1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #ifdef RSS 60 #include <net/netisr.h> 61 #include <net/rss_config.h> 62 #endif 63 #if defined(INET) || defined(INET6) 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 #endif 67 #include <netinet/tcp_var.h> 68 #ifdef TCP_OFFLOAD 69 #include <netinet/tcp_offload.h> 70 #endif 71 #include <opencrypto/xform.h> 72 #include <vm/uma_dbg.h> 73 #include <vm/vm.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_page.h> 76 77 struct ktls_wq { 78 struct mtx mtx; 79 STAILQ_HEAD(, mbuf_ext_pgs) head; 80 bool running; 81 } __aligned(CACHE_LINE_SIZE); 82 83 static struct ktls_wq *ktls_wq; 84 static struct proc *ktls_proc; 85 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 86 static struct rmlock ktls_backends_lock; 87 static uma_zone_t ktls_session_zone; 88 static uint16_t ktls_cpuid_lookup[MAXCPU]; 89 90 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW, 0, 91 "Kernel TLS offload"); 92 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW, 0, 93 "Kernel TLS offload stats"); 94 95 static int ktls_allow_unload; 96 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 97 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 98 99 #ifdef RSS 100 static int ktls_bind_threads = 1; 101 #else 102 static int ktls_bind_threads; 103 #endif 104 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 105 &ktls_bind_threads, 0, 106 "Bind crypto threads to cores or domains at boot"); 107 108 static u_int ktls_maxlen = 16384; 109 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 110 &ktls_maxlen, 0, "Maximum TLS record size"); 111 112 static int ktls_number_threads; 113 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 114 &ktls_number_threads, 0, 115 "Number of TLS threads in thread-pool"); 116 117 static bool ktls_offload_enable; 118 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 119 &ktls_offload_enable, 0, 120 "Enable support for kernel TLS offload"); 121 122 static bool ktls_cbc_enable = true; 123 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 124 &ktls_cbc_enable, 1, 125 "Enable Support of AES-CBC crypto for kernel TLS"); 126 127 static counter_u64_t ktls_tasks_active; 128 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 129 &ktls_tasks_active, "Number of active tasks"); 130 131 static counter_u64_t ktls_cnt_on; 132 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD, 133 &ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto"); 134 135 static counter_u64_t ktls_offload_total; 136 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 137 CTLFLAG_RD, &ktls_offload_total, 138 "Total successful TLS setups (parameters set)"); 139 140 static counter_u64_t ktls_offload_enable_calls; 141 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 142 CTLFLAG_RD, &ktls_offload_enable_calls, 143 "Total number of TLS enable calls made"); 144 145 static counter_u64_t ktls_offload_active; 146 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 147 &ktls_offload_active, "Total Active TLS sessions"); 148 149 static counter_u64_t ktls_offload_failed_crypto; 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 151 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 152 153 static counter_u64_t ktls_switch_to_ifnet; 154 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 155 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 156 157 static counter_u64_t ktls_switch_to_sw; 158 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 159 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 160 161 static counter_u64_t ktls_switch_failed; 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 163 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 164 165 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD, 0, 166 "Software TLS session stats"); 167 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD, 0, 168 "Hardware (ifnet) TLS session stats"); 169 #ifdef TCP_OFFLOAD 170 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD, 0, 171 "TOE TLS session stats"); 172 #endif 173 174 static counter_u64_t ktls_sw_cbc; 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 176 "Active number of software TLS sessions using AES-CBC"); 177 178 static counter_u64_t ktls_sw_gcm; 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 180 "Active number of software TLS sessions using AES-GCM"); 181 182 static counter_u64_t ktls_ifnet_cbc; 183 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 184 &ktls_ifnet_cbc, 185 "Active number of ifnet TLS sessions using AES-CBC"); 186 187 static counter_u64_t ktls_ifnet_gcm; 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 189 &ktls_ifnet_gcm, 190 "Active number of ifnet TLS sessions using AES-GCM"); 191 192 static counter_u64_t ktls_ifnet_reset; 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 194 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 195 196 static counter_u64_t ktls_ifnet_reset_dropped; 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 198 &ktls_ifnet_reset_dropped, 199 "TLS sessions dropped after failing to update ifnet send tag"); 200 201 static counter_u64_t ktls_ifnet_reset_failed; 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 203 &ktls_ifnet_reset_failed, 204 "TLS sessions that failed to allocate a new ifnet send tag"); 205 206 static int ktls_ifnet_permitted; 207 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 208 &ktls_ifnet_permitted, 1, 209 "Whether to permit hardware (ifnet) TLS sessions"); 210 211 #ifdef TCP_OFFLOAD 212 static counter_u64_t ktls_toe_cbc; 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 214 &ktls_toe_cbc, 215 "Active number of TOE TLS sessions using AES-CBC"); 216 217 static counter_u64_t ktls_toe_gcm; 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 219 &ktls_toe_gcm, 220 "Active number of TOE TLS sessions using AES-GCM"); 221 #endif 222 223 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 224 225 static void ktls_cleanup(struct ktls_session *tls); 226 #if defined(INET) || defined(INET6) 227 static void ktls_reset_send_tag(void *context, int pending); 228 #endif 229 static void ktls_work_thread(void *ctx); 230 231 int 232 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 233 { 234 struct ktls_crypto_backend *curr_be, *tmp; 235 236 if (be->api_version != KTLS_API_VERSION) { 237 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 238 be->api_version, KTLS_API_VERSION, 239 be->name); 240 return (EINVAL); 241 } 242 243 rm_wlock(&ktls_backends_lock); 244 printf("KTLS: Registering crypto method %s with prio %d\n", 245 be->name, be->prio); 246 if (LIST_EMPTY(&ktls_backends)) { 247 LIST_INSERT_HEAD(&ktls_backends, be, next); 248 } else { 249 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 250 if (curr_be->prio < be->prio) { 251 LIST_INSERT_BEFORE(curr_be, be, next); 252 break; 253 } 254 if (LIST_NEXT(curr_be, next) == NULL) { 255 LIST_INSERT_AFTER(curr_be, be, next); 256 break; 257 } 258 } 259 } 260 rm_wunlock(&ktls_backends_lock); 261 return (0); 262 } 263 264 int 265 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 266 { 267 struct ktls_crypto_backend *tmp; 268 269 /* 270 * Don't error if the backend isn't registered. This permits 271 * MOD_UNLOAD handlers to use this function unconditionally. 272 */ 273 rm_wlock(&ktls_backends_lock); 274 LIST_FOREACH(tmp, &ktls_backends, next) { 275 if (tmp == be) 276 break; 277 } 278 if (tmp == NULL) { 279 rm_wunlock(&ktls_backends_lock); 280 return (0); 281 } 282 283 if (!ktls_allow_unload) { 284 rm_wunlock(&ktls_backends_lock); 285 printf( 286 "KTLS: Deregistering crypto method %s is not supported\n", 287 be->name); 288 return (EBUSY); 289 } 290 291 if (be->use_count) { 292 rm_wunlock(&ktls_backends_lock); 293 return (EBUSY); 294 } 295 296 LIST_REMOVE(be, next); 297 rm_wunlock(&ktls_backends_lock); 298 return (0); 299 } 300 301 #if defined(INET) || defined(INET6) 302 static uint16_t 303 ktls_get_cpu(struct socket *so) 304 { 305 struct inpcb *inp; 306 uint16_t cpuid; 307 308 inp = sotoinpcb(so); 309 #ifdef RSS 310 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 311 if (cpuid != NETISR_CPUID_NONE) 312 return (cpuid); 313 #endif 314 /* 315 * Just use the flowid to shard connections in a repeatable 316 * fashion. Note that some crypto backends rely on the 317 * serialization provided by having the same connection use 318 * the same queue. 319 */ 320 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 321 return (cpuid); 322 } 323 #endif 324 325 static void 326 ktls_init(void *dummy __unused) 327 { 328 struct thread *td; 329 struct pcpu *pc; 330 cpuset_t mask; 331 int error, i; 332 333 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 334 ktls_cnt_on = counter_u64_alloc(M_WAITOK); 335 ktls_offload_total = counter_u64_alloc(M_WAITOK); 336 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 337 ktls_offload_active = counter_u64_alloc(M_WAITOK); 338 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 339 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 340 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 341 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 342 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 343 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 344 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 345 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 346 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 347 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 348 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 349 #ifdef TCP_OFFLOAD 350 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 351 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 352 #endif 353 354 rm_init(&ktls_backends_lock, "ktls backends"); 355 LIST_INIT(&ktls_backends); 356 357 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 358 M_WAITOK | M_ZERO); 359 360 ktls_session_zone = uma_zcreate("ktls_session", 361 sizeof(struct ktls_session), 362 NULL, NULL, NULL, NULL, 363 UMA_ALIGN_CACHE, 0); 364 365 /* 366 * Initialize the workqueues to run the TLS work. We create a 367 * work queue for each CPU. 368 */ 369 CPU_FOREACH(i) { 370 STAILQ_INIT(&ktls_wq[i].head); 371 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 372 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 373 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 374 if (error) 375 panic("Can't add KTLS thread %d error %d", i, error); 376 377 /* 378 * Bind threads to cores. If ktls_bind_threads is > 379 * 1, then we bind to the NUMA domain. 380 */ 381 if (ktls_bind_threads) { 382 if (ktls_bind_threads > 1) { 383 pc = pcpu_find(i); 384 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 385 } else { 386 CPU_SETOF(i, &mask); 387 } 388 error = cpuset_setthread(td->td_tid, &mask); 389 if (error) 390 panic( 391 "Unable to bind KTLS thread for CPU %d error %d", 392 i, error); 393 } 394 ktls_cpuid_lookup[ktls_number_threads] = i; 395 ktls_number_threads++; 396 } 397 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 398 } 399 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 400 401 #if defined(INET) || defined(INET6) 402 static int 403 ktls_create_session(struct socket *so, struct tls_enable *en, 404 struct ktls_session **tlsp) 405 { 406 struct ktls_session *tls; 407 int error; 408 409 /* Only TLS 1.0 - 1.3 are supported. */ 410 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 411 return (EINVAL); 412 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 413 en->tls_vminor > TLS_MINOR_VER_THREE) 414 return (EINVAL); 415 416 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 417 return (EINVAL); 418 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 419 return (EINVAL); 420 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 421 return (EINVAL); 422 423 /* All supported algorithms require a cipher key. */ 424 if (en->cipher_key_len == 0) 425 return (EINVAL); 426 427 /* No flags are currently supported. */ 428 if (en->flags != 0) 429 return (EINVAL); 430 431 /* Common checks for supported algorithms. */ 432 switch (en->cipher_algorithm) { 433 case CRYPTO_AES_NIST_GCM_16: 434 /* 435 * auth_algorithm isn't used, but permit GMAC values 436 * for compatibility. 437 */ 438 switch (en->auth_algorithm) { 439 case 0: 440 case CRYPTO_AES_128_NIST_GMAC: 441 case CRYPTO_AES_192_NIST_GMAC: 442 case CRYPTO_AES_256_NIST_GMAC: 443 break; 444 default: 445 return (EINVAL); 446 } 447 if (en->auth_key_len != 0) 448 return (EINVAL); 449 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 450 en->iv_len != TLS_AEAD_GCM_LEN) || 451 (en->tls_vminor == TLS_MINOR_VER_THREE && 452 en->iv_len != TLS_1_3_GCM_IV_LEN)) 453 return (EINVAL); 454 break; 455 case CRYPTO_AES_CBC: 456 switch (en->auth_algorithm) { 457 case CRYPTO_SHA1_HMAC: 458 /* 459 * TLS 1.0 requires an implicit IV. TLS 1.1+ 460 * all use explicit IVs. 461 */ 462 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 463 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 464 return (EINVAL); 465 break; 466 } 467 468 /* FALLTHROUGH */ 469 case CRYPTO_SHA2_256_HMAC: 470 case CRYPTO_SHA2_384_HMAC: 471 /* Ignore any supplied IV. */ 472 en->iv_len = 0; 473 break; 474 default: 475 return (EINVAL); 476 } 477 if (en->auth_key_len == 0) 478 return (EINVAL); 479 break; 480 default: 481 return (EINVAL); 482 } 483 484 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 485 486 counter_u64_add(ktls_offload_active, 1); 487 488 refcount_init(&tls->refcount, 1); 489 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 490 491 tls->wq_index = ktls_get_cpu(so); 492 493 tls->params.cipher_algorithm = en->cipher_algorithm; 494 tls->params.auth_algorithm = en->auth_algorithm; 495 tls->params.tls_vmajor = en->tls_vmajor; 496 tls->params.tls_vminor = en->tls_vminor; 497 tls->params.flags = en->flags; 498 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 499 500 /* Set the header and trailer lengths. */ 501 tls->params.tls_hlen = sizeof(struct tls_record_layer); 502 switch (en->cipher_algorithm) { 503 case CRYPTO_AES_NIST_GCM_16: 504 /* 505 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 506 * nonce. TLS 1.3 uses a 12 byte implicit IV. 507 */ 508 if (en->tls_vminor < TLS_MINOR_VER_THREE) 509 tls->params.tls_hlen += sizeof(uint64_t); 510 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 511 512 /* 513 * TLS 1.3 includes optional padding which we 514 * do not support, and also puts the "real" record 515 * type at the end of the encrypted data. 516 */ 517 if (en->tls_vminor == TLS_MINOR_VER_THREE) 518 tls->params.tls_tlen += sizeof(uint8_t); 519 520 tls->params.tls_bs = 1; 521 break; 522 case CRYPTO_AES_CBC: 523 switch (en->auth_algorithm) { 524 case CRYPTO_SHA1_HMAC: 525 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 526 /* Implicit IV, no nonce. */ 527 } else { 528 tls->params.tls_hlen += AES_BLOCK_LEN; 529 } 530 tls->params.tls_tlen = AES_BLOCK_LEN + 531 SHA1_HASH_LEN; 532 break; 533 case CRYPTO_SHA2_256_HMAC: 534 tls->params.tls_hlen += AES_BLOCK_LEN; 535 tls->params.tls_tlen = AES_BLOCK_LEN + 536 SHA2_256_HASH_LEN; 537 break; 538 case CRYPTO_SHA2_384_HMAC: 539 tls->params.tls_hlen += AES_BLOCK_LEN; 540 tls->params.tls_tlen = AES_BLOCK_LEN + 541 SHA2_384_HASH_LEN; 542 break; 543 default: 544 panic("invalid hmac"); 545 } 546 tls->params.tls_bs = AES_BLOCK_LEN; 547 break; 548 default: 549 panic("invalid cipher"); 550 } 551 552 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 553 ("TLS header length too long: %d", tls->params.tls_hlen)); 554 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 555 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 556 557 if (en->auth_key_len != 0) { 558 tls->params.auth_key_len = en->auth_key_len; 559 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 560 M_WAITOK); 561 error = copyin(en->auth_key, tls->params.auth_key, 562 en->auth_key_len); 563 if (error) 564 goto out; 565 } 566 567 tls->params.cipher_key_len = en->cipher_key_len; 568 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 569 error = copyin(en->cipher_key, tls->params.cipher_key, 570 en->cipher_key_len); 571 if (error) 572 goto out; 573 574 /* 575 * This holds the implicit portion of the nonce for GCM and 576 * the initial implicit IV for TLS 1.0. The explicit portions 577 * of the IV are generated in ktls_frame(). 578 */ 579 if (en->iv_len != 0) { 580 tls->params.iv_len = en->iv_len; 581 error = copyin(en->iv, tls->params.iv, en->iv_len); 582 if (error) 583 goto out; 584 585 /* 586 * For TLS 1.2, generate an 8-byte nonce as a counter 587 * to generate unique explicit IVs. 588 * 589 * Store this counter in the last 8 bytes of the IV 590 * array so that it is 8-byte aligned. 591 */ 592 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 593 en->tls_vminor == TLS_MINOR_VER_TWO) 594 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 595 } 596 597 *tlsp = tls; 598 return (0); 599 600 out: 601 ktls_cleanup(tls); 602 return (error); 603 } 604 605 static struct ktls_session * 606 ktls_clone_session(struct ktls_session *tls) 607 { 608 struct ktls_session *tls_new; 609 610 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 611 612 counter_u64_add(ktls_offload_active, 1); 613 614 refcount_init(&tls_new->refcount, 1); 615 616 /* Copy fields from existing session. */ 617 tls_new->params = tls->params; 618 tls_new->wq_index = tls->wq_index; 619 620 /* Deep copy keys. */ 621 if (tls_new->params.auth_key != NULL) { 622 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 623 M_KTLS, M_WAITOK); 624 memcpy(tls_new->params.auth_key, tls->params.auth_key, 625 tls->params.auth_key_len); 626 } 627 628 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 629 M_WAITOK); 630 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 631 tls->params.cipher_key_len); 632 633 return (tls_new); 634 } 635 #endif 636 637 static void 638 ktls_cleanup(struct ktls_session *tls) 639 { 640 641 counter_u64_add(ktls_offload_active, -1); 642 switch (tls->mode) { 643 case TCP_TLS_MODE_SW: 644 MPASS(tls->be != NULL); 645 switch (tls->params.cipher_algorithm) { 646 case CRYPTO_AES_CBC: 647 counter_u64_add(ktls_sw_cbc, -1); 648 break; 649 case CRYPTO_AES_NIST_GCM_16: 650 counter_u64_add(ktls_sw_gcm, -1); 651 break; 652 } 653 tls->free(tls); 654 break; 655 case TCP_TLS_MODE_IFNET: 656 switch (tls->params.cipher_algorithm) { 657 case CRYPTO_AES_CBC: 658 counter_u64_add(ktls_ifnet_cbc, -1); 659 break; 660 case CRYPTO_AES_NIST_GCM_16: 661 counter_u64_add(ktls_ifnet_gcm, -1); 662 break; 663 } 664 m_snd_tag_rele(tls->snd_tag); 665 break; 666 #ifdef TCP_OFFLOAD 667 case TCP_TLS_MODE_TOE: 668 switch (tls->params.cipher_algorithm) { 669 case CRYPTO_AES_CBC: 670 counter_u64_add(ktls_toe_cbc, -1); 671 break; 672 case CRYPTO_AES_NIST_GCM_16: 673 counter_u64_add(ktls_toe_gcm, -1); 674 break; 675 } 676 break; 677 #endif 678 } 679 if (tls->params.auth_key != NULL) { 680 explicit_bzero(tls->params.auth_key, tls->params.auth_key_len); 681 free(tls->params.auth_key, M_KTLS); 682 tls->params.auth_key = NULL; 683 tls->params.auth_key_len = 0; 684 } 685 if (tls->params.cipher_key != NULL) { 686 explicit_bzero(tls->params.cipher_key, 687 tls->params.cipher_key_len); 688 free(tls->params.cipher_key, M_KTLS); 689 tls->params.cipher_key = NULL; 690 tls->params.cipher_key_len = 0; 691 } 692 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 693 } 694 695 #if defined(INET) || defined(INET6) 696 697 #ifdef TCP_OFFLOAD 698 static int 699 ktls_try_toe(struct socket *so, struct ktls_session *tls) 700 { 701 struct inpcb *inp; 702 struct tcpcb *tp; 703 int error; 704 705 inp = so->so_pcb; 706 INP_WLOCK(inp); 707 if (inp->inp_flags2 & INP_FREED) { 708 INP_WUNLOCK(inp); 709 return (ECONNRESET); 710 } 711 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 712 INP_WUNLOCK(inp); 713 return (ECONNRESET); 714 } 715 if (inp->inp_socket == NULL) { 716 INP_WUNLOCK(inp); 717 return (ECONNRESET); 718 } 719 tp = intotcpcb(inp); 720 if (tp->tod == NULL) { 721 INP_WUNLOCK(inp); 722 return (EOPNOTSUPP); 723 } 724 725 error = tcp_offload_alloc_tls_session(tp, tls); 726 INP_WUNLOCK(inp); 727 if (error == 0) { 728 tls->mode = TCP_TLS_MODE_TOE; 729 switch (tls->params.cipher_algorithm) { 730 case CRYPTO_AES_CBC: 731 counter_u64_add(ktls_toe_cbc, 1); 732 break; 733 case CRYPTO_AES_NIST_GCM_16: 734 counter_u64_add(ktls_toe_gcm, 1); 735 break; 736 } 737 } 738 return (error); 739 } 740 #endif 741 742 /* 743 * Common code used when first enabling ifnet TLS on a connection or 744 * when allocating a new ifnet TLS session due to a routing change. 745 * This function allocates a new TLS send tag on whatever interface 746 * the connection is currently routed over. 747 */ 748 static int 749 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 750 struct m_snd_tag **mstp) 751 { 752 union if_snd_tag_alloc_params params; 753 struct ifnet *ifp; 754 struct rtentry *rt; 755 struct tcpcb *tp; 756 int error; 757 758 INP_RLOCK(inp); 759 if (inp->inp_flags2 & INP_FREED) { 760 INP_RUNLOCK(inp); 761 return (ECONNRESET); 762 } 763 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 764 INP_RUNLOCK(inp); 765 return (ECONNRESET); 766 } 767 if (inp->inp_socket == NULL) { 768 INP_RUNLOCK(inp); 769 return (ECONNRESET); 770 } 771 tp = intotcpcb(inp); 772 773 /* 774 * Check administrative controls on ifnet TLS to determine if 775 * ifnet TLS should be denied. 776 * 777 * - Always permit 'force' requests. 778 * - ktls_ifnet_permitted == 0: always deny. 779 */ 780 if (!force && ktls_ifnet_permitted == 0) { 781 INP_RUNLOCK(inp); 782 return (ENXIO); 783 } 784 785 /* 786 * XXX: Use the cached route in the inpcb to find the 787 * interface. This should perhaps instead use 788 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 789 * enabled after a connection has completed key negotiation in 790 * userland, the cached route will be present in practice. 791 */ 792 rt = inp->inp_route.ro_rt; 793 if (rt == NULL || rt->rt_ifp == NULL) { 794 INP_RUNLOCK(inp); 795 return (ENXIO); 796 } 797 ifp = rt->rt_ifp; 798 if_ref(ifp); 799 800 params.hdr.type = IF_SND_TAG_TYPE_TLS; 801 params.hdr.flowid = inp->inp_flowid; 802 params.hdr.flowtype = inp->inp_flowtype; 803 params.tls.inp = inp; 804 params.tls.tls = tls; 805 INP_RUNLOCK(inp); 806 807 if (ifp->if_snd_tag_alloc == NULL) { 808 error = EOPNOTSUPP; 809 goto out; 810 } 811 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 812 error = EOPNOTSUPP; 813 goto out; 814 } 815 if (inp->inp_vflag & INP_IPV6) { 816 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 817 error = EOPNOTSUPP; 818 goto out; 819 } 820 } else { 821 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 822 error = EOPNOTSUPP; 823 goto out; 824 } 825 } 826 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 827 out: 828 if_rele(ifp); 829 return (error); 830 } 831 832 static int 833 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 834 { 835 struct m_snd_tag *mst; 836 int error; 837 838 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 839 if (error == 0) { 840 tls->mode = TCP_TLS_MODE_IFNET; 841 tls->snd_tag = mst; 842 switch (tls->params.cipher_algorithm) { 843 case CRYPTO_AES_CBC: 844 counter_u64_add(ktls_ifnet_cbc, 1); 845 break; 846 case CRYPTO_AES_NIST_GCM_16: 847 counter_u64_add(ktls_ifnet_gcm, 1); 848 break; 849 } 850 } 851 return (error); 852 } 853 854 static int 855 ktls_try_sw(struct socket *so, struct ktls_session *tls) 856 { 857 struct rm_priotracker prio; 858 struct ktls_crypto_backend *be; 859 860 /* 861 * Choose the best software crypto backend. Backends are 862 * stored in sorted priority order (larget value == most 863 * important at the head of the list), so this just stops on 864 * the first backend that claims the session by returning 865 * success. 866 */ 867 if (ktls_allow_unload) 868 rm_rlock(&ktls_backends_lock, &prio); 869 LIST_FOREACH(be, &ktls_backends, next) { 870 if (be->try(so, tls) == 0) 871 break; 872 KASSERT(tls->cipher == NULL, 873 ("ktls backend leaked a cipher pointer")); 874 } 875 if (be != NULL) { 876 if (ktls_allow_unload) 877 be->use_count++; 878 tls->be = be; 879 } 880 if (ktls_allow_unload) 881 rm_runlock(&ktls_backends_lock, &prio); 882 if (be == NULL) 883 return (EOPNOTSUPP); 884 tls->mode = TCP_TLS_MODE_SW; 885 switch (tls->params.cipher_algorithm) { 886 case CRYPTO_AES_CBC: 887 counter_u64_add(ktls_sw_cbc, 1); 888 break; 889 case CRYPTO_AES_NIST_GCM_16: 890 counter_u64_add(ktls_sw_gcm, 1); 891 break; 892 } 893 return (0); 894 } 895 896 int 897 ktls_enable_tx(struct socket *so, struct tls_enable *en) 898 { 899 struct ktls_session *tls; 900 int error; 901 902 if (!ktls_offload_enable) 903 return (ENOTSUP); 904 905 counter_u64_add(ktls_offload_enable_calls, 1); 906 907 /* 908 * This should always be true since only the TCP socket option 909 * invokes this function. 910 */ 911 if (so->so_proto->pr_protocol != IPPROTO_TCP) 912 return (EINVAL); 913 914 /* 915 * XXX: Don't overwrite existing sessions. We should permit 916 * this to support rekeying in the future. 917 */ 918 if (so->so_snd.sb_tls_info != NULL) 919 return (EALREADY); 920 921 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 922 return (ENOTSUP); 923 924 /* TLS requires ext pgs */ 925 if (mb_use_ext_pgs == 0) 926 return (ENXIO); 927 928 error = ktls_create_session(so, en, &tls); 929 if (error) 930 return (error); 931 932 /* Prefer TOE -> ifnet TLS -> software TLS. */ 933 #ifdef TCP_OFFLOAD 934 error = ktls_try_toe(so, tls); 935 if (error) 936 #endif 937 error = ktls_try_ifnet(so, tls, false); 938 if (error) 939 error = ktls_try_sw(so, tls); 940 941 if (error) { 942 ktls_cleanup(tls); 943 return (error); 944 } 945 946 error = sblock(&so->so_snd, SBL_WAIT); 947 if (error) { 948 ktls_cleanup(tls); 949 return (error); 950 } 951 952 SOCKBUF_LOCK(&so->so_snd); 953 so->so_snd.sb_tls_info = tls; 954 if (tls->mode != TCP_TLS_MODE_SW) 955 so->so_snd.sb_flags |= SB_TLS_IFNET; 956 SOCKBUF_UNLOCK(&so->so_snd); 957 sbunlock(&so->so_snd); 958 959 counter_u64_add(ktls_offload_total, 1); 960 961 return (0); 962 } 963 964 int 965 ktls_get_tx_mode(struct socket *so) 966 { 967 struct ktls_session *tls; 968 struct inpcb *inp; 969 int mode; 970 971 inp = so->so_pcb; 972 INP_WLOCK_ASSERT(inp); 973 SOCKBUF_LOCK(&so->so_snd); 974 tls = so->so_snd.sb_tls_info; 975 if (tls == NULL) 976 mode = TCP_TLS_MODE_NONE; 977 else 978 mode = tls->mode; 979 SOCKBUF_UNLOCK(&so->so_snd); 980 return (mode); 981 } 982 983 /* 984 * Switch between SW and ifnet TLS sessions as requested. 985 */ 986 int 987 ktls_set_tx_mode(struct socket *so, int mode) 988 { 989 struct ktls_session *tls, *tls_new; 990 struct inpcb *inp; 991 int error; 992 993 switch (mode) { 994 case TCP_TLS_MODE_SW: 995 case TCP_TLS_MODE_IFNET: 996 break; 997 default: 998 return (EINVAL); 999 } 1000 1001 inp = so->so_pcb; 1002 INP_WLOCK_ASSERT(inp); 1003 SOCKBUF_LOCK(&so->so_snd); 1004 tls = so->so_snd.sb_tls_info; 1005 if (tls == NULL) { 1006 SOCKBUF_UNLOCK(&so->so_snd); 1007 return (0); 1008 } 1009 1010 if (tls->mode == mode) { 1011 SOCKBUF_UNLOCK(&so->so_snd); 1012 return (0); 1013 } 1014 1015 tls = ktls_hold(tls); 1016 SOCKBUF_UNLOCK(&so->so_snd); 1017 INP_WUNLOCK(inp); 1018 1019 tls_new = ktls_clone_session(tls); 1020 1021 if (mode == TCP_TLS_MODE_IFNET) 1022 error = ktls_try_ifnet(so, tls_new, true); 1023 else 1024 error = ktls_try_sw(so, tls_new); 1025 if (error) { 1026 counter_u64_add(ktls_switch_failed, 1); 1027 ktls_free(tls_new); 1028 ktls_free(tls); 1029 INP_WLOCK(inp); 1030 return (error); 1031 } 1032 1033 error = sblock(&so->so_snd, SBL_WAIT); 1034 if (error) { 1035 counter_u64_add(ktls_switch_failed, 1); 1036 ktls_free(tls_new); 1037 ktls_free(tls); 1038 INP_WLOCK(inp); 1039 return (error); 1040 } 1041 1042 /* 1043 * If we raced with another session change, keep the existing 1044 * session. 1045 */ 1046 if (tls != so->so_snd.sb_tls_info) { 1047 counter_u64_add(ktls_switch_failed, 1); 1048 sbunlock(&so->so_snd); 1049 ktls_free(tls_new); 1050 ktls_free(tls); 1051 INP_WLOCK(inp); 1052 return (EBUSY); 1053 } 1054 1055 SOCKBUF_LOCK(&so->so_snd); 1056 so->so_snd.sb_tls_info = tls_new; 1057 if (tls_new->mode != TCP_TLS_MODE_SW) 1058 so->so_snd.sb_flags |= SB_TLS_IFNET; 1059 SOCKBUF_UNLOCK(&so->so_snd); 1060 sbunlock(&so->so_snd); 1061 1062 /* 1063 * Drop two references on 'tls'. The first is for the 1064 * ktls_hold() above. The second drops the reference from the 1065 * socket buffer. 1066 */ 1067 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1068 ktls_free(tls); 1069 ktls_free(tls); 1070 1071 if (mode == TCP_TLS_MODE_IFNET) 1072 counter_u64_add(ktls_switch_to_ifnet, 1); 1073 else 1074 counter_u64_add(ktls_switch_to_sw, 1); 1075 1076 INP_WLOCK(inp); 1077 return (0); 1078 } 1079 1080 /* 1081 * Try to allocate a new TLS send tag. This task is scheduled when 1082 * ip_output detects a route change while trying to transmit a packet 1083 * holding a TLS record. If a new tag is allocated, replace the tag 1084 * in the TLS session. Subsequent packets on the connection will use 1085 * the new tag. If a new tag cannot be allocated, drop the 1086 * connection. 1087 */ 1088 static void 1089 ktls_reset_send_tag(void *context, int pending) 1090 { 1091 struct epoch_tracker et; 1092 struct ktls_session *tls; 1093 struct m_snd_tag *old, *new; 1094 struct inpcb *inp; 1095 struct tcpcb *tp; 1096 int error; 1097 1098 MPASS(pending == 1); 1099 1100 tls = context; 1101 inp = tls->inp; 1102 1103 /* 1104 * Free the old tag first before allocating a new one. 1105 * ip[6]_output_send() will treat a NULL send tag the same as 1106 * an ifp mismatch and drop packets until a new tag is 1107 * allocated. 1108 * 1109 * Write-lock the INP when changing tls->snd_tag since 1110 * ip[6]_output_send() holds a read-lock when reading the 1111 * pointer. 1112 */ 1113 INP_WLOCK(inp); 1114 old = tls->snd_tag; 1115 tls->snd_tag = NULL; 1116 INP_WUNLOCK(inp); 1117 if (old != NULL) 1118 m_snd_tag_rele(old); 1119 1120 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1121 1122 if (error == 0) { 1123 INP_WLOCK(inp); 1124 tls->snd_tag = new; 1125 mtx_pool_lock(mtxpool_sleep, tls); 1126 tls->reset_pending = false; 1127 mtx_pool_unlock(mtxpool_sleep, tls); 1128 if (!in_pcbrele_wlocked(inp)) 1129 INP_WUNLOCK(inp); 1130 1131 counter_u64_add(ktls_ifnet_reset, 1); 1132 1133 /* 1134 * XXX: Should we kick tcp_output explicitly now that 1135 * the send tag is fixed or just rely on timers? 1136 */ 1137 } else { 1138 NET_EPOCH_ENTER(et); 1139 INP_WLOCK(inp); 1140 if (!in_pcbrele_wlocked(inp)) { 1141 if (!(inp->inp_flags & INP_TIMEWAIT) && 1142 !(inp->inp_flags & INP_DROPPED)) { 1143 tp = intotcpcb(inp); 1144 CURVNET_SET(tp->t_vnet); 1145 tp = tcp_drop(tp, ECONNABORTED); 1146 CURVNET_RESTORE(); 1147 if (tp != NULL) 1148 INP_WUNLOCK(inp); 1149 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1150 } else 1151 INP_WUNLOCK(inp); 1152 } 1153 NET_EPOCH_EXIT(et); 1154 1155 counter_u64_add(ktls_ifnet_reset_failed, 1); 1156 1157 /* 1158 * Leave reset_pending true to avoid future tasks while 1159 * the socket goes away. 1160 */ 1161 } 1162 1163 ktls_free(tls); 1164 } 1165 1166 int 1167 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1168 { 1169 1170 if (inp == NULL) 1171 return (ENOBUFS); 1172 1173 INP_LOCK_ASSERT(inp); 1174 1175 /* 1176 * See if we should schedule a task to update the send tag for 1177 * this session. 1178 */ 1179 mtx_pool_lock(mtxpool_sleep, tls); 1180 if (!tls->reset_pending) { 1181 (void) ktls_hold(tls); 1182 in_pcbref(inp); 1183 tls->inp = inp; 1184 tls->reset_pending = true; 1185 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1186 } 1187 mtx_pool_unlock(mtxpool_sleep, tls); 1188 return (ENOBUFS); 1189 } 1190 #endif 1191 1192 void 1193 ktls_destroy(struct ktls_session *tls) 1194 { 1195 struct rm_priotracker prio; 1196 1197 ktls_cleanup(tls); 1198 if (tls->be != NULL && ktls_allow_unload) { 1199 rm_rlock(&ktls_backends_lock, &prio); 1200 tls->be->use_count--; 1201 rm_runlock(&ktls_backends_lock, &prio); 1202 } 1203 uma_zfree(ktls_session_zone, tls); 1204 } 1205 1206 void 1207 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1208 { 1209 struct mbuf_ext_pgs *pgs; 1210 1211 for (; m != NULL; m = m->m_next) { 1212 KASSERT((m->m_flags & M_NOMAP) != 0, 1213 ("ktls_seq: mapped mbuf %p", m)); 1214 1215 pgs = m->m_ext.ext_pgs; 1216 pgs->seqno = sb->sb_tls_seqno; 1217 sb->sb_tls_seqno++; 1218 } 1219 } 1220 1221 /* 1222 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1223 * mbuf in the chain must be an unmapped mbuf. The payload of the 1224 * mbuf must be populated with the payload of each TLS record. 1225 * 1226 * The record_type argument specifies the TLS record type used when 1227 * populating the TLS header. 1228 * 1229 * The enq_count argument on return is set to the number of pages of 1230 * payload data for this entire chain that need to be encrypted via SW 1231 * encryption. The returned value should be passed to ktls_enqueue 1232 * when scheduling encryption of this chain of mbufs. 1233 */ 1234 int 1235 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1236 uint8_t record_type) 1237 { 1238 struct tls_record_layer *tlshdr; 1239 struct mbuf *m; 1240 struct mbuf_ext_pgs *pgs; 1241 uint64_t *noncep; 1242 uint16_t tls_len; 1243 int maxlen; 1244 1245 maxlen = tls->params.max_frame_len; 1246 *enq_cnt = 0; 1247 for (m = top; m != NULL; m = m->m_next) { 1248 /* 1249 * All mbufs in the chain should be non-empty TLS 1250 * records whose payload does not exceed the maximum 1251 * frame length. 1252 */ 1253 if (m->m_len > maxlen || m->m_len == 0) 1254 return (EINVAL); 1255 tls_len = m->m_len; 1256 1257 /* 1258 * TLS frames require unmapped mbufs to store session 1259 * info. 1260 */ 1261 KASSERT((m->m_flags & M_NOMAP) != 0, 1262 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1263 1264 pgs = m->m_ext.ext_pgs; 1265 1266 /* Save a reference to the session. */ 1267 pgs->tls = ktls_hold(tls); 1268 1269 pgs->hdr_len = tls->params.tls_hlen; 1270 pgs->trail_len = tls->params.tls_tlen; 1271 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1272 int bs, delta; 1273 1274 /* 1275 * AES-CBC pads messages to a multiple of the 1276 * block size. Note that the padding is 1277 * applied after the digest and the encryption 1278 * is done on the "plaintext || mac || padding". 1279 * At least one byte of padding is always 1280 * present. 1281 * 1282 * Compute the final trailer length assuming 1283 * at most one block of padding. 1284 * tls->params.sb_tls_tlen is the maximum 1285 * possible trailer length (padding + digest). 1286 * delta holds the number of excess padding 1287 * bytes if the maximum were used. Those 1288 * extra bytes are removed. 1289 */ 1290 bs = tls->params.tls_bs; 1291 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1292 pgs->trail_len -= delta; 1293 } 1294 m->m_len += pgs->hdr_len + pgs->trail_len; 1295 1296 /* Populate the TLS header. */ 1297 tlshdr = (void *)pgs->hdr; 1298 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1299 1300 /* 1301 * TLS 1.3 masquarades as TLS 1.2 with a record type 1302 * of TLS_RLTYPE_APP. 1303 */ 1304 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1305 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1306 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1307 tlshdr->tls_type = TLS_RLTYPE_APP; 1308 /* save the real record type for later */ 1309 pgs->record_type = record_type; 1310 } else { 1311 tlshdr->tls_vminor = tls->params.tls_vminor; 1312 tlshdr->tls_type = record_type; 1313 } 1314 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1315 1316 /* 1317 * Store nonces / explicit IVs after the end of the 1318 * TLS header. 1319 * 1320 * For GCM with TLS 1.2, an 8 byte nonce is copied 1321 * from the end of the IV. The nonce is then 1322 * incremented for use by the next record. 1323 * 1324 * For CBC, a random nonce is inserted for TLS 1.1+. 1325 */ 1326 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1327 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1328 noncep = (uint64_t *)(tls->params.iv + 8); 1329 be64enc(tlshdr + 1, *noncep); 1330 (*noncep)++; 1331 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1332 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1333 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1334 1335 /* 1336 * When using SW encryption, mark the mbuf not ready. 1337 * It will be marked ready via sbready() after the 1338 * record has been encrypted. 1339 * 1340 * When using ifnet TLS, unencrypted TLS records are 1341 * sent down the stack to the NIC. 1342 */ 1343 if (tls->mode == TCP_TLS_MODE_SW) { 1344 m->m_flags |= M_NOTREADY; 1345 pgs->nrdy = pgs->npgs; 1346 *enq_cnt += pgs->npgs; 1347 } 1348 } 1349 return (0); 1350 } 1351 1352 void 1353 ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs) 1354 { 1355 struct ktls_wq *wq; 1356 bool running; 1357 1358 /* Mark it for freeing. */ 1359 pgs->mbuf = NULL; 1360 wq = &ktls_wq[pgs->tls->wq_index]; 1361 mtx_lock(&wq->mtx); 1362 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1363 running = wq->running; 1364 mtx_unlock(&wq->mtx); 1365 if (!running) 1366 wakeup(wq); 1367 } 1368 1369 void 1370 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1371 { 1372 struct mbuf_ext_pgs *pgs; 1373 struct ktls_wq *wq; 1374 bool running; 1375 1376 KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1377 (M_NOMAP | M_NOTREADY)), 1378 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1379 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1380 1381 pgs = m->m_ext.ext_pgs; 1382 1383 KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1384 1385 pgs->enc_cnt = page_count; 1386 pgs->mbuf = m; 1387 1388 /* 1389 * Save a pointer to the socket. The caller is responsible 1390 * for taking an additional reference via soref(). 1391 */ 1392 pgs->so = so; 1393 1394 wq = &ktls_wq[pgs->tls->wq_index]; 1395 mtx_lock(&wq->mtx); 1396 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1397 running = wq->running; 1398 mtx_unlock(&wq->mtx); 1399 if (!running) 1400 wakeup(wq); 1401 counter_u64_add(ktls_cnt_on, 1); 1402 } 1403 1404 static __noinline void 1405 ktls_encrypt(struct mbuf_ext_pgs *pgs) 1406 { 1407 struct ktls_session *tls; 1408 struct socket *so; 1409 struct mbuf *m, *top; 1410 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1411 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1412 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1413 vm_page_t pg; 1414 int error, i, len, npages, off, total_pages; 1415 bool is_anon; 1416 1417 so = pgs->so; 1418 tls = pgs->tls; 1419 top = pgs->mbuf; 1420 KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs)); 1421 KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs)); 1422 #ifdef INVARIANTS 1423 pgs->so = NULL; 1424 pgs->mbuf = NULL; 1425 #endif 1426 total_pages = pgs->enc_cnt; 1427 npages = 0; 1428 1429 /* 1430 * Encrypt the TLS records in the chain of mbufs starting with 1431 * 'top'. 'total_pages' gives us a total count of pages and is 1432 * used to know when we have finished encrypting the TLS 1433 * records originally queued with 'top'. 1434 * 1435 * NB: These mbufs are queued in the socket buffer and 1436 * 'm_next' is traversing the mbufs in the socket buffer. The 1437 * socket buffer lock is not held while traversing this chain. 1438 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1439 * pointers should be stable. However, the 'm_next' of the 1440 * last mbuf encrypted is not necessarily NULL. It can point 1441 * to other mbufs appended while 'top' was on the TLS work 1442 * queue. 1443 * 1444 * Each mbuf holds an entire TLS record. 1445 */ 1446 error = 0; 1447 for (m = top; npages != total_pages; m = m->m_next) { 1448 pgs = m->m_ext.ext_pgs; 1449 1450 KASSERT(pgs->tls == tls, 1451 ("different TLS sessions in a single mbuf chain: %p vs %p", 1452 tls, pgs->tls)); 1453 KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1454 (M_NOMAP | M_NOTREADY), 1455 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1456 KASSERT(npages + pgs->npgs <= total_pages, 1457 ("page count mismatch: top %p, total_pages %d, m %p", top, 1458 total_pages, m)); 1459 1460 /* 1461 * Generate source and destination ivoecs to pass to 1462 * the SW encryption backend. For writable mbufs, the 1463 * destination iovec is a copy of the source and 1464 * encryption is done in place. For file-backed mbufs 1465 * (from sendfile), anonymous wired pages are 1466 * allocated and assigned to the destination iovec. 1467 */ 1468 is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0; 1469 1470 off = pgs->first_pg_off; 1471 for (i = 0; i < pgs->npgs; i++, off = 0) { 1472 len = mbuf_ext_pg_len(pgs, i, off); 1473 src_iov[i].iov_len = len; 1474 src_iov[i].iov_base = 1475 (char *)(void *)PHYS_TO_DMAP(pgs->pa[i]) + off; 1476 1477 if (is_anon) { 1478 dst_iov[i].iov_base = src_iov[i].iov_base; 1479 dst_iov[i].iov_len = src_iov[i].iov_len; 1480 continue; 1481 } 1482 retry_page: 1483 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1484 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1485 if (pg == NULL) { 1486 vm_wait(NULL); 1487 goto retry_page; 1488 } 1489 parray[i] = VM_PAGE_TO_PHYS(pg); 1490 dst_iov[i].iov_base = 1491 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1492 dst_iov[i].iov_len = len; 1493 } 1494 1495 npages += i; 1496 1497 error = (*tls->sw_encrypt)(tls, 1498 (const struct tls_record_layer *)pgs->hdr, 1499 pgs->trail, src_iov, dst_iov, i, pgs->seqno, 1500 pgs->record_type); 1501 if (error) { 1502 counter_u64_add(ktls_offload_failed_crypto, 1); 1503 break; 1504 } 1505 1506 /* 1507 * For file-backed mbufs, release the file-backed 1508 * pages and replace them in the ext_pgs array with 1509 * the anonymous wired pages allocated above. 1510 */ 1511 if (!is_anon) { 1512 /* Free the old pages. */ 1513 m->m_ext.ext_free(m); 1514 1515 /* Replace them with the new pages. */ 1516 for (i = 0; i < pgs->npgs; i++) 1517 pgs->pa[i] = parray[i]; 1518 1519 /* Use the basic free routine. */ 1520 m->m_ext.ext_free = mb_free_mext_pgs; 1521 1522 /* Pages are now writable. */ 1523 pgs->flags |= MBUF_PEXT_FLAG_ANON; 1524 } 1525 1526 /* 1527 * Drop a reference to the session now that it is no 1528 * longer needed. Existing code depends on encrypted 1529 * records having no associated session vs 1530 * yet-to-be-encrypted records having an associated 1531 * session. 1532 */ 1533 pgs->tls = NULL; 1534 ktls_free(tls); 1535 } 1536 1537 CURVNET_SET(so->so_vnet); 1538 if (error == 0) { 1539 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 1540 } else { 1541 so->so_proto->pr_usrreqs->pru_abort(so); 1542 so->so_error = EIO; 1543 mb_free_notready(top, total_pages); 1544 } 1545 1546 SOCK_LOCK(so); 1547 sorele(so); 1548 CURVNET_RESTORE(); 1549 } 1550 1551 static void 1552 ktls_work_thread(void *ctx) 1553 { 1554 struct ktls_wq *wq = ctx; 1555 struct mbuf_ext_pgs *p, *n; 1556 struct ktls_session *tls; 1557 STAILQ_HEAD(, mbuf_ext_pgs) local_head; 1558 1559 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 1560 fpu_kern_thread(0); 1561 #endif 1562 for (;;) { 1563 mtx_lock(&wq->mtx); 1564 while (STAILQ_EMPTY(&wq->head)) { 1565 wq->running = false; 1566 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 1567 wq->running = true; 1568 } 1569 1570 STAILQ_INIT(&local_head); 1571 STAILQ_CONCAT(&local_head, &wq->head); 1572 mtx_unlock(&wq->mtx); 1573 1574 STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) { 1575 if (p->mbuf != NULL) { 1576 ktls_encrypt(p); 1577 counter_u64_add(ktls_cnt_on, -1); 1578 } else { 1579 tls = p->tls; 1580 ktls_free(tls); 1581 uma_zfree(zone_extpgs, p); 1582 } 1583 } 1584 } 1585 } 1586