1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_domain_info { 89 int count; 90 int cpu[MAXCPU]; 91 }; 92 93 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 94 static struct ktls_wq *ktls_wq; 95 static struct proc *ktls_proc; 96 static uma_zone_t ktls_session_zone; 97 static uma_zone_t ktls_buffer_zone; 98 static uint16_t ktls_cpuid_lookup[MAXCPU]; 99 100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "Kernel TLS offload"); 102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload stats"); 104 105 #ifdef RSS 106 static int ktls_bind_threads = 1; 107 #else 108 static int ktls_bind_threads; 109 #endif 110 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 111 &ktls_bind_threads, 0, 112 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 113 114 static u_int ktls_maxlen = 16384; 115 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 116 &ktls_maxlen, 0, "Maximum TLS record size"); 117 118 static int ktls_number_threads; 119 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 120 &ktls_number_threads, 0, 121 "Number of TLS threads in thread-pool"); 122 123 static bool ktls_offload_enable; 124 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 125 &ktls_offload_enable, 0, 126 "Enable support for kernel TLS offload"); 127 128 static bool ktls_cbc_enable = true; 129 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 130 &ktls_cbc_enable, 1, 131 "Enable Support of AES-CBC crypto for kernel TLS"); 132 133 static bool ktls_sw_buffer_cache = true; 134 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 135 &ktls_sw_buffer_cache, 1, 136 "Enable caching of output buffers for SW encryption"); 137 138 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 139 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 140 &ktls_tasks_active, "Number of active tasks"); 141 142 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 143 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 144 &ktls_cnt_tx_queued, 145 "Number of TLS records in queue to tasks for SW encryption"); 146 147 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 148 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 149 &ktls_cnt_rx_queued, 150 "Number of TLS sockets in queue to tasks for SW decryption"); 151 152 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 153 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 154 CTLFLAG_RD, &ktls_offload_total, 155 "Total successful TLS setups (parameters set)"); 156 157 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 158 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 159 CTLFLAG_RD, &ktls_offload_enable_calls, 160 "Total number of TLS enable calls made"); 161 162 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 163 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 164 &ktls_offload_active, "Total Active TLS sessions"); 165 166 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 168 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 169 170 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 172 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 173 174 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 176 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 180 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 181 182 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 183 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 184 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 185 186 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 187 "Software TLS session stats"); 188 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 189 "Hardware (ifnet) TLS session stats"); 190 #ifdef TCP_OFFLOAD 191 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 192 "TOE TLS session stats"); 193 #endif 194 195 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 197 "Active number of software TLS sessions using AES-CBC"); 198 199 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 201 "Active number of software TLS sessions using AES-GCM"); 202 203 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 204 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 205 &ktls_sw_chacha20, 206 "Active number of software TLS sessions using Chacha20-Poly1305"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 210 &ktls_ifnet_cbc, 211 "Active number of ifnet TLS sessions using AES-CBC"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 215 &ktls_ifnet_gcm, 216 "Active number of ifnet TLS sessions using AES-GCM"); 217 218 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 219 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 220 &ktls_ifnet_chacha20, 221 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 222 223 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 224 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 225 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 226 227 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 228 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 229 &ktls_ifnet_reset_dropped, 230 "TLS sessions dropped after failing to update ifnet send tag"); 231 232 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 234 &ktls_ifnet_reset_failed, 235 "TLS sessions that failed to allocate a new ifnet send tag"); 236 237 static int ktls_ifnet_permitted; 238 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 239 &ktls_ifnet_permitted, 1, 240 "Whether to permit hardware (ifnet) TLS sessions"); 241 242 #ifdef TCP_OFFLOAD 243 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 244 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 245 &ktls_toe_cbc, 246 "Active number of TOE TLS sessions using AES-CBC"); 247 248 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 249 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 250 &ktls_toe_gcm, 251 "Active number of TOE TLS sessions using AES-GCM"); 252 253 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 254 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 255 &ktls_toe_chacha20, 256 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 257 #endif 258 259 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 260 261 static void ktls_cleanup(struct ktls_session *tls); 262 #if defined(INET) || defined(INET6) 263 static void ktls_reset_send_tag(void *context, int pending); 264 #endif 265 static void ktls_work_thread(void *ctx); 266 267 #if defined(INET) || defined(INET6) 268 static u_int 269 ktls_get_cpu(struct socket *so) 270 { 271 struct inpcb *inp; 272 #ifdef NUMA 273 struct ktls_domain_info *di; 274 #endif 275 u_int cpuid; 276 277 inp = sotoinpcb(so); 278 #ifdef RSS 279 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 280 if (cpuid != NETISR_CPUID_NONE) 281 return (cpuid); 282 #endif 283 /* 284 * Just use the flowid to shard connections in a repeatable 285 * fashion. Note that TLS 1.0 sessions rely on the 286 * serialization provided by having the same connection use 287 * the same queue. 288 */ 289 #ifdef NUMA 290 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 291 di = &ktls_domains[inp->inp_numa_domain]; 292 cpuid = di->cpu[inp->inp_flowid % di->count]; 293 } else 294 #endif 295 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 296 return (cpuid); 297 } 298 #endif 299 300 static int 301 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 302 { 303 vm_page_t m; 304 int i; 305 306 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 307 ("%s: ktls max length %d is not page size-aligned", 308 __func__, ktls_maxlen)); 309 310 for (i = 0; i < count; i++) { 311 m = vm_page_alloc_contig_domain(NULL, 0, domain, 312 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 313 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 314 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 315 VM_MEMATTR_DEFAULT); 316 if (m == NULL) 317 break; 318 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 319 } 320 return (i); 321 } 322 323 static void 324 ktls_buffer_release(void *arg __unused, void **store, int count) 325 { 326 vm_page_t m; 327 int i, j; 328 329 for (i = 0; i < count; i++) { 330 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 331 for (j = 0; j < atop(ktls_maxlen); j++) { 332 (void)vm_page_unwire_noq(m + j); 333 vm_page_free(m + j); 334 } 335 } 336 } 337 338 static void 339 ktls_free_mext_contig(struct mbuf *m) 340 { 341 M_ASSERTEXTPG(m); 342 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 343 } 344 345 static void 346 ktls_init(void *dummy __unused) 347 { 348 struct thread *td; 349 struct pcpu *pc; 350 cpuset_t mask; 351 int count, domain, error, i; 352 353 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 354 M_WAITOK | M_ZERO); 355 356 ktls_session_zone = uma_zcreate("ktls_session", 357 sizeof(struct ktls_session), 358 NULL, NULL, NULL, NULL, 359 UMA_ALIGN_CACHE, 0); 360 361 if (ktls_sw_buffer_cache) { 362 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 363 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 364 ktls_buffer_import, ktls_buffer_release, NULL, 365 UMA_ZONE_FIRSTTOUCH); 366 } 367 368 /* 369 * Initialize the workqueues to run the TLS work. We create a 370 * work queue for each CPU. 371 */ 372 CPU_FOREACH(i) { 373 STAILQ_INIT(&ktls_wq[i].m_head); 374 STAILQ_INIT(&ktls_wq[i].so_head); 375 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 376 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 377 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 378 if (error) 379 panic("Can't add KTLS thread %d error %d", i, error); 380 381 /* 382 * Bind threads to cores. If ktls_bind_threads is > 383 * 1, then we bind to the NUMA domain. 384 */ 385 if (ktls_bind_threads) { 386 if (ktls_bind_threads > 1) { 387 pc = pcpu_find(i); 388 domain = pc->pc_domain; 389 CPU_COPY(&cpuset_domain[domain], &mask); 390 count = ktls_domains[domain].count; 391 ktls_domains[domain].cpu[count] = i; 392 ktls_domains[domain].count++; 393 } else { 394 CPU_SETOF(i, &mask); 395 } 396 error = cpuset_setthread(td->td_tid, &mask); 397 if (error) 398 panic( 399 "Unable to bind KTLS thread for CPU %d error %d", 400 i, error); 401 } 402 ktls_cpuid_lookup[ktls_number_threads] = i; 403 ktls_number_threads++; 404 } 405 406 /* 407 * If we somehow have an empty domain, fall back to choosing 408 * among all KTLS threads. 409 */ 410 if (ktls_bind_threads > 1) { 411 for (i = 0; i < vm_ndomains; i++) { 412 if (ktls_domains[i].count == 0) { 413 ktls_bind_threads = 1; 414 break; 415 } 416 } 417 } 418 419 if (bootverbose) 420 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 421 } 422 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 423 424 #if defined(INET) || defined(INET6) 425 static int 426 ktls_create_session(struct socket *so, struct tls_enable *en, 427 struct ktls_session **tlsp) 428 { 429 struct ktls_session *tls; 430 int error; 431 432 /* Only TLS 1.0 - 1.3 are supported. */ 433 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 434 return (EINVAL); 435 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 436 en->tls_vminor > TLS_MINOR_VER_THREE) 437 return (EINVAL); 438 439 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 440 return (EINVAL); 441 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 442 return (EINVAL); 443 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 444 return (EINVAL); 445 446 /* All supported algorithms require a cipher key. */ 447 if (en->cipher_key_len == 0) 448 return (EINVAL); 449 450 /* No flags are currently supported. */ 451 if (en->flags != 0) 452 return (EINVAL); 453 454 /* Common checks for supported algorithms. */ 455 switch (en->cipher_algorithm) { 456 case CRYPTO_AES_NIST_GCM_16: 457 /* 458 * auth_algorithm isn't used, but permit GMAC values 459 * for compatibility. 460 */ 461 switch (en->auth_algorithm) { 462 case 0: 463 #ifdef COMPAT_FREEBSD12 464 /* XXX: Really 13.0-current COMPAT. */ 465 case CRYPTO_AES_128_NIST_GMAC: 466 case CRYPTO_AES_192_NIST_GMAC: 467 case CRYPTO_AES_256_NIST_GMAC: 468 #endif 469 break; 470 default: 471 return (EINVAL); 472 } 473 if (en->auth_key_len != 0) 474 return (EINVAL); 475 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 476 en->iv_len != TLS_AEAD_GCM_LEN) || 477 (en->tls_vminor == TLS_MINOR_VER_THREE && 478 en->iv_len != TLS_1_3_GCM_IV_LEN)) 479 return (EINVAL); 480 break; 481 case CRYPTO_AES_CBC: 482 switch (en->auth_algorithm) { 483 case CRYPTO_SHA1_HMAC: 484 /* 485 * TLS 1.0 requires an implicit IV. TLS 1.1+ 486 * all use explicit IVs. 487 */ 488 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 489 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 490 return (EINVAL); 491 break; 492 } 493 494 /* FALLTHROUGH */ 495 case CRYPTO_SHA2_256_HMAC: 496 case CRYPTO_SHA2_384_HMAC: 497 /* Ignore any supplied IV. */ 498 en->iv_len = 0; 499 break; 500 default: 501 return (EINVAL); 502 } 503 if (en->auth_key_len == 0) 504 return (EINVAL); 505 break; 506 case CRYPTO_CHACHA20_POLY1305: 507 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 508 return (EINVAL); 509 if (en->tls_vminor != TLS_MINOR_VER_TWO && 510 en->tls_vminor != TLS_MINOR_VER_THREE) 511 return (EINVAL); 512 if (en->iv_len != TLS_CHACHA20_IV_LEN) 513 return (EINVAL); 514 break; 515 default: 516 return (EINVAL); 517 } 518 519 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 520 521 counter_u64_add(ktls_offload_active, 1); 522 523 refcount_init(&tls->refcount, 1); 524 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 525 526 tls->wq_index = ktls_get_cpu(so); 527 528 tls->params.cipher_algorithm = en->cipher_algorithm; 529 tls->params.auth_algorithm = en->auth_algorithm; 530 tls->params.tls_vmajor = en->tls_vmajor; 531 tls->params.tls_vminor = en->tls_vminor; 532 tls->params.flags = en->flags; 533 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 534 535 /* Set the header and trailer lengths. */ 536 tls->params.tls_hlen = sizeof(struct tls_record_layer); 537 switch (en->cipher_algorithm) { 538 case CRYPTO_AES_NIST_GCM_16: 539 /* 540 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 541 * nonce. TLS 1.3 uses a 12 byte implicit IV. 542 */ 543 if (en->tls_vminor < TLS_MINOR_VER_THREE) 544 tls->params.tls_hlen += sizeof(uint64_t); 545 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 546 tls->params.tls_bs = 1; 547 break; 548 case CRYPTO_AES_CBC: 549 switch (en->auth_algorithm) { 550 case CRYPTO_SHA1_HMAC: 551 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 552 /* Implicit IV, no nonce. */ 553 } else { 554 tls->params.tls_hlen += AES_BLOCK_LEN; 555 } 556 tls->params.tls_tlen = AES_BLOCK_LEN + 557 SHA1_HASH_LEN; 558 break; 559 case CRYPTO_SHA2_256_HMAC: 560 tls->params.tls_hlen += AES_BLOCK_LEN; 561 tls->params.tls_tlen = AES_BLOCK_LEN + 562 SHA2_256_HASH_LEN; 563 break; 564 case CRYPTO_SHA2_384_HMAC: 565 tls->params.tls_hlen += AES_BLOCK_LEN; 566 tls->params.tls_tlen = AES_BLOCK_LEN + 567 SHA2_384_HASH_LEN; 568 break; 569 default: 570 panic("invalid hmac"); 571 } 572 tls->params.tls_bs = AES_BLOCK_LEN; 573 break; 574 case CRYPTO_CHACHA20_POLY1305: 575 /* 576 * Chacha20 uses a 12 byte implicit IV. 577 */ 578 tls->params.tls_tlen = POLY1305_HASH_LEN; 579 tls->params.tls_bs = 1; 580 break; 581 default: 582 panic("invalid cipher"); 583 } 584 585 /* 586 * TLS 1.3 includes optional padding which we do not support, 587 * and also puts the "real" record type at the end of the 588 * encrypted data. 589 */ 590 if (en->tls_vminor == TLS_MINOR_VER_THREE) 591 tls->params.tls_tlen += sizeof(uint8_t); 592 593 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 594 ("TLS header length too long: %d", tls->params.tls_hlen)); 595 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 596 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 597 598 if (en->auth_key_len != 0) { 599 tls->params.auth_key_len = en->auth_key_len; 600 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 601 M_WAITOK); 602 error = copyin(en->auth_key, tls->params.auth_key, 603 en->auth_key_len); 604 if (error) 605 goto out; 606 } 607 608 tls->params.cipher_key_len = en->cipher_key_len; 609 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 610 error = copyin(en->cipher_key, tls->params.cipher_key, 611 en->cipher_key_len); 612 if (error) 613 goto out; 614 615 /* 616 * This holds the implicit portion of the nonce for AEAD 617 * ciphers and the initial implicit IV for TLS 1.0. The 618 * explicit portions of the IV are generated in ktls_frame(). 619 */ 620 if (en->iv_len != 0) { 621 tls->params.iv_len = en->iv_len; 622 error = copyin(en->iv, tls->params.iv, en->iv_len); 623 if (error) 624 goto out; 625 626 /* 627 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 628 * counter to generate unique explicit IVs. 629 * 630 * Store this counter in the last 8 bytes of the IV 631 * array so that it is 8-byte aligned. 632 */ 633 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 634 en->tls_vminor == TLS_MINOR_VER_TWO) 635 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 636 } 637 638 *tlsp = tls; 639 return (0); 640 641 out: 642 ktls_cleanup(tls); 643 return (error); 644 } 645 646 static struct ktls_session * 647 ktls_clone_session(struct ktls_session *tls) 648 { 649 struct ktls_session *tls_new; 650 651 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 652 653 counter_u64_add(ktls_offload_active, 1); 654 655 refcount_init(&tls_new->refcount, 1); 656 657 /* Copy fields from existing session. */ 658 tls_new->params = tls->params; 659 tls_new->wq_index = tls->wq_index; 660 661 /* Deep copy keys. */ 662 if (tls_new->params.auth_key != NULL) { 663 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 664 M_KTLS, M_WAITOK); 665 memcpy(tls_new->params.auth_key, tls->params.auth_key, 666 tls->params.auth_key_len); 667 } 668 669 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 670 M_WAITOK); 671 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 672 tls->params.cipher_key_len); 673 674 return (tls_new); 675 } 676 #endif 677 678 static void 679 ktls_cleanup(struct ktls_session *tls) 680 { 681 682 counter_u64_add(ktls_offload_active, -1); 683 switch (tls->mode) { 684 case TCP_TLS_MODE_SW: 685 switch (tls->params.cipher_algorithm) { 686 case CRYPTO_AES_CBC: 687 counter_u64_add(ktls_sw_cbc, -1); 688 break; 689 case CRYPTO_AES_NIST_GCM_16: 690 counter_u64_add(ktls_sw_gcm, -1); 691 break; 692 case CRYPTO_CHACHA20_POLY1305: 693 counter_u64_add(ktls_sw_chacha20, -1); 694 break; 695 } 696 ktls_ocf_free(tls); 697 break; 698 case TCP_TLS_MODE_IFNET: 699 switch (tls->params.cipher_algorithm) { 700 case CRYPTO_AES_CBC: 701 counter_u64_add(ktls_ifnet_cbc, -1); 702 break; 703 case CRYPTO_AES_NIST_GCM_16: 704 counter_u64_add(ktls_ifnet_gcm, -1); 705 break; 706 case CRYPTO_CHACHA20_POLY1305: 707 counter_u64_add(ktls_ifnet_chacha20, -1); 708 break; 709 } 710 if (tls->snd_tag != NULL) 711 m_snd_tag_rele(tls->snd_tag); 712 break; 713 #ifdef TCP_OFFLOAD 714 case TCP_TLS_MODE_TOE: 715 switch (tls->params.cipher_algorithm) { 716 case CRYPTO_AES_CBC: 717 counter_u64_add(ktls_toe_cbc, -1); 718 break; 719 case CRYPTO_AES_NIST_GCM_16: 720 counter_u64_add(ktls_toe_gcm, -1); 721 break; 722 case CRYPTO_CHACHA20_POLY1305: 723 counter_u64_add(ktls_toe_chacha20, -1); 724 break; 725 } 726 break; 727 #endif 728 } 729 if (tls->params.auth_key != NULL) { 730 zfree(tls->params.auth_key, M_KTLS); 731 tls->params.auth_key = NULL; 732 tls->params.auth_key_len = 0; 733 } 734 if (tls->params.cipher_key != NULL) { 735 zfree(tls->params.cipher_key, M_KTLS); 736 tls->params.cipher_key = NULL; 737 tls->params.cipher_key_len = 0; 738 } 739 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 740 } 741 742 #if defined(INET) || defined(INET6) 743 744 #ifdef TCP_OFFLOAD 745 static int 746 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 747 { 748 struct inpcb *inp; 749 struct tcpcb *tp; 750 int error; 751 752 inp = so->so_pcb; 753 INP_WLOCK(inp); 754 if (inp->inp_flags2 & INP_FREED) { 755 INP_WUNLOCK(inp); 756 return (ECONNRESET); 757 } 758 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 759 INP_WUNLOCK(inp); 760 return (ECONNRESET); 761 } 762 if (inp->inp_socket == NULL) { 763 INP_WUNLOCK(inp); 764 return (ECONNRESET); 765 } 766 tp = intotcpcb(inp); 767 if (!(tp->t_flags & TF_TOE)) { 768 INP_WUNLOCK(inp); 769 return (EOPNOTSUPP); 770 } 771 772 error = tcp_offload_alloc_tls_session(tp, tls, direction); 773 INP_WUNLOCK(inp); 774 if (error == 0) { 775 tls->mode = TCP_TLS_MODE_TOE; 776 switch (tls->params.cipher_algorithm) { 777 case CRYPTO_AES_CBC: 778 counter_u64_add(ktls_toe_cbc, 1); 779 break; 780 case CRYPTO_AES_NIST_GCM_16: 781 counter_u64_add(ktls_toe_gcm, 1); 782 break; 783 case CRYPTO_CHACHA20_POLY1305: 784 counter_u64_add(ktls_toe_chacha20, 1); 785 break; 786 } 787 } 788 return (error); 789 } 790 #endif 791 792 /* 793 * Common code used when first enabling ifnet TLS on a connection or 794 * when allocating a new ifnet TLS session due to a routing change. 795 * This function allocates a new TLS send tag on whatever interface 796 * the connection is currently routed over. 797 */ 798 static int 799 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 800 struct m_snd_tag **mstp) 801 { 802 union if_snd_tag_alloc_params params; 803 struct ifnet *ifp; 804 struct nhop_object *nh; 805 struct tcpcb *tp; 806 int error; 807 808 INP_RLOCK(inp); 809 if (inp->inp_flags2 & INP_FREED) { 810 INP_RUNLOCK(inp); 811 return (ECONNRESET); 812 } 813 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 814 INP_RUNLOCK(inp); 815 return (ECONNRESET); 816 } 817 if (inp->inp_socket == NULL) { 818 INP_RUNLOCK(inp); 819 return (ECONNRESET); 820 } 821 tp = intotcpcb(inp); 822 823 /* 824 * Check administrative controls on ifnet TLS to determine if 825 * ifnet TLS should be denied. 826 * 827 * - Always permit 'force' requests. 828 * - ktls_ifnet_permitted == 0: always deny. 829 */ 830 if (!force && ktls_ifnet_permitted == 0) { 831 INP_RUNLOCK(inp); 832 return (ENXIO); 833 } 834 835 /* 836 * XXX: Use the cached route in the inpcb to find the 837 * interface. This should perhaps instead use 838 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 839 * enabled after a connection has completed key negotiation in 840 * userland, the cached route will be present in practice. 841 */ 842 nh = inp->inp_route.ro_nh; 843 if (nh == NULL) { 844 INP_RUNLOCK(inp); 845 return (ENXIO); 846 } 847 ifp = nh->nh_ifp; 848 if_ref(ifp); 849 850 /* 851 * Allocate a TLS + ratelimit tag if the connection has an 852 * existing pacing rate. 853 */ 854 if (tp->t_pacing_rate != -1 && 855 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 856 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 857 params.tls_rate_limit.inp = inp; 858 params.tls_rate_limit.tls = tls; 859 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 860 } else { 861 params.hdr.type = IF_SND_TAG_TYPE_TLS; 862 params.tls.inp = inp; 863 params.tls.tls = tls; 864 } 865 params.hdr.flowid = inp->inp_flowid; 866 params.hdr.flowtype = inp->inp_flowtype; 867 params.hdr.numa_domain = inp->inp_numa_domain; 868 INP_RUNLOCK(inp); 869 870 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 871 error = EOPNOTSUPP; 872 goto out; 873 } 874 if (inp->inp_vflag & INP_IPV6) { 875 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 876 error = EOPNOTSUPP; 877 goto out; 878 } 879 } else { 880 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 881 error = EOPNOTSUPP; 882 goto out; 883 } 884 } 885 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 886 out: 887 if_rele(ifp); 888 return (error); 889 } 890 891 static int 892 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 893 { 894 struct m_snd_tag *mst; 895 int error; 896 897 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 898 if (error == 0) { 899 tls->mode = TCP_TLS_MODE_IFNET; 900 tls->snd_tag = mst; 901 switch (tls->params.cipher_algorithm) { 902 case CRYPTO_AES_CBC: 903 counter_u64_add(ktls_ifnet_cbc, 1); 904 break; 905 case CRYPTO_AES_NIST_GCM_16: 906 counter_u64_add(ktls_ifnet_gcm, 1); 907 break; 908 case CRYPTO_CHACHA20_POLY1305: 909 counter_u64_add(ktls_ifnet_chacha20, 1); 910 break; 911 } 912 } 913 return (error); 914 } 915 916 static int 917 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 918 { 919 int error; 920 921 error = ktls_ocf_try(so, tls, direction); 922 if (error) 923 return (error); 924 tls->mode = TCP_TLS_MODE_SW; 925 switch (tls->params.cipher_algorithm) { 926 case CRYPTO_AES_CBC: 927 counter_u64_add(ktls_sw_cbc, 1); 928 break; 929 case CRYPTO_AES_NIST_GCM_16: 930 counter_u64_add(ktls_sw_gcm, 1); 931 break; 932 case CRYPTO_CHACHA20_POLY1305: 933 counter_u64_add(ktls_sw_chacha20, 1); 934 break; 935 } 936 return (0); 937 } 938 939 /* 940 * KTLS RX stores data in the socket buffer as a list of TLS records, 941 * where each record is stored as a control message containg the TLS 942 * header followed by data mbufs containing the decrypted data. This 943 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 944 * both encrypted and decrypted data. TLS records decrypted by a NIC 945 * should be queued to the socket buffer as records, but encrypted 946 * data which needs to be decrypted by software arrives as a stream of 947 * regular mbufs which need to be converted. In addition, there may 948 * already be pending encrypted data in the socket buffer when KTLS RX 949 * is enabled. 950 * 951 * To manage not-yet-decrypted data for KTLS RX, the following scheme 952 * is used: 953 * 954 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 955 * 956 * - ktls_check_rx checks this chain of mbufs reading the TLS header 957 * from the first mbuf. Once all of the data for that TLS record is 958 * queued, the socket is queued to a worker thread. 959 * 960 * - The worker thread calls ktls_decrypt to decrypt TLS records in 961 * the TLS chain. Each TLS record is detached from the TLS chain, 962 * decrypted, and inserted into the regular socket buffer chain as 963 * record starting with a control message holding the TLS header and 964 * a chain of mbufs holding the encrypted data. 965 */ 966 967 static void 968 sb_mark_notready(struct sockbuf *sb) 969 { 970 struct mbuf *m; 971 972 m = sb->sb_mb; 973 sb->sb_mtls = m; 974 sb->sb_mb = NULL; 975 sb->sb_mbtail = NULL; 976 sb->sb_lastrecord = NULL; 977 for (; m != NULL; m = m->m_next) { 978 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 979 __func__)); 980 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 981 __func__)); 982 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 983 __func__)); 984 m->m_flags |= M_NOTREADY; 985 sb->sb_acc -= m->m_len; 986 sb->sb_tlscc += m->m_len; 987 sb->sb_mtlstail = m; 988 } 989 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 990 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 991 sb->sb_ccc)); 992 } 993 994 int 995 ktls_enable_rx(struct socket *so, struct tls_enable *en) 996 { 997 struct ktls_session *tls; 998 int error; 999 1000 if (!ktls_offload_enable) 1001 return (ENOTSUP); 1002 if (SOLISTENING(so)) 1003 return (EINVAL); 1004 1005 counter_u64_add(ktls_offload_enable_calls, 1); 1006 1007 /* 1008 * This should always be true since only the TCP socket option 1009 * invokes this function. 1010 */ 1011 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1012 return (EINVAL); 1013 1014 /* 1015 * XXX: Don't overwrite existing sessions. We should permit 1016 * this to support rekeying in the future. 1017 */ 1018 if (so->so_rcv.sb_tls_info != NULL) 1019 return (EALREADY); 1020 1021 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1022 return (ENOTSUP); 1023 1024 /* TLS 1.3 is not yet supported. */ 1025 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1026 en->tls_vminor == TLS_MINOR_VER_THREE) 1027 return (ENOTSUP); 1028 1029 error = ktls_create_session(so, en, &tls); 1030 if (error) 1031 return (error); 1032 1033 #ifdef TCP_OFFLOAD 1034 error = ktls_try_toe(so, tls, KTLS_RX); 1035 if (error) 1036 #endif 1037 error = ktls_try_sw(so, tls, KTLS_RX); 1038 1039 if (error) { 1040 ktls_cleanup(tls); 1041 return (error); 1042 } 1043 1044 /* Mark the socket as using TLS offload. */ 1045 SOCKBUF_LOCK(&so->so_rcv); 1046 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1047 so->so_rcv.sb_tls_info = tls; 1048 so->so_rcv.sb_flags |= SB_TLS_RX; 1049 1050 /* Mark existing data as not ready until it can be decrypted. */ 1051 sb_mark_notready(&so->so_rcv); 1052 ktls_check_rx(&so->so_rcv); 1053 SOCKBUF_UNLOCK(&so->so_rcv); 1054 1055 counter_u64_add(ktls_offload_total, 1); 1056 1057 return (0); 1058 } 1059 1060 int 1061 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1062 { 1063 struct ktls_session *tls; 1064 struct inpcb *inp; 1065 int error; 1066 1067 if (!ktls_offload_enable) 1068 return (ENOTSUP); 1069 if (SOLISTENING(so)) 1070 return (EINVAL); 1071 1072 counter_u64_add(ktls_offload_enable_calls, 1); 1073 1074 /* 1075 * This should always be true since only the TCP socket option 1076 * invokes this function. 1077 */ 1078 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1079 return (EINVAL); 1080 1081 /* 1082 * XXX: Don't overwrite existing sessions. We should permit 1083 * this to support rekeying in the future. 1084 */ 1085 if (so->so_snd.sb_tls_info != NULL) 1086 return (EALREADY); 1087 1088 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1089 return (ENOTSUP); 1090 1091 /* TLS requires ext pgs */ 1092 if (mb_use_ext_pgs == 0) 1093 return (ENXIO); 1094 1095 error = ktls_create_session(so, en, &tls); 1096 if (error) 1097 return (error); 1098 1099 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1100 #ifdef TCP_OFFLOAD 1101 error = ktls_try_toe(so, tls, KTLS_TX); 1102 if (error) 1103 #endif 1104 error = ktls_try_ifnet(so, tls, false); 1105 if (error) 1106 error = ktls_try_sw(so, tls, KTLS_TX); 1107 1108 if (error) { 1109 ktls_cleanup(tls); 1110 return (error); 1111 } 1112 1113 error = sblock(&so->so_snd, SBL_WAIT); 1114 if (error) { 1115 ktls_cleanup(tls); 1116 return (error); 1117 } 1118 1119 /* 1120 * Write lock the INP when setting sb_tls_info so that 1121 * routines in tcp_ratelimit.c can read sb_tls_info while 1122 * holding the INP lock. 1123 */ 1124 inp = so->so_pcb; 1125 INP_WLOCK(inp); 1126 SOCKBUF_LOCK(&so->so_snd); 1127 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1128 so->so_snd.sb_tls_info = tls; 1129 if (tls->mode != TCP_TLS_MODE_SW) 1130 so->so_snd.sb_flags |= SB_TLS_IFNET; 1131 SOCKBUF_UNLOCK(&so->so_snd); 1132 INP_WUNLOCK(inp); 1133 sbunlock(&so->so_snd); 1134 1135 counter_u64_add(ktls_offload_total, 1); 1136 1137 return (0); 1138 } 1139 1140 int 1141 ktls_get_rx_mode(struct socket *so) 1142 { 1143 struct ktls_session *tls; 1144 struct inpcb *inp; 1145 int mode; 1146 1147 if (SOLISTENING(so)) 1148 return (EINVAL); 1149 inp = so->so_pcb; 1150 INP_WLOCK_ASSERT(inp); 1151 SOCKBUF_LOCK(&so->so_rcv); 1152 tls = so->so_rcv.sb_tls_info; 1153 if (tls == NULL) 1154 mode = TCP_TLS_MODE_NONE; 1155 else 1156 mode = tls->mode; 1157 SOCKBUF_UNLOCK(&so->so_rcv); 1158 return (mode); 1159 } 1160 1161 int 1162 ktls_get_tx_mode(struct socket *so) 1163 { 1164 struct ktls_session *tls; 1165 struct inpcb *inp; 1166 int mode; 1167 1168 if (SOLISTENING(so)) 1169 return (EINVAL); 1170 inp = so->so_pcb; 1171 INP_WLOCK_ASSERT(inp); 1172 SOCKBUF_LOCK(&so->so_snd); 1173 tls = so->so_snd.sb_tls_info; 1174 if (tls == NULL) 1175 mode = TCP_TLS_MODE_NONE; 1176 else 1177 mode = tls->mode; 1178 SOCKBUF_UNLOCK(&so->so_snd); 1179 return (mode); 1180 } 1181 1182 /* 1183 * Switch between SW and ifnet TLS sessions as requested. 1184 */ 1185 int 1186 ktls_set_tx_mode(struct socket *so, int mode) 1187 { 1188 struct ktls_session *tls, *tls_new; 1189 struct inpcb *inp; 1190 int error; 1191 1192 if (SOLISTENING(so)) 1193 return (EINVAL); 1194 switch (mode) { 1195 case TCP_TLS_MODE_SW: 1196 case TCP_TLS_MODE_IFNET: 1197 break; 1198 default: 1199 return (EINVAL); 1200 } 1201 1202 inp = so->so_pcb; 1203 INP_WLOCK_ASSERT(inp); 1204 SOCKBUF_LOCK(&so->so_snd); 1205 tls = so->so_snd.sb_tls_info; 1206 if (tls == NULL) { 1207 SOCKBUF_UNLOCK(&so->so_snd); 1208 return (0); 1209 } 1210 1211 if (tls->mode == mode) { 1212 SOCKBUF_UNLOCK(&so->so_snd); 1213 return (0); 1214 } 1215 1216 tls = ktls_hold(tls); 1217 SOCKBUF_UNLOCK(&so->so_snd); 1218 INP_WUNLOCK(inp); 1219 1220 tls_new = ktls_clone_session(tls); 1221 1222 if (mode == TCP_TLS_MODE_IFNET) 1223 error = ktls_try_ifnet(so, tls_new, true); 1224 else 1225 error = ktls_try_sw(so, tls_new, KTLS_TX); 1226 if (error) { 1227 counter_u64_add(ktls_switch_failed, 1); 1228 ktls_free(tls_new); 1229 ktls_free(tls); 1230 INP_WLOCK(inp); 1231 return (error); 1232 } 1233 1234 error = sblock(&so->so_snd, SBL_WAIT); 1235 if (error) { 1236 counter_u64_add(ktls_switch_failed, 1); 1237 ktls_free(tls_new); 1238 ktls_free(tls); 1239 INP_WLOCK(inp); 1240 return (error); 1241 } 1242 1243 /* 1244 * If we raced with another session change, keep the existing 1245 * session. 1246 */ 1247 if (tls != so->so_snd.sb_tls_info) { 1248 counter_u64_add(ktls_switch_failed, 1); 1249 sbunlock(&so->so_snd); 1250 ktls_free(tls_new); 1251 ktls_free(tls); 1252 INP_WLOCK(inp); 1253 return (EBUSY); 1254 } 1255 1256 SOCKBUF_LOCK(&so->so_snd); 1257 so->so_snd.sb_tls_info = tls_new; 1258 if (tls_new->mode != TCP_TLS_MODE_SW) 1259 so->so_snd.sb_flags |= SB_TLS_IFNET; 1260 SOCKBUF_UNLOCK(&so->so_snd); 1261 sbunlock(&so->so_snd); 1262 1263 /* 1264 * Drop two references on 'tls'. The first is for the 1265 * ktls_hold() above. The second drops the reference from the 1266 * socket buffer. 1267 */ 1268 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1269 ktls_free(tls); 1270 ktls_free(tls); 1271 1272 if (mode == TCP_TLS_MODE_IFNET) 1273 counter_u64_add(ktls_switch_to_ifnet, 1); 1274 else 1275 counter_u64_add(ktls_switch_to_sw, 1); 1276 1277 INP_WLOCK(inp); 1278 return (0); 1279 } 1280 1281 /* 1282 * Try to allocate a new TLS send tag. This task is scheduled when 1283 * ip_output detects a route change while trying to transmit a packet 1284 * holding a TLS record. If a new tag is allocated, replace the tag 1285 * in the TLS session. Subsequent packets on the connection will use 1286 * the new tag. If a new tag cannot be allocated, drop the 1287 * connection. 1288 */ 1289 static void 1290 ktls_reset_send_tag(void *context, int pending) 1291 { 1292 struct epoch_tracker et; 1293 struct ktls_session *tls; 1294 struct m_snd_tag *old, *new; 1295 struct inpcb *inp; 1296 struct tcpcb *tp; 1297 int error; 1298 1299 MPASS(pending == 1); 1300 1301 tls = context; 1302 inp = tls->inp; 1303 1304 /* 1305 * Free the old tag first before allocating a new one. 1306 * ip[6]_output_send() will treat a NULL send tag the same as 1307 * an ifp mismatch and drop packets until a new tag is 1308 * allocated. 1309 * 1310 * Write-lock the INP when changing tls->snd_tag since 1311 * ip[6]_output_send() holds a read-lock when reading the 1312 * pointer. 1313 */ 1314 INP_WLOCK(inp); 1315 old = tls->snd_tag; 1316 tls->snd_tag = NULL; 1317 INP_WUNLOCK(inp); 1318 if (old != NULL) 1319 m_snd_tag_rele(old); 1320 1321 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1322 1323 if (error == 0) { 1324 INP_WLOCK(inp); 1325 tls->snd_tag = new; 1326 mtx_pool_lock(mtxpool_sleep, tls); 1327 tls->reset_pending = false; 1328 mtx_pool_unlock(mtxpool_sleep, tls); 1329 if (!in_pcbrele_wlocked(inp)) 1330 INP_WUNLOCK(inp); 1331 1332 counter_u64_add(ktls_ifnet_reset, 1); 1333 1334 /* 1335 * XXX: Should we kick tcp_output explicitly now that 1336 * the send tag is fixed or just rely on timers? 1337 */ 1338 } else { 1339 NET_EPOCH_ENTER(et); 1340 INP_WLOCK(inp); 1341 if (!in_pcbrele_wlocked(inp)) { 1342 if (!(inp->inp_flags & INP_TIMEWAIT) && 1343 !(inp->inp_flags & INP_DROPPED)) { 1344 tp = intotcpcb(inp); 1345 CURVNET_SET(tp->t_vnet); 1346 tp = tcp_drop(tp, ECONNABORTED); 1347 CURVNET_RESTORE(); 1348 if (tp != NULL) 1349 INP_WUNLOCK(inp); 1350 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1351 } else 1352 INP_WUNLOCK(inp); 1353 } 1354 NET_EPOCH_EXIT(et); 1355 1356 counter_u64_add(ktls_ifnet_reset_failed, 1); 1357 1358 /* 1359 * Leave reset_pending true to avoid future tasks while 1360 * the socket goes away. 1361 */ 1362 } 1363 1364 ktls_free(tls); 1365 } 1366 1367 int 1368 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1369 { 1370 1371 if (inp == NULL) 1372 return (ENOBUFS); 1373 1374 INP_LOCK_ASSERT(inp); 1375 1376 /* 1377 * See if we should schedule a task to update the send tag for 1378 * this session. 1379 */ 1380 mtx_pool_lock(mtxpool_sleep, tls); 1381 if (!tls->reset_pending) { 1382 (void) ktls_hold(tls); 1383 in_pcbref(inp); 1384 tls->inp = inp; 1385 tls->reset_pending = true; 1386 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1387 } 1388 mtx_pool_unlock(mtxpool_sleep, tls); 1389 return (ENOBUFS); 1390 } 1391 1392 #ifdef RATELIMIT 1393 int 1394 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1395 { 1396 union if_snd_tag_modify_params params = { 1397 .rate_limit.max_rate = max_pacing_rate, 1398 .rate_limit.flags = M_NOWAIT, 1399 }; 1400 struct m_snd_tag *mst; 1401 struct ifnet *ifp; 1402 int error; 1403 1404 /* Can't get to the inp, but it should be locked. */ 1405 /* INP_LOCK_ASSERT(inp); */ 1406 1407 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1408 1409 if (tls->snd_tag == NULL) { 1410 /* 1411 * Resetting send tag, ignore this change. The 1412 * pending reset may or may not see this updated rate 1413 * in the tcpcb. If it doesn't, we will just lose 1414 * this rate change. 1415 */ 1416 return (0); 1417 } 1418 1419 MPASS(tls->snd_tag != NULL); 1420 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1421 1422 mst = tls->snd_tag; 1423 ifp = mst->ifp; 1424 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1425 } 1426 #endif 1427 #endif 1428 1429 void 1430 ktls_destroy(struct ktls_session *tls) 1431 { 1432 1433 ktls_cleanup(tls); 1434 uma_zfree(ktls_session_zone, tls); 1435 } 1436 1437 void 1438 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1439 { 1440 1441 for (; m != NULL; m = m->m_next) { 1442 KASSERT((m->m_flags & M_EXTPG) != 0, 1443 ("ktls_seq: mapped mbuf %p", m)); 1444 1445 m->m_epg_seqno = sb->sb_tls_seqno; 1446 sb->sb_tls_seqno++; 1447 } 1448 } 1449 1450 /* 1451 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1452 * mbuf in the chain must be an unmapped mbuf. The payload of the 1453 * mbuf must be populated with the payload of each TLS record. 1454 * 1455 * The record_type argument specifies the TLS record type used when 1456 * populating the TLS header. 1457 * 1458 * The enq_count argument on return is set to the number of pages of 1459 * payload data for this entire chain that need to be encrypted via SW 1460 * encryption. The returned value should be passed to ktls_enqueue 1461 * when scheduling encryption of this chain of mbufs. To handle the 1462 * special case of empty fragments for TLS 1.0 sessions, an empty 1463 * fragment counts as one page. 1464 */ 1465 void 1466 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1467 uint8_t record_type) 1468 { 1469 struct tls_record_layer *tlshdr; 1470 struct mbuf *m; 1471 uint64_t *noncep; 1472 uint16_t tls_len; 1473 int maxlen; 1474 1475 maxlen = tls->params.max_frame_len; 1476 *enq_cnt = 0; 1477 for (m = top; m != NULL; m = m->m_next) { 1478 /* 1479 * All mbufs in the chain should be TLS records whose 1480 * payload does not exceed the maximum frame length. 1481 * 1482 * Empty TLS records are permitted when using CBC. 1483 */ 1484 KASSERT(m->m_len <= maxlen && 1485 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1486 m->m_len >= 0 : m->m_len > 0), 1487 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1488 1489 /* 1490 * TLS frames require unmapped mbufs to store session 1491 * info. 1492 */ 1493 KASSERT((m->m_flags & M_EXTPG) != 0, 1494 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1495 1496 tls_len = m->m_len; 1497 1498 /* Save a reference to the session. */ 1499 m->m_epg_tls = ktls_hold(tls); 1500 1501 m->m_epg_hdrlen = tls->params.tls_hlen; 1502 m->m_epg_trllen = tls->params.tls_tlen; 1503 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1504 int bs, delta; 1505 1506 /* 1507 * AES-CBC pads messages to a multiple of the 1508 * block size. Note that the padding is 1509 * applied after the digest and the encryption 1510 * is done on the "plaintext || mac || padding". 1511 * At least one byte of padding is always 1512 * present. 1513 * 1514 * Compute the final trailer length assuming 1515 * at most one block of padding. 1516 * tls->params.tls_tlen is the maximum 1517 * possible trailer length (padding + digest). 1518 * delta holds the number of excess padding 1519 * bytes if the maximum were used. Those 1520 * extra bytes are removed. 1521 */ 1522 bs = tls->params.tls_bs; 1523 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1524 m->m_epg_trllen -= delta; 1525 } 1526 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1527 1528 /* Populate the TLS header. */ 1529 tlshdr = (void *)m->m_epg_hdr; 1530 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1531 1532 /* 1533 * TLS 1.3 masquarades as TLS 1.2 with a record type 1534 * of TLS_RLTYPE_APP. 1535 */ 1536 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1537 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1538 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1539 tlshdr->tls_type = TLS_RLTYPE_APP; 1540 /* save the real record type for later */ 1541 m->m_epg_record_type = record_type; 1542 m->m_epg_trail[0] = record_type; 1543 } else { 1544 tlshdr->tls_vminor = tls->params.tls_vminor; 1545 tlshdr->tls_type = record_type; 1546 } 1547 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1548 1549 /* 1550 * Store nonces / explicit IVs after the end of the 1551 * TLS header. 1552 * 1553 * For GCM with TLS 1.2, an 8 byte nonce is copied 1554 * from the end of the IV. The nonce is then 1555 * incremented for use by the next record. 1556 * 1557 * For CBC, a random nonce is inserted for TLS 1.1+. 1558 */ 1559 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1560 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1561 noncep = (uint64_t *)(tls->params.iv + 8); 1562 be64enc(tlshdr + 1, *noncep); 1563 (*noncep)++; 1564 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1565 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1566 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1567 1568 /* 1569 * When using SW encryption, mark the mbuf not ready. 1570 * It will be marked ready via sbready() after the 1571 * record has been encrypted. 1572 * 1573 * When using ifnet TLS, unencrypted TLS records are 1574 * sent down the stack to the NIC. 1575 */ 1576 if (tls->mode == TCP_TLS_MODE_SW) { 1577 m->m_flags |= M_NOTREADY; 1578 m->m_epg_nrdy = m->m_epg_npgs; 1579 if (__predict_false(tls_len == 0)) { 1580 /* TLS 1.0 empty fragment. */ 1581 *enq_cnt += 1; 1582 } else 1583 *enq_cnt += m->m_epg_npgs; 1584 } 1585 } 1586 } 1587 1588 void 1589 ktls_check_rx(struct sockbuf *sb) 1590 { 1591 struct tls_record_layer hdr; 1592 struct ktls_wq *wq; 1593 struct socket *so; 1594 bool running; 1595 1596 SOCKBUF_LOCK_ASSERT(sb); 1597 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1598 __func__, sb)); 1599 so = __containerof(sb, struct socket, so_rcv); 1600 1601 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1602 return; 1603 1604 /* Is there enough queued for a TLS header? */ 1605 if (sb->sb_tlscc < sizeof(hdr)) { 1606 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1607 so->so_error = EMSGSIZE; 1608 return; 1609 } 1610 1611 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1612 1613 /* Is the entire record queued? */ 1614 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1615 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1616 so->so_error = EMSGSIZE; 1617 return; 1618 } 1619 1620 sb->sb_flags |= SB_TLS_RX_RUNNING; 1621 1622 soref(so); 1623 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1624 mtx_lock(&wq->mtx); 1625 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1626 running = wq->running; 1627 mtx_unlock(&wq->mtx); 1628 if (!running) 1629 wakeup(wq); 1630 counter_u64_add(ktls_cnt_rx_queued, 1); 1631 } 1632 1633 static struct mbuf * 1634 ktls_detach_record(struct sockbuf *sb, int len) 1635 { 1636 struct mbuf *m, *n, *top; 1637 int remain; 1638 1639 SOCKBUF_LOCK_ASSERT(sb); 1640 MPASS(len <= sb->sb_tlscc); 1641 1642 /* 1643 * If TLS chain is the exact size of the record, 1644 * just grab the whole record. 1645 */ 1646 top = sb->sb_mtls; 1647 if (sb->sb_tlscc == len) { 1648 sb->sb_mtls = NULL; 1649 sb->sb_mtlstail = NULL; 1650 goto out; 1651 } 1652 1653 /* 1654 * While it would be nice to use m_split() here, we need 1655 * to know exactly what m_split() allocates to update the 1656 * accounting, so do it inline instead. 1657 */ 1658 remain = len; 1659 for (m = top; remain > m->m_len; m = m->m_next) 1660 remain -= m->m_len; 1661 1662 /* Easy case: don't have to split 'm'. */ 1663 if (remain == m->m_len) { 1664 sb->sb_mtls = m->m_next; 1665 if (sb->sb_mtls == NULL) 1666 sb->sb_mtlstail = NULL; 1667 m->m_next = NULL; 1668 goto out; 1669 } 1670 1671 /* 1672 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1673 * with M_NOWAIT first. 1674 */ 1675 n = m_get(M_NOWAIT, MT_DATA); 1676 if (n == NULL) { 1677 /* 1678 * Use M_WAITOK with socket buffer unlocked. If 1679 * 'sb_mtls' changes while the lock is dropped, return 1680 * NULL to force the caller to retry. 1681 */ 1682 SOCKBUF_UNLOCK(sb); 1683 1684 n = m_get(M_WAITOK, MT_DATA); 1685 1686 SOCKBUF_LOCK(sb); 1687 if (sb->sb_mtls != top) { 1688 m_free(n); 1689 return (NULL); 1690 } 1691 } 1692 n->m_flags |= M_NOTREADY; 1693 1694 /* Store remainder in 'n'. */ 1695 n->m_len = m->m_len - remain; 1696 if (m->m_flags & M_EXT) { 1697 n->m_data = m->m_data + remain; 1698 mb_dupcl(n, m); 1699 } else { 1700 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1701 } 1702 1703 /* Trim 'm' and update accounting. */ 1704 m->m_len -= n->m_len; 1705 sb->sb_tlscc -= n->m_len; 1706 sb->sb_ccc -= n->m_len; 1707 1708 /* Account for 'n'. */ 1709 sballoc_ktls_rx(sb, n); 1710 1711 /* Insert 'n' into the TLS chain. */ 1712 sb->sb_mtls = n; 1713 n->m_next = m->m_next; 1714 if (sb->sb_mtlstail == m) 1715 sb->sb_mtlstail = n; 1716 1717 /* Detach the record from the TLS chain. */ 1718 m->m_next = NULL; 1719 1720 out: 1721 MPASS(m_length(top, NULL) == len); 1722 for (m = top; m != NULL; m = m->m_next) 1723 sbfree_ktls_rx(sb, m); 1724 sb->sb_tlsdcc = len; 1725 sb->sb_ccc += len; 1726 SBCHECK(sb); 1727 return (top); 1728 } 1729 1730 static void 1731 ktls_decrypt(struct socket *so) 1732 { 1733 char tls_header[MBUF_PEXT_HDR_LEN]; 1734 struct ktls_session *tls; 1735 struct sockbuf *sb; 1736 struct tls_record_layer *hdr; 1737 struct tls_get_record tgr; 1738 struct mbuf *control, *data, *m; 1739 uint64_t seqno; 1740 int error, remain, tls_len, trail_len; 1741 1742 hdr = (struct tls_record_layer *)tls_header; 1743 sb = &so->so_rcv; 1744 SOCKBUF_LOCK(sb); 1745 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1746 ("%s: socket %p not running", __func__, so)); 1747 1748 tls = sb->sb_tls_info; 1749 MPASS(tls != NULL); 1750 1751 for (;;) { 1752 /* Is there enough queued for a TLS header? */ 1753 if (sb->sb_tlscc < tls->params.tls_hlen) 1754 break; 1755 1756 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1757 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1758 1759 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1760 hdr->tls_vminor != tls->params.tls_vminor) 1761 error = EINVAL; 1762 else if (tls_len < tls->params.tls_hlen || tls_len > 1763 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1764 tls->params.tls_tlen) 1765 error = EMSGSIZE; 1766 else 1767 error = 0; 1768 if (__predict_false(error != 0)) { 1769 /* 1770 * We have a corrupted record and are likely 1771 * out of sync. The connection isn't 1772 * recoverable at this point, so abort it. 1773 */ 1774 SOCKBUF_UNLOCK(sb); 1775 counter_u64_add(ktls_offload_corrupted_records, 1); 1776 1777 CURVNET_SET(so->so_vnet); 1778 so->so_proto->pr_usrreqs->pru_abort(so); 1779 so->so_error = error; 1780 CURVNET_RESTORE(); 1781 goto deref; 1782 } 1783 1784 /* Is the entire record queued? */ 1785 if (sb->sb_tlscc < tls_len) 1786 break; 1787 1788 /* 1789 * Split out the portion of the mbuf chain containing 1790 * this TLS record. 1791 */ 1792 data = ktls_detach_record(sb, tls_len); 1793 if (data == NULL) 1794 continue; 1795 MPASS(sb->sb_tlsdcc == tls_len); 1796 1797 seqno = sb->sb_tls_seqno; 1798 sb->sb_tls_seqno++; 1799 SBCHECK(sb); 1800 SOCKBUF_UNLOCK(sb); 1801 1802 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1803 if (error) { 1804 counter_u64_add(ktls_offload_failed_crypto, 1); 1805 1806 SOCKBUF_LOCK(sb); 1807 if (sb->sb_tlsdcc == 0) { 1808 /* 1809 * sbcut/drop/flush discarded these 1810 * mbufs. 1811 */ 1812 m_freem(data); 1813 break; 1814 } 1815 1816 /* 1817 * Drop this TLS record's data, but keep 1818 * decrypting subsequent records. 1819 */ 1820 sb->sb_ccc -= tls_len; 1821 sb->sb_tlsdcc = 0; 1822 1823 CURVNET_SET(so->so_vnet); 1824 so->so_error = EBADMSG; 1825 sorwakeup_locked(so); 1826 CURVNET_RESTORE(); 1827 1828 m_freem(data); 1829 1830 SOCKBUF_LOCK(sb); 1831 continue; 1832 } 1833 1834 /* Allocate the control mbuf. */ 1835 tgr.tls_type = hdr->tls_type; 1836 tgr.tls_vmajor = hdr->tls_vmajor; 1837 tgr.tls_vminor = hdr->tls_vminor; 1838 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1839 trail_len); 1840 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1841 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1842 1843 SOCKBUF_LOCK(sb); 1844 if (sb->sb_tlsdcc == 0) { 1845 /* sbcut/drop/flush discarded these mbufs. */ 1846 MPASS(sb->sb_tlscc == 0); 1847 m_freem(data); 1848 m_freem(control); 1849 break; 1850 } 1851 1852 /* 1853 * Clear the 'dcc' accounting in preparation for 1854 * adding the decrypted record. 1855 */ 1856 sb->sb_ccc -= tls_len; 1857 sb->sb_tlsdcc = 0; 1858 SBCHECK(sb); 1859 1860 /* If there is no payload, drop all of the data. */ 1861 if (tgr.tls_length == htobe16(0)) { 1862 m_freem(data); 1863 data = NULL; 1864 } else { 1865 /* Trim header. */ 1866 remain = tls->params.tls_hlen; 1867 while (remain > 0) { 1868 if (data->m_len > remain) { 1869 data->m_data += remain; 1870 data->m_len -= remain; 1871 break; 1872 } 1873 remain -= data->m_len; 1874 data = m_free(data); 1875 } 1876 1877 /* Trim trailer and clear M_NOTREADY. */ 1878 remain = be16toh(tgr.tls_length); 1879 m = data; 1880 for (m = data; remain > m->m_len; m = m->m_next) { 1881 m->m_flags &= ~M_NOTREADY; 1882 remain -= m->m_len; 1883 } 1884 m->m_len = remain; 1885 m_freem(m->m_next); 1886 m->m_next = NULL; 1887 m->m_flags &= ~M_NOTREADY; 1888 1889 /* Set EOR on the final mbuf. */ 1890 m->m_flags |= M_EOR; 1891 } 1892 1893 sbappendcontrol_locked(sb, data, control, 0); 1894 } 1895 1896 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1897 1898 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1899 so->so_error = EMSGSIZE; 1900 1901 sorwakeup_locked(so); 1902 1903 deref: 1904 SOCKBUF_UNLOCK_ASSERT(sb); 1905 1906 CURVNET_SET(so->so_vnet); 1907 SOCK_LOCK(so); 1908 sorele(so); 1909 CURVNET_RESTORE(); 1910 } 1911 1912 void 1913 ktls_enqueue_to_free(struct mbuf *m) 1914 { 1915 struct ktls_wq *wq; 1916 bool running; 1917 1918 /* Mark it for freeing. */ 1919 m->m_epg_flags |= EPG_FLAG_2FREE; 1920 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1921 mtx_lock(&wq->mtx); 1922 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1923 running = wq->running; 1924 mtx_unlock(&wq->mtx); 1925 if (!running) 1926 wakeup(wq); 1927 } 1928 1929 static void * 1930 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 1931 { 1932 void *buf; 1933 1934 if (m->m_epg_npgs <= 2) 1935 return (NULL); 1936 if (ktls_buffer_zone == NULL) 1937 return (NULL); 1938 if ((u_int)(ticks - wq->lastallocfail) < hz) { 1939 /* 1940 * Rate-limit allocation attempts after a failure. 1941 * ktls_buffer_import() will acquire a per-domain mutex to check 1942 * the free page queues and may fail consistently if memory is 1943 * fragmented. 1944 */ 1945 return (NULL); 1946 } 1947 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 1948 if (buf == NULL) 1949 wq->lastallocfail = ticks; 1950 return (buf); 1951 } 1952 1953 void 1954 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1955 { 1956 struct ktls_wq *wq; 1957 bool running; 1958 1959 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1960 (M_EXTPG | M_NOTREADY)), 1961 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1962 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1963 1964 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1965 1966 m->m_epg_enc_cnt = page_count; 1967 1968 /* 1969 * Save a pointer to the socket. The caller is responsible 1970 * for taking an additional reference via soref(). 1971 */ 1972 m->m_epg_so = so; 1973 1974 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1975 mtx_lock(&wq->mtx); 1976 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1977 running = wq->running; 1978 mtx_unlock(&wq->mtx); 1979 if (!running) 1980 wakeup(wq); 1981 counter_u64_add(ktls_cnt_tx_queued, 1); 1982 } 1983 1984 #define MAX_TLS_PAGES (1 + btoc(TLS_MAX_MSG_SIZE_V10_2)) 1985 1986 static __noinline void 1987 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 1988 { 1989 struct ktls_session *tls; 1990 struct socket *so; 1991 struct mbuf *m; 1992 vm_paddr_t parray[MAX_TLS_PAGES + 1]; 1993 struct iovec dst_iov[MAX_TLS_PAGES + 2]; 1994 vm_page_t pg; 1995 void *cbuf; 1996 int error, i, len, npages, off, total_pages; 1997 1998 so = top->m_epg_so; 1999 tls = top->m_epg_tls; 2000 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2001 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2002 #ifdef INVARIANTS 2003 top->m_epg_so = NULL; 2004 #endif 2005 total_pages = top->m_epg_enc_cnt; 2006 npages = 0; 2007 2008 /* 2009 * Encrypt the TLS records in the chain of mbufs starting with 2010 * 'top'. 'total_pages' gives us a total count of pages and is 2011 * used to know when we have finished encrypting the TLS 2012 * records originally queued with 'top'. 2013 * 2014 * NB: These mbufs are queued in the socket buffer and 2015 * 'm_next' is traversing the mbufs in the socket buffer. The 2016 * socket buffer lock is not held while traversing this chain. 2017 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2018 * pointers should be stable. However, the 'm_next' of the 2019 * last mbuf encrypted is not necessarily NULL. It can point 2020 * to other mbufs appended while 'top' was on the TLS work 2021 * queue. 2022 * 2023 * Each mbuf holds an entire TLS record. 2024 */ 2025 error = 0; 2026 for (m = top; npages != total_pages; m = m->m_next) { 2027 KASSERT(m->m_epg_tls == tls, 2028 ("different TLS sessions in a single mbuf chain: %p vs %p", 2029 tls, m->m_epg_tls)); 2030 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2031 (M_EXTPG | M_NOTREADY), 2032 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2033 KASSERT(npages + m->m_epg_npgs <= total_pages, 2034 ("page count mismatch: top %p, total_pages %d, m %p", top, 2035 total_pages, m)); 2036 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2037 ("page count %d larger than maximum frame length %d", 2038 m->m_epg_npgs, ktls_maxlen)); 2039 2040 /* 2041 * For anonymous mbufs, encryption is done in place. 2042 * For file-backed mbufs (from sendfile), anonymous 2043 * wired pages are allocated and used as the 2044 * encryption destination. 2045 */ 2046 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) { 2047 error = (*tls->sw_encrypt)(tls, m, NULL, 0); 2048 } else { 2049 if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2050 len = ptoa(m->m_epg_npgs - 1) + 2051 m->m_epg_last_len - m->m_epg_1st_off; 2052 dst_iov[0].iov_base = (char *)cbuf + 2053 m->m_epg_1st_off; 2054 dst_iov[0].iov_len = len; 2055 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2056 i = 1; 2057 } else { 2058 off = m->m_epg_1st_off; 2059 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2060 do { 2061 pg = vm_page_alloc(NULL, 0, 2062 VM_ALLOC_NORMAL | 2063 VM_ALLOC_NOOBJ | 2064 VM_ALLOC_NODUMP | 2065 VM_ALLOC_WIRED | 2066 VM_ALLOC_WAITFAIL); 2067 } while (pg == NULL); 2068 2069 len = m_epg_pagelen(m, i, off); 2070 parray[i] = VM_PAGE_TO_PHYS(pg); 2071 dst_iov[i].iov_base = 2072 (char *)(void *)PHYS_TO_DMAP( 2073 parray[i]) + off; 2074 dst_iov[i].iov_len = len; 2075 } 2076 } 2077 KASSERT(i + 1 <= nitems(dst_iov), 2078 ("dst_iov is too small")); 2079 dst_iov[i].iov_base = m->m_epg_trail; 2080 dst_iov[i].iov_len = m->m_epg_trllen; 2081 2082 error = (*tls->sw_encrypt)(tls, m, dst_iov, i + 1); 2083 2084 /* Free the old pages. */ 2085 m->m_ext.ext_free(m); 2086 2087 /* Replace them with the new pages. */ 2088 if (cbuf != NULL) { 2089 for (i = 0; i < m->m_epg_npgs; i++) 2090 m->m_epg_pa[i] = parray[0] + ptoa(i); 2091 2092 /* Contig pages should go back to the cache. */ 2093 m->m_ext.ext_free = ktls_free_mext_contig; 2094 } else { 2095 for (i = 0; i < m->m_epg_npgs; i++) 2096 m->m_epg_pa[i] = parray[i]; 2097 2098 /* Use the basic free routine. */ 2099 m->m_ext.ext_free = mb_free_mext_pgs; 2100 } 2101 2102 /* Pages are now writable. */ 2103 m->m_epg_flags |= EPG_FLAG_ANON; 2104 } 2105 if (error) { 2106 counter_u64_add(ktls_offload_failed_crypto, 1); 2107 break; 2108 } 2109 2110 if (__predict_false(m->m_epg_npgs == 0)) { 2111 /* TLS 1.0 empty fragment. */ 2112 npages++; 2113 } else 2114 npages += m->m_epg_npgs; 2115 2116 /* 2117 * Drop a reference to the session now that it is no 2118 * longer needed. Existing code depends on encrypted 2119 * records having no associated session vs 2120 * yet-to-be-encrypted records having an associated 2121 * session. 2122 */ 2123 m->m_epg_tls = NULL; 2124 ktls_free(tls); 2125 } 2126 2127 CURVNET_SET(so->so_vnet); 2128 if (error == 0) { 2129 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2130 } else { 2131 so->so_proto->pr_usrreqs->pru_abort(so); 2132 so->so_error = EIO; 2133 mb_free_notready(top, total_pages); 2134 } 2135 2136 SOCK_LOCK(so); 2137 sorele(so); 2138 CURVNET_RESTORE(); 2139 } 2140 2141 static void 2142 ktls_work_thread(void *ctx) 2143 { 2144 struct ktls_wq *wq = ctx; 2145 struct mbuf *m, *n; 2146 struct socket *so, *son; 2147 STAILQ_HEAD(, mbuf) local_m_head; 2148 STAILQ_HEAD(, socket) local_so_head; 2149 2150 if (ktls_bind_threads > 1) { 2151 curthread->td_domain.dr_policy = 2152 DOMAINSET_PREF(PCPU_GET(domain)); 2153 } 2154 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2155 fpu_kern_thread(0); 2156 #endif 2157 for (;;) { 2158 mtx_lock(&wq->mtx); 2159 while (STAILQ_EMPTY(&wq->m_head) && 2160 STAILQ_EMPTY(&wq->so_head)) { 2161 wq->running = false; 2162 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2163 wq->running = true; 2164 } 2165 2166 STAILQ_INIT(&local_m_head); 2167 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2168 STAILQ_INIT(&local_so_head); 2169 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2170 mtx_unlock(&wq->mtx); 2171 2172 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2173 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2174 ktls_free(m->m_epg_tls); 2175 uma_zfree(zone_mbuf, m); 2176 } else { 2177 ktls_encrypt(wq, m); 2178 counter_u64_add(ktls_cnt_tx_queued, -1); 2179 } 2180 } 2181 2182 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2183 ktls_decrypt(so); 2184 counter_u64_add(ktls_cnt_rx_queued, -1); 2185 } 2186 } 2187 } 2188