1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #ifdef RSS 60 #include <net/netisr.h> 61 #include <net/rss_config.h> 62 #endif 63 #include <net/route.h> 64 #include <net/route/nhop.h> 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #endif 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/xform.h> 74 #include <vm/uma_dbg.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 79 struct ktls_wq { 80 struct mtx mtx; 81 STAILQ_HEAD(, mbuf) m_head; 82 STAILQ_HEAD(, socket) so_head; 83 bool running; 84 } __aligned(CACHE_LINE_SIZE); 85 86 static struct ktls_wq *ktls_wq; 87 static struct proc *ktls_proc; 88 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 89 static struct rmlock ktls_backends_lock; 90 static uma_zone_t ktls_session_zone; 91 static uint16_t ktls_cpuid_lookup[MAXCPU]; 92 93 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 94 "Kernel TLS offload"); 95 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 96 "Kernel TLS offload stats"); 97 98 static int ktls_allow_unload; 99 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 100 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 101 102 #ifdef RSS 103 static int ktls_bind_threads = 1; 104 #else 105 static int ktls_bind_threads; 106 #endif 107 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 108 &ktls_bind_threads, 0, 109 "Bind crypto threads to cores or domains at boot"); 110 111 static u_int ktls_maxlen = 16384; 112 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 113 &ktls_maxlen, 0, "Maximum TLS record size"); 114 115 static int ktls_number_threads; 116 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 117 &ktls_number_threads, 0, 118 "Number of TLS threads in thread-pool"); 119 120 static bool ktls_offload_enable; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 122 &ktls_offload_enable, 0, 123 "Enable support for kernel TLS offload"); 124 125 static bool ktls_cbc_enable = true; 126 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 127 &ktls_cbc_enable, 1, 128 "Enable Support of AES-CBC crypto for kernel TLS"); 129 130 static counter_u64_t ktls_tasks_active; 131 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 132 &ktls_tasks_active, "Number of active tasks"); 133 134 static counter_u64_t ktls_cnt_tx_queued; 135 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 136 &ktls_cnt_tx_queued, 137 "Number of TLS records in queue to tasks for SW encryption"); 138 139 static counter_u64_t ktls_cnt_rx_queued; 140 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 141 &ktls_cnt_rx_queued, 142 "Number of TLS sockets in queue to tasks for SW decryption"); 143 144 static counter_u64_t ktls_offload_total; 145 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 146 CTLFLAG_RD, &ktls_offload_total, 147 "Total successful TLS setups (parameters set)"); 148 149 static counter_u64_t ktls_offload_enable_calls; 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 151 CTLFLAG_RD, &ktls_offload_enable_calls, 152 "Total number of TLS enable calls made"); 153 154 static counter_u64_t ktls_offload_active; 155 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 156 &ktls_offload_active, "Total Active TLS sessions"); 157 158 static counter_u64_t ktls_offload_corrupted_records; 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 160 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 161 162 static counter_u64_t ktls_offload_failed_crypto; 163 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 164 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 165 166 static counter_u64_t ktls_switch_to_ifnet; 167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 168 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 169 170 static counter_u64_t ktls_switch_to_sw; 171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 172 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 173 174 static counter_u64_t ktls_switch_failed; 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 176 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 177 178 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 179 "Software TLS session stats"); 180 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 181 "Hardware (ifnet) TLS session stats"); 182 #ifdef TCP_OFFLOAD 183 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 184 "TOE TLS session stats"); 185 #endif 186 187 static counter_u64_t ktls_sw_cbc; 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 189 "Active number of software TLS sessions using AES-CBC"); 190 191 static counter_u64_t ktls_sw_gcm; 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 193 "Active number of software TLS sessions using AES-GCM"); 194 195 static counter_u64_t ktls_ifnet_cbc; 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 197 &ktls_ifnet_cbc, 198 "Active number of ifnet TLS sessions using AES-CBC"); 199 200 static counter_u64_t ktls_ifnet_gcm; 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 202 &ktls_ifnet_gcm, 203 "Active number of ifnet TLS sessions using AES-GCM"); 204 205 static counter_u64_t ktls_ifnet_reset; 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 207 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 208 209 static counter_u64_t ktls_ifnet_reset_dropped; 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 211 &ktls_ifnet_reset_dropped, 212 "TLS sessions dropped after failing to update ifnet send tag"); 213 214 static counter_u64_t ktls_ifnet_reset_failed; 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 216 &ktls_ifnet_reset_failed, 217 "TLS sessions that failed to allocate a new ifnet send tag"); 218 219 static int ktls_ifnet_permitted; 220 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 221 &ktls_ifnet_permitted, 1, 222 "Whether to permit hardware (ifnet) TLS sessions"); 223 224 #ifdef TCP_OFFLOAD 225 static counter_u64_t ktls_toe_cbc; 226 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 227 &ktls_toe_cbc, 228 "Active number of TOE TLS sessions using AES-CBC"); 229 230 static counter_u64_t ktls_toe_gcm; 231 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 232 &ktls_toe_gcm, 233 "Active number of TOE TLS sessions using AES-GCM"); 234 #endif 235 236 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 237 238 static void ktls_cleanup(struct ktls_session *tls); 239 #if defined(INET) || defined(INET6) 240 static void ktls_reset_send_tag(void *context, int pending); 241 #endif 242 static void ktls_work_thread(void *ctx); 243 244 int 245 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 246 { 247 struct ktls_crypto_backend *curr_be, *tmp; 248 249 if (be->api_version != KTLS_API_VERSION) { 250 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 251 be->api_version, KTLS_API_VERSION, 252 be->name); 253 return (EINVAL); 254 } 255 256 rm_wlock(&ktls_backends_lock); 257 printf("KTLS: Registering crypto method %s with prio %d\n", 258 be->name, be->prio); 259 if (LIST_EMPTY(&ktls_backends)) { 260 LIST_INSERT_HEAD(&ktls_backends, be, next); 261 } else { 262 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 263 if (curr_be->prio < be->prio) { 264 LIST_INSERT_BEFORE(curr_be, be, next); 265 break; 266 } 267 if (LIST_NEXT(curr_be, next) == NULL) { 268 LIST_INSERT_AFTER(curr_be, be, next); 269 break; 270 } 271 } 272 } 273 rm_wunlock(&ktls_backends_lock); 274 return (0); 275 } 276 277 int 278 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 279 { 280 struct ktls_crypto_backend *tmp; 281 282 /* 283 * Don't error if the backend isn't registered. This permits 284 * MOD_UNLOAD handlers to use this function unconditionally. 285 */ 286 rm_wlock(&ktls_backends_lock); 287 LIST_FOREACH(tmp, &ktls_backends, next) { 288 if (tmp == be) 289 break; 290 } 291 if (tmp == NULL) { 292 rm_wunlock(&ktls_backends_lock); 293 return (0); 294 } 295 296 if (!ktls_allow_unload) { 297 rm_wunlock(&ktls_backends_lock); 298 printf( 299 "KTLS: Deregistering crypto method %s is not supported\n", 300 be->name); 301 return (EBUSY); 302 } 303 304 if (be->use_count) { 305 rm_wunlock(&ktls_backends_lock); 306 return (EBUSY); 307 } 308 309 LIST_REMOVE(be, next); 310 rm_wunlock(&ktls_backends_lock); 311 return (0); 312 } 313 314 #if defined(INET) || defined(INET6) 315 static u_int 316 ktls_get_cpu(struct socket *so) 317 { 318 struct inpcb *inp; 319 u_int cpuid; 320 321 inp = sotoinpcb(so); 322 #ifdef RSS 323 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 324 if (cpuid != NETISR_CPUID_NONE) 325 return (cpuid); 326 #endif 327 /* 328 * Just use the flowid to shard connections in a repeatable 329 * fashion. Note that some crypto backends rely on the 330 * serialization provided by having the same connection use 331 * the same queue. 332 */ 333 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 334 return (cpuid); 335 } 336 #endif 337 338 static void 339 ktls_init(void *dummy __unused) 340 { 341 struct thread *td; 342 struct pcpu *pc; 343 cpuset_t mask; 344 int error, i; 345 346 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 347 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK); 348 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK); 349 ktls_offload_total = counter_u64_alloc(M_WAITOK); 350 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 351 ktls_offload_active = counter_u64_alloc(M_WAITOK); 352 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK); 353 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 354 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 355 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 356 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 357 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 358 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 359 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 360 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 361 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 362 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 363 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 364 #ifdef TCP_OFFLOAD 365 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 366 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 367 #endif 368 369 rm_init(&ktls_backends_lock, "ktls backends"); 370 LIST_INIT(&ktls_backends); 371 372 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 373 M_WAITOK | M_ZERO); 374 375 ktls_session_zone = uma_zcreate("ktls_session", 376 sizeof(struct ktls_session), 377 NULL, NULL, NULL, NULL, 378 UMA_ALIGN_CACHE, 0); 379 380 /* 381 * Initialize the workqueues to run the TLS work. We create a 382 * work queue for each CPU. 383 */ 384 CPU_FOREACH(i) { 385 STAILQ_INIT(&ktls_wq[i].m_head); 386 STAILQ_INIT(&ktls_wq[i].so_head); 387 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 388 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 389 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 390 if (error) 391 panic("Can't add KTLS thread %d error %d", i, error); 392 393 /* 394 * Bind threads to cores. If ktls_bind_threads is > 395 * 1, then we bind to the NUMA domain. 396 */ 397 if (ktls_bind_threads) { 398 if (ktls_bind_threads > 1) { 399 pc = pcpu_find(i); 400 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 401 } else { 402 CPU_SETOF(i, &mask); 403 } 404 error = cpuset_setthread(td->td_tid, &mask); 405 if (error) 406 panic( 407 "Unable to bind KTLS thread for CPU %d error %d", 408 i, error); 409 } 410 ktls_cpuid_lookup[ktls_number_threads] = i; 411 ktls_number_threads++; 412 } 413 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 414 } 415 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 416 417 #if defined(INET) || defined(INET6) 418 static int 419 ktls_create_session(struct socket *so, struct tls_enable *en, 420 struct ktls_session **tlsp) 421 { 422 struct ktls_session *tls; 423 int error; 424 425 /* Only TLS 1.0 - 1.3 are supported. */ 426 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 427 return (EINVAL); 428 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 429 en->tls_vminor > TLS_MINOR_VER_THREE) 430 return (EINVAL); 431 432 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 433 return (EINVAL); 434 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 435 return (EINVAL); 436 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 437 return (EINVAL); 438 439 /* All supported algorithms require a cipher key. */ 440 if (en->cipher_key_len == 0) 441 return (EINVAL); 442 443 /* No flags are currently supported. */ 444 if (en->flags != 0) 445 return (EINVAL); 446 447 /* Common checks for supported algorithms. */ 448 switch (en->cipher_algorithm) { 449 case CRYPTO_AES_NIST_GCM_16: 450 /* 451 * auth_algorithm isn't used, but permit GMAC values 452 * for compatibility. 453 */ 454 switch (en->auth_algorithm) { 455 case 0: 456 #ifdef COMPAT_FREEBSD12 457 /* XXX: Really 13.0-current COMPAT. */ 458 case CRYPTO_AES_128_NIST_GMAC: 459 case CRYPTO_AES_192_NIST_GMAC: 460 case CRYPTO_AES_256_NIST_GMAC: 461 #endif 462 break; 463 default: 464 return (EINVAL); 465 } 466 if (en->auth_key_len != 0) 467 return (EINVAL); 468 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 469 en->iv_len != TLS_AEAD_GCM_LEN) || 470 (en->tls_vminor == TLS_MINOR_VER_THREE && 471 en->iv_len != TLS_1_3_GCM_IV_LEN)) 472 return (EINVAL); 473 break; 474 case CRYPTO_AES_CBC: 475 switch (en->auth_algorithm) { 476 case CRYPTO_SHA1_HMAC: 477 /* 478 * TLS 1.0 requires an implicit IV. TLS 1.1+ 479 * all use explicit IVs. 480 */ 481 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 482 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 483 return (EINVAL); 484 break; 485 } 486 487 /* FALLTHROUGH */ 488 case CRYPTO_SHA2_256_HMAC: 489 case CRYPTO_SHA2_384_HMAC: 490 /* Ignore any supplied IV. */ 491 en->iv_len = 0; 492 break; 493 default: 494 return (EINVAL); 495 } 496 if (en->auth_key_len == 0) 497 return (EINVAL); 498 break; 499 default: 500 return (EINVAL); 501 } 502 503 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 504 505 counter_u64_add(ktls_offload_active, 1); 506 507 refcount_init(&tls->refcount, 1); 508 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 509 510 tls->wq_index = ktls_get_cpu(so); 511 512 tls->params.cipher_algorithm = en->cipher_algorithm; 513 tls->params.auth_algorithm = en->auth_algorithm; 514 tls->params.tls_vmajor = en->tls_vmajor; 515 tls->params.tls_vminor = en->tls_vminor; 516 tls->params.flags = en->flags; 517 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 518 519 /* Set the header and trailer lengths. */ 520 tls->params.tls_hlen = sizeof(struct tls_record_layer); 521 switch (en->cipher_algorithm) { 522 case CRYPTO_AES_NIST_GCM_16: 523 /* 524 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 525 * nonce. TLS 1.3 uses a 12 byte implicit IV. 526 */ 527 if (en->tls_vminor < TLS_MINOR_VER_THREE) 528 tls->params.tls_hlen += sizeof(uint64_t); 529 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 530 531 /* 532 * TLS 1.3 includes optional padding which we 533 * do not support, and also puts the "real" record 534 * type at the end of the encrypted data. 535 */ 536 if (en->tls_vminor == TLS_MINOR_VER_THREE) 537 tls->params.tls_tlen += sizeof(uint8_t); 538 539 tls->params.tls_bs = 1; 540 break; 541 case CRYPTO_AES_CBC: 542 switch (en->auth_algorithm) { 543 case CRYPTO_SHA1_HMAC: 544 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 545 /* Implicit IV, no nonce. */ 546 } else { 547 tls->params.tls_hlen += AES_BLOCK_LEN; 548 } 549 tls->params.tls_tlen = AES_BLOCK_LEN + 550 SHA1_HASH_LEN; 551 break; 552 case CRYPTO_SHA2_256_HMAC: 553 tls->params.tls_hlen += AES_BLOCK_LEN; 554 tls->params.tls_tlen = AES_BLOCK_LEN + 555 SHA2_256_HASH_LEN; 556 break; 557 case CRYPTO_SHA2_384_HMAC: 558 tls->params.tls_hlen += AES_BLOCK_LEN; 559 tls->params.tls_tlen = AES_BLOCK_LEN + 560 SHA2_384_HASH_LEN; 561 break; 562 default: 563 panic("invalid hmac"); 564 } 565 tls->params.tls_bs = AES_BLOCK_LEN; 566 break; 567 default: 568 panic("invalid cipher"); 569 } 570 571 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 572 ("TLS header length too long: %d", tls->params.tls_hlen)); 573 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 574 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 575 576 if (en->auth_key_len != 0) { 577 tls->params.auth_key_len = en->auth_key_len; 578 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 579 M_WAITOK); 580 error = copyin(en->auth_key, tls->params.auth_key, 581 en->auth_key_len); 582 if (error) 583 goto out; 584 } 585 586 tls->params.cipher_key_len = en->cipher_key_len; 587 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 588 error = copyin(en->cipher_key, tls->params.cipher_key, 589 en->cipher_key_len); 590 if (error) 591 goto out; 592 593 /* 594 * This holds the implicit portion of the nonce for GCM and 595 * the initial implicit IV for TLS 1.0. The explicit portions 596 * of the IV are generated in ktls_frame(). 597 */ 598 if (en->iv_len != 0) { 599 tls->params.iv_len = en->iv_len; 600 error = copyin(en->iv, tls->params.iv, en->iv_len); 601 if (error) 602 goto out; 603 604 /* 605 * For TLS 1.2, generate an 8-byte nonce as a counter 606 * to generate unique explicit IVs. 607 * 608 * Store this counter in the last 8 bytes of the IV 609 * array so that it is 8-byte aligned. 610 */ 611 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 612 en->tls_vminor == TLS_MINOR_VER_TWO) 613 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 614 } 615 616 *tlsp = tls; 617 return (0); 618 619 out: 620 ktls_cleanup(tls); 621 return (error); 622 } 623 624 static struct ktls_session * 625 ktls_clone_session(struct ktls_session *tls) 626 { 627 struct ktls_session *tls_new; 628 629 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 630 631 counter_u64_add(ktls_offload_active, 1); 632 633 refcount_init(&tls_new->refcount, 1); 634 635 /* Copy fields from existing session. */ 636 tls_new->params = tls->params; 637 tls_new->wq_index = tls->wq_index; 638 639 /* Deep copy keys. */ 640 if (tls_new->params.auth_key != NULL) { 641 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 642 M_KTLS, M_WAITOK); 643 memcpy(tls_new->params.auth_key, tls->params.auth_key, 644 tls->params.auth_key_len); 645 } 646 647 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 648 M_WAITOK); 649 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 650 tls->params.cipher_key_len); 651 652 return (tls_new); 653 } 654 #endif 655 656 static void 657 ktls_cleanup(struct ktls_session *tls) 658 { 659 660 counter_u64_add(ktls_offload_active, -1); 661 switch (tls->mode) { 662 case TCP_TLS_MODE_SW: 663 MPASS(tls->be != NULL); 664 switch (tls->params.cipher_algorithm) { 665 case CRYPTO_AES_CBC: 666 counter_u64_add(ktls_sw_cbc, -1); 667 break; 668 case CRYPTO_AES_NIST_GCM_16: 669 counter_u64_add(ktls_sw_gcm, -1); 670 break; 671 } 672 tls->free(tls); 673 break; 674 case TCP_TLS_MODE_IFNET: 675 switch (tls->params.cipher_algorithm) { 676 case CRYPTO_AES_CBC: 677 counter_u64_add(ktls_ifnet_cbc, -1); 678 break; 679 case CRYPTO_AES_NIST_GCM_16: 680 counter_u64_add(ktls_ifnet_gcm, -1); 681 break; 682 } 683 if (tls->snd_tag != NULL) 684 m_snd_tag_rele(tls->snd_tag); 685 break; 686 #ifdef TCP_OFFLOAD 687 case TCP_TLS_MODE_TOE: 688 switch (tls->params.cipher_algorithm) { 689 case CRYPTO_AES_CBC: 690 counter_u64_add(ktls_toe_cbc, -1); 691 break; 692 case CRYPTO_AES_NIST_GCM_16: 693 counter_u64_add(ktls_toe_gcm, -1); 694 break; 695 } 696 break; 697 #endif 698 } 699 if (tls->params.auth_key != NULL) { 700 zfree(tls->params.auth_key, M_KTLS); 701 tls->params.auth_key = NULL; 702 tls->params.auth_key_len = 0; 703 } 704 if (tls->params.cipher_key != NULL) { 705 zfree(tls->params.cipher_key, M_KTLS); 706 tls->params.cipher_key = NULL; 707 tls->params.cipher_key_len = 0; 708 } 709 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 710 } 711 712 #if defined(INET) || defined(INET6) 713 714 #ifdef TCP_OFFLOAD 715 static int 716 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 717 { 718 struct inpcb *inp; 719 struct tcpcb *tp; 720 int error; 721 722 inp = so->so_pcb; 723 INP_WLOCK(inp); 724 if (inp->inp_flags2 & INP_FREED) { 725 INP_WUNLOCK(inp); 726 return (ECONNRESET); 727 } 728 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 729 INP_WUNLOCK(inp); 730 return (ECONNRESET); 731 } 732 if (inp->inp_socket == NULL) { 733 INP_WUNLOCK(inp); 734 return (ECONNRESET); 735 } 736 tp = intotcpcb(inp); 737 if (tp->tod == NULL) { 738 INP_WUNLOCK(inp); 739 return (EOPNOTSUPP); 740 } 741 742 error = tcp_offload_alloc_tls_session(tp, tls, direction); 743 INP_WUNLOCK(inp); 744 if (error == 0) { 745 tls->mode = TCP_TLS_MODE_TOE; 746 switch (tls->params.cipher_algorithm) { 747 case CRYPTO_AES_CBC: 748 counter_u64_add(ktls_toe_cbc, 1); 749 break; 750 case CRYPTO_AES_NIST_GCM_16: 751 counter_u64_add(ktls_toe_gcm, 1); 752 break; 753 } 754 } 755 return (error); 756 } 757 #endif 758 759 /* 760 * Common code used when first enabling ifnet TLS on a connection or 761 * when allocating a new ifnet TLS session due to a routing change. 762 * This function allocates a new TLS send tag on whatever interface 763 * the connection is currently routed over. 764 */ 765 static int 766 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 767 struct m_snd_tag **mstp) 768 { 769 union if_snd_tag_alloc_params params; 770 struct ifnet *ifp; 771 struct nhop_object *nh; 772 struct tcpcb *tp; 773 int error; 774 775 INP_RLOCK(inp); 776 if (inp->inp_flags2 & INP_FREED) { 777 INP_RUNLOCK(inp); 778 return (ECONNRESET); 779 } 780 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 781 INP_RUNLOCK(inp); 782 return (ECONNRESET); 783 } 784 if (inp->inp_socket == NULL) { 785 INP_RUNLOCK(inp); 786 return (ECONNRESET); 787 } 788 tp = intotcpcb(inp); 789 790 /* 791 * Check administrative controls on ifnet TLS to determine if 792 * ifnet TLS should be denied. 793 * 794 * - Always permit 'force' requests. 795 * - ktls_ifnet_permitted == 0: always deny. 796 */ 797 if (!force && ktls_ifnet_permitted == 0) { 798 INP_RUNLOCK(inp); 799 return (ENXIO); 800 } 801 802 /* 803 * XXX: Use the cached route in the inpcb to find the 804 * interface. This should perhaps instead use 805 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 806 * enabled after a connection has completed key negotiation in 807 * userland, the cached route will be present in practice. 808 */ 809 nh = inp->inp_route.ro_nh; 810 if (nh == NULL) { 811 INP_RUNLOCK(inp); 812 return (ENXIO); 813 } 814 ifp = nh->nh_ifp; 815 if_ref(ifp); 816 817 params.hdr.type = IF_SND_TAG_TYPE_TLS; 818 params.hdr.flowid = inp->inp_flowid; 819 params.hdr.flowtype = inp->inp_flowtype; 820 params.hdr.numa_domain = inp->inp_numa_domain; 821 params.tls.inp = inp; 822 params.tls.tls = tls; 823 INP_RUNLOCK(inp); 824 825 if (ifp->if_snd_tag_alloc == NULL) { 826 error = EOPNOTSUPP; 827 goto out; 828 } 829 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 830 error = EOPNOTSUPP; 831 goto out; 832 } 833 if (inp->inp_vflag & INP_IPV6) { 834 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 835 error = EOPNOTSUPP; 836 goto out; 837 } 838 } else { 839 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 840 error = EOPNOTSUPP; 841 goto out; 842 } 843 } 844 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 845 out: 846 if_rele(ifp); 847 return (error); 848 } 849 850 static int 851 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 852 { 853 struct m_snd_tag *mst; 854 int error; 855 856 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 857 if (error == 0) { 858 tls->mode = TCP_TLS_MODE_IFNET; 859 tls->snd_tag = mst; 860 switch (tls->params.cipher_algorithm) { 861 case CRYPTO_AES_CBC: 862 counter_u64_add(ktls_ifnet_cbc, 1); 863 break; 864 case CRYPTO_AES_NIST_GCM_16: 865 counter_u64_add(ktls_ifnet_gcm, 1); 866 break; 867 } 868 } 869 return (error); 870 } 871 872 static int 873 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 874 { 875 struct rm_priotracker prio; 876 struct ktls_crypto_backend *be; 877 878 /* 879 * Choose the best software crypto backend. Backends are 880 * stored in sorted priority order (larget value == most 881 * important at the head of the list), so this just stops on 882 * the first backend that claims the session by returning 883 * success. 884 */ 885 if (ktls_allow_unload) 886 rm_rlock(&ktls_backends_lock, &prio); 887 LIST_FOREACH(be, &ktls_backends, next) { 888 if (be->try(so, tls, direction) == 0) 889 break; 890 KASSERT(tls->cipher == NULL, 891 ("ktls backend leaked a cipher pointer")); 892 } 893 if (be != NULL) { 894 if (ktls_allow_unload) 895 be->use_count++; 896 tls->be = be; 897 } 898 if (ktls_allow_unload) 899 rm_runlock(&ktls_backends_lock, &prio); 900 if (be == NULL) 901 return (EOPNOTSUPP); 902 tls->mode = TCP_TLS_MODE_SW; 903 switch (tls->params.cipher_algorithm) { 904 case CRYPTO_AES_CBC: 905 counter_u64_add(ktls_sw_cbc, 1); 906 break; 907 case CRYPTO_AES_NIST_GCM_16: 908 counter_u64_add(ktls_sw_gcm, 1); 909 break; 910 } 911 return (0); 912 } 913 914 /* 915 * KTLS RX stores data in the socket buffer as a list of TLS records, 916 * where each record is stored as a control message containg the TLS 917 * header followed by data mbufs containing the decrypted data. This 918 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 919 * both encrypted and decrypted data. TLS records decrypted by a NIC 920 * should be queued to the socket buffer as records, but encrypted 921 * data which needs to be decrypted by software arrives as a stream of 922 * regular mbufs which need to be converted. In addition, there may 923 * already be pending encrypted data in the socket buffer when KTLS RX 924 * is enabled. 925 * 926 * To manage not-yet-decrypted data for KTLS RX, the following scheme 927 * is used: 928 * 929 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 930 * 931 * - ktls_check_rx checks this chain of mbufs reading the TLS header 932 * from the first mbuf. Once all of the data for that TLS record is 933 * queued, the socket is queued to a worker thread. 934 * 935 * - The worker thread calls ktls_decrypt to decrypt TLS records in 936 * the TLS chain. Each TLS record is detached from the TLS chain, 937 * decrypted, and inserted into the regular socket buffer chain as 938 * record starting with a control message holding the TLS header and 939 * a chain of mbufs holding the encrypted data. 940 */ 941 942 static void 943 sb_mark_notready(struct sockbuf *sb) 944 { 945 struct mbuf *m; 946 947 m = sb->sb_mb; 948 sb->sb_mtls = m; 949 sb->sb_mb = NULL; 950 sb->sb_mbtail = NULL; 951 sb->sb_lastrecord = NULL; 952 for (; m != NULL; m = m->m_next) { 953 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 954 __func__)); 955 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 956 __func__)); 957 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 958 __func__)); 959 m->m_flags |= M_NOTREADY; 960 sb->sb_acc -= m->m_len; 961 sb->sb_tlscc += m->m_len; 962 sb->sb_mtlstail = m; 963 } 964 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 965 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 966 sb->sb_ccc)); 967 } 968 969 int 970 ktls_enable_rx(struct socket *so, struct tls_enable *en) 971 { 972 struct ktls_session *tls; 973 int error; 974 975 if (!ktls_offload_enable) 976 return (ENOTSUP); 977 978 counter_u64_add(ktls_offload_enable_calls, 1); 979 980 /* 981 * This should always be true since only the TCP socket option 982 * invokes this function. 983 */ 984 if (so->so_proto->pr_protocol != IPPROTO_TCP) 985 return (EINVAL); 986 987 /* 988 * XXX: Don't overwrite existing sessions. We should permit 989 * this to support rekeying in the future. 990 */ 991 if (so->so_rcv.sb_tls_info != NULL) 992 return (EALREADY); 993 994 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 995 return (ENOTSUP); 996 997 /* TLS 1.3 is not yet supported. */ 998 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 999 en->tls_vminor == TLS_MINOR_VER_THREE) 1000 return (ENOTSUP); 1001 1002 error = ktls_create_session(so, en, &tls); 1003 if (error) 1004 return (error); 1005 1006 #ifdef TCP_OFFLOAD 1007 error = ktls_try_toe(so, tls, KTLS_RX); 1008 if (error) 1009 #endif 1010 error = ktls_try_sw(so, tls, KTLS_RX); 1011 1012 if (error) { 1013 ktls_cleanup(tls); 1014 return (error); 1015 } 1016 1017 /* Mark the socket as using TLS offload. */ 1018 SOCKBUF_LOCK(&so->so_rcv); 1019 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1020 so->so_rcv.sb_tls_info = tls; 1021 so->so_rcv.sb_flags |= SB_TLS_RX; 1022 1023 /* Mark existing data as not ready until it can be decrypted. */ 1024 sb_mark_notready(&so->so_rcv); 1025 ktls_check_rx(&so->so_rcv); 1026 SOCKBUF_UNLOCK(&so->so_rcv); 1027 1028 counter_u64_add(ktls_offload_total, 1); 1029 1030 return (0); 1031 } 1032 1033 int 1034 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1035 { 1036 struct ktls_session *tls; 1037 int error; 1038 1039 if (!ktls_offload_enable) 1040 return (ENOTSUP); 1041 1042 counter_u64_add(ktls_offload_enable_calls, 1); 1043 1044 /* 1045 * This should always be true since only the TCP socket option 1046 * invokes this function. 1047 */ 1048 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1049 return (EINVAL); 1050 1051 /* 1052 * XXX: Don't overwrite existing sessions. We should permit 1053 * this to support rekeying in the future. 1054 */ 1055 if (so->so_snd.sb_tls_info != NULL) 1056 return (EALREADY); 1057 1058 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1059 return (ENOTSUP); 1060 1061 /* TLS requires ext pgs */ 1062 if (mb_use_ext_pgs == 0) 1063 return (ENXIO); 1064 1065 error = ktls_create_session(so, en, &tls); 1066 if (error) 1067 return (error); 1068 1069 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1070 #ifdef TCP_OFFLOAD 1071 error = ktls_try_toe(so, tls, KTLS_TX); 1072 if (error) 1073 #endif 1074 error = ktls_try_ifnet(so, tls, false); 1075 if (error) 1076 error = ktls_try_sw(so, tls, KTLS_TX); 1077 1078 if (error) { 1079 ktls_cleanup(tls); 1080 return (error); 1081 } 1082 1083 error = sblock(&so->so_snd, SBL_WAIT); 1084 if (error) { 1085 ktls_cleanup(tls); 1086 return (error); 1087 } 1088 1089 SOCKBUF_LOCK(&so->so_snd); 1090 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1091 so->so_snd.sb_tls_info = tls; 1092 if (tls->mode != TCP_TLS_MODE_SW) 1093 so->so_snd.sb_flags |= SB_TLS_IFNET; 1094 SOCKBUF_UNLOCK(&so->so_snd); 1095 sbunlock(&so->so_snd); 1096 1097 counter_u64_add(ktls_offload_total, 1); 1098 1099 return (0); 1100 } 1101 1102 int 1103 ktls_get_rx_mode(struct socket *so) 1104 { 1105 struct ktls_session *tls; 1106 struct inpcb *inp; 1107 int mode; 1108 1109 inp = so->so_pcb; 1110 INP_WLOCK_ASSERT(inp); 1111 SOCKBUF_LOCK(&so->so_rcv); 1112 tls = so->so_rcv.sb_tls_info; 1113 if (tls == NULL) 1114 mode = TCP_TLS_MODE_NONE; 1115 else 1116 mode = tls->mode; 1117 SOCKBUF_UNLOCK(&so->so_rcv); 1118 return (mode); 1119 } 1120 1121 int 1122 ktls_get_tx_mode(struct socket *so) 1123 { 1124 struct ktls_session *tls; 1125 struct inpcb *inp; 1126 int mode; 1127 1128 inp = so->so_pcb; 1129 INP_WLOCK_ASSERT(inp); 1130 SOCKBUF_LOCK(&so->so_snd); 1131 tls = so->so_snd.sb_tls_info; 1132 if (tls == NULL) 1133 mode = TCP_TLS_MODE_NONE; 1134 else 1135 mode = tls->mode; 1136 SOCKBUF_UNLOCK(&so->so_snd); 1137 return (mode); 1138 } 1139 1140 /* 1141 * Switch between SW and ifnet TLS sessions as requested. 1142 */ 1143 int 1144 ktls_set_tx_mode(struct socket *so, int mode) 1145 { 1146 struct ktls_session *tls, *tls_new; 1147 struct inpcb *inp; 1148 int error; 1149 1150 switch (mode) { 1151 case TCP_TLS_MODE_SW: 1152 case TCP_TLS_MODE_IFNET: 1153 break; 1154 default: 1155 return (EINVAL); 1156 } 1157 1158 inp = so->so_pcb; 1159 INP_WLOCK_ASSERT(inp); 1160 SOCKBUF_LOCK(&so->so_snd); 1161 tls = so->so_snd.sb_tls_info; 1162 if (tls == NULL) { 1163 SOCKBUF_UNLOCK(&so->so_snd); 1164 return (0); 1165 } 1166 1167 if (tls->mode == mode) { 1168 SOCKBUF_UNLOCK(&so->so_snd); 1169 return (0); 1170 } 1171 1172 tls = ktls_hold(tls); 1173 SOCKBUF_UNLOCK(&so->so_snd); 1174 INP_WUNLOCK(inp); 1175 1176 tls_new = ktls_clone_session(tls); 1177 1178 if (mode == TCP_TLS_MODE_IFNET) 1179 error = ktls_try_ifnet(so, tls_new, true); 1180 else 1181 error = ktls_try_sw(so, tls_new, KTLS_TX); 1182 if (error) { 1183 counter_u64_add(ktls_switch_failed, 1); 1184 ktls_free(tls_new); 1185 ktls_free(tls); 1186 INP_WLOCK(inp); 1187 return (error); 1188 } 1189 1190 error = sblock(&so->so_snd, SBL_WAIT); 1191 if (error) { 1192 counter_u64_add(ktls_switch_failed, 1); 1193 ktls_free(tls_new); 1194 ktls_free(tls); 1195 INP_WLOCK(inp); 1196 return (error); 1197 } 1198 1199 /* 1200 * If we raced with another session change, keep the existing 1201 * session. 1202 */ 1203 if (tls != so->so_snd.sb_tls_info) { 1204 counter_u64_add(ktls_switch_failed, 1); 1205 sbunlock(&so->so_snd); 1206 ktls_free(tls_new); 1207 ktls_free(tls); 1208 INP_WLOCK(inp); 1209 return (EBUSY); 1210 } 1211 1212 SOCKBUF_LOCK(&so->so_snd); 1213 so->so_snd.sb_tls_info = tls_new; 1214 if (tls_new->mode != TCP_TLS_MODE_SW) 1215 so->so_snd.sb_flags |= SB_TLS_IFNET; 1216 SOCKBUF_UNLOCK(&so->so_snd); 1217 sbunlock(&so->so_snd); 1218 1219 /* 1220 * Drop two references on 'tls'. The first is for the 1221 * ktls_hold() above. The second drops the reference from the 1222 * socket buffer. 1223 */ 1224 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1225 ktls_free(tls); 1226 ktls_free(tls); 1227 1228 if (mode == TCP_TLS_MODE_IFNET) 1229 counter_u64_add(ktls_switch_to_ifnet, 1); 1230 else 1231 counter_u64_add(ktls_switch_to_sw, 1); 1232 1233 INP_WLOCK(inp); 1234 return (0); 1235 } 1236 1237 /* 1238 * Try to allocate a new TLS send tag. This task is scheduled when 1239 * ip_output detects a route change while trying to transmit a packet 1240 * holding a TLS record. If a new tag is allocated, replace the tag 1241 * in the TLS session. Subsequent packets on the connection will use 1242 * the new tag. If a new tag cannot be allocated, drop the 1243 * connection. 1244 */ 1245 static void 1246 ktls_reset_send_tag(void *context, int pending) 1247 { 1248 struct epoch_tracker et; 1249 struct ktls_session *tls; 1250 struct m_snd_tag *old, *new; 1251 struct inpcb *inp; 1252 struct tcpcb *tp; 1253 int error; 1254 1255 MPASS(pending == 1); 1256 1257 tls = context; 1258 inp = tls->inp; 1259 1260 /* 1261 * Free the old tag first before allocating a new one. 1262 * ip[6]_output_send() will treat a NULL send tag the same as 1263 * an ifp mismatch and drop packets until a new tag is 1264 * allocated. 1265 * 1266 * Write-lock the INP when changing tls->snd_tag since 1267 * ip[6]_output_send() holds a read-lock when reading the 1268 * pointer. 1269 */ 1270 INP_WLOCK(inp); 1271 old = tls->snd_tag; 1272 tls->snd_tag = NULL; 1273 INP_WUNLOCK(inp); 1274 if (old != NULL) 1275 m_snd_tag_rele(old); 1276 1277 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1278 1279 if (error == 0) { 1280 INP_WLOCK(inp); 1281 tls->snd_tag = new; 1282 mtx_pool_lock(mtxpool_sleep, tls); 1283 tls->reset_pending = false; 1284 mtx_pool_unlock(mtxpool_sleep, tls); 1285 if (!in_pcbrele_wlocked(inp)) 1286 INP_WUNLOCK(inp); 1287 1288 counter_u64_add(ktls_ifnet_reset, 1); 1289 1290 /* 1291 * XXX: Should we kick tcp_output explicitly now that 1292 * the send tag is fixed or just rely on timers? 1293 */ 1294 } else { 1295 NET_EPOCH_ENTER(et); 1296 INP_WLOCK(inp); 1297 if (!in_pcbrele_wlocked(inp)) { 1298 if (!(inp->inp_flags & INP_TIMEWAIT) && 1299 !(inp->inp_flags & INP_DROPPED)) { 1300 tp = intotcpcb(inp); 1301 CURVNET_SET(tp->t_vnet); 1302 tp = tcp_drop(tp, ECONNABORTED); 1303 CURVNET_RESTORE(); 1304 if (tp != NULL) 1305 INP_WUNLOCK(inp); 1306 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1307 } else 1308 INP_WUNLOCK(inp); 1309 } 1310 NET_EPOCH_EXIT(et); 1311 1312 counter_u64_add(ktls_ifnet_reset_failed, 1); 1313 1314 /* 1315 * Leave reset_pending true to avoid future tasks while 1316 * the socket goes away. 1317 */ 1318 } 1319 1320 ktls_free(tls); 1321 } 1322 1323 int 1324 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1325 { 1326 1327 if (inp == NULL) 1328 return (ENOBUFS); 1329 1330 INP_LOCK_ASSERT(inp); 1331 1332 /* 1333 * See if we should schedule a task to update the send tag for 1334 * this session. 1335 */ 1336 mtx_pool_lock(mtxpool_sleep, tls); 1337 if (!tls->reset_pending) { 1338 (void) ktls_hold(tls); 1339 in_pcbref(inp); 1340 tls->inp = inp; 1341 tls->reset_pending = true; 1342 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1343 } 1344 mtx_pool_unlock(mtxpool_sleep, tls); 1345 return (ENOBUFS); 1346 } 1347 #endif 1348 1349 void 1350 ktls_destroy(struct ktls_session *tls) 1351 { 1352 struct rm_priotracker prio; 1353 1354 ktls_cleanup(tls); 1355 if (tls->be != NULL && ktls_allow_unload) { 1356 rm_rlock(&ktls_backends_lock, &prio); 1357 tls->be->use_count--; 1358 rm_runlock(&ktls_backends_lock, &prio); 1359 } 1360 uma_zfree(ktls_session_zone, tls); 1361 } 1362 1363 void 1364 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1365 { 1366 1367 for (; m != NULL; m = m->m_next) { 1368 KASSERT((m->m_flags & M_EXTPG) != 0, 1369 ("ktls_seq: mapped mbuf %p", m)); 1370 1371 m->m_epg_seqno = sb->sb_tls_seqno; 1372 sb->sb_tls_seqno++; 1373 } 1374 } 1375 1376 /* 1377 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1378 * mbuf in the chain must be an unmapped mbuf. The payload of the 1379 * mbuf must be populated with the payload of each TLS record. 1380 * 1381 * The record_type argument specifies the TLS record type used when 1382 * populating the TLS header. 1383 * 1384 * The enq_count argument on return is set to the number of pages of 1385 * payload data for this entire chain that need to be encrypted via SW 1386 * encryption. The returned value should be passed to ktls_enqueue 1387 * when scheduling encryption of this chain of mbufs. To handle the 1388 * special case of empty fragments for TLS 1.0 sessions, an empty 1389 * fragment counts as one page. 1390 */ 1391 void 1392 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1393 uint8_t record_type) 1394 { 1395 struct tls_record_layer *tlshdr; 1396 struct mbuf *m; 1397 uint64_t *noncep; 1398 uint16_t tls_len; 1399 int maxlen; 1400 1401 maxlen = tls->params.max_frame_len; 1402 *enq_cnt = 0; 1403 for (m = top; m != NULL; m = m->m_next) { 1404 /* 1405 * All mbufs in the chain should be TLS records whose 1406 * payload does not exceed the maximum frame length. 1407 * 1408 * Empty TLS records are permitted when using CBC. 1409 */ 1410 KASSERT(m->m_len <= maxlen && 1411 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1412 m->m_len >= 0 : m->m_len > 0), 1413 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1414 1415 /* 1416 * TLS frames require unmapped mbufs to store session 1417 * info. 1418 */ 1419 KASSERT((m->m_flags & M_EXTPG) != 0, 1420 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1421 1422 tls_len = m->m_len; 1423 1424 /* Save a reference to the session. */ 1425 m->m_epg_tls = ktls_hold(tls); 1426 1427 m->m_epg_hdrlen = tls->params.tls_hlen; 1428 m->m_epg_trllen = tls->params.tls_tlen; 1429 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1430 int bs, delta; 1431 1432 /* 1433 * AES-CBC pads messages to a multiple of the 1434 * block size. Note that the padding is 1435 * applied after the digest and the encryption 1436 * is done on the "plaintext || mac || padding". 1437 * At least one byte of padding is always 1438 * present. 1439 * 1440 * Compute the final trailer length assuming 1441 * at most one block of padding. 1442 * tls->params.sb_tls_tlen is the maximum 1443 * possible trailer length (padding + digest). 1444 * delta holds the number of excess padding 1445 * bytes if the maximum were used. Those 1446 * extra bytes are removed. 1447 */ 1448 bs = tls->params.tls_bs; 1449 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1450 m->m_epg_trllen -= delta; 1451 } 1452 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1453 1454 /* Populate the TLS header. */ 1455 tlshdr = (void *)m->m_epg_hdr; 1456 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1457 1458 /* 1459 * TLS 1.3 masquarades as TLS 1.2 with a record type 1460 * of TLS_RLTYPE_APP. 1461 */ 1462 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1463 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1464 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1465 tlshdr->tls_type = TLS_RLTYPE_APP; 1466 /* save the real record type for later */ 1467 m->m_epg_record_type = record_type; 1468 m->m_epg_trail[0] = record_type; 1469 } else { 1470 tlshdr->tls_vminor = tls->params.tls_vminor; 1471 tlshdr->tls_type = record_type; 1472 } 1473 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1474 1475 /* 1476 * Store nonces / explicit IVs after the end of the 1477 * TLS header. 1478 * 1479 * For GCM with TLS 1.2, an 8 byte nonce is copied 1480 * from the end of the IV. The nonce is then 1481 * incremented for use by the next record. 1482 * 1483 * For CBC, a random nonce is inserted for TLS 1.1+. 1484 */ 1485 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1486 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1487 noncep = (uint64_t *)(tls->params.iv + 8); 1488 be64enc(tlshdr + 1, *noncep); 1489 (*noncep)++; 1490 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1491 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1492 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1493 1494 /* 1495 * When using SW encryption, mark the mbuf not ready. 1496 * It will be marked ready via sbready() after the 1497 * record has been encrypted. 1498 * 1499 * When using ifnet TLS, unencrypted TLS records are 1500 * sent down the stack to the NIC. 1501 */ 1502 if (tls->mode == TCP_TLS_MODE_SW) { 1503 m->m_flags |= M_NOTREADY; 1504 m->m_epg_nrdy = m->m_epg_npgs; 1505 if (__predict_false(tls_len == 0)) { 1506 /* TLS 1.0 empty fragment. */ 1507 *enq_cnt += 1; 1508 } else 1509 *enq_cnt += m->m_epg_npgs; 1510 } 1511 } 1512 } 1513 1514 void 1515 ktls_check_rx(struct sockbuf *sb) 1516 { 1517 struct tls_record_layer hdr; 1518 struct ktls_wq *wq; 1519 struct socket *so; 1520 bool running; 1521 1522 SOCKBUF_LOCK_ASSERT(sb); 1523 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1524 __func__, sb)); 1525 so = __containerof(sb, struct socket, so_rcv); 1526 1527 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1528 return; 1529 1530 /* Is there enough queued for a TLS header? */ 1531 if (sb->sb_tlscc < sizeof(hdr)) { 1532 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1533 so->so_error = EMSGSIZE; 1534 return; 1535 } 1536 1537 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1538 1539 /* Is the entire record queued? */ 1540 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1541 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1542 so->so_error = EMSGSIZE; 1543 return; 1544 } 1545 1546 sb->sb_flags |= SB_TLS_RX_RUNNING; 1547 1548 soref(so); 1549 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1550 mtx_lock(&wq->mtx); 1551 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1552 running = wq->running; 1553 mtx_unlock(&wq->mtx); 1554 if (!running) 1555 wakeup(wq); 1556 counter_u64_add(ktls_cnt_rx_queued, 1); 1557 } 1558 1559 static struct mbuf * 1560 ktls_detach_record(struct sockbuf *sb, int len) 1561 { 1562 struct mbuf *m, *n, *top; 1563 int remain; 1564 1565 SOCKBUF_LOCK_ASSERT(sb); 1566 MPASS(len <= sb->sb_tlscc); 1567 1568 /* 1569 * If TLS chain is the exact size of the record, 1570 * just grab the whole record. 1571 */ 1572 top = sb->sb_mtls; 1573 if (sb->sb_tlscc == len) { 1574 sb->sb_mtls = NULL; 1575 sb->sb_mtlstail = NULL; 1576 goto out; 1577 } 1578 1579 /* 1580 * While it would be nice to use m_split() here, we need 1581 * to know exactly what m_split() allocates to update the 1582 * accounting, so do it inline instead. 1583 */ 1584 remain = len; 1585 for (m = top; remain > m->m_len; m = m->m_next) 1586 remain -= m->m_len; 1587 1588 /* Easy case: don't have to split 'm'. */ 1589 if (remain == m->m_len) { 1590 sb->sb_mtls = m->m_next; 1591 if (sb->sb_mtls == NULL) 1592 sb->sb_mtlstail = NULL; 1593 m->m_next = NULL; 1594 goto out; 1595 } 1596 1597 /* 1598 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1599 * with M_NOWAIT first. 1600 */ 1601 n = m_get(M_NOWAIT, MT_DATA); 1602 if (n == NULL) { 1603 /* 1604 * Use M_WAITOK with socket buffer unlocked. If 1605 * 'sb_mtls' changes while the lock is dropped, return 1606 * NULL to force the caller to retry. 1607 */ 1608 SOCKBUF_UNLOCK(sb); 1609 1610 n = m_get(M_WAITOK, MT_DATA); 1611 1612 SOCKBUF_LOCK(sb); 1613 if (sb->sb_mtls != top) { 1614 m_free(n); 1615 return (NULL); 1616 } 1617 } 1618 n->m_flags |= M_NOTREADY; 1619 1620 /* Store remainder in 'n'. */ 1621 n->m_len = m->m_len - remain; 1622 if (m->m_flags & M_EXT) { 1623 n->m_data = m->m_data + remain; 1624 mb_dupcl(n, m); 1625 } else { 1626 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1627 } 1628 1629 /* Trim 'm' and update accounting. */ 1630 m->m_len -= n->m_len; 1631 sb->sb_tlscc -= n->m_len; 1632 sb->sb_ccc -= n->m_len; 1633 1634 /* Account for 'n'. */ 1635 sballoc_ktls_rx(sb, n); 1636 1637 /* Insert 'n' into the TLS chain. */ 1638 sb->sb_mtls = n; 1639 n->m_next = m->m_next; 1640 if (sb->sb_mtlstail == m) 1641 sb->sb_mtlstail = n; 1642 1643 /* Detach the record from the TLS chain. */ 1644 m->m_next = NULL; 1645 1646 out: 1647 MPASS(m_length(top, NULL) == len); 1648 for (m = top; m != NULL; m = m->m_next) 1649 sbfree_ktls_rx(sb, m); 1650 sb->sb_tlsdcc = len; 1651 sb->sb_ccc += len; 1652 SBCHECK(sb); 1653 return (top); 1654 } 1655 1656 static void 1657 ktls_decrypt(struct socket *so) 1658 { 1659 char tls_header[MBUF_PEXT_HDR_LEN]; 1660 struct ktls_session *tls; 1661 struct sockbuf *sb; 1662 struct tls_record_layer *hdr; 1663 struct tls_get_record tgr; 1664 struct mbuf *control, *data, *m; 1665 uint64_t seqno; 1666 int error, remain, tls_len, trail_len; 1667 1668 hdr = (struct tls_record_layer *)tls_header; 1669 sb = &so->so_rcv; 1670 SOCKBUF_LOCK(sb); 1671 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1672 ("%s: socket %p not running", __func__, so)); 1673 1674 tls = sb->sb_tls_info; 1675 MPASS(tls != NULL); 1676 1677 for (;;) { 1678 /* Is there enough queued for a TLS header? */ 1679 if (sb->sb_tlscc < tls->params.tls_hlen) 1680 break; 1681 1682 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1683 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1684 1685 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1686 hdr->tls_vminor != tls->params.tls_vminor) 1687 error = EINVAL; 1688 else if (tls_len < tls->params.tls_hlen || tls_len > 1689 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1690 tls->params.tls_tlen) 1691 error = EMSGSIZE; 1692 else 1693 error = 0; 1694 if (__predict_false(error != 0)) { 1695 /* 1696 * We have a corrupted record and are likely 1697 * out of sync. The connection isn't 1698 * recoverable at this point, so abort it. 1699 */ 1700 SOCKBUF_UNLOCK(sb); 1701 counter_u64_add(ktls_offload_corrupted_records, 1); 1702 1703 CURVNET_SET(so->so_vnet); 1704 so->so_proto->pr_usrreqs->pru_abort(so); 1705 so->so_error = error; 1706 CURVNET_RESTORE(); 1707 goto deref; 1708 } 1709 1710 /* Is the entire record queued? */ 1711 if (sb->sb_tlscc < tls_len) 1712 break; 1713 1714 /* 1715 * Split out the portion of the mbuf chain containing 1716 * this TLS record. 1717 */ 1718 data = ktls_detach_record(sb, tls_len); 1719 if (data == NULL) 1720 continue; 1721 MPASS(sb->sb_tlsdcc == tls_len); 1722 1723 seqno = sb->sb_tls_seqno; 1724 sb->sb_tls_seqno++; 1725 SBCHECK(sb); 1726 SOCKBUF_UNLOCK(sb); 1727 1728 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1729 if (error) { 1730 counter_u64_add(ktls_offload_failed_crypto, 1); 1731 1732 SOCKBUF_LOCK(sb); 1733 if (sb->sb_tlsdcc == 0) { 1734 /* 1735 * sbcut/drop/flush discarded these 1736 * mbufs. 1737 */ 1738 m_freem(data); 1739 break; 1740 } 1741 1742 /* 1743 * Drop this TLS record's data, but keep 1744 * decrypting subsequent records. 1745 */ 1746 sb->sb_ccc -= tls_len; 1747 sb->sb_tlsdcc = 0; 1748 1749 CURVNET_SET(so->so_vnet); 1750 so->so_error = EBADMSG; 1751 sorwakeup_locked(so); 1752 CURVNET_RESTORE(); 1753 1754 m_freem(data); 1755 1756 SOCKBUF_LOCK(sb); 1757 continue; 1758 } 1759 1760 /* Allocate the control mbuf. */ 1761 tgr.tls_type = hdr->tls_type; 1762 tgr.tls_vmajor = hdr->tls_vmajor; 1763 tgr.tls_vminor = hdr->tls_vminor; 1764 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1765 trail_len); 1766 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1767 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1768 1769 SOCKBUF_LOCK(sb); 1770 if (sb->sb_tlsdcc == 0) { 1771 /* sbcut/drop/flush discarded these mbufs. */ 1772 MPASS(sb->sb_tlscc == 0); 1773 m_freem(data); 1774 m_freem(control); 1775 break; 1776 } 1777 1778 /* 1779 * Clear the 'dcc' accounting in preparation for 1780 * adding the decrypted record. 1781 */ 1782 sb->sb_ccc -= tls_len; 1783 sb->sb_tlsdcc = 0; 1784 SBCHECK(sb); 1785 1786 /* If there is no payload, drop all of the data. */ 1787 if (tgr.tls_length == htobe16(0)) { 1788 m_freem(data); 1789 data = NULL; 1790 } else { 1791 /* Trim header. */ 1792 remain = tls->params.tls_hlen; 1793 while (remain > 0) { 1794 if (data->m_len > remain) { 1795 data->m_data += remain; 1796 data->m_len -= remain; 1797 break; 1798 } 1799 remain -= data->m_len; 1800 data = m_free(data); 1801 } 1802 1803 /* Trim trailer and clear M_NOTREADY. */ 1804 remain = be16toh(tgr.tls_length); 1805 m = data; 1806 for (m = data; remain > m->m_len; m = m->m_next) { 1807 m->m_flags &= ~M_NOTREADY; 1808 remain -= m->m_len; 1809 } 1810 m->m_len = remain; 1811 m_freem(m->m_next); 1812 m->m_next = NULL; 1813 m->m_flags &= ~M_NOTREADY; 1814 1815 /* Set EOR on the final mbuf. */ 1816 m->m_flags |= M_EOR; 1817 } 1818 1819 sbappendcontrol_locked(sb, data, control, 0); 1820 } 1821 1822 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1823 1824 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1825 so->so_error = EMSGSIZE; 1826 1827 sorwakeup_locked(so); 1828 1829 deref: 1830 SOCKBUF_UNLOCK_ASSERT(sb); 1831 1832 CURVNET_SET(so->so_vnet); 1833 SOCK_LOCK(so); 1834 sorele(so); 1835 CURVNET_RESTORE(); 1836 } 1837 1838 void 1839 ktls_enqueue_to_free(struct mbuf *m) 1840 { 1841 struct ktls_wq *wq; 1842 bool running; 1843 1844 /* Mark it for freeing. */ 1845 m->m_epg_flags |= EPG_FLAG_2FREE; 1846 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1847 mtx_lock(&wq->mtx); 1848 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1849 running = wq->running; 1850 mtx_unlock(&wq->mtx); 1851 if (!running) 1852 wakeup(wq); 1853 } 1854 1855 void 1856 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1857 { 1858 struct ktls_wq *wq; 1859 bool running; 1860 1861 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1862 (M_EXTPG | M_NOTREADY)), 1863 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1864 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1865 1866 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1867 1868 m->m_epg_enc_cnt = page_count; 1869 1870 /* 1871 * Save a pointer to the socket. The caller is responsible 1872 * for taking an additional reference via soref(). 1873 */ 1874 m->m_epg_so = so; 1875 1876 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1877 mtx_lock(&wq->mtx); 1878 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1879 running = wq->running; 1880 mtx_unlock(&wq->mtx); 1881 if (!running) 1882 wakeup(wq); 1883 counter_u64_add(ktls_cnt_tx_queued, 1); 1884 } 1885 1886 static __noinline void 1887 ktls_encrypt(struct mbuf *top) 1888 { 1889 struct ktls_session *tls; 1890 struct socket *so; 1891 struct mbuf *m; 1892 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1893 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1894 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1895 vm_page_t pg; 1896 int error, i, len, npages, off, total_pages; 1897 bool is_anon; 1898 1899 so = top->m_epg_so; 1900 tls = top->m_epg_tls; 1901 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1902 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 1903 #ifdef INVARIANTS 1904 top->m_epg_so = NULL; 1905 #endif 1906 total_pages = top->m_epg_enc_cnt; 1907 npages = 0; 1908 1909 /* 1910 * Encrypt the TLS records in the chain of mbufs starting with 1911 * 'top'. 'total_pages' gives us a total count of pages and is 1912 * used to know when we have finished encrypting the TLS 1913 * records originally queued with 'top'. 1914 * 1915 * NB: These mbufs are queued in the socket buffer and 1916 * 'm_next' is traversing the mbufs in the socket buffer. The 1917 * socket buffer lock is not held while traversing this chain. 1918 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1919 * pointers should be stable. However, the 'm_next' of the 1920 * last mbuf encrypted is not necessarily NULL. It can point 1921 * to other mbufs appended while 'top' was on the TLS work 1922 * queue. 1923 * 1924 * Each mbuf holds an entire TLS record. 1925 */ 1926 error = 0; 1927 for (m = top; npages != total_pages; m = m->m_next) { 1928 KASSERT(m->m_epg_tls == tls, 1929 ("different TLS sessions in a single mbuf chain: %p vs %p", 1930 tls, m->m_epg_tls)); 1931 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1932 (M_EXTPG | M_NOTREADY), 1933 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1934 KASSERT(npages + m->m_epg_npgs <= total_pages, 1935 ("page count mismatch: top %p, total_pages %d, m %p", top, 1936 total_pages, m)); 1937 1938 /* 1939 * Generate source and destination ivoecs to pass to 1940 * the SW encryption backend. For writable mbufs, the 1941 * destination iovec is a copy of the source and 1942 * encryption is done in place. For file-backed mbufs 1943 * (from sendfile), anonymous wired pages are 1944 * allocated and assigned to the destination iovec. 1945 */ 1946 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 1947 1948 off = m->m_epg_1st_off; 1949 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 1950 len = m_epg_pagelen(m, i, off); 1951 src_iov[i].iov_len = len; 1952 src_iov[i].iov_base = 1953 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 1954 off; 1955 1956 if (is_anon) { 1957 dst_iov[i].iov_base = src_iov[i].iov_base; 1958 dst_iov[i].iov_len = src_iov[i].iov_len; 1959 continue; 1960 } 1961 retry_page: 1962 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1963 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1964 if (pg == NULL) { 1965 vm_wait(NULL); 1966 goto retry_page; 1967 } 1968 parray[i] = VM_PAGE_TO_PHYS(pg); 1969 dst_iov[i].iov_base = 1970 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1971 dst_iov[i].iov_len = len; 1972 } 1973 1974 if (__predict_false(m->m_epg_npgs == 0)) { 1975 /* TLS 1.0 empty fragment. */ 1976 npages++; 1977 } else 1978 npages += i; 1979 1980 error = (*tls->sw_encrypt)(tls, 1981 (const struct tls_record_layer *)m->m_epg_hdr, 1982 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 1983 m->m_epg_record_type); 1984 if (error) { 1985 counter_u64_add(ktls_offload_failed_crypto, 1); 1986 break; 1987 } 1988 1989 /* 1990 * For file-backed mbufs, release the file-backed 1991 * pages and replace them in the ext_pgs array with 1992 * the anonymous wired pages allocated above. 1993 */ 1994 if (!is_anon) { 1995 /* Free the old pages. */ 1996 m->m_ext.ext_free(m); 1997 1998 /* Replace them with the new pages. */ 1999 for (i = 0; i < m->m_epg_npgs; i++) 2000 m->m_epg_pa[i] = parray[i]; 2001 2002 /* Use the basic free routine. */ 2003 m->m_ext.ext_free = mb_free_mext_pgs; 2004 2005 /* Pages are now writable. */ 2006 m->m_epg_flags |= EPG_FLAG_ANON; 2007 } 2008 2009 /* 2010 * Drop a reference to the session now that it is no 2011 * longer needed. Existing code depends on encrypted 2012 * records having no associated session vs 2013 * yet-to-be-encrypted records having an associated 2014 * session. 2015 */ 2016 m->m_epg_tls = NULL; 2017 ktls_free(tls); 2018 } 2019 2020 CURVNET_SET(so->so_vnet); 2021 if (error == 0) { 2022 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2023 } else { 2024 so->so_proto->pr_usrreqs->pru_abort(so); 2025 so->so_error = EIO; 2026 mb_free_notready(top, total_pages); 2027 } 2028 2029 SOCK_LOCK(so); 2030 sorele(so); 2031 CURVNET_RESTORE(); 2032 } 2033 2034 static void 2035 ktls_work_thread(void *ctx) 2036 { 2037 struct ktls_wq *wq = ctx; 2038 struct mbuf *m, *n; 2039 struct socket *so, *son; 2040 STAILQ_HEAD(, mbuf) local_m_head; 2041 STAILQ_HEAD(, socket) local_so_head; 2042 2043 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2044 fpu_kern_thread(0); 2045 #endif 2046 for (;;) { 2047 mtx_lock(&wq->mtx); 2048 while (STAILQ_EMPTY(&wq->m_head) && 2049 STAILQ_EMPTY(&wq->so_head)) { 2050 wq->running = false; 2051 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2052 wq->running = true; 2053 } 2054 2055 STAILQ_INIT(&local_m_head); 2056 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2057 STAILQ_INIT(&local_so_head); 2058 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2059 mtx_unlock(&wq->mtx); 2060 2061 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2062 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2063 ktls_free(m->m_epg_tls); 2064 uma_zfree(zone_mbuf, m); 2065 } else { 2066 ktls_encrypt(m); 2067 counter_u64_add(ktls_cnt_tx_queued, -1); 2068 } 2069 } 2070 2071 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2072 ktls_decrypt(so); 2073 counter_u64_add(ktls_cnt_rx_queued, -1); 2074 } 2075 } 2076 } 2077