1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #ifdef RSS 60 #include <net/netisr.h> 61 #include <net/rss_config.h> 62 #endif 63 #include <net/route.h> 64 #include <net/route/nhop.h> 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #endif 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/xform.h> 74 #include <vm/uma_dbg.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 79 struct ktls_wq { 80 struct mtx mtx; 81 STAILQ_HEAD(, mbuf) m_head; 82 STAILQ_HEAD(, socket) so_head; 83 bool running; 84 } __aligned(CACHE_LINE_SIZE); 85 86 static struct ktls_wq *ktls_wq; 87 static struct proc *ktls_proc; 88 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 89 static struct rmlock ktls_backends_lock; 90 static uma_zone_t ktls_session_zone; 91 static uint16_t ktls_cpuid_lookup[MAXCPU]; 92 93 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 94 "Kernel TLS offload"); 95 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 96 "Kernel TLS offload stats"); 97 98 static int ktls_allow_unload; 99 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 100 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 101 102 #ifdef RSS 103 static int ktls_bind_threads = 1; 104 #else 105 static int ktls_bind_threads; 106 #endif 107 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 108 &ktls_bind_threads, 0, 109 "Bind crypto threads to cores or domains at boot"); 110 111 static u_int ktls_maxlen = 16384; 112 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 113 &ktls_maxlen, 0, "Maximum TLS record size"); 114 115 static int ktls_number_threads; 116 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 117 &ktls_number_threads, 0, 118 "Number of TLS threads in thread-pool"); 119 120 static bool ktls_offload_enable; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 122 &ktls_offload_enable, 0, 123 "Enable support for kernel TLS offload"); 124 125 static bool ktls_cbc_enable = true; 126 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 127 &ktls_cbc_enable, 1, 128 "Enable Support of AES-CBC crypto for kernel TLS"); 129 130 static counter_u64_t ktls_tasks_active; 131 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 132 &ktls_tasks_active, "Number of active tasks"); 133 134 static counter_u64_t ktls_cnt_tx_queued; 135 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 136 &ktls_cnt_tx_queued, 137 "Number of TLS records in queue to tasks for SW encryption"); 138 139 static counter_u64_t ktls_cnt_rx_queued; 140 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 141 &ktls_cnt_rx_queued, 142 "Number of TLS sockets in queue to tasks for SW decryption"); 143 144 static counter_u64_t ktls_offload_total; 145 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 146 CTLFLAG_RD, &ktls_offload_total, 147 "Total successful TLS setups (parameters set)"); 148 149 static counter_u64_t ktls_offload_enable_calls; 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 151 CTLFLAG_RD, &ktls_offload_enable_calls, 152 "Total number of TLS enable calls made"); 153 154 static counter_u64_t ktls_offload_active; 155 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 156 &ktls_offload_active, "Total Active TLS sessions"); 157 158 static counter_u64_t ktls_offload_corrupted_records; 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 160 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 161 162 static counter_u64_t ktls_offload_failed_crypto; 163 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 164 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 165 166 static counter_u64_t ktls_switch_to_ifnet; 167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 168 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 169 170 static counter_u64_t ktls_switch_to_sw; 171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 172 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 173 174 static counter_u64_t ktls_switch_failed; 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 176 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 177 178 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 179 "Software TLS session stats"); 180 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 181 "Hardware (ifnet) TLS session stats"); 182 #ifdef TCP_OFFLOAD 183 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 184 "TOE TLS session stats"); 185 #endif 186 187 static counter_u64_t ktls_sw_cbc; 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 189 "Active number of software TLS sessions using AES-CBC"); 190 191 static counter_u64_t ktls_sw_gcm; 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 193 "Active number of software TLS sessions using AES-GCM"); 194 195 static counter_u64_t ktls_ifnet_cbc; 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 197 &ktls_ifnet_cbc, 198 "Active number of ifnet TLS sessions using AES-CBC"); 199 200 static counter_u64_t ktls_ifnet_gcm; 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 202 &ktls_ifnet_gcm, 203 "Active number of ifnet TLS sessions using AES-GCM"); 204 205 static counter_u64_t ktls_ifnet_reset; 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 207 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 208 209 static counter_u64_t ktls_ifnet_reset_dropped; 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 211 &ktls_ifnet_reset_dropped, 212 "TLS sessions dropped after failing to update ifnet send tag"); 213 214 static counter_u64_t ktls_ifnet_reset_failed; 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 216 &ktls_ifnet_reset_failed, 217 "TLS sessions that failed to allocate a new ifnet send tag"); 218 219 static int ktls_ifnet_permitted; 220 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 221 &ktls_ifnet_permitted, 1, 222 "Whether to permit hardware (ifnet) TLS sessions"); 223 224 #ifdef TCP_OFFLOAD 225 static counter_u64_t ktls_toe_cbc; 226 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 227 &ktls_toe_cbc, 228 "Active number of TOE TLS sessions using AES-CBC"); 229 230 static counter_u64_t ktls_toe_gcm; 231 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 232 &ktls_toe_gcm, 233 "Active number of TOE TLS sessions using AES-GCM"); 234 #endif 235 236 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 237 238 static void ktls_cleanup(struct ktls_session *tls); 239 #if defined(INET) || defined(INET6) 240 static void ktls_reset_send_tag(void *context, int pending); 241 #endif 242 static void ktls_work_thread(void *ctx); 243 244 int 245 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 246 { 247 struct ktls_crypto_backend *curr_be, *tmp; 248 249 if (be->api_version != KTLS_API_VERSION) { 250 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 251 be->api_version, KTLS_API_VERSION, 252 be->name); 253 return (EINVAL); 254 } 255 256 rm_wlock(&ktls_backends_lock); 257 printf("KTLS: Registering crypto method %s with prio %d\n", 258 be->name, be->prio); 259 if (LIST_EMPTY(&ktls_backends)) { 260 LIST_INSERT_HEAD(&ktls_backends, be, next); 261 } else { 262 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 263 if (curr_be->prio < be->prio) { 264 LIST_INSERT_BEFORE(curr_be, be, next); 265 break; 266 } 267 if (LIST_NEXT(curr_be, next) == NULL) { 268 LIST_INSERT_AFTER(curr_be, be, next); 269 break; 270 } 271 } 272 } 273 rm_wunlock(&ktls_backends_lock); 274 return (0); 275 } 276 277 int 278 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 279 { 280 struct ktls_crypto_backend *tmp; 281 282 /* 283 * Don't error if the backend isn't registered. This permits 284 * MOD_UNLOAD handlers to use this function unconditionally. 285 */ 286 rm_wlock(&ktls_backends_lock); 287 LIST_FOREACH(tmp, &ktls_backends, next) { 288 if (tmp == be) 289 break; 290 } 291 if (tmp == NULL) { 292 rm_wunlock(&ktls_backends_lock); 293 return (0); 294 } 295 296 if (!ktls_allow_unload) { 297 rm_wunlock(&ktls_backends_lock); 298 printf( 299 "KTLS: Deregistering crypto method %s is not supported\n", 300 be->name); 301 return (EBUSY); 302 } 303 304 if (be->use_count) { 305 rm_wunlock(&ktls_backends_lock); 306 return (EBUSY); 307 } 308 309 LIST_REMOVE(be, next); 310 rm_wunlock(&ktls_backends_lock); 311 return (0); 312 } 313 314 #if defined(INET) || defined(INET6) 315 static u_int 316 ktls_get_cpu(struct socket *so) 317 { 318 struct inpcb *inp; 319 u_int cpuid; 320 321 inp = sotoinpcb(so); 322 #ifdef RSS 323 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 324 if (cpuid != NETISR_CPUID_NONE) 325 return (cpuid); 326 #endif 327 /* 328 * Just use the flowid to shard connections in a repeatable 329 * fashion. Note that some crypto backends rely on the 330 * serialization provided by having the same connection use 331 * the same queue. 332 */ 333 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 334 return (cpuid); 335 } 336 #endif 337 338 static void 339 ktls_init(void *dummy __unused) 340 { 341 struct thread *td; 342 struct pcpu *pc; 343 cpuset_t mask; 344 int error, i; 345 346 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 347 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK); 348 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK); 349 ktls_offload_total = counter_u64_alloc(M_WAITOK); 350 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 351 ktls_offload_active = counter_u64_alloc(M_WAITOK); 352 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK); 353 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 354 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 355 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 356 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 357 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 358 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 359 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 360 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 361 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 362 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 363 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 364 #ifdef TCP_OFFLOAD 365 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 366 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 367 #endif 368 369 rm_init(&ktls_backends_lock, "ktls backends"); 370 LIST_INIT(&ktls_backends); 371 372 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 373 M_WAITOK | M_ZERO); 374 375 ktls_session_zone = uma_zcreate("ktls_session", 376 sizeof(struct ktls_session), 377 NULL, NULL, NULL, NULL, 378 UMA_ALIGN_CACHE, 0); 379 380 /* 381 * Initialize the workqueues to run the TLS work. We create a 382 * work queue for each CPU. 383 */ 384 CPU_FOREACH(i) { 385 STAILQ_INIT(&ktls_wq[i].m_head); 386 STAILQ_INIT(&ktls_wq[i].so_head); 387 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 388 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 389 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 390 if (error) 391 panic("Can't add KTLS thread %d error %d", i, error); 392 393 /* 394 * Bind threads to cores. If ktls_bind_threads is > 395 * 1, then we bind to the NUMA domain. 396 */ 397 if (ktls_bind_threads) { 398 if (ktls_bind_threads > 1) { 399 pc = pcpu_find(i); 400 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 401 } else { 402 CPU_SETOF(i, &mask); 403 } 404 error = cpuset_setthread(td->td_tid, &mask); 405 if (error) 406 panic( 407 "Unable to bind KTLS thread for CPU %d error %d", 408 i, error); 409 } 410 ktls_cpuid_lookup[ktls_number_threads] = i; 411 ktls_number_threads++; 412 } 413 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 414 } 415 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 416 417 #if defined(INET) || defined(INET6) 418 static int 419 ktls_create_session(struct socket *so, struct tls_enable *en, 420 struct ktls_session **tlsp) 421 { 422 struct ktls_session *tls; 423 int error; 424 425 /* Only TLS 1.0 - 1.3 are supported. */ 426 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 427 return (EINVAL); 428 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 429 en->tls_vminor > TLS_MINOR_VER_THREE) 430 return (EINVAL); 431 432 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 433 return (EINVAL); 434 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 435 return (EINVAL); 436 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 437 return (EINVAL); 438 439 /* All supported algorithms require a cipher key. */ 440 if (en->cipher_key_len == 0) 441 return (EINVAL); 442 443 /* No flags are currently supported. */ 444 if (en->flags != 0) 445 return (EINVAL); 446 447 /* Common checks for supported algorithms. */ 448 switch (en->cipher_algorithm) { 449 case CRYPTO_AES_NIST_GCM_16: 450 /* 451 * auth_algorithm isn't used, but permit GMAC values 452 * for compatibility. 453 */ 454 switch (en->auth_algorithm) { 455 case 0: 456 #ifdef COMPAT_FREEBSD12 457 /* XXX: Really 13.0-current COMPAT. */ 458 case CRYPTO_AES_128_NIST_GMAC: 459 case CRYPTO_AES_192_NIST_GMAC: 460 case CRYPTO_AES_256_NIST_GMAC: 461 #endif 462 break; 463 default: 464 return (EINVAL); 465 } 466 if (en->auth_key_len != 0) 467 return (EINVAL); 468 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 469 en->iv_len != TLS_AEAD_GCM_LEN) || 470 (en->tls_vminor == TLS_MINOR_VER_THREE && 471 en->iv_len != TLS_1_3_GCM_IV_LEN)) 472 return (EINVAL); 473 break; 474 case CRYPTO_AES_CBC: 475 switch (en->auth_algorithm) { 476 case CRYPTO_SHA1_HMAC: 477 /* 478 * TLS 1.0 requires an implicit IV. TLS 1.1+ 479 * all use explicit IVs. 480 */ 481 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 482 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 483 return (EINVAL); 484 break; 485 } 486 487 /* FALLTHROUGH */ 488 case CRYPTO_SHA2_256_HMAC: 489 case CRYPTO_SHA2_384_HMAC: 490 /* Ignore any supplied IV. */ 491 en->iv_len = 0; 492 break; 493 default: 494 return (EINVAL); 495 } 496 if (en->auth_key_len == 0) 497 return (EINVAL); 498 break; 499 default: 500 return (EINVAL); 501 } 502 503 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 504 505 counter_u64_add(ktls_offload_active, 1); 506 507 refcount_init(&tls->refcount, 1); 508 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 509 510 tls->wq_index = ktls_get_cpu(so); 511 512 tls->params.cipher_algorithm = en->cipher_algorithm; 513 tls->params.auth_algorithm = en->auth_algorithm; 514 tls->params.tls_vmajor = en->tls_vmajor; 515 tls->params.tls_vminor = en->tls_vminor; 516 tls->params.flags = en->flags; 517 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 518 519 /* Set the header and trailer lengths. */ 520 tls->params.tls_hlen = sizeof(struct tls_record_layer); 521 switch (en->cipher_algorithm) { 522 case CRYPTO_AES_NIST_GCM_16: 523 /* 524 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 525 * nonce. TLS 1.3 uses a 12 byte implicit IV. 526 */ 527 if (en->tls_vminor < TLS_MINOR_VER_THREE) 528 tls->params.tls_hlen += sizeof(uint64_t); 529 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 530 531 /* 532 * TLS 1.3 includes optional padding which we 533 * do not support, and also puts the "real" record 534 * type at the end of the encrypted data. 535 */ 536 if (en->tls_vminor == TLS_MINOR_VER_THREE) 537 tls->params.tls_tlen += sizeof(uint8_t); 538 539 tls->params.tls_bs = 1; 540 break; 541 case CRYPTO_AES_CBC: 542 switch (en->auth_algorithm) { 543 case CRYPTO_SHA1_HMAC: 544 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 545 /* Implicit IV, no nonce. */ 546 } else { 547 tls->params.tls_hlen += AES_BLOCK_LEN; 548 } 549 tls->params.tls_tlen = AES_BLOCK_LEN + 550 SHA1_HASH_LEN; 551 break; 552 case CRYPTO_SHA2_256_HMAC: 553 tls->params.tls_hlen += AES_BLOCK_LEN; 554 tls->params.tls_tlen = AES_BLOCK_LEN + 555 SHA2_256_HASH_LEN; 556 break; 557 case CRYPTO_SHA2_384_HMAC: 558 tls->params.tls_hlen += AES_BLOCK_LEN; 559 tls->params.tls_tlen = AES_BLOCK_LEN + 560 SHA2_384_HASH_LEN; 561 break; 562 default: 563 panic("invalid hmac"); 564 } 565 tls->params.tls_bs = AES_BLOCK_LEN; 566 break; 567 default: 568 panic("invalid cipher"); 569 } 570 571 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 572 ("TLS header length too long: %d", tls->params.tls_hlen)); 573 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 574 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 575 576 if (en->auth_key_len != 0) { 577 tls->params.auth_key_len = en->auth_key_len; 578 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 579 M_WAITOK); 580 error = copyin(en->auth_key, tls->params.auth_key, 581 en->auth_key_len); 582 if (error) 583 goto out; 584 } 585 586 tls->params.cipher_key_len = en->cipher_key_len; 587 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 588 error = copyin(en->cipher_key, tls->params.cipher_key, 589 en->cipher_key_len); 590 if (error) 591 goto out; 592 593 /* 594 * This holds the implicit portion of the nonce for GCM and 595 * the initial implicit IV for TLS 1.0. The explicit portions 596 * of the IV are generated in ktls_frame(). 597 */ 598 if (en->iv_len != 0) { 599 tls->params.iv_len = en->iv_len; 600 error = copyin(en->iv, tls->params.iv, en->iv_len); 601 if (error) 602 goto out; 603 604 /* 605 * For TLS 1.2, generate an 8-byte nonce as a counter 606 * to generate unique explicit IVs. 607 * 608 * Store this counter in the last 8 bytes of the IV 609 * array so that it is 8-byte aligned. 610 */ 611 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 612 en->tls_vminor == TLS_MINOR_VER_TWO) 613 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 614 } 615 616 *tlsp = tls; 617 return (0); 618 619 out: 620 ktls_cleanup(tls); 621 return (error); 622 } 623 624 static struct ktls_session * 625 ktls_clone_session(struct ktls_session *tls) 626 { 627 struct ktls_session *tls_new; 628 629 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 630 631 counter_u64_add(ktls_offload_active, 1); 632 633 refcount_init(&tls_new->refcount, 1); 634 635 /* Copy fields from existing session. */ 636 tls_new->params = tls->params; 637 tls_new->wq_index = tls->wq_index; 638 639 /* Deep copy keys. */ 640 if (tls_new->params.auth_key != NULL) { 641 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 642 M_KTLS, M_WAITOK); 643 memcpy(tls_new->params.auth_key, tls->params.auth_key, 644 tls->params.auth_key_len); 645 } 646 647 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 648 M_WAITOK); 649 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 650 tls->params.cipher_key_len); 651 652 return (tls_new); 653 } 654 #endif 655 656 static void 657 ktls_cleanup(struct ktls_session *tls) 658 { 659 660 counter_u64_add(ktls_offload_active, -1); 661 switch (tls->mode) { 662 case TCP_TLS_MODE_SW: 663 MPASS(tls->be != NULL); 664 switch (tls->params.cipher_algorithm) { 665 case CRYPTO_AES_CBC: 666 counter_u64_add(ktls_sw_cbc, -1); 667 break; 668 case CRYPTO_AES_NIST_GCM_16: 669 counter_u64_add(ktls_sw_gcm, -1); 670 break; 671 } 672 tls->free(tls); 673 break; 674 case TCP_TLS_MODE_IFNET: 675 switch (tls->params.cipher_algorithm) { 676 case CRYPTO_AES_CBC: 677 counter_u64_add(ktls_ifnet_cbc, -1); 678 break; 679 case CRYPTO_AES_NIST_GCM_16: 680 counter_u64_add(ktls_ifnet_gcm, -1); 681 break; 682 } 683 if (tls->snd_tag != NULL) 684 m_snd_tag_rele(tls->snd_tag); 685 break; 686 #ifdef TCP_OFFLOAD 687 case TCP_TLS_MODE_TOE: 688 switch (tls->params.cipher_algorithm) { 689 case CRYPTO_AES_CBC: 690 counter_u64_add(ktls_toe_cbc, -1); 691 break; 692 case CRYPTO_AES_NIST_GCM_16: 693 counter_u64_add(ktls_toe_gcm, -1); 694 break; 695 } 696 break; 697 #endif 698 } 699 if (tls->params.auth_key != NULL) { 700 zfree(tls->params.auth_key, M_KTLS); 701 tls->params.auth_key = NULL; 702 tls->params.auth_key_len = 0; 703 } 704 if (tls->params.cipher_key != NULL) { 705 zfree(tls->params.cipher_key, M_KTLS); 706 tls->params.cipher_key = NULL; 707 tls->params.cipher_key_len = 0; 708 } 709 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 710 } 711 712 #if defined(INET) || defined(INET6) 713 714 #ifdef TCP_OFFLOAD 715 static int 716 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 717 { 718 struct inpcb *inp; 719 struct tcpcb *tp; 720 int error; 721 722 inp = so->so_pcb; 723 INP_WLOCK(inp); 724 if (inp->inp_flags2 & INP_FREED) { 725 INP_WUNLOCK(inp); 726 return (ECONNRESET); 727 } 728 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 729 INP_WUNLOCK(inp); 730 return (ECONNRESET); 731 } 732 if (inp->inp_socket == NULL) { 733 INP_WUNLOCK(inp); 734 return (ECONNRESET); 735 } 736 tp = intotcpcb(inp); 737 if (!(tp->t_flags & TF_TOE)) { 738 INP_WUNLOCK(inp); 739 return (EOPNOTSUPP); 740 } 741 742 error = tcp_offload_alloc_tls_session(tp, tls, direction); 743 INP_WUNLOCK(inp); 744 if (error == 0) { 745 tls->mode = TCP_TLS_MODE_TOE; 746 switch (tls->params.cipher_algorithm) { 747 case CRYPTO_AES_CBC: 748 counter_u64_add(ktls_toe_cbc, 1); 749 break; 750 case CRYPTO_AES_NIST_GCM_16: 751 counter_u64_add(ktls_toe_gcm, 1); 752 break; 753 } 754 } 755 return (error); 756 } 757 #endif 758 759 /* 760 * Common code used when first enabling ifnet TLS on a connection or 761 * when allocating a new ifnet TLS session due to a routing change. 762 * This function allocates a new TLS send tag on whatever interface 763 * the connection is currently routed over. 764 */ 765 static int 766 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 767 struct m_snd_tag **mstp) 768 { 769 union if_snd_tag_alloc_params params; 770 struct ifnet *ifp; 771 struct nhop_object *nh; 772 struct tcpcb *tp; 773 int error; 774 775 INP_RLOCK(inp); 776 if (inp->inp_flags2 & INP_FREED) { 777 INP_RUNLOCK(inp); 778 return (ECONNRESET); 779 } 780 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 781 INP_RUNLOCK(inp); 782 return (ECONNRESET); 783 } 784 if (inp->inp_socket == NULL) { 785 INP_RUNLOCK(inp); 786 return (ECONNRESET); 787 } 788 tp = intotcpcb(inp); 789 790 /* 791 * Check administrative controls on ifnet TLS to determine if 792 * ifnet TLS should be denied. 793 * 794 * - Always permit 'force' requests. 795 * - ktls_ifnet_permitted == 0: always deny. 796 */ 797 if (!force && ktls_ifnet_permitted == 0) { 798 INP_RUNLOCK(inp); 799 return (ENXIO); 800 } 801 802 /* 803 * XXX: Use the cached route in the inpcb to find the 804 * interface. This should perhaps instead use 805 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 806 * enabled after a connection has completed key negotiation in 807 * userland, the cached route will be present in practice. 808 */ 809 nh = inp->inp_route.ro_nh; 810 if (nh == NULL) { 811 INP_RUNLOCK(inp); 812 return (ENXIO); 813 } 814 ifp = nh->nh_ifp; 815 if_ref(ifp); 816 817 /* 818 * Allocate a TLS + ratelimit tag if the connection has an 819 * existing pacing rate. 820 */ 821 if (tp->t_pacing_rate != -1 && 822 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 823 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 824 params.tls_rate_limit.inp = inp; 825 params.tls_rate_limit.tls = tls; 826 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 827 } else { 828 params.hdr.type = IF_SND_TAG_TYPE_TLS; 829 params.tls.inp = inp; 830 params.tls.tls = tls; 831 } 832 params.hdr.flowid = inp->inp_flowid; 833 params.hdr.flowtype = inp->inp_flowtype; 834 params.hdr.numa_domain = inp->inp_numa_domain; 835 INP_RUNLOCK(inp); 836 837 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 838 error = EOPNOTSUPP; 839 goto out; 840 } 841 if (inp->inp_vflag & INP_IPV6) { 842 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 843 error = EOPNOTSUPP; 844 goto out; 845 } 846 } else { 847 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 848 error = EOPNOTSUPP; 849 goto out; 850 } 851 } 852 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 853 out: 854 if_rele(ifp); 855 return (error); 856 } 857 858 static int 859 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 860 { 861 struct m_snd_tag *mst; 862 int error; 863 864 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 865 if (error == 0) { 866 tls->mode = TCP_TLS_MODE_IFNET; 867 tls->snd_tag = mst; 868 switch (tls->params.cipher_algorithm) { 869 case CRYPTO_AES_CBC: 870 counter_u64_add(ktls_ifnet_cbc, 1); 871 break; 872 case CRYPTO_AES_NIST_GCM_16: 873 counter_u64_add(ktls_ifnet_gcm, 1); 874 break; 875 } 876 } 877 return (error); 878 } 879 880 static int 881 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 882 { 883 struct rm_priotracker prio; 884 struct ktls_crypto_backend *be; 885 886 /* 887 * Choose the best software crypto backend. Backends are 888 * stored in sorted priority order (larget value == most 889 * important at the head of the list), so this just stops on 890 * the first backend that claims the session by returning 891 * success. 892 */ 893 if (ktls_allow_unload) 894 rm_rlock(&ktls_backends_lock, &prio); 895 LIST_FOREACH(be, &ktls_backends, next) { 896 if (be->try(so, tls, direction) == 0) 897 break; 898 KASSERT(tls->cipher == NULL, 899 ("ktls backend leaked a cipher pointer")); 900 } 901 if (be != NULL) { 902 if (ktls_allow_unload) 903 be->use_count++; 904 tls->be = be; 905 } 906 if (ktls_allow_unload) 907 rm_runlock(&ktls_backends_lock, &prio); 908 if (be == NULL) 909 return (EOPNOTSUPP); 910 tls->mode = TCP_TLS_MODE_SW; 911 switch (tls->params.cipher_algorithm) { 912 case CRYPTO_AES_CBC: 913 counter_u64_add(ktls_sw_cbc, 1); 914 break; 915 case CRYPTO_AES_NIST_GCM_16: 916 counter_u64_add(ktls_sw_gcm, 1); 917 break; 918 } 919 return (0); 920 } 921 922 /* 923 * KTLS RX stores data in the socket buffer as a list of TLS records, 924 * where each record is stored as a control message containg the TLS 925 * header followed by data mbufs containing the decrypted data. This 926 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 927 * both encrypted and decrypted data. TLS records decrypted by a NIC 928 * should be queued to the socket buffer as records, but encrypted 929 * data which needs to be decrypted by software arrives as a stream of 930 * regular mbufs which need to be converted. In addition, there may 931 * already be pending encrypted data in the socket buffer when KTLS RX 932 * is enabled. 933 * 934 * To manage not-yet-decrypted data for KTLS RX, the following scheme 935 * is used: 936 * 937 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 938 * 939 * - ktls_check_rx checks this chain of mbufs reading the TLS header 940 * from the first mbuf. Once all of the data for that TLS record is 941 * queued, the socket is queued to a worker thread. 942 * 943 * - The worker thread calls ktls_decrypt to decrypt TLS records in 944 * the TLS chain. Each TLS record is detached from the TLS chain, 945 * decrypted, and inserted into the regular socket buffer chain as 946 * record starting with a control message holding the TLS header and 947 * a chain of mbufs holding the encrypted data. 948 */ 949 950 static void 951 sb_mark_notready(struct sockbuf *sb) 952 { 953 struct mbuf *m; 954 955 m = sb->sb_mb; 956 sb->sb_mtls = m; 957 sb->sb_mb = NULL; 958 sb->sb_mbtail = NULL; 959 sb->sb_lastrecord = NULL; 960 for (; m != NULL; m = m->m_next) { 961 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 962 __func__)); 963 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 964 __func__)); 965 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 966 __func__)); 967 m->m_flags |= M_NOTREADY; 968 sb->sb_acc -= m->m_len; 969 sb->sb_tlscc += m->m_len; 970 sb->sb_mtlstail = m; 971 } 972 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 973 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 974 sb->sb_ccc)); 975 } 976 977 int 978 ktls_enable_rx(struct socket *so, struct tls_enable *en) 979 { 980 struct ktls_session *tls; 981 int error; 982 983 if (!ktls_offload_enable) 984 return (ENOTSUP); 985 986 counter_u64_add(ktls_offload_enable_calls, 1); 987 988 /* 989 * This should always be true since only the TCP socket option 990 * invokes this function. 991 */ 992 if (so->so_proto->pr_protocol != IPPROTO_TCP) 993 return (EINVAL); 994 995 /* 996 * XXX: Don't overwrite existing sessions. We should permit 997 * this to support rekeying in the future. 998 */ 999 if (so->so_rcv.sb_tls_info != NULL) 1000 return (EALREADY); 1001 1002 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1003 return (ENOTSUP); 1004 1005 /* TLS 1.3 is not yet supported. */ 1006 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1007 en->tls_vminor == TLS_MINOR_VER_THREE) 1008 return (ENOTSUP); 1009 1010 error = ktls_create_session(so, en, &tls); 1011 if (error) 1012 return (error); 1013 1014 #ifdef TCP_OFFLOAD 1015 error = ktls_try_toe(so, tls, KTLS_RX); 1016 if (error) 1017 #endif 1018 error = ktls_try_sw(so, tls, KTLS_RX); 1019 1020 if (error) { 1021 ktls_cleanup(tls); 1022 return (error); 1023 } 1024 1025 /* Mark the socket as using TLS offload. */ 1026 SOCKBUF_LOCK(&so->so_rcv); 1027 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1028 so->so_rcv.sb_tls_info = tls; 1029 so->so_rcv.sb_flags |= SB_TLS_RX; 1030 1031 /* Mark existing data as not ready until it can be decrypted. */ 1032 sb_mark_notready(&so->so_rcv); 1033 ktls_check_rx(&so->so_rcv); 1034 SOCKBUF_UNLOCK(&so->so_rcv); 1035 1036 counter_u64_add(ktls_offload_total, 1); 1037 1038 return (0); 1039 } 1040 1041 int 1042 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1043 { 1044 struct ktls_session *tls; 1045 struct inpcb *inp; 1046 int error; 1047 1048 if (!ktls_offload_enable) 1049 return (ENOTSUP); 1050 1051 counter_u64_add(ktls_offload_enable_calls, 1); 1052 1053 /* 1054 * This should always be true since only the TCP socket option 1055 * invokes this function. 1056 */ 1057 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1058 return (EINVAL); 1059 1060 /* 1061 * XXX: Don't overwrite existing sessions. We should permit 1062 * this to support rekeying in the future. 1063 */ 1064 if (so->so_snd.sb_tls_info != NULL) 1065 return (EALREADY); 1066 1067 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1068 return (ENOTSUP); 1069 1070 /* TLS requires ext pgs */ 1071 if (mb_use_ext_pgs == 0) 1072 return (ENXIO); 1073 1074 error = ktls_create_session(so, en, &tls); 1075 if (error) 1076 return (error); 1077 1078 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1079 #ifdef TCP_OFFLOAD 1080 error = ktls_try_toe(so, tls, KTLS_TX); 1081 if (error) 1082 #endif 1083 error = ktls_try_ifnet(so, tls, false); 1084 if (error) 1085 error = ktls_try_sw(so, tls, KTLS_TX); 1086 1087 if (error) { 1088 ktls_cleanup(tls); 1089 return (error); 1090 } 1091 1092 error = sblock(&so->so_snd, SBL_WAIT); 1093 if (error) { 1094 ktls_cleanup(tls); 1095 return (error); 1096 } 1097 1098 /* 1099 * Write lock the INP when setting sb_tls_info so that 1100 * routines in tcp_ratelimit.c can read sb_tls_info while 1101 * holding the INP lock. 1102 */ 1103 inp = so->so_pcb; 1104 INP_WLOCK(inp); 1105 SOCKBUF_LOCK(&so->so_snd); 1106 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1107 so->so_snd.sb_tls_info = tls; 1108 if (tls->mode != TCP_TLS_MODE_SW) 1109 so->so_snd.sb_flags |= SB_TLS_IFNET; 1110 SOCKBUF_UNLOCK(&so->so_snd); 1111 INP_WUNLOCK(inp); 1112 sbunlock(&so->so_snd); 1113 1114 counter_u64_add(ktls_offload_total, 1); 1115 1116 return (0); 1117 } 1118 1119 int 1120 ktls_get_rx_mode(struct socket *so) 1121 { 1122 struct ktls_session *tls; 1123 struct inpcb *inp; 1124 int mode; 1125 1126 inp = so->so_pcb; 1127 INP_WLOCK_ASSERT(inp); 1128 SOCKBUF_LOCK(&so->so_rcv); 1129 tls = so->so_rcv.sb_tls_info; 1130 if (tls == NULL) 1131 mode = TCP_TLS_MODE_NONE; 1132 else 1133 mode = tls->mode; 1134 SOCKBUF_UNLOCK(&so->so_rcv); 1135 return (mode); 1136 } 1137 1138 int 1139 ktls_get_tx_mode(struct socket *so) 1140 { 1141 struct ktls_session *tls; 1142 struct inpcb *inp; 1143 int mode; 1144 1145 inp = so->so_pcb; 1146 INP_WLOCK_ASSERT(inp); 1147 SOCKBUF_LOCK(&so->so_snd); 1148 tls = so->so_snd.sb_tls_info; 1149 if (tls == NULL) 1150 mode = TCP_TLS_MODE_NONE; 1151 else 1152 mode = tls->mode; 1153 SOCKBUF_UNLOCK(&so->so_snd); 1154 return (mode); 1155 } 1156 1157 /* 1158 * Switch between SW and ifnet TLS sessions as requested. 1159 */ 1160 int 1161 ktls_set_tx_mode(struct socket *so, int mode) 1162 { 1163 struct ktls_session *tls, *tls_new; 1164 struct inpcb *inp; 1165 int error; 1166 1167 switch (mode) { 1168 case TCP_TLS_MODE_SW: 1169 case TCP_TLS_MODE_IFNET: 1170 break; 1171 default: 1172 return (EINVAL); 1173 } 1174 1175 inp = so->so_pcb; 1176 INP_WLOCK_ASSERT(inp); 1177 SOCKBUF_LOCK(&so->so_snd); 1178 tls = so->so_snd.sb_tls_info; 1179 if (tls == NULL) { 1180 SOCKBUF_UNLOCK(&so->so_snd); 1181 return (0); 1182 } 1183 1184 if (tls->mode == mode) { 1185 SOCKBUF_UNLOCK(&so->so_snd); 1186 return (0); 1187 } 1188 1189 tls = ktls_hold(tls); 1190 SOCKBUF_UNLOCK(&so->so_snd); 1191 INP_WUNLOCK(inp); 1192 1193 tls_new = ktls_clone_session(tls); 1194 1195 if (mode == TCP_TLS_MODE_IFNET) 1196 error = ktls_try_ifnet(so, tls_new, true); 1197 else 1198 error = ktls_try_sw(so, tls_new, KTLS_TX); 1199 if (error) { 1200 counter_u64_add(ktls_switch_failed, 1); 1201 ktls_free(tls_new); 1202 ktls_free(tls); 1203 INP_WLOCK(inp); 1204 return (error); 1205 } 1206 1207 error = sblock(&so->so_snd, SBL_WAIT); 1208 if (error) { 1209 counter_u64_add(ktls_switch_failed, 1); 1210 ktls_free(tls_new); 1211 ktls_free(tls); 1212 INP_WLOCK(inp); 1213 return (error); 1214 } 1215 1216 /* 1217 * If we raced with another session change, keep the existing 1218 * session. 1219 */ 1220 if (tls != so->so_snd.sb_tls_info) { 1221 counter_u64_add(ktls_switch_failed, 1); 1222 sbunlock(&so->so_snd); 1223 ktls_free(tls_new); 1224 ktls_free(tls); 1225 INP_WLOCK(inp); 1226 return (EBUSY); 1227 } 1228 1229 SOCKBUF_LOCK(&so->so_snd); 1230 so->so_snd.sb_tls_info = tls_new; 1231 if (tls_new->mode != TCP_TLS_MODE_SW) 1232 so->so_snd.sb_flags |= SB_TLS_IFNET; 1233 SOCKBUF_UNLOCK(&so->so_snd); 1234 sbunlock(&so->so_snd); 1235 1236 /* 1237 * Drop two references on 'tls'. The first is for the 1238 * ktls_hold() above. The second drops the reference from the 1239 * socket buffer. 1240 */ 1241 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1242 ktls_free(tls); 1243 ktls_free(tls); 1244 1245 if (mode == TCP_TLS_MODE_IFNET) 1246 counter_u64_add(ktls_switch_to_ifnet, 1); 1247 else 1248 counter_u64_add(ktls_switch_to_sw, 1); 1249 1250 INP_WLOCK(inp); 1251 return (0); 1252 } 1253 1254 /* 1255 * Try to allocate a new TLS send tag. This task is scheduled when 1256 * ip_output detects a route change while trying to transmit a packet 1257 * holding a TLS record. If a new tag is allocated, replace the tag 1258 * in the TLS session. Subsequent packets on the connection will use 1259 * the new tag. If a new tag cannot be allocated, drop the 1260 * connection. 1261 */ 1262 static void 1263 ktls_reset_send_tag(void *context, int pending) 1264 { 1265 struct epoch_tracker et; 1266 struct ktls_session *tls; 1267 struct m_snd_tag *old, *new; 1268 struct inpcb *inp; 1269 struct tcpcb *tp; 1270 int error; 1271 1272 MPASS(pending == 1); 1273 1274 tls = context; 1275 inp = tls->inp; 1276 1277 /* 1278 * Free the old tag first before allocating a new one. 1279 * ip[6]_output_send() will treat a NULL send tag the same as 1280 * an ifp mismatch and drop packets until a new tag is 1281 * allocated. 1282 * 1283 * Write-lock the INP when changing tls->snd_tag since 1284 * ip[6]_output_send() holds a read-lock when reading the 1285 * pointer. 1286 */ 1287 INP_WLOCK(inp); 1288 old = tls->snd_tag; 1289 tls->snd_tag = NULL; 1290 INP_WUNLOCK(inp); 1291 if (old != NULL) 1292 m_snd_tag_rele(old); 1293 1294 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1295 1296 if (error == 0) { 1297 INP_WLOCK(inp); 1298 tls->snd_tag = new; 1299 mtx_pool_lock(mtxpool_sleep, tls); 1300 tls->reset_pending = false; 1301 mtx_pool_unlock(mtxpool_sleep, tls); 1302 if (!in_pcbrele_wlocked(inp)) 1303 INP_WUNLOCK(inp); 1304 1305 counter_u64_add(ktls_ifnet_reset, 1); 1306 1307 /* 1308 * XXX: Should we kick tcp_output explicitly now that 1309 * the send tag is fixed or just rely on timers? 1310 */ 1311 } else { 1312 NET_EPOCH_ENTER(et); 1313 INP_WLOCK(inp); 1314 if (!in_pcbrele_wlocked(inp)) { 1315 if (!(inp->inp_flags & INP_TIMEWAIT) && 1316 !(inp->inp_flags & INP_DROPPED)) { 1317 tp = intotcpcb(inp); 1318 CURVNET_SET(tp->t_vnet); 1319 tp = tcp_drop(tp, ECONNABORTED); 1320 CURVNET_RESTORE(); 1321 if (tp != NULL) 1322 INP_WUNLOCK(inp); 1323 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1324 } else 1325 INP_WUNLOCK(inp); 1326 } 1327 NET_EPOCH_EXIT(et); 1328 1329 counter_u64_add(ktls_ifnet_reset_failed, 1); 1330 1331 /* 1332 * Leave reset_pending true to avoid future tasks while 1333 * the socket goes away. 1334 */ 1335 } 1336 1337 ktls_free(tls); 1338 } 1339 1340 int 1341 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1342 { 1343 1344 if (inp == NULL) 1345 return (ENOBUFS); 1346 1347 INP_LOCK_ASSERT(inp); 1348 1349 /* 1350 * See if we should schedule a task to update the send tag for 1351 * this session. 1352 */ 1353 mtx_pool_lock(mtxpool_sleep, tls); 1354 if (!tls->reset_pending) { 1355 (void) ktls_hold(tls); 1356 in_pcbref(inp); 1357 tls->inp = inp; 1358 tls->reset_pending = true; 1359 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1360 } 1361 mtx_pool_unlock(mtxpool_sleep, tls); 1362 return (ENOBUFS); 1363 } 1364 1365 #ifdef RATELIMIT 1366 int 1367 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1368 { 1369 union if_snd_tag_modify_params params = { 1370 .rate_limit.max_rate = max_pacing_rate, 1371 .rate_limit.flags = M_NOWAIT, 1372 }; 1373 struct m_snd_tag *mst; 1374 struct ifnet *ifp; 1375 int error; 1376 1377 /* Can't get to the inp, but it should be locked. */ 1378 /* INP_LOCK_ASSERT(inp); */ 1379 1380 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1381 1382 if (tls->snd_tag == NULL) { 1383 /* 1384 * Resetting send tag, ignore this change. The 1385 * pending reset may or may not see this updated rate 1386 * in the tcpcb. If it doesn't, we will just lose 1387 * this rate change. 1388 */ 1389 return (0); 1390 } 1391 1392 MPASS(tls->snd_tag != NULL); 1393 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1394 1395 mst = tls->snd_tag; 1396 ifp = mst->ifp; 1397 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1398 } 1399 #endif 1400 #endif 1401 1402 void 1403 ktls_destroy(struct ktls_session *tls) 1404 { 1405 struct rm_priotracker prio; 1406 1407 ktls_cleanup(tls); 1408 if (tls->be != NULL && ktls_allow_unload) { 1409 rm_rlock(&ktls_backends_lock, &prio); 1410 tls->be->use_count--; 1411 rm_runlock(&ktls_backends_lock, &prio); 1412 } 1413 uma_zfree(ktls_session_zone, tls); 1414 } 1415 1416 void 1417 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1418 { 1419 1420 for (; m != NULL; m = m->m_next) { 1421 KASSERT((m->m_flags & M_EXTPG) != 0, 1422 ("ktls_seq: mapped mbuf %p", m)); 1423 1424 m->m_epg_seqno = sb->sb_tls_seqno; 1425 sb->sb_tls_seqno++; 1426 } 1427 } 1428 1429 /* 1430 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1431 * mbuf in the chain must be an unmapped mbuf. The payload of the 1432 * mbuf must be populated with the payload of each TLS record. 1433 * 1434 * The record_type argument specifies the TLS record type used when 1435 * populating the TLS header. 1436 * 1437 * The enq_count argument on return is set to the number of pages of 1438 * payload data for this entire chain that need to be encrypted via SW 1439 * encryption. The returned value should be passed to ktls_enqueue 1440 * when scheduling encryption of this chain of mbufs. To handle the 1441 * special case of empty fragments for TLS 1.0 sessions, an empty 1442 * fragment counts as one page. 1443 */ 1444 void 1445 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1446 uint8_t record_type) 1447 { 1448 struct tls_record_layer *tlshdr; 1449 struct mbuf *m; 1450 uint64_t *noncep; 1451 uint16_t tls_len; 1452 int maxlen; 1453 1454 maxlen = tls->params.max_frame_len; 1455 *enq_cnt = 0; 1456 for (m = top; m != NULL; m = m->m_next) { 1457 /* 1458 * All mbufs in the chain should be TLS records whose 1459 * payload does not exceed the maximum frame length. 1460 * 1461 * Empty TLS records are permitted when using CBC. 1462 */ 1463 KASSERT(m->m_len <= maxlen && 1464 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1465 m->m_len >= 0 : m->m_len > 0), 1466 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1467 1468 /* 1469 * TLS frames require unmapped mbufs to store session 1470 * info. 1471 */ 1472 KASSERT((m->m_flags & M_EXTPG) != 0, 1473 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1474 1475 tls_len = m->m_len; 1476 1477 /* Save a reference to the session. */ 1478 m->m_epg_tls = ktls_hold(tls); 1479 1480 m->m_epg_hdrlen = tls->params.tls_hlen; 1481 m->m_epg_trllen = tls->params.tls_tlen; 1482 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1483 int bs, delta; 1484 1485 /* 1486 * AES-CBC pads messages to a multiple of the 1487 * block size. Note that the padding is 1488 * applied after the digest and the encryption 1489 * is done on the "plaintext || mac || padding". 1490 * At least one byte of padding is always 1491 * present. 1492 * 1493 * Compute the final trailer length assuming 1494 * at most one block of padding. 1495 * tls->params.sb_tls_tlen is the maximum 1496 * possible trailer length (padding + digest). 1497 * delta holds the number of excess padding 1498 * bytes if the maximum were used. Those 1499 * extra bytes are removed. 1500 */ 1501 bs = tls->params.tls_bs; 1502 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1503 m->m_epg_trllen -= delta; 1504 } 1505 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1506 1507 /* Populate the TLS header. */ 1508 tlshdr = (void *)m->m_epg_hdr; 1509 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1510 1511 /* 1512 * TLS 1.3 masquarades as TLS 1.2 with a record type 1513 * of TLS_RLTYPE_APP. 1514 */ 1515 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1516 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1517 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1518 tlshdr->tls_type = TLS_RLTYPE_APP; 1519 /* save the real record type for later */ 1520 m->m_epg_record_type = record_type; 1521 m->m_epg_trail[0] = record_type; 1522 } else { 1523 tlshdr->tls_vminor = tls->params.tls_vminor; 1524 tlshdr->tls_type = record_type; 1525 } 1526 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1527 1528 /* 1529 * Store nonces / explicit IVs after the end of the 1530 * TLS header. 1531 * 1532 * For GCM with TLS 1.2, an 8 byte nonce is copied 1533 * from the end of the IV. The nonce is then 1534 * incremented for use by the next record. 1535 * 1536 * For CBC, a random nonce is inserted for TLS 1.1+. 1537 */ 1538 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1539 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1540 noncep = (uint64_t *)(tls->params.iv + 8); 1541 be64enc(tlshdr + 1, *noncep); 1542 (*noncep)++; 1543 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1544 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1545 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1546 1547 /* 1548 * When using SW encryption, mark the mbuf not ready. 1549 * It will be marked ready via sbready() after the 1550 * record has been encrypted. 1551 * 1552 * When using ifnet TLS, unencrypted TLS records are 1553 * sent down the stack to the NIC. 1554 */ 1555 if (tls->mode == TCP_TLS_MODE_SW) { 1556 m->m_flags |= M_NOTREADY; 1557 m->m_epg_nrdy = m->m_epg_npgs; 1558 if (__predict_false(tls_len == 0)) { 1559 /* TLS 1.0 empty fragment. */ 1560 *enq_cnt += 1; 1561 } else 1562 *enq_cnt += m->m_epg_npgs; 1563 } 1564 } 1565 } 1566 1567 void 1568 ktls_check_rx(struct sockbuf *sb) 1569 { 1570 struct tls_record_layer hdr; 1571 struct ktls_wq *wq; 1572 struct socket *so; 1573 bool running; 1574 1575 SOCKBUF_LOCK_ASSERT(sb); 1576 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1577 __func__, sb)); 1578 so = __containerof(sb, struct socket, so_rcv); 1579 1580 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1581 return; 1582 1583 /* Is there enough queued for a TLS header? */ 1584 if (sb->sb_tlscc < sizeof(hdr)) { 1585 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1586 so->so_error = EMSGSIZE; 1587 return; 1588 } 1589 1590 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1591 1592 /* Is the entire record queued? */ 1593 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1594 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1595 so->so_error = EMSGSIZE; 1596 return; 1597 } 1598 1599 sb->sb_flags |= SB_TLS_RX_RUNNING; 1600 1601 soref(so); 1602 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1603 mtx_lock(&wq->mtx); 1604 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1605 running = wq->running; 1606 mtx_unlock(&wq->mtx); 1607 if (!running) 1608 wakeup(wq); 1609 counter_u64_add(ktls_cnt_rx_queued, 1); 1610 } 1611 1612 static struct mbuf * 1613 ktls_detach_record(struct sockbuf *sb, int len) 1614 { 1615 struct mbuf *m, *n, *top; 1616 int remain; 1617 1618 SOCKBUF_LOCK_ASSERT(sb); 1619 MPASS(len <= sb->sb_tlscc); 1620 1621 /* 1622 * If TLS chain is the exact size of the record, 1623 * just grab the whole record. 1624 */ 1625 top = sb->sb_mtls; 1626 if (sb->sb_tlscc == len) { 1627 sb->sb_mtls = NULL; 1628 sb->sb_mtlstail = NULL; 1629 goto out; 1630 } 1631 1632 /* 1633 * While it would be nice to use m_split() here, we need 1634 * to know exactly what m_split() allocates to update the 1635 * accounting, so do it inline instead. 1636 */ 1637 remain = len; 1638 for (m = top; remain > m->m_len; m = m->m_next) 1639 remain -= m->m_len; 1640 1641 /* Easy case: don't have to split 'm'. */ 1642 if (remain == m->m_len) { 1643 sb->sb_mtls = m->m_next; 1644 if (sb->sb_mtls == NULL) 1645 sb->sb_mtlstail = NULL; 1646 m->m_next = NULL; 1647 goto out; 1648 } 1649 1650 /* 1651 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1652 * with M_NOWAIT first. 1653 */ 1654 n = m_get(M_NOWAIT, MT_DATA); 1655 if (n == NULL) { 1656 /* 1657 * Use M_WAITOK with socket buffer unlocked. If 1658 * 'sb_mtls' changes while the lock is dropped, return 1659 * NULL to force the caller to retry. 1660 */ 1661 SOCKBUF_UNLOCK(sb); 1662 1663 n = m_get(M_WAITOK, MT_DATA); 1664 1665 SOCKBUF_LOCK(sb); 1666 if (sb->sb_mtls != top) { 1667 m_free(n); 1668 return (NULL); 1669 } 1670 } 1671 n->m_flags |= M_NOTREADY; 1672 1673 /* Store remainder in 'n'. */ 1674 n->m_len = m->m_len - remain; 1675 if (m->m_flags & M_EXT) { 1676 n->m_data = m->m_data + remain; 1677 mb_dupcl(n, m); 1678 } else { 1679 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1680 } 1681 1682 /* Trim 'm' and update accounting. */ 1683 m->m_len -= n->m_len; 1684 sb->sb_tlscc -= n->m_len; 1685 sb->sb_ccc -= n->m_len; 1686 1687 /* Account for 'n'. */ 1688 sballoc_ktls_rx(sb, n); 1689 1690 /* Insert 'n' into the TLS chain. */ 1691 sb->sb_mtls = n; 1692 n->m_next = m->m_next; 1693 if (sb->sb_mtlstail == m) 1694 sb->sb_mtlstail = n; 1695 1696 /* Detach the record from the TLS chain. */ 1697 m->m_next = NULL; 1698 1699 out: 1700 MPASS(m_length(top, NULL) == len); 1701 for (m = top; m != NULL; m = m->m_next) 1702 sbfree_ktls_rx(sb, m); 1703 sb->sb_tlsdcc = len; 1704 sb->sb_ccc += len; 1705 SBCHECK(sb); 1706 return (top); 1707 } 1708 1709 static void 1710 ktls_decrypt(struct socket *so) 1711 { 1712 char tls_header[MBUF_PEXT_HDR_LEN]; 1713 struct ktls_session *tls; 1714 struct sockbuf *sb; 1715 struct tls_record_layer *hdr; 1716 struct tls_get_record tgr; 1717 struct mbuf *control, *data, *m; 1718 uint64_t seqno; 1719 int error, remain, tls_len, trail_len; 1720 1721 hdr = (struct tls_record_layer *)tls_header; 1722 sb = &so->so_rcv; 1723 SOCKBUF_LOCK(sb); 1724 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1725 ("%s: socket %p not running", __func__, so)); 1726 1727 tls = sb->sb_tls_info; 1728 MPASS(tls != NULL); 1729 1730 for (;;) { 1731 /* Is there enough queued for a TLS header? */ 1732 if (sb->sb_tlscc < tls->params.tls_hlen) 1733 break; 1734 1735 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1736 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1737 1738 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1739 hdr->tls_vminor != tls->params.tls_vminor) 1740 error = EINVAL; 1741 else if (tls_len < tls->params.tls_hlen || tls_len > 1742 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1743 tls->params.tls_tlen) 1744 error = EMSGSIZE; 1745 else 1746 error = 0; 1747 if (__predict_false(error != 0)) { 1748 /* 1749 * We have a corrupted record and are likely 1750 * out of sync. The connection isn't 1751 * recoverable at this point, so abort it. 1752 */ 1753 SOCKBUF_UNLOCK(sb); 1754 counter_u64_add(ktls_offload_corrupted_records, 1); 1755 1756 CURVNET_SET(so->so_vnet); 1757 so->so_proto->pr_usrreqs->pru_abort(so); 1758 so->so_error = error; 1759 CURVNET_RESTORE(); 1760 goto deref; 1761 } 1762 1763 /* Is the entire record queued? */ 1764 if (sb->sb_tlscc < tls_len) 1765 break; 1766 1767 /* 1768 * Split out the portion of the mbuf chain containing 1769 * this TLS record. 1770 */ 1771 data = ktls_detach_record(sb, tls_len); 1772 if (data == NULL) 1773 continue; 1774 MPASS(sb->sb_tlsdcc == tls_len); 1775 1776 seqno = sb->sb_tls_seqno; 1777 sb->sb_tls_seqno++; 1778 SBCHECK(sb); 1779 SOCKBUF_UNLOCK(sb); 1780 1781 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1782 if (error) { 1783 counter_u64_add(ktls_offload_failed_crypto, 1); 1784 1785 SOCKBUF_LOCK(sb); 1786 if (sb->sb_tlsdcc == 0) { 1787 /* 1788 * sbcut/drop/flush discarded these 1789 * mbufs. 1790 */ 1791 m_freem(data); 1792 break; 1793 } 1794 1795 /* 1796 * Drop this TLS record's data, but keep 1797 * decrypting subsequent records. 1798 */ 1799 sb->sb_ccc -= tls_len; 1800 sb->sb_tlsdcc = 0; 1801 1802 CURVNET_SET(so->so_vnet); 1803 so->so_error = EBADMSG; 1804 sorwakeup_locked(so); 1805 CURVNET_RESTORE(); 1806 1807 m_freem(data); 1808 1809 SOCKBUF_LOCK(sb); 1810 continue; 1811 } 1812 1813 /* Allocate the control mbuf. */ 1814 tgr.tls_type = hdr->tls_type; 1815 tgr.tls_vmajor = hdr->tls_vmajor; 1816 tgr.tls_vminor = hdr->tls_vminor; 1817 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1818 trail_len); 1819 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1820 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1821 1822 SOCKBUF_LOCK(sb); 1823 if (sb->sb_tlsdcc == 0) { 1824 /* sbcut/drop/flush discarded these mbufs. */ 1825 MPASS(sb->sb_tlscc == 0); 1826 m_freem(data); 1827 m_freem(control); 1828 break; 1829 } 1830 1831 /* 1832 * Clear the 'dcc' accounting in preparation for 1833 * adding the decrypted record. 1834 */ 1835 sb->sb_ccc -= tls_len; 1836 sb->sb_tlsdcc = 0; 1837 SBCHECK(sb); 1838 1839 /* If there is no payload, drop all of the data. */ 1840 if (tgr.tls_length == htobe16(0)) { 1841 m_freem(data); 1842 data = NULL; 1843 } else { 1844 /* Trim header. */ 1845 remain = tls->params.tls_hlen; 1846 while (remain > 0) { 1847 if (data->m_len > remain) { 1848 data->m_data += remain; 1849 data->m_len -= remain; 1850 break; 1851 } 1852 remain -= data->m_len; 1853 data = m_free(data); 1854 } 1855 1856 /* Trim trailer and clear M_NOTREADY. */ 1857 remain = be16toh(tgr.tls_length); 1858 m = data; 1859 for (m = data; remain > m->m_len; m = m->m_next) { 1860 m->m_flags &= ~M_NOTREADY; 1861 remain -= m->m_len; 1862 } 1863 m->m_len = remain; 1864 m_freem(m->m_next); 1865 m->m_next = NULL; 1866 m->m_flags &= ~M_NOTREADY; 1867 1868 /* Set EOR on the final mbuf. */ 1869 m->m_flags |= M_EOR; 1870 } 1871 1872 sbappendcontrol_locked(sb, data, control, 0); 1873 } 1874 1875 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1876 1877 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1878 so->so_error = EMSGSIZE; 1879 1880 sorwakeup_locked(so); 1881 1882 deref: 1883 SOCKBUF_UNLOCK_ASSERT(sb); 1884 1885 CURVNET_SET(so->so_vnet); 1886 SOCK_LOCK(so); 1887 sorele(so); 1888 CURVNET_RESTORE(); 1889 } 1890 1891 void 1892 ktls_enqueue_to_free(struct mbuf *m) 1893 { 1894 struct ktls_wq *wq; 1895 bool running; 1896 1897 /* Mark it for freeing. */ 1898 m->m_epg_flags |= EPG_FLAG_2FREE; 1899 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1900 mtx_lock(&wq->mtx); 1901 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1902 running = wq->running; 1903 mtx_unlock(&wq->mtx); 1904 if (!running) 1905 wakeup(wq); 1906 } 1907 1908 void 1909 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1910 { 1911 struct ktls_wq *wq; 1912 bool running; 1913 1914 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1915 (M_EXTPG | M_NOTREADY)), 1916 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1917 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1918 1919 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1920 1921 m->m_epg_enc_cnt = page_count; 1922 1923 /* 1924 * Save a pointer to the socket. The caller is responsible 1925 * for taking an additional reference via soref(). 1926 */ 1927 m->m_epg_so = so; 1928 1929 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1930 mtx_lock(&wq->mtx); 1931 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1932 running = wq->running; 1933 mtx_unlock(&wq->mtx); 1934 if (!running) 1935 wakeup(wq); 1936 counter_u64_add(ktls_cnt_tx_queued, 1); 1937 } 1938 1939 static __noinline void 1940 ktls_encrypt(struct mbuf *top) 1941 { 1942 struct ktls_session *tls; 1943 struct socket *so; 1944 struct mbuf *m; 1945 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1946 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1947 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1948 vm_page_t pg; 1949 int error, i, len, npages, off, total_pages; 1950 bool is_anon; 1951 1952 so = top->m_epg_so; 1953 tls = top->m_epg_tls; 1954 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1955 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 1956 #ifdef INVARIANTS 1957 top->m_epg_so = NULL; 1958 #endif 1959 total_pages = top->m_epg_enc_cnt; 1960 npages = 0; 1961 1962 /* 1963 * Encrypt the TLS records in the chain of mbufs starting with 1964 * 'top'. 'total_pages' gives us a total count of pages and is 1965 * used to know when we have finished encrypting the TLS 1966 * records originally queued with 'top'. 1967 * 1968 * NB: These mbufs are queued in the socket buffer and 1969 * 'm_next' is traversing the mbufs in the socket buffer. The 1970 * socket buffer lock is not held while traversing this chain. 1971 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1972 * pointers should be stable. However, the 'm_next' of the 1973 * last mbuf encrypted is not necessarily NULL. It can point 1974 * to other mbufs appended while 'top' was on the TLS work 1975 * queue. 1976 * 1977 * Each mbuf holds an entire TLS record. 1978 */ 1979 error = 0; 1980 for (m = top; npages != total_pages; m = m->m_next) { 1981 KASSERT(m->m_epg_tls == tls, 1982 ("different TLS sessions in a single mbuf chain: %p vs %p", 1983 tls, m->m_epg_tls)); 1984 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1985 (M_EXTPG | M_NOTREADY), 1986 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1987 KASSERT(npages + m->m_epg_npgs <= total_pages, 1988 ("page count mismatch: top %p, total_pages %d, m %p", top, 1989 total_pages, m)); 1990 1991 /* 1992 * Generate source and destination ivoecs to pass to 1993 * the SW encryption backend. For writable mbufs, the 1994 * destination iovec is a copy of the source and 1995 * encryption is done in place. For file-backed mbufs 1996 * (from sendfile), anonymous wired pages are 1997 * allocated and assigned to the destination iovec. 1998 */ 1999 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2000 2001 off = m->m_epg_1st_off; 2002 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2003 len = m_epg_pagelen(m, i, off); 2004 src_iov[i].iov_len = len; 2005 src_iov[i].iov_base = 2006 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 2007 off; 2008 2009 if (is_anon) { 2010 dst_iov[i].iov_base = src_iov[i].iov_base; 2011 dst_iov[i].iov_len = src_iov[i].iov_len; 2012 continue; 2013 } 2014 retry_page: 2015 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2016 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 2017 if (pg == NULL) { 2018 vm_wait(NULL); 2019 goto retry_page; 2020 } 2021 parray[i] = VM_PAGE_TO_PHYS(pg); 2022 dst_iov[i].iov_base = 2023 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 2024 dst_iov[i].iov_len = len; 2025 } 2026 2027 if (__predict_false(m->m_epg_npgs == 0)) { 2028 /* TLS 1.0 empty fragment. */ 2029 npages++; 2030 } else 2031 npages += i; 2032 2033 error = (*tls->sw_encrypt)(tls, 2034 (const struct tls_record_layer *)m->m_epg_hdr, 2035 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 2036 m->m_epg_record_type); 2037 if (error) { 2038 counter_u64_add(ktls_offload_failed_crypto, 1); 2039 break; 2040 } 2041 2042 /* 2043 * For file-backed mbufs, release the file-backed 2044 * pages and replace them in the ext_pgs array with 2045 * the anonymous wired pages allocated above. 2046 */ 2047 if (!is_anon) { 2048 /* Free the old pages. */ 2049 m->m_ext.ext_free(m); 2050 2051 /* Replace them with the new pages. */ 2052 for (i = 0; i < m->m_epg_npgs; i++) 2053 m->m_epg_pa[i] = parray[i]; 2054 2055 /* Use the basic free routine. */ 2056 m->m_ext.ext_free = mb_free_mext_pgs; 2057 2058 /* Pages are now writable. */ 2059 m->m_epg_flags |= EPG_FLAG_ANON; 2060 } 2061 2062 /* 2063 * Drop a reference to the session now that it is no 2064 * longer needed. Existing code depends on encrypted 2065 * records having no associated session vs 2066 * yet-to-be-encrypted records having an associated 2067 * session. 2068 */ 2069 m->m_epg_tls = NULL; 2070 ktls_free(tls); 2071 } 2072 2073 CURVNET_SET(so->so_vnet); 2074 if (error == 0) { 2075 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2076 } else { 2077 so->so_proto->pr_usrreqs->pru_abort(so); 2078 so->so_error = EIO; 2079 mb_free_notready(top, total_pages); 2080 } 2081 2082 SOCK_LOCK(so); 2083 sorele(so); 2084 CURVNET_RESTORE(); 2085 } 2086 2087 static void 2088 ktls_work_thread(void *ctx) 2089 { 2090 struct ktls_wq *wq = ctx; 2091 struct mbuf *m, *n; 2092 struct socket *so, *son; 2093 STAILQ_HEAD(, mbuf) local_m_head; 2094 STAILQ_HEAD(, socket) local_so_head; 2095 2096 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2097 fpu_kern_thread(0); 2098 #endif 2099 for (;;) { 2100 mtx_lock(&wq->mtx); 2101 while (STAILQ_EMPTY(&wq->m_head) && 2102 STAILQ_EMPTY(&wq->so_head)) { 2103 wq->running = false; 2104 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2105 wq->running = true; 2106 } 2107 2108 STAILQ_INIT(&local_m_head); 2109 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2110 STAILQ_INIT(&local_so_head); 2111 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2112 mtx_unlock(&wq->mtx); 2113 2114 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2115 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2116 ktls_free(m->m_epg_tls); 2117 uma_zfree(zone_mbuf, m); 2118 } else { 2119 ktls_encrypt(m); 2120 counter_u64_add(ktls_cnt_tx_queued, -1); 2121 } 2122 } 2123 2124 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2125 ktls_decrypt(so); 2126 counter_u64_add(ktls_cnt_rx_queued, -1); 2127 } 2128 } 2129 } 2130