1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 } __aligned(CACHE_LINE_SIZE); 86 87 struct ktls_domain_info { 88 int count; 89 int cpu[MAXCPU]; 90 }; 91 92 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 93 static struct ktls_wq *ktls_wq; 94 static struct proc *ktls_proc; 95 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 96 static struct rmlock ktls_backends_lock; 97 static uma_zone_t ktls_session_zone; 98 static uint16_t ktls_cpuid_lookup[MAXCPU]; 99 100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "Kernel TLS offload"); 102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload stats"); 104 105 static int ktls_allow_unload; 106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 107 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 108 109 #ifdef RSS 110 static int ktls_bind_threads = 1; 111 #else 112 static int ktls_bind_threads; 113 #endif 114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 115 &ktls_bind_threads, 0, 116 "Bind crypto threads to cores or domains at boot"); 117 118 static u_int ktls_maxlen = 16384; 119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 120 &ktls_maxlen, 0, "Maximum TLS record size"); 121 122 static int ktls_number_threads; 123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 124 &ktls_number_threads, 0, 125 "Number of TLS threads in thread-pool"); 126 127 static bool ktls_offload_enable; 128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 129 &ktls_offload_enable, 0, 130 "Enable support for kernel TLS offload"); 131 132 static bool ktls_cbc_enable = true; 133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 134 &ktls_cbc_enable, 1, 135 "Enable Support of AES-CBC crypto for kernel TLS"); 136 137 static counter_u64_t ktls_tasks_active; 138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 139 &ktls_tasks_active, "Number of active tasks"); 140 141 static counter_u64_t ktls_cnt_tx_queued; 142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 143 &ktls_cnt_tx_queued, 144 "Number of TLS records in queue to tasks for SW encryption"); 145 146 static counter_u64_t ktls_cnt_rx_queued; 147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 148 &ktls_cnt_rx_queued, 149 "Number of TLS sockets in queue to tasks for SW decryption"); 150 151 static counter_u64_t ktls_offload_total; 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 153 CTLFLAG_RD, &ktls_offload_total, 154 "Total successful TLS setups (parameters set)"); 155 156 static counter_u64_t ktls_offload_enable_calls; 157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 158 CTLFLAG_RD, &ktls_offload_enable_calls, 159 "Total number of TLS enable calls made"); 160 161 static counter_u64_t ktls_offload_active; 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 163 &ktls_offload_active, "Total Active TLS sessions"); 164 165 static counter_u64_t ktls_offload_corrupted_records; 166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 167 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 168 169 static counter_u64_t ktls_offload_failed_crypto; 170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 171 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 172 173 static counter_u64_t ktls_switch_to_ifnet; 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 175 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 176 177 static counter_u64_t ktls_switch_to_sw; 178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 179 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 180 181 static counter_u64_t ktls_switch_failed; 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 183 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 184 185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 186 "Software TLS session stats"); 187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 188 "Hardware (ifnet) TLS session stats"); 189 #ifdef TCP_OFFLOAD 190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 191 "TOE TLS session stats"); 192 #endif 193 194 static counter_u64_t ktls_sw_cbc; 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 196 "Active number of software TLS sessions using AES-CBC"); 197 198 static counter_u64_t ktls_sw_gcm; 199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 200 "Active number of software TLS sessions using AES-GCM"); 201 202 static counter_u64_t ktls_ifnet_cbc; 203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 204 &ktls_ifnet_cbc, 205 "Active number of ifnet TLS sessions using AES-CBC"); 206 207 static counter_u64_t ktls_ifnet_gcm; 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 209 &ktls_ifnet_gcm, 210 "Active number of ifnet TLS sessions using AES-GCM"); 211 212 static counter_u64_t ktls_ifnet_reset; 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 214 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 215 216 static counter_u64_t ktls_ifnet_reset_dropped; 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 218 &ktls_ifnet_reset_dropped, 219 "TLS sessions dropped after failing to update ifnet send tag"); 220 221 static counter_u64_t ktls_ifnet_reset_failed; 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 223 &ktls_ifnet_reset_failed, 224 "TLS sessions that failed to allocate a new ifnet send tag"); 225 226 static int ktls_ifnet_permitted; 227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 228 &ktls_ifnet_permitted, 1, 229 "Whether to permit hardware (ifnet) TLS sessions"); 230 231 #ifdef TCP_OFFLOAD 232 static counter_u64_t ktls_toe_cbc; 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 234 &ktls_toe_cbc, 235 "Active number of TOE TLS sessions using AES-CBC"); 236 237 static counter_u64_t ktls_toe_gcm; 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 239 &ktls_toe_gcm, 240 "Active number of TOE TLS sessions using AES-GCM"); 241 #endif 242 243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 244 245 static void ktls_cleanup(struct ktls_session *tls); 246 #if defined(INET) || defined(INET6) 247 static void ktls_reset_send_tag(void *context, int pending); 248 #endif 249 static void ktls_work_thread(void *ctx); 250 251 int 252 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 253 { 254 struct ktls_crypto_backend *curr_be, *tmp; 255 256 if (be->api_version != KTLS_API_VERSION) { 257 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 258 be->api_version, KTLS_API_VERSION, 259 be->name); 260 return (EINVAL); 261 } 262 263 rm_wlock(&ktls_backends_lock); 264 printf("KTLS: Registering crypto method %s with prio %d\n", 265 be->name, be->prio); 266 if (LIST_EMPTY(&ktls_backends)) { 267 LIST_INSERT_HEAD(&ktls_backends, be, next); 268 } else { 269 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 270 if (curr_be->prio < be->prio) { 271 LIST_INSERT_BEFORE(curr_be, be, next); 272 break; 273 } 274 if (LIST_NEXT(curr_be, next) == NULL) { 275 LIST_INSERT_AFTER(curr_be, be, next); 276 break; 277 } 278 } 279 } 280 rm_wunlock(&ktls_backends_lock); 281 return (0); 282 } 283 284 int 285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 286 { 287 struct ktls_crypto_backend *tmp; 288 289 /* 290 * Don't error if the backend isn't registered. This permits 291 * MOD_UNLOAD handlers to use this function unconditionally. 292 */ 293 rm_wlock(&ktls_backends_lock); 294 LIST_FOREACH(tmp, &ktls_backends, next) { 295 if (tmp == be) 296 break; 297 } 298 if (tmp == NULL) { 299 rm_wunlock(&ktls_backends_lock); 300 return (0); 301 } 302 303 if (!ktls_allow_unload) { 304 rm_wunlock(&ktls_backends_lock); 305 printf( 306 "KTLS: Deregistering crypto method %s is not supported\n", 307 be->name); 308 return (EBUSY); 309 } 310 311 if (be->use_count) { 312 rm_wunlock(&ktls_backends_lock); 313 return (EBUSY); 314 } 315 316 LIST_REMOVE(be, next); 317 rm_wunlock(&ktls_backends_lock); 318 return (0); 319 } 320 321 #if defined(INET) || defined(INET6) 322 static u_int 323 ktls_get_cpu(struct socket *so) 324 { 325 struct inpcb *inp; 326 #ifdef NUMA 327 struct ktls_domain_info *di; 328 #endif 329 u_int cpuid; 330 331 inp = sotoinpcb(so); 332 #ifdef RSS 333 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 334 if (cpuid != NETISR_CPUID_NONE) 335 return (cpuid); 336 #endif 337 /* 338 * Just use the flowid to shard connections in a repeatable 339 * fashion. Note that some crypto backends rely on the 340 * serialization provided by having the same connection use 341 * the same queue. 342 */ 343 #ifdef NUMA 344 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 345 di = &ktls_domains[inp->inp_numa_domain]; 346 cpuid = di->cpu[inp->inp_flowid % di->count]; 347 } else 348 #endif 349 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 350 return (cpuid); 351 } 352 #endif 353 354 static void 355 ktls_init(void *dummy __unused) 356 { 357 struct thread *td; 358 struct pcpu *pc; 359 cpuset_t mask; 360 int count, domain, error, i; 361 362 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 363 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK); 364 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK); 365 ktls_offload_total = counter_u64_alloc(M_WAITOK); 366 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 367 ktls_offload_active = counter_u64_alloc(M_WAITOK); 368 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK); 369 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 370 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 371 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 372 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 373 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 374 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 375 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 376 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 377 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 378 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 379 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 380 #ifdef TCP_OFFLOAD 381 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 382 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 383 #endif 384 385 rm_init(&ktls_backends_lock, "ktls backends"); 386 LIST_INIT(&ktls_backends); 387 388 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 389 M_WAITOK | M_ZERO); 390 391 ktls_session_zone = uma_zcreate("ktls_session", 392 sizeof(struct ktls_session), 393 NULL, NULL, NULL, NULL, 394 UMA_ALIGN_CACHE, 0); 395 396 /* 397 * Initialize the workqueues to run the TLS work. We create a 398 * work queue for each CPU. 399 */ 400 CPU_FOREACH(i) { 401 STAILQ_INIT(&ktls_wq[i].m_head); 402 STAILQ_INIT(&ktls_wq[i].so_head); 403 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 404 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 405 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 406 if (error) 407 panic("Can't add KTLS thread %d error %d", i, error); 408 409 /* 410 * Bind threads to cores. If ktls_bind_threads is > 411 * 1, then we bind to the NUMA domain. 412 */ 413 if (ktls_bind_threads) { 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 CPU_COPY(&cpuset_domain[domain], &mask); 418 count = ktls_domains[domain].count; 419 ktls_domains[domain].cpu[count] = i; 420 ktls_domains[domain].count++; 421 } else { 422 CPU_SETOF(i, &mask); 423 } 424 error = cpuset_setthread(td->td_tid, &mask); 425 if (error) 426 panic( 427 "Unable to bind KTLS thread for CPU %d error %d", 428 i, error); 429 } 430 ktls_cpuid_lookup[ktls_number_threads] = i; 431 ktls_number_threads++; 432 } 433 434 /* 435 * If we somehow have an empty domain, fall back to choosing 436 * among all KTLS threads. 437 */ 438 for (i = 0; i < vm_ndomains; i++) { 439 if (ktls_domains[i].count == 0) { 440 ktls_bind_threads = 0; 441 break; 442 } 443 } 444 445 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 446 } 447 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 448 449 #if defined(INET) || defined(INET6) 450 static int 451 ktls_create_session(struct socket *so, struct tls_enable *en, 452 struct ktls_session **tlsp) 453 { 454 struct ktls_session *tls; 455 int error; 456 457 /* Only TLS 1.0 - 1.3 are supported. */ 458 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 459 return (EINVAL); 460 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 461 en->tls_vminor > TLS_MINOR_VER_THREE) 462 return (EINVAL); 463 464 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 465 return (EINVAL); 466 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 467 return (EINVAL); 468 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 469 return (EINVAL); 470 471 /* All supported algorithms require a cipher key. */ 472 if (en->cipher_key_len == 0) 473 return (EINVAL); 474 475 /* No flags are currently supported. */ 476 if (en->flags != 0) 477 return (EINVAL); 478 479 /* Common checks for supported algorithms. */ 480 switch (en->cipher_algorithm) { 481 case CRYPTO_AES_NIST_GCM_16: 482 /* 483 * auth_algorithm isn't used, but permit GMAC values 484 * for compatibility. 485 */ 486 switch (en->auth_algorithm) { 487 case 0: 488 #ifdef COMPAT_FREEBSD12 489 /* XXX: Really 13.0-current COMPAT. */ 490 case CRYPTO_AES_128_NIST_GMAC: 491 case CRYPTO_AES_192_NIST_GMAC: 492 case CRYPTO_AES_256_NIST_GMAC: 493 #endif 494 break; 495 default: 496 return (EINVAL); 497 } 498 if (en->auth_key_len != 0) 499 return (EINVAL); 500 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 501 en->iv_len != TLS_AEAD_GCM_LEN) || 502 (en->tls_vminor == TLS_MINOR_VER_THREE && 503 en->iv_len != TLS_1_3_GCM_IV_LEN)) 504 return (EINVAL); 505 break; 506 case CRYPTO_AES_CBC: 507 switch (en->auth_algorithm) { 508 case CRYPTO_SHA1_HMAC: 509 /* 510 * TLS 1.0 requires an implicit IV. TLS 1.1+ 511 * all use explicit IVs. 512 */ 513 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 514 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 515 return (EINVAL); 516 break; 517 } 518 519 /* FALLTHROUGH */ 520 case CRYPTO_SHA2_256_HMAC: 521 case CRYPTO_SHA2_384_HMAC: 522 /* Ignore any supplied IV. */ 523 en->iv_len = 0; 524 break; 525 default: 526 return (EINVAL); 527 } 528 if (en->auth_key_len == 0) 529 return (EINVAL); 530 break; 531 default: 532 return (EINVAL); 533 } 534 535 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 536 537 counter_u64_add(ktls_offload_active, 1); 538 539 refcount_init(&tls->refcount, 1); 540 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 541 542 tls->wq_index = ktls_get_cpu(so); 543 544 tls->params.cipher_algorithm = en->cipher_algorithm; 545 tls->params.auth_algorithm = en->auth_algorithm; 546 tls->params.tls_vmajor = en->tls_vmajor; 547 tls->params.tls_vminor = en->tls_vminor; 548 tls->params.flags = en->flags; 549 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 550 551 /* Set the header and trailer lengths. */ 552 tls->params.tls_hlen = sizeof(struct tls_record_layer); 553 switch (en->cipher_algorithm) { 554 case CRYPTO_AES_NIST_GCM_16: 555 /* 556 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 557 * nonce. TLS 1.3 uses a 12 byte implicit IV. 558 */ 559 if (en->tls_vminor < TLS_MINOR_VER_THREE) 560 tls->params.tls_hlen += sizeof(uint64_t); 561 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 562 563 /* 564 * TLS 1.3 includes optional padding which we 565 * do not support, and also puts the "real" record 566 * type at the end of the encrypted data. 567 */ 568 if (en->tls_vminor == TLS_MINOR_VER_THREE) 569 tls->params.tls_tlen += sizeof(uint8_t); 570 571 tls->params.tls_bs = 1; 572 break; 573 case CRYPTO_AES_CBC: 574 switch (en->auth_algorithm) { 575 case CRYPTO_SHA1_HMAC: 576 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 577 /* Implicit IV, no nonce. */ 578 } else { 579 tls->params.tls_hlen += AES_BLOCK_LEN; 580 } 581 tls->params.tls_tlen = AES_BLOCK_LEN + 582 SHA1_HASH_LEN; 583 break; 584 case CRYPTO_SHA2_256_HMAC: 585 tls->params.tls_hlen += AES_BLOCK_LEN; 586 tls->params.tls_tlen = AES_BLOCK_LEN + 587 SHA2_256_HASH_LEN; 588 break; 589 case CRYPTO_SHA2_384_HMAC: 590 tls->params.tls_hlen += AES_BLOCK_LEN; 591 tls->params.tls_tlen = AES_BLOCK_LEN + 592 SHA2_384_HASH_LEN; 593 break; 594 default: 595 panic("invalid hmac"); 596 } 597 tls->params.tls_bs = AES_BLOCK_LEN; 598 break; 599 default: 600 panic("invalid cipher"); 601 } 602 603 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 604 ("TLS header length too long: %d", tls->params.tls_hlen)); 605 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 606 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 607 608 if (en->auth_key_len != 0) { 609 tls->params.auth_key_len = en->auth_key_len; 610 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 611 M_WAITOK); 612 error = copyin(en->auth_key, tls->params.auth_key, 613 en->auth_key_len); 614 if (error) 615 goto out; 616 } 617 618 tls->params.cipher_key_len = en->cipher_key_len; 619 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 620 error = copyin(en->cipher_key, tls->params.cipher_key, 621 en->cipher_key_len); 622 if (error) 623 goto out; 624 625 /* 626 * This holds the implicit portion of the nonce for GCM and 627 * the initial implicit IV for TLS 1.0. The explicit portions 628 * of the IV are generated in ktls_frame(). 629 */ 630 if (en->iv_len != 0) { 631 tls->params.iv_len = en->iv_len; 632 error = copyin(en->iv, tls->params.iv, en->iv_len); 633 if (error) 634 goto out; 635 636 /* 637 * For TLS 1.2, generate an 8-byte nonce as a counter 638 * to generate unique explicit IVs. 639 * 640 * Store this counter in the last 8 bytes of the IV 641 * array so that it is 8-byte aligned. 642 */ 643 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 644 en->tls_vminor == TLS_MINOR_VER_TWO) 645 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 646 } 647 648 *tlsp = tls; 649 return (0); 650 651 out: 652 ktls_cleanup(tls); 653 return (error); 654 } 655 656 static struct ktls_session * 657 ktls_clone_session(struct ktls_session *tls) 658 { 659 struct ktls_session *tls_new; 660 661 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 662 663 counter_u64_add(ktls_offload_active, 1); 664 665 refcount_init(&tls_new->refcount, 1); 666 667 /* Copy fields from existing session. */ 668 tls_new->params = tls->params; 669 tls_new->wq_index = tls->wq_index; 670 671 /* Deep copy keys. */ 672 if (tls_new->params.auth_key != NULL) { 673 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 674 M_KTLS, M_WAITOK); 675 memcpy(tls_new->params.auth_key, tls->params.auth_key, 676 tls->params.auth_key_len); 677 } 678 679 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 680 M_WAITOK); 681 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 682 tls->params.cipher_key_len); 683 684 return (tls_new); 685 } 686 #endif 687 688 static void 689 ktls_cleanup(struct ktls_session *tls) 690 { 691 692 counter_u64_add(ktls_offload_active, -1); 693 switch (tls->mode) { 694 case TCP_TLS_MODE_SW: 695 MPASS(tls->be != NULL); 696 switch (tls->params.cipher_algorithm) { 697 case CRYPTO_AES_CBC: 698 counter_u64_add(ktls_sw_cbc, -1); 699 break; 700 case CRYPTO_AES_NIST_GCM_16: 701 counter_u64_add(ktls_sw_gcm, -1); 702 break; 703 } 704 tls->free(tls); 705 break; 706 case TCP_TLS_MODE_IFNET: 707 switch (tls->params.cipher_algorithm) { 708 case CRYPTO_AES_CBC: 709 counter_u64_add(ktls_ifnet_cbc, -1); 710 break; 711 case CRYPTO_AES_NIST_GCM_16: 712 counter_u64_add(ktls_ifnet_gcm, -1); 713 break; 714 } 715 if (tls->snd_tag != NULL) 716 m_snd_tag_rele(tls->snd_tag); 717 break; 718 #ifdef TCP_OFFLOAD 719 case TCP_TLS_MODE_TOE: 720 switch (tls->params.cipher_algorithm) { 721 case CRYPTO_AES_CBC: 722 counter_u64_add(ktls_toe_cbc, -1); 723 break; 724 case CRYPTO_AES_NIST_GCM_16: 725 counter_u64_add(ktls_toe_gcm, -1); 726 break; 727 } 728 break; 729 #endif 730 } 731 if (tls->params.auth_key != NULL) { 732 zfree(tls->params.auth_key, M_KTLS); 733 tls->params.auth_key = NULL; 734 tls->params.auth_key_len = 0; 735 } 736 if (tls->params.cipher_key != NULL) { 737 zfree(tls->params.cipher_key, M_KTLS); 738 tls->params.cipher_key = NULL; 739 tls->params.cipher_key_len = 0; 740 } 741 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 742 } 743 744 #if defined(INET) || defined(INET6) 745 746 #ifdef TCP_OFFLOAD 747 static int 748 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 749 { 750 struct inpcb *inp; 751 struct tcpcb *tp; 752 int error; 753 754 inp = so->so_pcb; 755 INP_WLOCK(inp); 756 if (inp->inp_flags2 & INP_FREED) { 757 INP_WUNLOCK(inp); 758 return (ECONNRESET); 759 } 760 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 761 INP_WUNLOCK(inp); 762 return (ECONNRESET); 763 } 764 if (inp->inp_socket == NULL) { 765 INP_WUNLOCK(inp); 766 return (ECONNRESET); 767 } 768 tp = intotcpcb(inp); 769 if (!(tp->t_flags & TF_TOE)) { 770 INP_WUNLOCK(inp); 771 return (EOPNOTSUPP); 772 } 773 774 error = tcp_offload_alloc_tls_session(tp, tls, direction); 775 INP_WUNLOCK(inp); 776 if (error == 0) { 777 tls->mode = TCP_TLS_MODE_TOE; 778 switch (tls->params.cipher_algorithm) { 779 case CRYPTO_AES_CBC: 780 counter_u64_add(ktls_toe_cbc, 1); 781 break; 782 case CRYPTO_AES_NIST_GCM_16: 783 counter_u64_add(ktls_toe_gcm, 1); 784 break; 785 } 786 } 787 return (error); 788 } 789 #endif 790 791 /* 792 * Common code used when first enabling ifnet TLS on a connection or 793 * when allocating a new ifnet TLS session due to a routing change. 794 * This function allocates a new TLS send tag on whatever interface 795 * the connection is currently routed over. 796 */ 797 static int 798 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 799 struct m_snd_tag **mstp) 800 { 801 union if_snd_tag_alloc_params params; 802 struct ifnet *ifp; 803 struct nhop_object *nh; 804 struct tcpcb *tp; 805 int error; 806 807 INP_RLOCK(inp); 808 if (inp->inp_flags2 & INP_FREED) { 809 INP_RUNLOCK(inp); 810 return (ECONNRESET); 811 } 812 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 813 INP_RUNLOCK(inp); 814 return (ECONNRESET); 815 } 816 if (inp->inp_socket == NULL) { 817 INP_RUNLOCK(inp); 818 return (ECONNRESET); 819 } 820 tp = intotcpcb(inp); 821 822 /* 823 * Check administrative controls on ifnet TLS to determine if 824 * ifnet TLS should be denied. 825 * 826 * - Always permit 'force' requests. 827 * - ktls_ifnet_permitted == 0: always deny. 828 */ 829 if (!force && ktls_ifnet_permitted == 0) { 830 INP_RUNLOCK(inp); 831 return (ENXIO); 832 } 833 834 /* 835 * XXX: Use the cached route in the inpcb to find the 836 * interface. This should perhaps instead use 837 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 838 * enabled after a connection has completed key negotiation in 839 * userland, the cached route will be present in practice. 840 */ 841 nh = inp->inp_route.ro_nh; 842 if (nh == NULL) { 843 INP_RUNLOCK(inp); 844 return (ENXIO); 845 } 846 ifp = nh->nh_ifp; 847 if_ref(ifp); 848 849 /* 850 * Allocate a TLS + ratelimit tag if the connection has an 851 * existing pacing rate. 852 */ 853 if (tp->t_pacing_rate != -1 && 854 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 855 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 856 params.tls_rate_limit.inp = inp; 857 params.tls_rate_limit.tls = tls; 858 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 859 } else { 860 params.hdr.type = IF_SND_TAG_TYPE_TLS; 861 params.tls.inp = inp; 862 params.tls.tls = tls; 863 } 864 params.hdr.flowid = inp->inp_flowid; 865 params.hdr.flowtype = inp->inp_flowtype; 866 params.hdr.numa_domain = inp->inp_numa_domain; 867 INP_RUNLOCK(inp); 868 869 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 870 error = EOPNOTSUPP; 871 goto out; 872 } 873 if (inp->inp_vflag & INP_IPV6) { 874 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 875 error = EOPNOTSUPP; 876 goto out; 877 } 878 } else { 879 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 880 error = EOPNOTSUPP; 881 goto out; 882 } 883 } 884 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 885 out: 886 if_rele(ifp); 887 return (error); 888 } 889 890 static int 891 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 892 { 893 struct m_snd_tag *mst; 894 int error; 895 896 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 897 if (error == 0) { 898 tls->mode = TCP_TLS_MODE_IFNET; 899 tls->snd_tag = mst; 900 switch (tls->params.cipher_algorithm) { 901 case CRYPTO_AES_CBC: 902 counter_u64_add(ktls_ifnet_cbc, 1); 903 break; 904 case CRYPTO_AES_NIST_GCM_16: 905 counter_u64_add(ktls_ifnet_gcm, 1); 906 break; 907 } 908 } 909 return (error); 910 } 911 912 static int 913 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 914 { 915 struct rm_priotracker prio; 916 struct ktls_crypto_backend *be; 917 918 /* 919 * Choose the best software crypto backend. Backends are 920 * stored in sorted priority order (larget value == most 921 * important at the head of the list), so this just stops on 922 * the first backend that claims the session by returning 923 * success. 924 */ 925 if (ktls_allow_unload) 926 rm_rlock(&ktls_backends_lock, &prio); 927 LIST_FOREACH(be, &ktls_backends, next) { 928 if (be->try(so, tls, direction) == 0) 929 break; 930 KASSERT(tls->cipher == NULL, 931 ("ktls backend leaked a cipher pointer")); 932 } 933 if (be != NULL) { 934 if (ktls_allow_unload) 935 be->use_count++; 936 tls->be = be; 937 } 938 if (ktls_allow_unload) 939 rm_runlock(&ktls_backends_lock, &prio); 940 if (be == NULL) 941 return (EOPNOTSUPP); 942 tls->mode = TCP_TLS_MODE_SW; 943 switch (tls->params.cipher_algorithm) { 944 case CRYPTO_AES_CBC: 945 counter_u64_add(ktls_sw_cbc, 1); 946 break; 947 case CRYPTO_AES_NIST_GCM_16: 948 counter_u64_add(ktls_sw_gcm, 1); 949 break; 950 } 951 return (0); 952 } 953 954 /* 955 * KTLS RX stores data in the socket buffer as a list of TLS records, 956 * where each record is stored as a control message containg the TLS 957 * header followed by data mbufs containing the decrypted data. This 958 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 959 * both encrypted and decrypted data. TLS records decrypted by a NIC 960 * should be queued to the socket buffer as records, but encrypted 961 * data which needs to be decrypted by software arrives as a stream of 962 * regular mbufs which need to be converted. In addition, there may 963 * already be pending encrypted data in the socket buffer when KTLS RX 964 * is enabled. 965 * 966 * To manage not-yet-decrypted data for KTLS RX, the following scheme 967 * is used: 968 * 969 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 970 * 971 * - ktls_check_rx checks this chain of mbufs reading the TLS header 972 * from the first mbuf. Once all of the data for that TLS record is 973 * queued, the socket is queued to a worker thread. 974 * 975 * - The worker thread calls ktls_decrypt to decrypt TLS records in 976 * the TLS chain. Each TLS record is detached from the TLS chain, 977 * decrypted, and inserted into the regular socket buffer chain as 978 * record starting with a control message holding the TLS header and 979 * a chain of mbufs holding the encrypted data. 980 */ 981 982 static void 983 sb_mark_notready(struct sockbuf *sb) 984 { 985 struct mbuf *m; 986 987 m = sb->sb_mb; 988 sb->sb_mtls = m; 989 sb->sb_mb = NULL; 990 sb->sb_mbtail = NULL; 991 sb->sb_lastrecord = NULL; 992 for (; m != NULL; m = m->m_next) { 993 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 994 __func__)); 995 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 996 __func__)); 997 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 998 __func__)); 999 m->m_flags |= M_NOTREADY; 1000 sb->sb_acc -= m->m_len; 1001 sb->sb_tlscc += m->m_len; 1002 sb->sb_mtlstail = m; 1003 } 1004 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1005 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1006 sb->sb_ccc)); 1007 } 1008 1009 int 1010 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1011 { 1012 struct ktls_session *tls; 1013 int error; 1014 1015 if (!ktls_offload_enable) 1016 return (ENOTSUP); 1017 1018 counter_u64_add(ktls_offload_enable_calls, 1); 1019 1020 /* 1021 * This should always be true since only the TCP socket option 1022 * invokes this function. 1023 */ 1024 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1025 return (EINVAL); 1026 1027 /* 1028 * XXX: Don't overwrite existing sessions. We should permit 1029 * this to support rekeying in the future. 1030 */ 1031 if (so->so_rcv.sb_tls_info != NULL) 1032 return (EALREADY); 1033 1034 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1035 return (ENOTSUP); 1036 1037 /* TLS 1.3 is not yet supported. */ 1038 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1039 en->tls_vminor == TLS_MINOR_VER_THREE) 1040 return (ENOTSUP); 1041 1042 error = ktls_create_session(so, en, &tls); 1043 if (error) 1044 return (error); 1045 1046 #ifdef TCP_OFFLOAD 1047 error = ktls_try_toe(so, tls, KTLS_RX); 1048 if (error) 1049 #endif 1050 error = ktls_try_sw(so, tls, KTLS_RX); 1051 1052 if (error) { 1053 ktls_cleanup(tls); 1054 return (error); 1055 } 1056 1057 /* Mark the socket as using TLS offload. */ 1058 SOCKBUF_LOCK(&so->so_rcv); 1059 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1060 so->so_rcv.sb_tls_info = tls; 1061 so->so_rcv.sb_flags |= SB_TLS_RX; 1062 1063 /* Mark existing data as not ready until it can be decrypted. */ 1064 sb_mark_notready(&so->so_rcv); 1065 ktls_check_rx(&so->so_rcv); 1066 SOCKBUF_UNLOCK(&so->so_rcv); 1067 1068 counter_u64_add(ktls_offload_total, 1); 1069 1070 return (0); 1071 } 1072 1073 int 1074 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1075 { 1076 struct ktls_session *tls; 1077 struct inpcb *inp; 1078 int error; 1079 1080 if (!ktls_offload_enable) 1081 return (ENOTSUP); 1082 1083 counter_u64_add(ktls_offload_enable_calls, 1); 1084 1085 /* 1086 * This should always be true since only the TCP socket option 1087 * invokes this function. 1088 */ 1089 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1090 return (EINVAL); 1091 1092 /* 1093 * XXX: Don't overwrite existing sessions. We should permit 1094 * this to support rekeying in the future. 1095 */ 1096 if (so->so_snd.sb_tls_info != NULL) 1097 return (EALREADY); 1098 1099 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1100 return (ENOTSUP); 1101 1102 /* TLS requires ext pgs */ 1103 if (mb_use_ext_pgs == 0) 1104 return (ENXIO); 1105 1106 error = ktls_create_session(so, en, &tls); 1107 if (error) 1108 return (error); 1109 1110 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1111 #ifdef TCP_OFFLOAD 1112 error = ktls_try_toe(so, tls, KTLS_TX); 1113 if (error) 1114 #endif 1115 error = ktls_try_ifnet(so, tls, false); 1116 if (error) 1117 error = ktls_try_sw(so, tls, KTLS_TX); 1118 1119 if (error) { 1120 ktls_cleanup(tls); 1121 return (error); 1122 } 1123 1124 error = sblock(&so->so_snd, SBL_WAIT); 1125 if (error) { 1126 ktls_cleanup(tls); 1127 return (error); 1128 } 1129 1130 /* 1131 * Write lock the INP when setting sb_tls_info so that 1132 * routines in tcp_ratelimit.c can read sb_tls_info while 1133 * holding the INP lock. 1134 */ 1135 inp = so->so_pcb; 1136 INP_WLOCK(inp); 1137 SOCKBUF_LOCK(&so->so_snd); 1138 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1139 so->so_snd.sb_tls_info = tls; 1140 if (tls->mode != TCP_TLS_MODE_SW) 1141 so->so_snd.sb_flags |= SB_TLS_IFNET; 1142 SOCKBUF_UNLOCK(&so->so_snd); 1143 INP_WUNLOCK(inp); 1144 sbunlock(&so->so_snd); 1145 1146 counter_u64_add(ktls_offload_total, 1); 1147 1148 return (0); 1149 } 1150 1151 int 1152 ktls_get_rx_mode(struct socket *so) 1153 { 1154 struct ktls_session *tls; 1155 struct inpcb *inp; 1156 int mode; 1157 1158 inp = so->so_pcb; 1159 INP_WLOCK_ASSERT(inp); 1160 SOCKBUF_LOCK(&so->so_rcv); 1161 tls = so->so_rcv.sb_tls_info; 1162 if (tls == NULL) 1163 mode = TCP_TLS_MODE_NONE; 1164 else 1165 mode = tls->mode; 1166 SOCKBUF_UNLOCK(&so->so_rcv); 1167 return (mode); 1168 } 1169 1170 int 1171 ktls_get_tx_mode(struct socket *so) 1172 { 1173 struct ktls_session *tls; 1174 struct inpcb *inp; 1175 int mode; 1176 1177 inp = so->so_pcb; 1178 INP_WLOCK_ASSERT(inp); 1179 SOCKBUF_LOCK(&so->so_snd); 1180 tls = so->so_snd.sb_tls_info; 1181 if (tls == NULL) 1182 mode = TCP_TLS_MODE_NONE; 1183 else 1184 mode = tls->mode; 1185 SOCKBUF_UNLOCK(&so->so_snd); 1186 return (mode); 1187 } 1188 1189 /* 1190 * Switch between SW and ifnet TLS sessions as requested. 1191 */ 1192 int 1193 ktls_set_tx_mode(struct socket *so, int mode) 1194 { 1195 struct ktls_session *tls, *tls_new; 1196 struct inpcb *inp; 1197 int error; 1198 1199 switch (mode) { 1200 case TCP_TLS_MODE_SW: 1201 case TCP_TLS_MODE_IFNET: 1202 break; 1203 default: 1204 return (EINVAL); 1205 } 1206 1207 inp = so->so_pcb; 1208 INP_WLOCK_ASSERT(inp); 1209 SOCKBUF_LOCK(&so->so_snd); 1210 tls = so->so_snd.sb_tls_info; 1211 if (tls == NULL) { 1212 SOCKBUF_UNLOCK(&so->so_snd); 1213 return (0); 1214 } 1215 1216 if (tls->mode == mode) { 1217 SOCKBUF_UNLOCK(&so->so_snd); 1218 return (0); 1219 } 1220 1221 tls = ktls_hold(tls); 1222 SOCKBUF_UNLOCK(&so->so_snd); 1223 INP_WUNLOCK(inp); 1224 1225 tls_new = ktls_clone_session(tls); 1226 1227 if (mode == TCP_TLS_MODE_IFNET) 1228 error = ktls_try_ifnet(so, tls_new, true); 1229 else 1230 error = ktls_try_sw(so, tls_new, KTLS_TX); 1231 if (error) { 1232 counter_u64_add(ktls_switch_failed, 1); 1233 ktls_free(tls_new); 1234 ktls_free(tls); 1235 INP_WLOCK(inp); 1236 return (error); 1237 } 1238 1239 error = sblock(&so->so_snd, SBL_WAIT); 1240 if (error) { 1241 counter_u64_add(ktls_switch_failed, 1); 1242 ktls_free(tls_new); 1243 ktls_free(tls); 1244 INP_WLOCK(inp); 1245 return (error); 1246 } 1247 1248 /* 1249 * If we raced with another session change, keep the existing 1250 * session. 1251 */ 1252 if (tls != so->so_snd.sb_tls_info) { 1253 counter_u64_add(ktls_switch_failed, 1); 1254 sbunlock(&so->so_snd); 1255 ktls_free(tls_new); 1256 ktls_free(tls); 1257 INP_WLOCK(inp); 1258 return (EBUSY); 1259 } 1260 1261 SOCKBUF_LOCK(&so->so_snd); 1262 so->so_snd.sb_tls_info = tls_new; 1263 if (tls_new->mode != TCP_TLS_MODE_SW) 1264 so->so_snd.sb_flags |= SB_TLS_IFNET; 1265 SOCKBUF_UNLOCK(&so->so_snd); 1266 sbunlock(&so->so_snd); 1267 1268 /* 1269 * Drop two references on 'tls'. The first is for the 1270 * ktls_hold() above. The second drops the reference from the 1271 * socket buffer. 1272 */ 1273 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1274 ktls_free(tls); 1275 ktls_free(tls); 1276 1277 if (mode == TCP_TLS_MODE_IFNET) 1278 counter_u64_add(ktls_switch_to_ifnet, 1); 1279 else 1280 counter_u64_add(ktls_switch_to_sw, 1); 1281 1282 INP_WLOCK(inp); 1283 return (0); 1284 } 1285 1286 /* 1287 * Try to allocate a new TLS send tag. This task is scheduled when 1288 * ip_output detects a route change while trying to transmit a packet 1289 * holding a TLS record. If a new tag is allocated, replace the tag 1290 * in the TLS session. Subsequent packets on the connection will use 1291 * the new tag. If a new tag cannot be allocated, drop the 1292 * connection. 1293 */ 1294 static void 1295 ktls_reset_send_tag(void *context, int pending) 1296 { 1297 struct epoch_tracker et; 1298 struct ktls_session *tls; 1299 struct m_snd_tag *old, *new; 1300 struct inpcb *inp; 1301 struct tcpcb *tp; 1302 int error; 1303 1304 MPASS(pending == 1); 1305 1306 tls = context; 1307 inp = tls->inp; 1308 1309 /* 1310 * Free the old tag first before allocating a new one. 1311 * ip[6]_output_send() will treat a NULL send tag the same as 1312 * an ifp mismatch and drop packets until a new tag is 1313 * allocated. 1314 * 1315 * Write-lock the INP when changing tls->snd_tag since 1316 * ip[6]_output_send() holds a read-lock when reading the 1317 * pointer. 1318 */ 1319 INP_WLOCK(inp); 1320 old = tls->snd_tag; 1321 tls->snd_tag = NULL; 1322 INP_WUNLOCK(inp); 1323 if (old != NULL) 1324 m_snd_tag_rele(old); 1325 1326 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1327 1328 if (error == 0) { 1329 INP_WLOCK(inp); 1330 tls->snd_tag = new; 1331 mtx_pool_lock(mtxpool_sleep, tls); 1332 tls->reset_pending = false; 1333 mtx_pool_unlock(mtxpool_sleep, tls); 1334 if (!in_pcbrele_wlocked(inp)) 1335 INP_WUNLOCK(inp); 1336 1337 counter_u64_add(ktls_ifnet_reset, 1); 1338 1339 /* 1340 * XXX: Should we kick tcp_output explicitly now that 1341 * the send tag is fixed or just rely on timers? 1342 */ 1343 } else { 1344 NET_EPOCH_ENTER(et); 1345 INP_WLOCK(inp); 1346 if (!in_pcbrele_wlocked(inp)) { 1347 if (!(inp->inp_flags & INP_TIMEWAIT) && 1348 !(inp->inp_flags & INP_DROPPED)) { 1349 tp = intotcpcb(inp); 1350 CURVNET_SET(tp->t_vnet); 1351 tp = tcp_drop(tp, ECONNABORTED); 1352 CURVNET_RESTORE(); 1353 if (tp != NULL) 1354 INP_WUNLOCK(inp); 1355 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1356 } else 1357 INP_WUNLOCK(inp); 1358 } 1359 NET_EPOCH_EXIT(et); 1360 1361 counter_u64_add(ktls_ifnet_reset_failed, 1); 1362 1363 /* 1364 * Leave reset_pending true to avoid future tasks while 1365 * the socket goes away. 1366 */ 1367 } 1368 1369 ktls_free(tls); 1370 } 1371 1372 int 1373 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1374 { 1375 1376 if (inp == NULL) 1377 return (ENOBUFS); 1378 1379 INP_LOCK_ASSERT(inp); 1380 1381 /* 1382 * See if we should schedule a task to update the send tag for 1383 * this session. 1384 */ 1385 mtx_pool_lock(mtxpool_sleep, tls); 1386 if (!tls->reset_pending) { 1387 (void) ktls_hold(tls); 1388 in_pcbref(inp); 1389 tls->inp = inp; 1390 tls->reset_pending = true; 1391 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1392 } 1393 mtx_pool_unlock(mtxpool_sleep, tls); 1394 return (ENOBUFS); 1395 } 1396 1397 #ifdef RATELIMIT 1398 int 1399 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1400 { 1401 union if_snd_tag_modify_params params = { 1402 .rate_limit.max_rate = max_pacing_rate, 1403 .rate_limit.flags = M_NOWAIT, 1404 }; 1405 struct m_snd_tag *mst; 1406 struct ifnet *ifp; 1407 int error; 1408 1409 /* Can't get to the inp, but it should be locked. */ 1410 /* INP_LOCK_ASSERT(inp); */ 1411 1412 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1413 1414 if (tls->snd_tag == NULL) { 1415 /* 1416 * Resetting send tag, ignore this change. The 1417 * pending reset may or may not see this updated rate 1418 * in the tcpcb. If it doesn't, we will just lose 1419 * this rate change. 1420 */ 1421 return (0); 1422 } 1423 1424 MPASS(tls->snd_tag != NULL); 1425 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1426 1427 mst = tls->snd_tag; 1428 ifp = mst->ifp; 1429 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1430 } 1431 #endif 1432 #endif 1433 1434 void 1435 ktls_destroy(struct ktls_session *tls) 1436 { 1437 struct rm_priotracker prio; 1438 1439 ktls_cleanup(tls); 1440 if (tls->be != NULL && ktls_allow_unload) { 1441 rm_rlock(&ktls_backends_lock, &prio); 1442 tls->be->use_count--; 1443 rm_runlock(&ktls_backends_lock, &prio); 1444 } 1445 uma_zfree(ktls_session_zone, tls); 1446 } 1447 1448 void 1449 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1450 { 1451 1452 for (; m != NULL; m = m->m_next) { 1453 KASSERT((m->m_flags & M_EXTPG) != 0, 1454 ("ktls_seq: mapped mbuf %p", m)); 1455 1456 m->m_epg_seqno = sb->sb_tls_seqno; 1457 sb->sb_tls_seqno++; 1458 } 1459 } 1460 1461 /* 1462 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1463 * mbuf in the chain must be an unmapped mbuf. The payload of the 1464 * mbuf must be populated with the payload of each TLS record. 1465 * 1466 * The record_type argument specifies the TLS record type used when 1467 * populating the TLS header. 1468 * 1469 * The enq_count argument on return is set to the number of pages of 1470 * payload data for this entire chain that need to be encrypted via SW 1471 * encryption. The returned value should be passed to ktls_enqueue 1472 * when scheduling encryption of this chain of mbufs. To handle the 1473 * special case of empty fragments for TLS 1.0 sessions, an empty 1474 * fragment counts as one page. 1475 */ 1476 void 1477 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1478 uint8_t record_type) 1479 { 1480 struct tls_record_layer *tlshdr; 1481 struct mbuf *m; 1482 uint64_t *noncep; 1483 uint16_t tls_len; 1484 int maxlen; 1485 1486 maxlen = tls->params.max_frame_len; 1487 *enq_cnt = 0; 1488 for (m = top; m != NULL; m = m->m_next) { 1489 /* 1490 * All mbufs in the chain should be TLS records whose 1491 * payload does not exceed the maximum frame length. 1492 * 1493 * Empty TLS records are permitted when using CBC. 1494 */ 1495 KASSERT(m->m_len <= maxlen && 1496 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1497 m->m_len >= 0 : m->m_len > 0), 1498 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1499 1500 /* 1501 * TLS frames require unmapped mbufs to store session 1502 * info. 1503 */ 1504 KASSERT((m->m_flags & M_EXTPG) != 0, 1505 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1506 1507 tls_len = m->m_len; 1508 1509 /* Save a reference to the session. */ 1510 m->m_epg_tls = ktls_hold(tls); 1511 1512 m->m_epg_hdrlen = tls->params.tls_hlen; 1513 m->m_epg_trllen = tls->params.tls_tlen; 1514 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1515 int bs, delta; 1516 1517 /* 1518 * AES-CBC pads messages to a multiple of the 1519 * block size. Note that the padding is 1520 * applied after the digest and the encryption 1521 * is done on the "plaintext || mac || padding". 1522 * At least one byte of padding is always 1523 * present. 1524 * 1525 * Compute the final trailer length assuming 1526 * at most one block of padding. 1527 * tls->params.sb_tls_tlen is the maximum 1528 * possible trailer length (padding + digest). 1529 * delta holds the number of excess padding 1530 * bytes if the maximum were used. Those 1531 * extra bytes are removed. 1532 */ 1533 bs = tls->params.tls_bs; 1534 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1535 m->m_epg_trllen -= delta; 1536 } 1537 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1538 1539 /* Populate the TLS header. */ 1540 tlshdr = (void *)m->m_epg_hdr; 1541 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1542 1543 /* 1544 * TLS 1.3 masquarades as TLS 1.2 with a record type 1545 * of TLS_RLTYPE_APP. 1546 */ 1547 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1548 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1549 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1550 tlshdr->tls_type = TLS_RLTYPE_APP; 1551 /* save the real record type for later */ 1552 m->m_epg_record_type = record_type; 1553 m->m_epg_trail[0] = record_type; 1554 } else { 1555 tlshdr->tls_vminor = tls->params.tls_vminor; 1556 tlshdr->tls_type = record_type; 1557 } 1558 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1559 1560 /* 1561 * Store nonces / explicit IVs after the end of the 1562 * TLS header. 1563 * 1564 * For GCM with TLS 1.2, an 8 byte nonce is copied 1565 * from the end of the IV. The nonce is then 1566 * incremented for use by the next record. 1567 * 1568 * For CBC, a random nonce is inserted for TLS 1.1+. 1569 */ 1570 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1571 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1572 noncep = (uint64_t *)(tls->params.iv + 8); 1573 be64enc(tlshdr + 1, *noncep); 1574 (*noncep)++; 1575 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1576 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1577 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1578 1579 /* 1580 * When using SW encryption, mark the mbuf not ready. 1581 * It will be marked ready via sbready() after the 1582 * record has been encrypted. 1583 * 1584 * When using ifnet TLS, unencrypted TLS records are 1585 * sent down the stack to the NIC. 1586 */ 1587 if (tls->mode == TCP_TLS_MODE_SW) { 1588 m->m_flags |= M_NOTREADY; 1589 m->m_epg_nrdy = m->m_epg_npgs; 1590 if (__predict_false(tls_len == 0)) { 1591 /* TLS 1.0 empty fragment. */ 1592 *enq_cnt += 1; 1593 } else 1594 *enq_cnt += m->m_epg_npgs; 1595 } 1596 } 1597 } 1598 1599 void 1600 ktls_check_rx(struct sockbuf *sb) 1601 { 1602 struct tls_record_layer hdr; 1603 struct ktls_wq *wq; 1604 struct socket *so; 1605 bool running; 1606 1607 SOCKBUF_LOCK_ASSERT(sb); 1608 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1609 __func__, sb)); 1610 so = __containerof(sb, struct socket, so_rcv); 1611 1612 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1613 return; 1614 1615 /* Is there enough queued for a TLS header? */ 1616 if (sb->sb_tlscc < sizeof(hdr)) { 1617 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1618 so->so_error = EMSGSIZE; 1619 return; 1620 } 1621 1622 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1623 1624 /* Is the entire record queued? */ 1625 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1626 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1627 so->so_error = EMSGSIZE; 1628 return; 1629 } 1630 1631 sb->sb_flags |= SB_TLS_RX_RUNNING; 1632 1633 soref(so); 1634 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1635 mtx_lock(&wq->mtx); 1636 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1637 running = wq->running; 1638 mtx_unlock(&wq->mtx); 1639 if (!running) 1640 wakeup(wq); 1641 counter_u64_add(ktls_cnt_rx_queued, 1); 1642 } 1643 1644 static struct mbuf * 1645 ktls_detach_record(struct sockbuf *sb, int len) 1646 { 1647 struct mbuf *m, *n, *top; 1648 int remain; 1649 1650 SOCKBUF_LOCK_ASSERT(sb); 1651 MPASS(len <= sb->sb_tlscc); 1652 1653 /* 1654 * If TLS chain is the exact size of the record, 1655 * just grab the whole record. 1656 */ 1657 top = sb->sb_mtls; 1658 if (sb->sb_tlscc == len) { 1659 sb->sb_mtls = NULL; 1660 sb->sb_mtlstail = NULL; 1661 goto out; 1662 } 1663 1664 /* 1665 * While it would be nice to use m_split() here, we need 1666 * to know exactly what m_split() allocates to update the 1667 * accounting, so do it inline instead. 1668 */ 1669 remain = len; 1670 for (m = top; remain > m->m_len; m = m->m_next) 1671 remain -= m->m_len; 1672 1673 /* Easy case: don't have to split 'm'. */ 1674 if (remain == m->m_len) { 1675 sb->sb_mtls = m->m_next; 1676 if (sb->sb_mtls == NULL) 1677 sb->sb_mtlstail = NULL; 1678 m->m_next = NULL; 1679 goto out; 1680 } 1681 1682 /* 1683 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1684 * with M_NOWAIT first. 1685 */ 1686 n = m_get(M_NOWAIT, MT_DATA); 1687 if (n == NULL) { 1688 /* 1689 * Use M_WAITOK with socket buffer unlocked. If 1690 * 'sb_mtls' changes while the lock is dropped, return 1691 * NULL to force the caller to retry. 1692 */ 1693 SOCKBUF_UNLOCK(sb); 1694 1695 n = m_get(M_WAITOK, MT_DATA); 1696 1697 SOCKBUF_LOCK(sb); 1698 if (sb->sb_mtls != top) { 1699 m_free(n); 1700 return (NULL); 1701 } 1702 } 1703 n->m_flags |= M_NOTREADY; 1704 1705 /* Store remainder in 'n'. */ 1706 n->m_len = m->m_len - remain; 1707 if (m->m_flags & M_EXT) { 1708 n->m_data = m->m_data + remain; 1709 mb_dupcl(n, m); 1710 } else { 1711 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1712 } 1713 1714 /* Trim 'm' and update accounting. */ 1715 m->m_len -= n->m_len; 1716 sb->sb_tlscc -= n->m_len; 1717 sb->sb_ccc -= n->m_len; 1718 1719 /* Account for 'n'. */ 1720 sballoc_ktls_rx(sb, n); 1721 1722 /* Insert 'n' into the TLS chain. */ 1723 sb->sb_mtls = n; 1724 n->m_next = m->m_next; 1725 if (sb->sb_mtlstail == m) 1726 sb->sb_mtlstail = n; 1727 1728 /* Detach the record from the TLS chain. */ 1729 m->m_next = NULL; 1730 1731 out: 1732 MPASS(m_length(top, NULL) == len); 1733 for (m = top; m != NULL; m = m->m_next) 1734 sbfree_ktls_rx(sb, m); 1735 sb->sb_tlsdcc = len; 1736 sb->sb_ccc += len; 1737 SBCHECK(sb); 1738 return (top); 1739 } 1740 1741 static void 1742 ktls_decrypt(struct socket *so) 1743 { 1744 char tls_header[MBUF_PEXT_HDR_LEN]; 1745 struct ktls_session *tls; 1746 struct sockbuf *sb; 1747 struct tls_record_layer *hdr; 1748 struct tls_get_record tgr; 1749 struct mbuf *control, *data, *m; 1750 uint64_t seqno; 1751 int error, remain, tls_len, trail_len; 1752 1753 hdr = (struct tls_record_layer *)tls_header; 1754 sb = &so->so_rcv; 1755 SOCKBUF_LOCK(sb); 1756 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1757 ("%s: socket %p not running", __func__, so)); 1758 1759 tls = sb->sb_tls_info; 1760 MPASS(tls != NULL); 1761 1762 for (;;) { 1763 /* Is there enough queued for a TLS header? */ 1764 if (sb->sb_tlscc < tls->params.tls_hlen) 1765 break; 1766 1767 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1768 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1769 1770 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1771 hdr->tls_vminor != tls->params.tls_vminor) 1772 error = EINVAL; 1773 else if (tls_len < tls->params.tls_hlen || tls_len > 1774 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1775 tls->params.tls_tlen) 1776 error = EMSGSIZE; 1777 else 1778 error = 0; 1779 if (__predict_false(error != 0)) { 1780 /* 1781 * We have a corrupted record and are likely 1782 * out of sync. The connection isn't 1783 * recoverable at this point, so abort it. 1784 */ 1785 SOCKBUF_UNLOCK(sb); 1786 counter_u64_add(ktls_offload_corrupted_records, 1); 1787 1788 CURVNET_SET(so->so_vnet); 1789 so->so_proto->pr_usrreqs->pru_abort(so); 1790 so->so_error = error; 1791 CURVNET_RESTORE(); 1792 goto deref; 1793 } 1794 1795 /* Is the entire record queued? */ 1796 if (sb->sb_tlscc < tls_len) 1797 break; 1798 1799 /* 1800 * Split out the portion of the mbuf chain containing 1801 * this TLS record. 1802 */ 1803 data = ktls_detach_record(sb, tls_len); 1804 if (data == NULL) 1805 continue; 1806 MPASS(sb->sb_tlsdcc == tls_len); 1807 1808 seqno = sb->sb_tls_seqno; 1809 sb->sb_tls_seqno++; 1810 SBCHECK(sb); 1811 SOCKBUF_UNLOCK(sb); 1812 1813 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1814 if (error) { 1815 counter_u64_add(ktls_offload_failed_crypto, 1); 1816 1817 SOCKBUF_LOCK(sb); 1818 if (sb->sb_tlsdcc == 0) { 1819 /* 1820 * sbcut/drop/flush discarded these 1821 * mbufs. 1822 */ 1823 m_freem(data); 1824 break; 1825 } 1826 1827 /* 1828 * Drop this TLS record's data, but keep 1829 * decrypting subsequent records. 1830 */ 1831 sb->sb_ccc -= tls_len; 1832 sb->sb_tlsdcc = 0; 1833 1834 CURVNET_SET(so->so_vnet); 1835 so->so_error = EBADMSG; 1836 sorwakeup_locked(so); 1837 CURVNET_RESTORE(); 1838 1839 m_freem(data); 1840 1841 SOCKBUF_LOCK(sb); 1842 continue; 1843 } 1844 1845 /* Allocate the control mbuf. */ 1846 tgr.tls_type = hdr->tls_type; 1847 tgr.tls_vmajor = hdr->tls_vmajor; 1848 tgr.tls_vminor = hdr->tls_vminor; 1849 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1850 trail_len); 1851 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1852 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1853 1854 SOCKBUF_LOCK(sb); 1855 if (sb->sb_tlsdcc == 0) { 1856 /* sbcut/drop/flush discarded these mbufs. */ 1857 MPASS(sb->sb_tlscc == 0); 1858 m_freem(data); 1859 m_freem(control); 1860 break; 1861 } 1862 1863 /* 1864 * Clear the 'dcc' accounting in preparation for 1865 * adding the decrypted record. 1866 */ 1867 sb->sb_ccc -= tls_len; 1868 sb->sb_tlsdcc = 0; 1869 SBCHECK(sb); 1870 1871 /* If there is no payload, drop all of the data. */ 1872 if (tgr.tls_length == htobe16(0)) { 1873 m_freem(data); 1874 data = NULL; 1875 } else { 1876 /* Trim header. */ 1877 remain = tls->params.tls_hlen; 1878 while (remain > 0) { 1879 if (data->m_len > remain) { 1880 data->m_data += remain; 1881 data->m_len -= remain; 1882 break; 1883 } 1884 remain -= data->m_len; 1885 data = m_free(data); 1886 } 1887 1888 /* Trim trailer and clear M_NOTREADY. */ 1889 remain = be16toh(tgr.tls_length); 1890 m = data; 1891 for (m = data; remain > m->m_len; m = m->m_next) { 1892 m->m_flags &= ~M_NOTREADY; 1893 remain -= m->m_len; 1894 } 1895 m->m_len = remain; 1896 m_freem(m->m_next); 1897 m->m_next = NULL; 1898 m->m_flags &= ~M_NOTREADY; 1899 1900 /* Set EOR on the final mbuf. */ 1901 m->m_flags |= M_EOR; 1902 } 1903 1904 sbappendcontrol_locked(sb, data, control, 0); 1905 } 1906 1907 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1908 1909 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1910 so->so_error = EMSGSIZE; 1911 1912 sorwakeup_locked(so); 1913 1914 deref: 1915 SOCKBUF_UNLOCK_ASSERT(sb); 1916 1917 CURVNET_SET(so->so_vnet); 1918 SOCK_LOCK(so); 1919 sorele(so); 1920 CURVNET_RESTORE(); 1921 } 1922 1923 void 1924 ktls_enqueue_to_free(struct mbuf *m) 1925 { 1926 struct ktls_wq *wq; 1927 bool running; 1928 1929 /* Mark it for freeing. */ 1930 m->m_epg_flags |= EPG_FLAG_2FREE; 1931 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1932 mtx_lock(&wq->mtx); 1933 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1934 running = wq->running; 1935 mtx_unlock(&wq->mtx); 1936 if (!running) 1937 wakeup(wq); 1938 } 1939 1940 void 1941 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1942 { 1943 struct ktls_wq *wq; 1944 bool running; 1945 1946 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1947 (M_EXTPG | M_NOTREADY)), 1948 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1949 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1950 1951 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1952 1953 m->m_epg_enc_cnt = page_count; 1954 1955 /* 1956 * Save a pointer to the socket. The caller is responsible 1957 * for taking an additional reference via soref(). 1958 */ 1959 m->m_epg_so = so; 1960 1961 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1962 mtx_lock(&wq->mtx); 1963 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1964 running = wq->running; 1965 mtx_unlock(&wq->mtx); 1966 if (!running) 1967 wakeup(wq); 1968 counter_u64_add(ktls_cnt_tx_queued, 1); 1969 } 1970 1971 static __noinline void 1972 ktls_encrypt(struct mbuf *top) 1973 { 1974 struct ktls_session *tls; 1975 struct socket *so; 1976 struct mbuf *m; 1977 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1978 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1979 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1980 vm_page_t pg; 1981 int error, i, len, npages, off, total_pages; 1982 bool is_anon; 1983 1984 so = top->m_epg_so; 1985 tls = top->m_epg_tls; 1986 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1987 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 1988 #ifdef INVARIANTS 1989 top->m_epg_so = NULL; 1990 #endif 1991 total_pages = top->m_epg_enc_cnt; 1992 npages = 0; 1993 1994 /* 1995 * Encrypt the TLS records in the chain of mbufs starting with 1996 * 'top'. 'total_pages' gives us a total count of pages and is 1997 * used to know when we have finished encrypting the TLS 1998 * records originally queued with 'top'. 1999 * 2000 * NB: These mbufs are queued in the socket buffer and 2001 * 'm_next' is traversing the mbufs in the socket buffer. The 2002 * socket buffer lock is not held while traversing this chain. 2003 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2004 * pointers should be stable. However, the 'm_next' of the 2005 * last mbuf encrypted is not necessarily NULL. It can point 2006 * to other mbufs appended while 'top' was on the TLS work 2007 * queue. 2008 * 2009 * Each mbuf holds an entire TLS record. 2010 */ 2011 error = 0; 2012 for (m = top; npages != total_pages; m = m->m_next) { 2013 KASSERT(m->m_epg_tls == tls, 2014 ("different TLS sessions in a single mbuf chain: %p vs %p", 2015 tls, m->m_epg_tls)); 2016 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2017 (M_EXTPG | M_NOTREADY), 2018 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2019 KASSERT(npages + m->m_epg_npgs <= total_pages, 2020 ("page count mismatch: top %p, total_pages %d, m %p", top, 2021 total_pages, m)); 2022 2023 /* 2024 * Generate source and destination ivoecs to pass to 2025 * the SW encryption backend. For writable mbufs, the 2026 * destination iovec is a copy of the source and 2027 * encryption is done in place. For file-backed mbufs 2028 * (from sendfile), anonymous wired pages are 2029 * allocated and assigned to the destination iovec. 2030 */ 2031 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2032 2033 off = m->m_epg_1st_off; 2034 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2035 len = m_epg_pagelen(m, i, off); 2036 src_iov[i].iov_len = len; 2037 src_iov[i].iov_base = 2038 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 2039 off; 2040 2041 if (is_anon) { 2042 dst_iov[i].iov_base = src_iov[i].iov_base; 2043 dst_iov[i].iov_len = src_iov[i].iov_len; 2044 continue; 2045 } 2046 retry_page: 2047 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2048 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 2049 if (pg == NULL) { 2050 vm_wait(NULL); 2051 goto retry_page; 2052 } 2053 parray[i] = VM_PAGE_TO_PHYS(pg); 2054 dst_iov[i].iov_base = 2055 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 2056 dst_iov[i].iov_len = len; 2057 } 2058 2059 if (__predict_false(m->m_epg_npgs == 0)) { 2060 /* TLS 1.0 empty fragment. */ 2061 npages++; 2062 } else 2063 npages += i; 2064 2065 error = (*tls->sw_encrypt)(tls, 2066 (const struct tls_record_layer *)m->m_epg_hdr, 2067 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 2068 m->m_epg_record_type); 2069 if (error) { 2070 counter_u64_add(ktls_offload_failed_crypto, 1); 2071 break; 2072 } 2073 2074 /* 2075 * For file-backed mbufs, release the file-backed 2076 * pages and replace them in the ext_pgs array with 2077 * the anonymous wired pages allocated above. 2078 */ 2079 if (!is_anon) { 2080 /* Free the old pages. */ 2081 m->m_ext.ext_free(m); 2082 2083 /* Replace them with the new pages. */ 2084 for (i = 0; i < m->m_epg_npgs; i++) 2085 m->m_epg_pa[i] = parray[i]; 2086 2087 /* Use the basic free routine. */ 2088 m->m_ext.ext_free = mb_free_mext_pgs; 2089 2090 /* Pages are now writable. */ 2091 m->m_epg_flags |= EPG_FLAG_ANON; 2092 } 2093 2094 /* 2095 * Drop a reference to the session now that it is no 2096 * longer needed. Existing code depends on encrypted 2097 * records having no associated session vs 2098 * yet-to-be-encrypted records having an associated 2099 * session. 2100 */ 2101 m->m_epg_tls = NULL; 2102 ktls_free(tls); 2103 } 2104 2105 CURVNET_SET(so->so_vnet); 2106 if (error == 0) { 2107 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2108 } else { 2109 so->so_proto->pr_usrreqs->pru_abort(so); 2110 so->so_error = EIO; 2111 mb_free_notready(top, total_pages); 2112 } 2113 2114 SOCK_LOCK(so); 2115 sorele(so); 2116 CURVNET_RESTORE(); 2117 } 2118 2119 static void 2120 ktls_work_thread(void *ctx) 2121 { 2122 struct ktls_wq *wq = ctx; 2123 struct mbuf *m, *n; 2124 struct socket *so, *son; 2125 STAILQ_HEAD(, mbuf) local_m_head; 2126 STAILQ_HEAD(, socket) local_so_head; 2127 2128 if (ktls_bind_threads > 1) { 2129 curthread->td_domain.dr_policy = 2130 DOMAINSET_PREF(PCPU_GET(domain)); 2131 } 2132 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2133 fpu_kern_thread(0); 2134 #endif 2135 for (;;) { 2136 mtx_lock(&wq->mtx); 2137 while (STAILQ_EMPTY(&wq->m_head) && 2138 STAILQ_EMPTY(&wq->so_head)) { 2139 wq->running = false; 2140 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2141 wq->running = true; 2142 } 2143 2144 STAILQ_INIT(&local_m_head); 2145 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2146 STAILQ_INIT(&local_so_head); 2147 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2148 mtx_unlock(&wq->mtx); 2149 2150 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2151 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2152 ktls_free(m->m_epg_tls); 2153 uma_zfree(zone_mbuf, m); 2154 } else { 2155 ktls_encrypt(m); 2156 counter_u64_add(ktls_cnt_tx_queued, -1); 2157 } 2158 } 2159 2160 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2161 ktls_decrypt(so); 2162 counter_u64_add(ktls_cnt_rx_queued, -1); 2163 } 2164 } 2165 } 2166