mtls == NULL)
1677 			sb->sb_mtlstail = NULL;
1678 		m->m_next = NULL;
1679 		goto out;
1680 	}
1681 
1682 	/*
1683 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1684 	 * with M_NOWAIT first.
1685 	 */
1686 	n = m_get(M_NOWAIT, MT_DATA);
1687 	if (n == NULL) {
1688 		/*
1689 		 * Use M_WAITOK with socket buffer unlocked.  If
1690 		 * 'sb_mtls' changes while the lock is dropped, return
1691 		 * NULL to force the caller to retry.
1692 		 */
1693 		SOCKBUF_UNLOCK(sb);
1694 
1695 		n = m_get(M_WAITOK, MT_DATA);
1696 
1697 		SOCKBUF_LOCK(sb);
1698 		if (sb->sb_mtls != top) {
1699 			m_free(n);
1700 			return (NULL);
1701 		}
1702 	}
1703 	n->m_flags |= M_NOTREADY;
1704 
1705 	/* Store remainder in 'n'. */
1706 	n->m_len = m->m_len - remain;
1707 	if (m->m_flags & M_EXT) {
1708 		n->m_data = m->m_data + remain;
1709 		mb_dupcl(n, m);
1710 	} else {
1711 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1712 	}
1713 
1714 	/* Trim 'm' and update accounting. */
1715 	m->m_len -= n->m_len;
1716 	sb->sb_tlscc -= n->m_len;
1717 	sb->sb_ccc -= n->m_len;
1718 
1719 	/* Account for 'n'. */
1720 	sballoc_ktls_rx(sb, n);
1721 
1722 	/* Insert 'n' into the TLS chain. */
1723 	sb->sb_mtls = n;
1724 	n->m_next = m->m_next;
1725 	if (sb->sb_mtlstail == m)
1726 		sb->sb_mtlstail = n;
1727 
1728 	/* Detach the record from the TLS chain. */
1729 	m->m_next = NULL;
1730 
1731 out:
1732 	MPASS(m_length(top, NULL) == len);
1733 	for (m = top; m != NULL; m = m->m_next)
1734 		sbfree_ktls_rx(sb, m);
1735 	sb->sb_tlsdcc = len;
1736 	sb->sb_ccc += len;
1737 	SBCHECK(sb);
1738 	return (top);
1739 }
1740 
1741 static void
1742 ktls_decrypt(struct socket *so)
1743 {
1744 	char tls_header[MBUF_PEXT_HDR_LEN];
1745 	struct ktls_session *tls;
1746 	struct sockbuf *sb;
1747 	struct tls_record_layer *hdr;
1748 	struct tls_get_record tgr;
1749 	struct mbuf *control, *data, *m;
1750 	uint64_t seqno;
1751 	int error, remain, tls_len, trail_len;
1752 
1753 	hdr = (struct tls_record_layer *)tls_header;
1754 	sb = &so->so_rcv;
1755 	SOCKBUF_LOCK(sb);
1756 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
1757 	    ("%s: socket %p not running", __func__, so));
1758 
1759 	tls = sb->sb_tls_info;
1760 	MPASS(tls != NULL);
1761 
1762 	for (;;) {
1763 		/* Is there enough queued for a TLS header? */
1764 		if (sb->sb_tlscc < tls->params.tls_hlen)
1765 			break;
1766 
1767 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
1768 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
1769 
1770 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
1771 		    hdr->tls_vminor != tls->params.tls_vminor)
1772 			error = EINVAL;
1773 		else if (tls_len < tls->params.tls_hlen || tls_len >
1774 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
1775 		    tls->params.tls_tlen)
1776 			error = EMSGSIZE;
1777 		else
1778 			error = 0;
1779 		if (__predict_false(error != 0)) {
1780 			/*
1781 			 * We have a corrupted record and are likely
1782 			 * out of sync.  The connection isn't
1783 			 * recoverable at this point, so abort it.
1784 			 */
1785 			SOCKBUF_UNLOCK(sb);
1786 			counter_u64_add(ktls_offload_corrupted_records, 1);
1787 
1788 			CURVNET_SET(so->so_vnet);
1789 			so->so_proto->pr_usrreqs->pru_abort(so);
1790 			so->so_error = error;
1791 			CURVNET_RESTORE();
1792 			goto deref;
1793 		}
1794 
1795 		/* Is the entire record queued? */
1796 		if (sb->sb_tlscc < tls_len)
1797 			break;
1798 
1799 		/*
1800 		 * Split out the portion of the mbuf chain containing
1801 		 * this TLS record.
1802 		 */
1803 		data = ktls_detach_record(sb, tls_len);
1804 		if (data == NULL)
1805 			continue;
1806 		MPASS(sb->sb_tlsdcc == tls_len);
1807 
1808 		seqno = sb->sb_tls_seqno;
1809 		sb->sb_tls_seqno++;
1810 		SBCHECK(sb);
1811 		SOCKBUF_UNLOCK(sb);
1812 
1813 		error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
1814 		if (error) {
1815 			counter_u64_add(ktls_offload_failed_crypto, 1);
1816 
1817 			SOCKBUF_LOCK(sb);
1818 			if (sb->sb_tlsdcc == 0) {
1819 				/*
1820 				 * sbcut/drop/flush discarded these
1821 				 * mbufs.
1822 				 */
1823 				m_freem(data);
1824 				break;
1825 			}
1826 
1827 			/*
1828 			 * Drop this TLS record's data, but keep
1829 			 * decrypting subsequent records.
1830 			 */
1831 			sb->sb_ccc -= tls_len;
1832 			sb->sb_tlsdcc = 0;
1833 
1834 			CURVNET_SET(so->so_vnet);
1835 			so->so_error = EBADMSG;
1836 			sorwakeup_locked(so);
1837 			CURVNET_RESTORE();
1838 
1839 			m_freem(data);
1840 
1841 			SOCKBUF_LOCK(sb);
1842 			continue;
1843 		}
1844 
1845 		/* Allocate the control mbuf. */
1846 		tgr.tls_type = hdr->tls_type;
1847 		tgr.tls_vmajor = hdr->tls_vmajor;
1848 		tgr.tls_vminor = hdr->tls_vminor;
1849 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
1850 		    trail_len);
1851 		control = sbcreatecontrol_how(&tgr, sizeof(tgr),
1852 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
1853 
1854 		SOCKBUF_LOCK(sb);
1855 		if (sb->sb_tlsdcc == 0) {
1856 			/* sbcut/drop/flush discarded these mbufs. */
1857 			MPASS(sb->sb_tlscc == 0);
1858 			m_freem(data);
1859 			m_freem(control);
1860 			break;
1861 		}
1862 
1863 		/*
1864 		 * Clear the 'dcc' accounting in preparation for
1865 		 * adding the decrypted record.
1866 		 */
1867 		sb->sb_ccc -= tls_len;
1868 		sb->sb_tlsdcc = 0;
1869 		SBCHECK(sb);
1870 
1871 		/* If there is no payload, drop all of the data. */
1872 		if (tgr.tls_length == htobe16(0)) {
1873 			m_freem(data);
1874 			data = NULL;
1875 		} else {
1876 			/* Trim header. */
1877 			remain = tls->params.tls_hlen;
1878 			while (remain > 0) {
1879 				if (data->m_len > remain) {
1880 					data->m_data += remain;
1881 					data->m_len -= remain;
1882 					break;
1883 				}
1884 				remain -= data->m_len;
1885 				data = m_free(data);
1886 			}
1887 
1888 			/* Trim trailer and clear M_NOTREADY. */
1889 			remain = be16toh(tgr.tls_length);
1890 			m = data;
1891 			for (m = data; remain > m->m_len; m = m->m_next) {
1892 				m->m_flags &= ~M_NOTREADY;
1893 				remain -= m->m_len;
1894 			}
1895 			m->m_len = remain;
1896 			m_freem(m->m_next);
1897 			m->m_next = NULL;
1898 			m->m_flags &= ~M_NOTREADY;
1899 
1900 			/* Set EOR on the final mbuf. */
1901 			m->m_flags |= M_EOR;
1902 		}
1903 
1904 		sbappendcontrol_locked(sb, data, control, 0);
1905 	}
1906 
1907 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
1908 
1909 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
1910 		so->so_error = EMSGSIZE;
1911 
1912 	sorwakeup_locked(so);
1913 
1914 deref:
1915 	SOCKBUF_UNLOCK_ASSERT(sb);
1916 
1917 	CURVNET_SET(so->so_vnet);
1918 	SOCK_LOCK(so);
1919 	sorele(so);
1920 	CURVNET_RESTORE();
1921 }
1922 
1923 void
1924 ktls_enqueue_to_free(struct mbuf *m)
1925 {
1926 	struct ktls_wq *wq;
1927 	bool running;
1928 
1929 	/* Mark it for freeing. */
1930 	m->m_epg_flags |= EPG_FLAG_2FREE;
1931 	wq = &ktls_wq[m->m_epg_tls->wq_index];
1932 	mtx_lock(&wq->mtx);
1933 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1934 	running = wq->running;
1935 	mtx_unlock(&wq->mtx);
1936 	if (!running)
1937 		wakeup(wq);
1938 }
1939 
1940 void
1941 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
1942 {
1943 	struct ktls_wq *wq;
1944 	bool running;
1945 
1946 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
1947 	    (M_EXTPG | M_NOTREADY)),
1948 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
1949 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
1950 
1951 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
1952 
1953 	m->m_epg_enc_cnt = page_count;
1954 
1955 	/*
1956 	 * Save a pointer to the socket.  The caller is responsible
1957 	 * for taking an additional reference via soref().
1958 	 */
1959 	m->m_epg_so = so;
1960 
1961 	wq = &ktls_wq[m->m_epg_tls->wq_index];
1962 	mtx_lock(&wq->mtx);
1963 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1964 	running = wq->running;
1965 	mtx_unlock(&wq->mtx);
1966 	if (!running)
1967 		wakeup(wq);
1968 	counter_u64_add(ktls_cnt_tx_queued, 1);
1969 }
1970 
1971 static __noinline void
1972 ktls_encrypt(struct mbuf *top)
1973 {
1974 	struct ktls_session *tls;
1975 	struct socket *so;
1976 	struct mbuf *m;
1977 	vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1978 	struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1979 	struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1980 	vm_page_t pg;
1981 	int error, i, len, npages, off, total_pages;
1982 	bool is_anon;
1983 
1984 	so = top->m_epg_so;
1985 	tls = top->m_epg_tls;
1986 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
1987 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
1988 #ifdef INVARIANTS
1989 	top->m_epg_so = NULL;
1990 #endif
1991 	total_pages = top->m_epg_enc_cnt;
1992 	npages = 0;
1993 
1994 	/*
1995 	 * Encrypt the TLS records in the chain of mbufs starting with
1996 	 * 'top'.  'total_pages' gives us a total count of pages and is
1997 	 * used to know when we have finished encrypting the TLS
1998 	 * records originally queued with 'top'.
1999 	 *
2000 	 * NB: These mbufs are queued in the socket buffer and
2001 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
2002 	 * socket buffer lock is not held while traversing this chain.
2003 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
2004 	 * pointers should be stable.  However, the 'm_next' of the
2005 	 * last mbuf encrypted is not necessarily NULL.  It can point
2006 	 * to other mbufs appended while 'top' was on the TLS work
2007 	 * queue.
2008 	 *
2009 	 * Each mbuf holds an entire TLS record.
2010 	 */
2011 	error = 0;
2012 	for (m = top; npages != total_pages; m = m->m_next) {
2013 		KASSERT(m->m_epg_tls == tls,
2014 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
2015 		    tls, m->m_epg_tls));
2016 		KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2017 		    (M_EXTPG | M_NOTREADY),
2018 		    ("%p not unready & nomap mbuf (top = %p)\n", m, top));
2019 		KASSERT(npages + m->m_epg_npgs <= total_pages,
2020 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
2021 		    total_pages, m));
2022 
2023 		/*
2024 		 * Generate source and destination ivoecs to pass to
2025 		 * the SW encryption backend.  For writable mbufs, the
2026 		 * destination iovec is a copy of the source and
2027 		 * encryption is done in place.  For file-backed mbufs
2028 		 * (from sendfile), anonymous wired pages are
2029 		 * allocated and assigned to the destination iovec.
2030 		 */
2031 		is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;
2032 
2033 		off = m->m_epg_1st_off;
2034 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2035 			len = m_epg_pagelen(m, i, off);
2036 			src_iov[i].iov_len = len;
2037 			src_iov[i].iov_base =
2038 			    (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
2039 				off;
2040 
2041 			if (is_anon) {
2042 				dst_iov[i].iov_base = src_iov[i].iov_base;
2043 				dst_iov[i].iov_len = src_iov[i].iov_len;
2044 				continue;
2045 			}
2046 retry_page:
2047 			pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
2048 			    VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
2049 			if (pg == NULL) {
2050 				vm_wait(NULL);
2051 				goto retry_page;
2052 			}
2053 			parray[i] = VM_PAGE_TO_PHYS(pg);
2054 			dst_iov[i].iov_base =
2055 			    (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
2056 			dst_iov[i].iov_len = len;
2057 		}
2058 
2059 		if (__predict_false(m->m_epg_npgs == 0)) {
2060 			/* TLS 1.0 empty fragment. */
2061 			npages++;
2062 		} else
2063 			npages += i;
2064 
2065 		error = (*tls->sw_encrypt)(tls,
2066 		    (const struct tls_record_layer *)m->m_epg_hdr,
2067 		    m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
2068 		    m->m_epg_record_type);
2069 		if (error) {
2070 			counter_u64_add(ktls_offload_failed_crypto, 1);
2071 			break;
2072 		}
2073 
2074 		/*
2075 		 * For file-backed mbufs, release the file-backed
2076 		 * pages and replace them in the ext_pgs array with
2077 		 * the anonymous wired pages allocated above.
2078 		 */
2079 		if (!is_anon) {
2080 			/* Free the old pages. */
2081 			m->m_ext.ext_free(m);
2082 
2083 			/* Replace them with the new pages. */
2084 			for (i = 0; i < m->m_epg_npgs; i++)
2085 				m->m_epg_pa[i] = parray[i];
2086 
2087 			/* Use the basic free routine. */
2088 			m->m_ext.ext_free = mb_free_mext_pgs;
2089 
2090 			/* Pages are now writable. */
2091 			m->m_epg_flags |= EPG_FLAG_ANON;
2092 		}
2093 
2094 		/*
2095 		 * Drop a reference to the session now that it is no
2096 		 * longer needed.  Existing code depends on encrypted
2097 		 * records having no associated session vs
2098 		 * yet-to-be-encrypted records having an associated
2099 		 * session.
2100 		 */
2101 		m->m_epg_tls = NULL;
2102 		ktls_free(tls);
2103 	}
2104 
2105 	CURVNET_SET(so->so_vnet);
2106 	if (error == 0) {
2107 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2108 	} else {
2109 		so->so_proto->pr_usrreqs->pru_abort(so);
2110 		so->so_error = EIO;
2111 		mb_free_notready(top, total_pages);
2112 	}
2113 
2114 	SOCK_LOCK(so);
2115 	sorele(so);
2116 	CURVNET_RESTORE();
2117 }
2118 
2119 static void
2120 ktls_work_thread(void *ctx)
2121 {
2122 	struct ktls_wq *wq = ctx;
2123 	struct mbuf *m, *n;
2124 	struct socket *so, *son;
2125 	STAILQ_HEAD(, mbuf) local_m_head;
2126 	STAILQ_HEAD(, socket) local_so_head;
2127 
2128 	if (ktls_bind_threads > 1) {
2129 		curthread->td_domain.dr_policy =
2130 			DOMAINSET_PREF(PCPU_GET(domain));
2131 	}
2132 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2133 	fpu_kern_thread(0);
2134 #endif
2135 	for (;;) {
2136 		mtx_lock(&wq->mtx);
2137 		while (STAILQ_EMPTY(&wq->m_head) &&
2138 		    STAILQ_EMPTY(&wq->so_head)) {
2139 			wq->running = false;
2140 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2141 			wq->running = true;
2142 		}
2143 
2144 		STAILQ_INIT(&local_m_head);
2145 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
2146 		STAILQ_INIT(&local_so_head);
2147 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
2148 		mtx_unlock(&wq->mtx);
2149 
2150 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2151 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
2152 				ktls_free(m->m_epg_tls);
2153 				uma_zfree(zone_mbuf, m);
2154 			} else {
2155 				ktls_encrypt(m);
2156 				counter_u64_add(ktls_cnt_tx_queued, -1);
2157 			}
2158 		}
2159 
2160 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2161 			ktls_decrypt(so);
2162 			counter_u64_add(ktls_cnt_rx_queued, -1);
2163 		}
2164 	}
2165 }
2166