1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 226 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 227 &ktls_destroy_task, 228 "Number of times ktls session was destroyed via taskqueue"); 229 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "Software TLS session stats"); 232 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "Hardware (ifnet) TLS session stats"); 234 #ifdef TCP_OFFLOAD 235 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 236 "TOE TLS session stats"); 237 #endif 238 239 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 240 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 241 "Active number of software TLS sessions using AES-CBC"); 242 243 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 244 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 245 "Active number of software TLS sessions using AES-GCM"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 249 &ktls_sw_chacha20, 250 "Active number of software TLS sessions using Chacha20-Poly1305"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 254 &ktls_ifnet_cbc, 255 "Active number of ifnet TLS sessions using AES-CBC"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 259 &ktls_ifnet_gcm, 260 "Active number of ifnet TLS sessions using AES-GCM"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 264 &ktls_ifnet_chacha20, 265 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 266 267 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 268 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 269 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 273 &ktls_ifnet_reset_dropped, 274 "TLS sessions dropped after failing to update ifnet send tag"); 275 276 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 277 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 278 &ktls_ifnet_reset_failed, 279 "TLS sessions that failed to allocate a new ifnet send tag"); 280 281 static int ktls_ifnet_permitted; 282 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 283 &ktls_ifnet_permitted, 1, 284 "Whether to permit hardware (ifnet) TLS sessions"); 285 286 #ifdef TCP_OFFLOAD 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 289 &ktls_toe_cbc, 290 "Active number of TOE TLS sessions using AES-CBC"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 294 &ktls_toe_gcm, 295 "Active number of TOE TLS sessions using AES-GCM"); 296 297 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 298 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 299 &ktls_toe_chacha20, 300 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 301 #endif 302 303 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 304 305 #if defined(INET) || defined(INET6) 306 static void ktls_reset_receive_tag(void *context, int pending); 307 static void ktls_reset_send_tag(void *context, int pending); 308 #endif 309 static void ktls_work_thread(void *ctx); 310 static void ktls_alloc_thread(void *ctx); 311 312 #if defined(INET) || defined(INET6) 313 static u_int 314 ktls_get_cpu(struct socket *so) 315 { 316 struct inpcb *inp; 317 #ifdef NUMA 318 struct ktls_domain_info *di; 319 #endif 320 u_int cpuid; 321 322 inp = sotoinpcb(so); 323 #ifdef RSS 324 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 325 if (cpuid != NETISR_CPUID_NONE) 326 return (cpuid); 327 #endif 328 /* 329 * Just use the flowid to shard connections in a repeatable 330 * fashion. Note that TLS 1.0 sessions rely on the 331 * serialization provided by having the same connection use 332 * the same queue. 333 */ 334 #ifdef NUMA 335 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 336 di = &ktls_domains[inp->inp_numa_domain]; 337 cpuid = di->cpu[inp->inp_flowid % di->count]; 338 } else 339 #endif 340 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 341 return (cpuid); 342 } 343 #endif 344 345 static int 346 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 347 { 348 vm_page_t m; 349 int i, req; 350 351 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 352 ("%s: ktls max length %d is not page size-aligned", 353 __func__, ktls_maxlen)); 354 355 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 356 for (i = 0; i < count; i++) { 357 m = vm_page_alloc_noobj_contig_domain(domain, req, 358 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 359 VM_MEMATTR_DEFAULT); 360 if (m == NULL) 361 break; 362 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 363 } 364 return (i); 365 } 366 367 static void 368 ktls_buffer_release(void *arg __unused, void **store, int count) 369 { 370 vm_page_t m; 371 int i, j; 372 373 for (i = 0; i < count; i++) { 374 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 375 for (j = 0; j < atop(ktls_maxlen); j++) { 376 (void)vm_page_unwire_noq(m + j); 377 vm_page_free(m + j); 378 } 379 } 380 } 381 382 static void 383 ktls_free_mext_contig(struct mbuf *m) 384 { 385 M_ASSERTEXTPG(m); 386 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 387 } 388 389 static int 390 ktls_init(void) 391 { 392 struct thread *td; 393 struct pcpu *pc; 394 int count, domain, error, i; 395 396 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 397 M_WAITOK | M_ZERO); 398 399 ktls_session_zone = uma_zcreate("ktls_session", 400 sizeof(struct ktls_session), 401 NULL, NULL, NULL, NULL, 402 UMA_ALIGN_CACHE, 0); 403 404 if (ktls_sw_buffer_cache) { 405 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 406 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 407 ktls_buffer_import, ktls_buffer_release, NULL, 408 UMA_ZONE_FIRSTTOUCH); 409 } 410 411 /* 412 * Initialize the workqueues to run the TLS work. We create a 413 * work queue for each CPU. 414 */ 415 CPU_FOREACH(i) { 416 STAILQ_INIT(&ktls_wq[i].m_head); 417 STAILQ_INIT(&ktls_wq[i].so_head); 418 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 419 if (ktls_bind_threads > 1) { 420 pc = pcpu_find(i); 421 domain = pc->pc_domain; 422 count = ktls_domains[domain].count; 423 ktls_domains[domain].cpu[count] = i; 424 ktls_domains[domain].count++; 425 } 426 ktls_cpuid_lookup[ktls_number_threads] = i; 427 ktls_number_threads++; 428 } 429 430 /* 431 * If we somehow have an empty domain, fall back to choosing 432 * among all KTLS threads. 433 */ 434 if (ktls_bind_threads > 1) { 435 for (i = 0; i < vm_ndomains; i++) { 436 if (ktls_domains[i].count == 0) { 437 ktls_bind_threads = 1; 438 break; 439 } 440 } 441 } 442 443 /* Start kthreads for each workqueue. */ 444 CPU_FOREACH(i) { 445 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 446 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 447 if (error) { 448 printf("Can't add KTLS thread %d error %d\n", i, error); 449 return (error); 450 } 451 } 452 453 /* 454 * Start an allocation thread per-domain to perform blocking allocations 455 * of 16k physically contiguous TLS crypto destination buffers. 456 */ 457 if (ktls_sw_buffer_cache) { 458 for (domain = 0; domain < vm_ndomains; domain++) { 459 if (VM_DOMAIN_EMPTY(domain)) 460 continue; 461 if (CPU_EMPTY(&cpuset_domain[domain])) 462 continue; 463 error = kproc_kthread_add(ktls_alloc_thread, 464 &ktls_domains[domain], &ktls_proc, 465 &ktls_domains[domain].alloc_td.td, 466 0, 0, "KTLS", "alloc_%d", domain); 467 if (error) { 468 printf("Can't add KTLS alloc thread %d error %d\n", 469 domain, error); 470 return (error); 471 } 472 } 473 } 474 475 if (bootverbose) 476 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 477 return (0); 478 } 479 480 static int 481 ktls_start_kthreads(void) 482 { 483 int error, state; 484 485 start: 486 state = atomic_load_acq_int(&ktls_init_state); 487 if (__predict_true(state > 0)) 488 return (0); 489 if (state < 0) 490 return (ENXIO); 491 492 sx_xlock(&ktls_init_lock); 493 if (ktls_init_state != 0) { 494 sx_xunlock(&ktls_init_lock); 495 goto start; 496 } 497 498 error = ktls_init(); 499 if (error == 0) 500 state = 1; 501 else 502 state = -1; 503 atomic_store_rel_int(&ktls_init_state, state); 504 sx_xunlock(&ktls_init_lock); 505 return (error); 506 } 507 508 #if defined(INET) || defined(INET6) 509 static int 510 ktls_create_session(struct socket *so, struct tls_enable *en, 511 struct ktls_session **tlsp, int direction) 512 { 513 struct ktls_session *tls; 514 int error; 515 516 /* Only TLS 1.0 - 1.3 are supported. */ 517 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 518 return (EINVAL); 519 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 520 en->tls_vminor > TLS_MINOR_VER_THREE) 521 return (EINVAL); 522 523 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 524 return (EINVAL); 525 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 526 return (EINVAL); 527 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 528 return (EINVAL); 529 530 /* All supported algorithms require a cipher key. */ 531 if (en->cipher_key_len == 0) 532 return (EINVAL); 533 534 /* No flags are currently supported. */ 535 if (en->flags != 0) 536 return (EINVAL); 537 538 /* Common checks for supported algorithms. */ 539 switch (en->cipher_algorithm) { 540 case CRYPTO_AES_NIST_GCM_16: 541 /* 542 * auth_algorithm isn't used, but permit GMAC values 543 * for compatibility. 544 */ 545 switch (en->auth_algorithm) { 546 case 0: 547 #ifdef COMPAT_FREEBSD12 548 /* XXX: Really 13.0-current COMPAT. */ 549 case CRYPTO_AES_128_NIST_GMAC: 550 case CRYPTO_AES_192_NIST_GMAC: 551 case CRYPTO_AES_256_NIST_GMAC: 552 #endif 553 break; 554 default: 555 return (EINVAL); 556 } 557 if (en->auth_key_len != 0) 558 return (EINVAL); 559 switch (en->tls_vminor) { 560 case TLS_MINOR_VER_TWO: 561 if (en->iv_len != TLS_AEAD_GCM_LEN) 562 return (EINVAL); 563 break; 564 case TLS_MINOR_VER_THREE: 565 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 566 return (EINVAL); 567 break; 568 default: 569 return (EINVAL); 570 } 571 break; 572 case CRYPTO_AES_CBC: 573 switch (en->auth_algorithm) { 574 case CRYPTO_SHA1_HMAC: 575 break; 576 case CRYPTO_SHA2_256_HMAC: 577 case CRYPTO_SHA2_384_HMAC: 578 if (en->tls_vminor != TLS_MINOR_VER_TWO) 579 return (EINVAL); 580 break; 581 default: 582 return (EINVAL); 583 } 584 if (en->auth_key_len == 0) 585 return (EINVAL); 586 587 /* 588 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 589 * use explicit IVs. 590 */ 591 switch (en->tls_vminor) { 592 case TLS_MINOR_VER_ZERO: 593 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 594 return (EINVAL); 595 break; 596 case TLS_MINOR_VER_ONE: 597 case TLS_MINOR_VER_TWO: 598 /* Ignore any supplied IV. */ 599 en->iv_len = 0; 600 break; 601 default: 602 return (EINVAL); 603 } 604 break; 605 case CRYPTO_CHACHA20_POLY1305: 606 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 607 return (EINVAL); 608 if (en->tls_vminor != TLS_MINOR_VER_TWO && 609 en->tls_vminor != TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 if (en->iv_len != TLS_CHACHA20_IV_LEN) 612 return (EINVAL); 613 break; 614 default: 615 return (EINVAL); 616 } 617 618 error = ktls_start_kthreads(); 619 if (error != 0) 620 return (error); 621 622 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 623 624 counter_u64_add(ktls_offload_active, 1); 625 626 refcount_init(&tls->refcount, 1); 627 if (direction == KTLS_RX) { 628 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 629 } else { 630 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 631 tls->inp = so->so_pcb; 632 in_pcbref(tls->inp); 633 tls->tx = true; 634 } 635 636 tls->wq_index = ktls_get_cpu(so); 637 638 tls->params.cipher_algorithm = en->cipher_algorithm; 639 tls->params.auth_algorithm = en->auth_algorithm; 640 tls->params.tls_vmajor = en->tls_vmajor; 641 tls->params.tls_vminor = en->tls_vminor; 642 tls->params.flags = en->flags; 643 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 644 645 /* Set the header and trailer lengths. */ 646 tls->params.tls_hlen = sizeof(struct tls_record_layer); 647 switch (en->cipher_algorithm) { 648 case CRYPTO_AES_NIST_GCM_16: 649 /* 650 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 651 * nonce. TLS 1.3 uses a 12 byte implicit IV. 652 */ 653 if (en->tls_vminor < TLS_MINOR_VER_THREE) 654 tls->params.tls_hlen += sizeof(uint64_t); 655 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 656 tls->params.tls_bs = 1; 657 break; 658 case CRYPTO_AES_CBC: 659 switch (en->auth_algorithm) { 660 case CRYPTO_SHA1_HMAC: 661 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 662 /* Implicit IV, no nonce. */ 663 tls->sequential_records = true; 664 tls->next_seqno = be64dec(en->rec_seq); 665 STAILQ_INIT(&tls->pending_records); 666 } else { 667 tls->params.tls_hlen += AES_BLOCK_LEN; 668 } 669 tls->params.tls_tlen = AES_BLOCK_LEN + 670 SHA1_HASH_LEN; 671 break; 672 case CRYPTO_SHA2_256_HMAC: 673 tls->params.tls_hlen += AES_BLOCK_LEN; 674 tls->params.tls_tlen = AES_BLOCK_LEN + 675 SHA2_256_HASH_LEN; 676 break; 677 case CRYPTO_SHA2_384_HMAC: 678 tls->params.tls_hlen += AES_BLOCK_LEN; 679 tls->params.tls_tlen = AES_BLOCK_LEN + 680 SHA2_384_HASH_LEN; 681 break; 682 default: 683 panic("invalid hmac"); 684 } 685 tls->params.tls_bs = AES_BLOCK_LEN; 686 break; 687 case CRYPTO_CHACHA20_POLY1305: 688 /* 689 * Chacha20 uses a 12 byte implicit IV. 690 */ 691 tls->params.tls_tlen = POLY1305_HASH_LEN; 692 tls->params.tls_bs = 1; 693 break; 694 default: 695 panic("invalid cipher"); 696 } 697 698 /* 699 * TLS 1.3 includes optional padding which we do not support, 700 * and also puts the "real" record type at the end of the 701 * encrypted data. 702 */ 703 if (en->tls_vminor == TLS_MINOR_VER_THREE) 704 tls->params.tls_tlen += sizeof(uint8_t); 705 706 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 707 ("TLS header length too long: %d", tls->params.tls_hlen)); 708 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 709 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 710 711 if (en->auth_key_len != 0) { 712 tls->params.auth_key_len = en->auth_key_len; 713 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 714 M_WAITOK); 715 error = copyin(en->auth_key, tls->params.auth_key, 716 en->auth_key_len); 717 if (error) 718 goto out; 719 } 720 721 tls->params.cipher_key_len = en->cipher_key_len; 722 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 723 error = copyin(en->cipher_key, tls->params.cipher_key, 724 en->cipher_key_len); 725 if (error) 726 goto out; 727 728 /* 729 * This holds the implicit portion of the nonce for AEAD 730 * ciphers and the initial implicit IV for TLS 1.0. The 731 * explicit portions of the IV are generated in ktls_frame(). 732 */ 733 if (en->iv_len != 0) { 734 tls->params.iv_len = en->iv_len; 735 error = copyin(en->iv, tls->params.iv, en->iv_len); 736 if (error) 737 goto out; 738 739 /* 740 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 741 * counter to generate unique explicit IVs. 742 * 743 * Store this counter in the last 8 bytes of the IV 744 * array so that it is 8-byte aligned. 745 */ 746 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 747 en->tls_vminor == TLS_MINOR_VER_TWO) 748 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 749 } 750 751 *tlsp = tls; 752 return (0); 753 754 out: 755 ktls_free(tls); 756 return (error); 757 } 758 759 static struct ktls_session * 760 ktls_clone_session(struct ktls_session *tls, int direction) 761 { 762 struct ktls_session *tls_new; 763 764 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 765 766 counter_u64_add(ktls_offload_active, 1); 767 768 refcount_init(&tls_new->refcount, 1); 769 if (direction == KTLS_RX) { 770 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 771 tls_new); 772 } else { 773 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 774 tls_new); 775 tls_new->inp = tls->inp; 776 tls_new->tx = true; 777 in_pcbref(tls_new->inp); 778 } 779 780 /* Copy fields from existing session. */ 781 tls_new->params = tls->params; 782 tls_new->wq_index = tls->wq_index; 783 784 /* Deep copy keys. */ 785 if (tls_new->params.auth_key != NULL) { 786 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 787 M_KTLS, M_WAITOK); 788 memcpy(tls_new->params.auth_key, tls->params.auth_key, 789 tls->params.auth_key_len); 790 } 791 792 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 793 M_WAITOK); 794 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 795 tls->params.cipher_key_len); 796 797 return (tls_new); 798 } 799 800 #ifdef TCP_OFFLOAD 801 static int 802 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 803 { 804 struct inpcb *inp; 805 struct tcpcb *tp; 806 int error; 807 808 inp = so->so_pcb; 809 INP_WLOCK(inp); 810 if (inp->inp_flags & INP_DROPPED) { 811 INP_WUNLOCK(inp); 812 return (ECONNRESET); 813 } 814 if (inp->inp_socket == NULL) { 815 INP_WUNLOCK(inp); 816 return (ECONNRESET); 817 } 818 tp = intotcpcb(inp); 819 if (!(tp->t_flags & TF_TOE)) { 820 INP_WUNLOCK(inp); 821 return (EOPNOTSUPP); 822 } 823 824 error = tcp_offload_alloc_tls_session(tp, tls, direction); 825 INP_WUNLOCK(inp); 826 if (error == 0) { 827 tls->mode = TCP_TLS_MODE_TOE; 828 switch (tls->params.cipher_algorithm) { 829 case CRYPTO_AES_CBC: 830 counter_u64_add(ktls_toe_cbc, 1); 831 break; 832 case CRYPTO_AES_NIST_GCM_16: 833 counter_u64_add(ktls_toe_gcm, 1); 834 break; 835 case CRYPTO_CHACHA20_POLY1305: 836 counter_u64_add(ktls_toe_chacha20, 1); 837 break; 838 } 839 } 840 return (error); 841 } 842 #endif 843 844 /* 845 * Common code used when first enabling ifnet TLS on a connection or 846 * when allocating a new ifnet TLS session due to a routing change. 847 * This function allocates a new TLS send tag on whatever interface 848 * the connection is currently routed over. 849 */ 850 static int 851 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 852 struct m_snd_tag **mstp) 853 { 854 union if_snd_tag_alloc_params params; 855 struct ifnet *ifp; 856 struct nhop_object *nh; 857 struct tcpcb *tp; 858 int error; 859 860 INP_RLOCK(inp); 861 if (inp->inp_flags & INP_DROPPED) { 862 INP_RUNLOCK(inp); 863 return (ECONNRESET); 864 } 865 if (inp->inp_socket == NULL) { 866 INP_RUNLOCK(inp); 867 return (ECONNRESET); 868 } 869 tp = intotcpcb(inp); 870 871 /* 872 * Check administrative controls on ifnet TLS to determine if 873 * ifnet TLS should be denied. 874 * 875 * - Always permit 'force' requests. 876 * - ktls_ifnet_permitted == 0: always deny. 877 */ 878 if (!force && ktls_ifnet_permitted == 0) { 879 INP_RUNLOCK(inp); 880 return (ENXIO); 881 } 882 883 /* 884 * XXX: Use the cached route in the inpcb to find the 885 * interface. This should perhaps instead use 886 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 887 * enabled after a connection has completed key negotiation in 888 * userland, the cached route will be present in practice. 889 */ 890 nh = inp->inp_route.ro_nh; 891 if (nh == NULL) { 892 INP_RUNLOCK(inp); 893 return (ENXIO); 894 } 895 ifp = nh->nh_ifp; 896 if_ref(ifp); 897 898 /* 899 * Allocate a TLS + ratelimit tag if the connection has an 900 * existing pacing rate. 901 */ 902 if (tp->t_pacing_rate != -1 && 903 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 904 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 905 params.tls_rate_limit.inp = inp; 906 params.tls_rate_limit.tls = tls; 907 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 908 } else { 909 params.hdr.type = IF_SND_TAG_TYPE_TLS; 910 params.tls.inp = inp; 911 params.tls.tls = tls; 912 } 913 params.hdr.flowid = inp->inp_flowid; 914 params.hdr.flowtype = inp->inp_flowtype; 915 params.hdr.numa_domain = inp->inp_numa_domain; 916 INP_RUNLOCK(inp); 917 918 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 919 error = EOPNOTSUPP; 920 goto out; 921 } 922 if (inp->inp_vflag & INP_IPV6) { 923 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 924 error = EOPNOTSUPP; 925 goto out; 926 } 927 } else { 928 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 929 error = EOPNOTSUPP; 930 goto out; 931 } 932 } 933 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 934 out: 935 if_rele(ifp); 936 return (error); 937 } 938 939 /* 940 * Allocate an initial TLS receive tag for doing HW decryption of TLS 941 * data. 942 * 943 * This function allocates a new TLS receive tag on whatever interface 944 * the connection is currently routed over. If the connection ends up 945 * using a different interface for receive this will get fixed up via 946 * ktls_input_ifp_mismatch as future packets arrive. 947 */ 948 static int 949 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 950 struct m_snd_tag **mstp) 951 { 952 union if_snd_tag_alloc_params params; 953 struct ifnet *ifp; 954 struct nhop_object *nh; 955 int error; 956 957 if (!ktls_ocf_recrypt_supported(tls)) 958 return (ENXIO); 959 960 INP_RLOCK(inp); 961 if (inp->inp_flags & INP_DROPPED) { 962 INP_RUNLOCK(inp); 963 return (ECONNRESET); 964 } 965 if (inp->inp_socket == NULL) { 966 INP_RUNLOCK(inp); 967 return (ECONNRESET); 968 } 969 970 /* 971 * Check administrative controls on ifnet TLS to determine if 972 * ifnet TLS should be denied. 973 */ 974 if (ktls_ifnet_permitted == 0) { 975 INP_RUNLOCK(inp); 976 return (ENXIO); 977 } 978 979 /* 980 * XXX: As with ktls_alloc_snd_tag, use the cached route in 981 * the inpcb to find the interface. 982 */ 983 nh = inp->inp_route.ro_nh; 984 if (nh == NULL) { 985 INP_RUNLOCK(inp); 986 return (ENXIO); 987 } 988 ifp = nh->nh_ifp; 989 if_ref(ifp); 990 tls->rx_ifp = ifp; 991 992 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 993 params.hdr.flowid = inp->inp_flowid; 994 params.hdr.flowtype = inp->inp_flowtype; 995 params.hdr.numa_domain = inp->inp_numa_domain; 996 params.tls_rx.inp = inp; 997 params.tls_rx.tls = tls; 998 params.tls_rx.vlan_id = 0; 999 1000 INP_RUNLOCK(inp); 1001 1002 if (inp->inp_vflag & INP_IPV6) { 1003 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) { 1004 error = EOPNOTSUPP; 1005 goto out; 1006 } 1007 } else { 1008 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) { 1009 error = EOPNOTSUPP; 1010 goto out; 1011 } 1012 } 1013 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1014 1015 /* 1016 * If this connection is over a vlan, vlan_snd_tag_alloc 1017 * rewrites vlan_id with the saved interface. Save the VLAN 1018 * ID for use in ktls_reset_receive_tag which allocates new 1019 * receive tags directly from the leaf interface bypassing 1020 * if_vlan. 1021 */ 1022 if (error == 0) 1023 tls->rx_vlan_id = params.tls_rx.vlan_id; 1024 out: 1025 return (error); 1026 } 1027 1028 static int 1029 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1030 bool force) 1031 { 1032 struct m_snd_tag *mst; 1033 int error; 1034 1035 switch (direction) { 1036 case KTLS_TX: 1037 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1038 if (__predict_false(error != 0)) 1039 goto done; 1040 break; 1041 case KTLS_RX: 1042 KASSERT(!force, ("%s: forced receive tag", __func__)); 1043 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1044 if (__predict_false(error != 0)) 1045 goto done; 1046 break; 1047 default: 1048 __assert_unreachable(); 1049 } 1050 1051 tls->mode = TCP_TLS_MODE_IFNET; 1052 tls->snd_tag = mst; 1053 1054 switch (tls->params.cipher_algorithm) { 1055 case CRYPTO_AES_CBC: 1056 counter_u64_add(ktls_ifnet_cbc, 1); 1057 break; 1058 case CRYPTO_AES_NIST_GCM_16: 1059 counter_u64_add(ktls_ifnet_gcm, 1); 1060 break; 1061 case CRYPTO_CHACHA20_POLY1305: 1062 counter_u64_add(ktls_ifnet_chacha20, 1); 1063 break; 1064 default: 1065 break; 1066 } 1067 done: 1068 return (error); 1069 } 1070 1071 static void 1072 ktls_use_sw(struct ktls_session *tls) 1073 { 1074 tls->mode = TCP_TLS_MODE_SW; 1075 switch (tls->params.cipher_algorithm) { 1076 case CRYPTO_AES_CBC: 1077 counter_u64_add(ktls_sw_cbc, 1); 1078 break; 1079 case CRYPTO_AES_NIST_GCM_16: 1080 counter_u64_add(ktls_sw_gcm, 1); 1081 break; 1082 case CRYPTO_CHACHA20_POLY1305: 1083 counter_u64_add(ktls_sw_chacha20, 1); 1084 break; 1085 } 1086 } 1087 1088 static int 1089 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1090 { 1091 int error; 1092 1093 error = ktls_ocf_try(so, tls, direction); 1094 if (error) 1095 return (error); 1096 ktls_use_sw(tls); 1097 return (0); 1098 } 1099 1100 /* 1101 * KTLS RX stores data in the socket buffer as a list of TLS records, 1102 * where each record is stored as a control message containg the TLS 1103 * header followed by data mbufs containing the decrypted data. This 1104 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1105 * both encrypted and decrypted data. TLS records decrypted by a NIC 1106 * should be queued to the socket buffer as records, but encrypted 1107 * data which needs to be decrypted by software arrives as a stream of 1108 * regular mbufs which need to be converted. In addition, there may 1109 * already be pending encrypted data in the socket buffer when KTLS RX 1110 * is enabled. 1111 * 1112 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1113 * is used: 1114 * 1115 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1116 * 1117 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1118 * from the first mbuf. Once all of the data for that TLS record is 1119 * queued, the socket is queued to a worker thread. 1120 * 1121 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1122 * the TLS chain. Each TLS record is detached from the TLS chain, 1123 * decrypted, and inserted into the regular socket buffer chain as 1124 * record starting with a control message holding the TLS header and 1125 * a chain of mbufs holding the encrypted data. 1126 */ 1127 1128 static void 1129 sb_mark_notready(struct sockbuf *sb) 1130 { 1131 struct mbuf *m; 1132 1133 m = sb->sb_mb; 1134 sb->sb_mtls = m; 1135 sb->sb_mb = NULL; 1136 sb->sb_mbtail = NULL; 1137 sb->sb_lastrecord = NULL; 1138 for (; m != NULL; m = m->m_next) { 1139 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1140 __func__)); 1141 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1142 __func__)); 1143 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1144 __func__)); 1145 m->m_flags |= M_NOTREADY; 1146 sb->sb_acc -= m->m_len; 1147 sb->sb_tlscc += m->m_len; 1148 sb->sb_mtlstail = m; 1149 } 1150 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1151 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1152 sb->sb_ccc)); 1153 } 1154 1155 /* 1156 * Return information about the pending TLS data in a socket 1157 * buffer. On return, 'seqno' is set to the sequence number 1158 * of the next TLS record to be received, 'resid' is set to 1159 * the amount of bytes still needed for the last pending 1160 * record. The function returns 'false' if the last pending 1161 * record contains a partial TLS header. In that case, 'resid' 1162 * is the number of bytes needed to complete the TLS header. 1163 */ 1164 bool 1165 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1166 { 1167 struct tls_record_layer hdr; 1168 struct mbuf *m; 1169 uint64_t seqno; 1170 size_t resid; 1171 u_int offset, record_len; 1172 1173 SOCKBUF_LOCK_ASSERT(sb); 1174 MPASS(sb->sb_flags & SB_TLS_RX); 1175 seqno = sb->sb_tls_seqno; 1176 resid = sb->sb_tlscc; 1177 m = sb->sb_mtls; 1178 offset = 0; 1179 1180 if (resid == 0) { 1181 *seqnop = seqno; 1182 *residp = 0; 1183 return (true); 1184 } 1185 1186 for (;;) { 1187 seqno++; 1188 1189 if (resid < sizeof(hdr)) { 1190 *seqnop = seqno; 1191 *residp = sizeof(hdr) - resid; 1192 return (false); 1193 } 1194 1195 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1196 1197 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1198 if (resid <= record_len) { 1199 *seqnop = seqno; 1200 *residp = record_len - resid; 1201 return (true); 1202 } 1203 resid -= record_len; 1204 1205 while (record_len != 0) { 1206 if (m->m_len - offset > record_len) { 1207 offset += record_len; 1208 break; 1209 } 1210 1211 record_len -= (m->m_len - offset); 1212 offset = 0; 1213 m = m->m_next; 1214 } 1215 } 1216 } 1217 1218 int 1219 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1220 { 1221 struct ktls_session *tls; 1222 int error; 1223 1224 if (!ktls_offload_enable) 1225 return (ENOTSUP); 1226 1227 counter_u64_add(ktls_offload_enable_calls, 1); 1228 1229 /* 1230 * This should always be true since only the TCP socket option 1231 * invokes this function. 1232 */ 1233 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1234 return (EINVAL); 1235 1236 /* 1237 * XXX: Don't overwrite existing sessions. We should permit 1238 * this to support rekeying in the future. 1239 */ 1240 if (so->so_rcv.sb_tls_info != NULL) 1241 return (EALREADY); 1242 1243 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1244 return (ENOTSUP); 1245 1246 error = ktls_create_session(so, en, &tls, KTLS_RX); 1247 if (error) 1248 return (error); 1249 1250 error = ktls_ocf_try(so, tls, KTLS_RX); 1251 if (error) { 1252 ktls_free(tls); 1253 return (error); 1254 } 1255 1256 /* Mark the socket as using TLS offload. */ 1257 SOCK_RECVBUF_LOCK(so); 1258 if (SOLISTENING(so)) { 1259 SOCK_RECVBUF_UNLOCK(so); 1260 ktls_free(tls); 1261 return (EINVAL); 1262 } 1263 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1264 so->so_rcv.sb_tls_info = tls; 1265 so->so_rcv.sb_flags |= SB_TLS_RX; 1266 1267 /* Mark existing data as not ready until it can be decrypted. */ 1268 sb_mark_notready(&so->so_rcv); 1269 ktls_check_rx(&so->so_rcv); 1270 SOCK_RECVBUF_UNLOCK(so); 1271 1272 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1273 #ifdef TCP_OFFLOAD 1274 error = ktls_try_toe(so, tls, KTLS_RX); 1275 if (error) 1276 #endif 1277 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1278 if (error) 1279 ktls_use_sw(tls); 1280 1281 counter_u64_add(ktls_offload_total, 1); 1282 1283 return (0); 1284 } 1285 1286 int 1287 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1288 { 1289 struct ktls_session *tls; 1290 struct inpcb *inp; 1291 struct tcpcb *tp; 1292 int error; 1293 1294 if (!ktls_offload_enable) 1295 return (ENOTSUP); 1296 1297 counter_u64_add(ktls_offload_enable_calls, 1); 1298 1299 /* 1300 * This should always be true since only the TCP socket option 1301 * invokes this function. 1302 */ 1303 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1304 return (EINVAL); 1305 1306 /* 1307 * XXX: Don't overwrite existing sessions. We should permit 1308 * this to support rekeying in the future. 1309 */ 1310 if (so->so_snd.sb_tls_info != NULL) 1311 return (EALREADY); 1312 1313 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1314 return (ENOTSUP); 1315 1316 /* TLS requires ext pgs */ 1317 if (mb_use_ext_pgs == 0) 1318 return (ENXIO); 1319 1320 error = ktls_create_session(so, en, &tls, KTLS_TX); 1321 if (error) 1322 return (error); 1323 1324 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1325 #ifdef TCP_OFFLOAD 1326 error = ktls_try_toe(so, tls, KTLS_TX); 1327 if (error) 1328 #endif 1329 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1330 if (error) 1331 error = ktls_try_sw(so, tls, KTLS_TX); 1332 1333 if (error) { 1334 ktls_free(tls); 1335 return (error); 1336 } 1337 1338 /* 1339 * Serialize with sosend_generic() and make sure that we're not 1340 * operating on a listening socket. 1341 */ 1342 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1343 if (error) { 1344 ktls_free(tls); 1345 return (error); 1346 } 1347 1348 /* 1349 * Write lock the INP when setting sb_tls_info so that 1350 * routines in tcp_ratelimit.c can read sb_tls_info while 1351 * holding the INP lock. 1352 */ 1353 inp = so->so_pcb; 1354 INP_WLOCK(inp); 1355 SOCK_SENDBUF_LOCK(so); 1356 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1357 so->so_snd.sb_tls_info = tls; 1358 if (tls->mode != TCP_TLS_MODE_SW) { 1359 tp = intotcpcb(inp); 1360 MPASS(tp->t_nic_ktls_xmit == 0); 1361 tp->t_nic_ktls_xmit = 1; 1362 if (tp->t_fb->tfb_hwtls_change != NULL) 1363 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1364 } 1365 SOCK_SENDBUF_UNLOCK(so); 1366 INP_WUNLOCK(inp); 1367 SOCK_IO_SEND_UNLOCK(so); 1368 1369 counter_u64_add(ktls_offload_total, 1); 1370 1371 return (0); 1372 } 1373 1374 int 1375 ktls_get_rx_mode(struct socket *so, int *modep) 1376 { 1377 struct ktls_session *tls; 1378 struct inpcb *inp __diagused; 1379 1380 if (SOLISTENING(so)) 1381 return (EINVAL); 1382 inp = so->so_pcb; 1383 INP_WLOCK_ASSERT(inp); 1384 SOCK_RECVBUF_LOCK(so); 1385 tls = so->so_rcv.sb_tls_info; 1386 if (tls == NULL) 1387 *modep = TCP_TLS_MODE_NONE; 1388 else 1389 *modep = tls->mode; 1390 SOCK_RECVBUF_UNLOCK(so); 1391 return (0); 1392 } 1393 1394 /* 1395 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1396 * 1397 * This function gets information about the next TCP- and TLS- 1398 * sequence number to be processed by the TLS receive worker 1399 * thread. The information is extracted from the given "inpcb" 1400 * structure. The values are stored in host endian format at the two 1401 * given output pointer locations. The TCP sequence number points to 1402 * the beginning of the TLS header. 1403 * 1404 * This function returns zero on success, else a non-zero error code 1405 * is returned. 1406 */ 1407 int 1408 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1409 { 1410 struct socket *so; 1411 struct tcpcb *tp; 1412 1413 INP_RLOCK(inp); 1414 so = inp->inp_socket; 1415 if (__predict_false(so == NULL)) { 1416 INP_RUNLOCK(inp); 1417 return (EINVAL); 1418 } 1419 if (inp->inp_flags & INP_DROPPED) { 1420 INP_RUNLOCK(inp); 1421 return (ECONNRESET); 1422 } 1423 1424 tp = intotcpcb(inp); 1425 MPASS(tp != NULL); 1426 1427 SOCKBUF_LOCK(&so->so_rcv); 1428 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1429 *tlsseq = so->so_rcv.sb_tls_seqno; 1430 SOCKBUF_UNLOCK(&so->so_rcv); 1431 1432 INP_RUNLOCK(inp); 1433 1434 return (0); 1435 } 1436 1437 int 1438 ktls_get_tx_mode(struct socket *so, int *modep) 1439 { 1440 struct ktls_session *tls; 1441 struct inpcb *inp __diagused; 1442 1443 if (SOLISTENING(so)) 1444 return (EINVAL); 1445 inp = so->so_pcb; 1446 INP_WLOCK_ASSERT(inp); 1447 SOCK_SENDBUF_LOCK(so); 1448 tls = so->so_snd.sb_tls_info; 1449 if (tls == NULL) 1450 *modep = TCP_TLS_MODE_NONE; 1451 else 1452 *modep = tls->mode; 1453 SOCK_SENDBUF_UNLOCK(so); 1454 return (0); 1455 } 1456 1457 /* 1458 * Switch between SW and ifnet TLS sessions as requested. 1459 */ 1460 int 1461 ktls_set_tx_mode(struct socket *so, int mode) 1462 { 1463 struct ktls_session *tls, *tls_new; 1464 struct inpcb *inp; 1465 struct tcpcb *tp; 1466 int error; 1467 1468 if (SOLISTENING(so)) 1469 return (EINVAL); 1470 switch (mode) { 1471 case TCP_TLS_MODE_SW: 1472 case TCP_TLS_MODE_IFNET: 1473 break; 1474 default: 1475 return (EINVAL); 1476 } 1477 1478 inp = so->so_pcb; 1479 INP_WLOCK_ASSERT(inp); 1480 tp = intotcpcb(inp); 1481 1482 if (mode == TCP_TLS_MODE_IFNET) { 1483 /* Don't allow enabling ifnet ktls multiple times */ 1484 if (tp->t_nic_ktls_xmit) 1485 return (EALREADY); 1486 1487 /* 1488 * Don't enable ifnet ktls if we disabled it due to an 1489 * excessive retransmission rate 1490 */ 1491 if (tp->t_nic_ktls_xmit_dis) 1492 return (ENXIO); 1493 } 1494 1495 SOCKBUF_LOCK(&so->so_snd); 1496 tls = so->so_snd.sb_tls_info; 1497 if (tls == NULL) { 1498 SOCKBUF_UNLOCK(&so->so_snd); 1499 return (0); 1500 } 1501 1502 if (tls->mode == mode) { 1503 SOCKBUF_UNLOCK(&so->so_snd); 1504 return (0); 1505 } 1506 1507 tls = ktls_hold(tls); 1508 SOCKBUF_UNLOCK(&so->so_snd); 1509 INP_WUNLOCK(inp); 1510 1511 tls_new = ktls_clone_session(tls, KTLS_TX); 1512 1513 if (mode == TCP_TLS_MODE_IFNET) 1514 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1515 else 1516 error = ktls_try_sw(so, tls_new, KTLS_TX); 1517 if (error) { 1518 counter_u64_add(ktls_switch_failed, 1); 1519 ktls_free(tls_new); 1520 ktls_free(tls); 1521 INP_WLOCK(inp); 1522 return (error); 1523 } 1524 1525 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1526 if (error) { 1527 counter_u64_add(ktls_switch_failed, 1); 1528 ktls_free(tls_new); 1529 ktls_free(tls); 1530 INP_WLOCK(inp); 1531 return (error); 1532 } 1533 1534 /* 1535 * If we raced with another session change, keep the existing 1536 * session. 1537 */ 1538 if (tls != so->so_snd.sb_tls_info) { 1539 counter_u64_add(ktls_switch_failed, 1); 1540 SOCK_IO_SEND_UNLOCK(so); 1541 ktls_free(tls_new); 1542 ktls_free(tls); 1543 INP_WLOCK(inp); 1544 return (EBUSY); 1545 } 1546 1547 INP_WLOCK(inp); 1548 SOCKBUF_LOCK(&so->so_snd); 1549 so->so_snd.sb_tls_info = tls_new; 1550 if (tls_new->mode != TCP_TLS_MODE_SW) { 1551 MPASS(tp->t_nic_ktls_xmit == 0); 1552 tp->t_nic_ktls_xmit = 1; 1553 if (tp->t_fb->tfb_hwtls_change != NULL) 1554 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1555 } 1556 SOCKBUF_UNLOCK(&so->so_snd); 1557 SOCK_IO_SEND_UNLOCK(so); 1558 1559 /* 1560 * Drop two references on 'tls'. The first is for the 1561 * ktls_hold() above. The second drops the reference from the 1562 * socket buffer. 1563 */ 1564 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1565 ktls_free(tls); 1566 ktls_free(tls); 1567 1568 if (mode == TCP_TLS_MODE_IFNET) 1569 counter_u64_add(ktls_switch_to_ifnet, 1); 1570 else 1571 counter_u64_add(ktls_switch_to_sw, 1); 1572 1573 return (0); 1574 } 1575 1576 /* 1577 * Try to allocate a new TLS receive tag. This task is scheduled when 1578 * sbappend_ktls_rx detects an input path change. If a new tag is 1579 * allocated, replace the tag in the TLS session. If a new tag cannot 1580 * be allocated, let the session fall back to software decryption. 1581 */ 1582 static void 1583 ktls_reset_receive_tag(void *context, int pending) 1584 { 1585 union if_snd_tag_alloc_params params; 1586 struct ktls_session *tls; 1587 struct m_snd_tag *mst; 1588 struct inpcb *inp; 1589 struct ifnet *ifp; 1590 struct socket *so; 1591 int error; 1592 1593 MPASS(pending == 1); 1594 1595 tls = context; 1596 so = tls->so; 1597 inp = so->so_pcb; 1598 ifp = NULL; 1599 1600 INP_RLOCK(inp); 1601 if (inp->inp_flags & INP_DROPPED) { 1602 INP_RUNLOCK(inp); 1603 goto out; 1604 } 1605 1606 SOCKBUF_LOCK(&so->so_rcv); 1607 mst = tls->snd_tag; 1608 tls->snd_tag = NULL; 1609 if (mst != NULL) 1610 m_snd_tag_rele(mst); 1611 1612 ifp = tls->rx_ifp; 1613 if_ref(ifp); 1614 SOCKBUF_UNLOCK(&so->so_rcv); 1615 1616 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1617 params.hdr.flowid = inp->inp_flowid; 1618 params.hdr.flowtype = inp->inp_flowtype; 1619 params.hdr.numa_domain = inp->inp_numa_domain; 1620 params.tls_rx.inp = inp; 1621 params.tls_rx.tls = tls; 1622 params.tls_rx.vlan_id = tls->rx_vlan_id; 1623 INP_RUNLOCK(inp); 1624 1625 if (inp->inp_vflag & INP_IPV6) { 1626 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1627 goto out; 1628 } else { 1629 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1630 goto out; 1631 } 1632 1633 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1634 if (error == 0) { 1635 SOCKBUF_LOCK(&so->so_rcv); 1636 tls->snd_tag = mst; 1637 SOCKBUF_UNLOCK(&so->so_rcv); 1638 1639 counter_u64_add(ktls_ifnet_reset, 1); 1640 } else { 1641 /* 1642 * Just fall back to software decryption if a tag 1643 * cannot be allocated leaving the connection intact. 1644 * If a future input path change switches to another 1645 * interface this connection will resume ifnet TLS. 1646 */ 1647 counter_u64_add(ktls_ifnet_reset_failed, 1); 1648 } 1649 1650 out: 1651 mtx_pool_lock(mtxpool_sleep, tls); 1652 tls->reset_pending = false; 1653 mtx_pool_unlock(mtxpool_sleep, tls); 1654 1655 if (ifp != NULL) 1656 if_rele(ifp); 1657 sorele(so); 1658 ktls_free(tls); 1659 } 1660 1661 /* 1662 * Try to allocate a new TLS send tag. This task is scheduled when 1663 * ip_output detects a route change while trying to transmit a packet 1664 * holding a TLS record. If a new tag is allocated, replace the tag 1665 * in the TLS session. Subsequent packets on the connection will use 1666 * the new tag. If a new tag cannot be allocated, drop the 1667 * connection. 1668 */ 1669 static void 1670 ktls_reset_send_tag(void *context, int pending) 1671 { 1672 struct epoch_tracker et; 1673 struct ktls_session *tls; 1674 struct m_snd_tag *old, *new; 1675 struct inpcb *inp; 1676 struct tcpcb *tp; 1677 int error; 1678 1679 MPASS(pending == 1); 1680 1681 tls = context; 1682 inp = tls->inp; 1683 1684 /* 1685 * Free the old tag first before allocating a new one. 1686 * ip[6]_output_send() will treat a NULL send tag the same as 1687 * an ifp mismatch and drop packets until a new tag is 1688 * allocated. 1689 * 1690 * Write-lock the INP when changing tls->snd_tag since 1691 * ip[6]_output_send() holds a read-lock when reading the 1692 * pointer. 1693 */ 1694 INP_WLOCK(inp); 1695 old = tls->snd_tag; 1696 tls->snd_tag = NULL; 1697 INP_WUNLOCK(inp); 1698 if (old != NULL) 1699 m_snd_tag_rele(old); 1700 1701 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1702 1703 if (error == 0) { 1704 INP_WLOCK(inp); 1705 tls->snd_tag = new; 1706 mtx_pool_lock(mtxpool_sleep, tls); 1707 tls->reset_pending = false; 1708 mtx_pool_unlock(mtxpool_sleep, tls); 1709 INP_WUNLOCK(inp); 1710 1711 counter_u64_add(ktls_ifnet_reset, 1); 1712 1713 /* 1714 * XXX: Should we kick tcp_output explicitly now that 1715 * the send tag is fixed or just rely on timers? 1716 */ 1717 } else { 1718 NET_EPOCH_ENTER(et); 1719 INP_WLOCK(inp); 1720 if (!(inp->inp_flags & INP_DROPPED)) { 1721 tp = intotcpcb(inp); 1722 CURVNET_SET(inp->inp_vnet); 1723 tp = tcp_drop(tp, ECONNABORTED); 1724 CURVNET_RESTORE(); 1725 if (tp != NULL) 1726 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1727 } 1728 INP_WUNLOCK(inp); 1729 NET_EPOCH_EXIT(et); 1730 1731 counter_u64_add(ktls_ifnet_reset_failed, 1); 1732 1733 /* 1734 * Leave reset_pending true to avoid future tasks while 1735 * the socket goes away. 1736 */ 1737 } 1738 1739 ktls_free(tls); 1740 } 1741 1742 void 1743 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1744 { 1745 struct ktls_session *tls; 1746 struct socket *so; 1747 1748 SOCKBUF_LOCK_ASSERT(sb); 1749 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1750 __func__, sb)); 1751 so = __containerof(sb, struct socket, so_rcv); 1752 1753 tls = sb->sb_tls_info; 1754 if_rele(tls->rx_ifp); 1755 if_ref(ifp); 1756 tls->rx_ifp = ifp; 1757 1758 /* 1759 * See if we should schedule a task to update the receive tag for 1760 * this session. 1761 */ 1762 mtx_pool_lock(mtxpool_sleep, tls); 1763 if (!tls->reset_pending) { 1764 (void) ktls_hold(tls); 1765 soref(so); 1766 tls->so = so; 1767 tls->reset_pending = true; 1768 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1769 } 1770 mtx_pool_unlock(mtxpool_sleep, tls); 1771 } 1772 1773 int 1774 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1775 { 1776 1777 if (inp == NULL) 1778 return (ENOBUFS); 1779 1780 INP_LOCK_ASSERT(inp); 1781 1782 /* 1783 * See if we should schedule a task to update the send tag for 1784 * this session. 1785 */ 1786 mtx_pool_lock(mtxpool_sleep, tls); 1787 if (!tls->reset_pending) { 1788 (void) ktls_hold(tls); 1789 tls->reset_pending = true; 1790 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1791 } 1792 mtx_pool_unlock(mtxpool_sleep, tls); 1793 return (ENOBUFS); 1794 } 1795 1796 #ifdef RATELIMIT 1797 int 1798 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1799 { 1800 union if_snd_tag_modify_params params = { 1801 .rate_limit.max_rate = max_pacing_rate, 1802 .rate_limit.flags = M_NOWAIT, 1803 }; 1804 struct m_snd_tag *mst; 1805 1806 /* Can't get to the inp, but it should be locked. */ 1807 /* INP_LOCK_ASSERT(inp); */ 1808 1809 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1810 1811 if (tls->snd_tag == NULL) { 1812 /* 1813 * Resetting send tag, ignore this change. The 1814 * pending reset may or may not see this updated rate 1815 * in the tcpcb. If it doesn't, we will just lose 1816 * this rate change. 1817 */ 1818 return (0); 1819 } 1820 1821 mst = tls->snd_tag; 1822 1823 MPASS(mst != NULL); 1824 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1825 1826 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1827 } 1828 #endif 1829 #endif 1830 1831 static void 1832 ktls_destroy_help(void *context, int pending __unused) 1833 { 1834 ktls_destroy(context); 1835 } 1836 1837 void 1838 ktls_destroy(struct ktls_session *tls) 1839 { 1840 struct inpcb *inp; 1841 struct tcpcb *tp; 1842 bool wlocked; 1843 1844 MPASS(tls->refcount == 0); 1845 1846 inp = tls->inp; 1847 if (tls->tx) { 1848 wlocked = INP_WLOCKED(inp); 1849 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1850 /* 1851 * rwlocks read locks are anonymous, and there 1852 * is no way to know if our current thread 1853 * holds an rlock on the inp. As a rough 1854 * estimate, check to see if the thread holds 1855 * *any* rlocks at all. If it does not, then we 1856 * know that we don't hold the inp rlock, and 1857 * can safely take the wlock 1858 */ 1859 if (curthread->td_rw_rlocks == 0) { 1860 INP_WLOCK(inp); 1861 } else { 1862 /* 1863 * We might hold the rlock, so let's 1864 * do the destroy in a taskqueue 1865 * context to avoid a potential 1866 * deadlock. This should be very 1867 * rare. 1868 */ 1869 counter_u64_add(ktls_destroy_task, 1); 1870 TASK_INIT(&tls->destroy_task, 0, 1871 ktls_destroy_help, tls); 1872 (void)taskqueue_enqueue(taskqueue_thread, 1873 &tls->destroy_task); 1874 return; 1875 } 1876 } 1877 } 1878 1879 if (tls->sequential_records) { 1880 struct mbuf *m, *n; 1881 int page_count; 1882 1883 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1884 page_count = m->m_epg_enc_cnt; 1885 while (page_count > 0) { 1886 KASSERT(page_count >= m->m_epg_nrdy, 1887 ("%s: too few pages", __func__)); 1888 page_count -= m->m_epg_nrdy; 1889 m = m_free(m); 1890 } 1891 } 1892 } 1893 1894 counter_u64_add(ktls_offload_active, -1); 1895 switch (tls->mode) { 1896 case TCP_TLS_MODE_SW: 1897 switch (tls->params.cipher_algorithm) { 1898 case CRYPTO_AES_CBC: 1899 counter_u64_add(ktls_sw_cbc, -1); 1900 break; 1901 case CRYPTO_AES_NIST_GCM_16: 1902 counter_u64_add(ktls_sw_gcm, -1); 1903 break; 1904 case CRYPTO_CHACHA20_POLY1305: 1905 counter_u64_add(ktls_sw_chacha20, -1); 1906 break; 1907 } 1908 break; 1909 case TCP_TLS_MODE_IFNET: 1910 switch (tls->params.cipher_algorithm) { 1911 case CRYPTO_AES_CBC: 1912 counter_u64_add(ktls_ifnet_cbc, -1); 1913 break; 1914 case CRYPTO_AES_NIST_GCM_16: 1915 counter_u64_add(ktls_ifnet_gcm, -1); 1916 break; 1917 case CRYPTO_CHACHA20_POLY1305: 1918 counter_u64_add(ktls_ifnet_chacha20, -1); 1919 break; 1920 } 1921 if (tls->snd_tag != NULL) 1922 m_snd_tag_rele(tls->snd_tag); 1923 if (tls->rx_ifp != NULL) 1924 if_rele(tls->rx_ifp); 1925 if (tls->tx) { 1926 INP_WLOCK_ASSERT(inp); 1927 tp = intotcpcb(inp); 1928 MPASS(tp->t_nic_ktls_xmit == 1); 1929 tp->t_nic_ktls_xmit = 0; 1930 } 1931 break; 1932 #ifdef TCP_OFFLOAD 1933 case TCP_TLS_MODE_TOE: 1934 switch (tls->params.cipher_algorithm) { 1935 case CRYPTO_AES_CBC: 1936 counter_u64_add(ktls_toe_cbc, -1); 1937 break; 1938 case CRYPTO_AES_NIST_GCM_16: 1939 counter_u64_add(ktls_toe_gcm, -1); 1940 break; 1941 case CRYPTO_CHACHA20_POLY1305: 1942 counter_u64_add(ktls_toe_chacha20, -1); 1943 break; 1944 } 1945 break; 1946 #endif 1947 } 1948 if (tls->ocf_session != NULL) 1949 ktls_ocf_free(tls); 1950 if (tls->params.auth_key != NULL) { 1951 zfree(tls->params.auth_key, M_KTLS); 1952 tls->params.auth_key = NULL; 1953 tls->params.auth_key_len = 0; 1954 } 1955 if (tls->params.cipher_key != NULL) { 1956 zfree(tls->params.cipher_key, M_KTLS); 1957 tls->params.cipher_key = NULL; 1958 tls->params.cipher_key_len = 0; 1959 } 1960 if (tls->tx) { 1961 INP_WLOCK_ASSERT(inp); 1962 if (!in_pcbrele_wlocked(inp) && !wlocked) 1963 INP_WUNLOCK(inp); 1964 } 1965 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 1966 1967 uma_zfree(ktls_session_zone, tls); 1968 } 1969 1970 void 1971 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1972 { 1973 1974 for (; m != NULL; m = m->m_next) { 1975 KASSERT((m->m_flags & M_EXTPG) != 0, 1976 ("ktls_seq: mapped mbuf %p", m)); 1977 1978 m->m_epg_seqno = sb->sb_tls_seqno; 1979 sb->sb_tls_seqno++; 1980 } 1981 } 1982 1983 /* 1984 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1985 * mbuf in the chain must be an unmapped mbuf. The payload of the 1986 * mbuf must be populated with the payload of each TLS record. 1987 * 1988 * The record_type argument specifies the TLS record type used when 1989 * populating the TLS header. 1990 * 1991 * The enq_count argument on return is set to the number of pages of 1992 * payload data for this entire chain that need to be encrypted via SW 1993 * encryption. The returned value should be passed to ktls_enqueue 1994 * when scheduling encryption of this chain of mbufs. To handle the 1995 * special case of empty fragments for TLS 1.0 sessions, an empty 1996 * fragment counts as one page. 1997 */ 1998 void 1999 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2000 uint8_t record_type) 2001 { 2002 struct tls_record_layer *tlshdr; 2003 struct mbuf *m; 2004 uint64_t *noncep; 2005 uint16_t tls_len; 2006 int maxlen __diagused; 2007 2008 maxlen = tls->params.max_frame_len; 2009 *enq_cnt = 0; 2010 for (m = top; m != NULL; m = m->m_next) { 2011 /* 2012 * All mbufs in the chain should be TLS records whose 2013 * payload does not exceed the maximum frame length. 2014 * 2015 * Empty TLS 1.0 records are permitted when using CBC. 2016 */ 2017 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2018 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2019 ("ktls_frame: m %p len %d", m, m->m_len)); 2020 2021 /* 2022 * TLS frames require unmapped mbufs to store session 2023 * info. 2024 */ 2025 KASSERT((m->m_flags & M_EXTPG) != 0, 2026 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2027 2028 tls_len = m->m_len; 2029 2030 /* Save a reference to the session. */ 2031 m->m_epg_tls = ktls_hold(tls); 2032 2033 m->m_epg_hdrlen = tls->params.tls_hlen; 2034 m->m_epg_trllen = tls->params.tls_tlen; 2035 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2036 int bs, delta; 2037 2038 /* 2039 * AES-CBC pads messages to a multiple of the 2040 * block size. Note that the padding is 2041 * applied after the digest and the encryption 2042 * is done on the "plaintext || mac || padding". 2043 * At least one byte of padding is always 2044 * present. 2045 * 2046 * Compute the final trailer length assuming 2047 * at most one block of padding. 2048 * tls->params.tls_tlen is the maximum 2049 * possible trailer length (padding + digest). 2050 * delta holds the number of excess padding 2051 * bytes if the maximum were used. Those 2052 * extra bytes are removed. 2053 */ 2054 bs = tls->params.tls_bs; 2055 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2056 m->m_epg_trllen -= delta; 2057 } 2058 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2059 2060 /* Populate the TLS header. */ 2061 tlshdr = (void *)m->m_epg_hdr; 2062 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2063 2064 /* 2065 * TLS 1.3 masquarades as TLS 1.2 with a record type 2066 * of TLS_RLTYPE_APP. 2067 */ 2068 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2069 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2070 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2071 tlshdr->tls_type = TLS_RLTYPE_APP; 2072 /* save the real record type for later */ 2073 m->m_epg_record_type = record_type; 2074 m->m_epg_trail[0] = record_type; 2075 } else { 2076 tlshdr->tls_vminor = tls->params.tls_vminor; 2077 tlshdr->tls_type = record_type; 2078 } 2079 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2080 2081 /* 2082 * Store nonces / explicit IVs after the end of the 2083 * TLS header. 2084 * 2085 * For GCM with TLS 1.2, an 8 byte nonce is copied 2086 * from the end of the IV. The nonce is then 2087 * incremented for use by the next record. 2088 * 2089 * For CBC, a random nonce is inserted for TLS 1.1+. 2090 */ 2091 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2092 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2093 noncep = (uint64_t *)(tls->params.iv + 8); 2094 be64enc(tlshdr + 1, *noncep); 2095 (*noncep)++; 2096 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2097 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2098 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2099 2100 /* 2101 * When using SW encryption, mark the mbuf not ready. 2102 * It will be marked ready via sbready() after the 2103 * record has been encrypted. 2104 * 2105 * When using ifnet TLS, unencrypted TLS records are 2106 * sent down the stack to the NIC. 2107 */ 2108 if (tls->mode == TCP_TLS_MODE_SW) { 2109 m->m_flags |= M_NOTREADY; 2110 if (__predict_false(tls_len == 0)) { 2111 /* TLS 1.0 empty fragment. */ 2112 m->m_epg_nrdy = 1; 2113 } else 2114 m->m_epg_nrdy = m->m_epg_npgs; 2115 *enq_cnt += m->m_epg_nrdy; 2116 } 2117 } 2118 } 2119 2120 bool 2121 ktls_permit_empty_frames(struct ktls_session *tls) 2122 { 2123 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2124 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2125 } 2126 2127 void 2128 ktls_check_rx(struct sockbuf *sb) 2129 { 2130 struct tls_record_layer hdr; 2131 struct ktls_wq *wq; 2132 struct socket *so; 2133 bool running; 2134 2135 SOCKBUF_LOCK_ASSERT(sb); 2136 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2137 __func__, sb)); 2138 so = __containerof(sb, struct socket, so_rcv); 2139 2140 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2141 return; 2142 2143 /* Is there enough queued for a TLS header? */ 2144 if (sb->sb_tlscc < sizeof(hdr)) { 2145 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2146 so->so_error = EMSGSIZE; 2147 return; 2148 } 2149 2150 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2151 2152 /* Is the entire record queued? */ 2153 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2154 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2155 so->so_error = EMSGSIZE; 2156 return; 2157 } 2158 2159 sb->sb_flags |= SB_TLS_RX_RUNNING; 2160 2161 soref(so); 2162 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2163 mtx_lock(&wq->mtx); 2164 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2165 running = wq->running; 2166 mtx_unlock(&wq->mtx); 2167 if (!running) 2168 wakeup(wq); 2169 counter_u64_add(ktls_cnt_rx_queued, 1); 2170 } 2171 2172 static struct mbuf * 2173 ktls_detach_record(struct sockbuf *sb, int len) 2174 { 2175 struct mbuf *m, *n, *top; 2176 int remain; 2177 2178 SOCKBUF_LOCK_ASSERT(sb); 2179 MPASS(len <= sb->sb_tlscc); 2180 2181 /* 2182 * If TLS chain is the exact size of the record, 2183 * just grab the whole record. 2184 */ 2185 top = sb->sb_mtls; 2186 if (sb->sb_tlscc == len) { 2187 sb->sb_mtls = NULL; 2188 sb->sb_mtlstail = NULL; 2189 goto out; 2190 } 2191 2192 /* 2193 * While it would be nice to use m_split() here, we need 2194 * to know exactly what m_split() allocates to update the 2195 * accounting, so do it inline instead. 2196 */ 2197 remain = len; 2198 for (m = top; remain > m->m_len; m = m->m_next) 2199 remain -= m->m_len; 2200 2201 /* Easy case: don't have to split 'm'. */ 2202 if (remain == m->m_len) { 2203 sb->sb_mtls = m->m_next; 2204 if (sb->sb_mtls == NULL) 2205 sb->sb_mtlstail = NULL; 2206 m->m_next = NULL; 2207 goto out; 2208 } 2209 2210 /* 2211 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2212 * with M_NOWAIT first. 2213 */ 2214 n = m_get(M_NOWAIT, MT_DATA); 2215 if (n == NULL) { 2216 /* 2217 * Use M_WAITOK with socket buffer unlocked. If 2218 * 'sb_mtls' changes while the lock is dropped, return 2219 * NULL to force the caller to retry. 2220 */ 2221 SOCKBUF_UNLOCK(sb); 2222 2223 n = m_get(M_WAITOK, MT_DATA); 2224 2225 SOCKBUF_LOCK(sb); 2226 if (sb->sb_mtls != top) { 2227 m_free(n); 2228 return (NULL); 2229 } 2230 } 2231 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2232 2233 /* Store remainder in 'n'. */ 2234 n->m_len = m->m_len - remain; 2235 if (m->m_flags & M_EXT) { 2236 n->m_data = m->m_data + remain; 2237 mb_dupcl(n, m); 2238 } else { 2239 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2240 } 2241 2242 /* Trim 'm' and update accounting. */ 2243 m->m_len -= n->m_len; 2244 sb->sb_tlscc -= n->m_len; 2245 sb->sb_ccc -= n->m_len; 2246 2247 /* Account for 'n'. */ 2248 sballoc_ktls_rx(sb, n); 2249 2250 /* Insert 'n' into the TLS chain. */ 2251 sb->sb_mtls = n; 2252 n->m_next = m->m_next; 2253 if (sb->sb_mtlstail == m) 2254 sb->sb_mtlstail = n; 2255 2256 /* Detach the record from the TLS chain. */ 2257 m->m_next = NULL; 2258 2259 out: 2260 MPASS(m_length(top, NULL) == len); 2261 for (m = top; m != NULL; m = m->m_next) 2262 sbfree_ktls_rx(sb, m); 2263 sb->sb_tlsdcc = len; 2264 sb->sb_ccc += len; 2265 SBCHECK(sb); 2266 return (top); 2267 } 2268 2269 /* 2270 * Determine the length of the trailing zero padding and find the real 2271 * record type in the byte before the padding. 2272 * 2273 * Walking the mbuf chain backwards is clumsy, so another option would 2274 * be to scan forwards remembering the last non-zero byte before the 2275 * trailer. However, it would be expensive to scan the entire record. 2276 * Instead, find the last non-zero byte of each mbuf in the chain 2277 * keeping track of the relative offset of that nonzero byte. 2278 * 2279 * trail_len is the size of the MAC/tag on input and is set to the 2280 * size of the full trailer including padding and the record type on 2281 * return. 2282 */ 2283 static int 2284 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2285 int *trailer_len, uint8_t *record_typep) 2286 { 2287 char *cp; 2288 u_int digest_start, last_offset, m_len, offset; 2289 uint8_t record_type; 2290 2291 digest_start = tls_len - *trailer_len; 2292 last_offset = 0; 2293 offset = 0; 2294 for (; m != NULL && offset < digest_start; 2295 offset += m->m_len, m = m->m_next) { 2296 /* Don't look for padding in the tag. */ 2297 m_len = min(digest_start - offset, m->m_len); 2298 cp = mtod(m, char *); 2299 2300 /* Find last non-zero byte in this mbuf. */ 2301 while (m_len > 0 && cp[m_len - 1] == 0) 2302 m_len--; 2303 if (m_len > 0) { 2304 record_type = cp[m_len - 1]; 2305 last_offset = offset + m_len; 2306 } 2307 } 2308 if (last_offset < tls->params.tls_hlen) 2309 return (EBADMSG); 2310 2311 *record_typep = record_type; 2312 *trailer_len = tls_len - last_offset + 1; 2313 return (0); 2314 } 2315 2316 /* 2317 * Check if a mbuf chain is fully decrypted at the given offset and 2318 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2319 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2320 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2321 * is encrypted. 2322 */ 2323 ktls_mbuf_crypto_st_t 2324 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2325 { 2326 int m_flags_ored = 0; 2327 int m_flags_anded = -1; 2328 2329 for (; mb != NULL; mb = mb->m_next) { 2330 if (offset < mb->m_len) 2331 break; 2332 offset -= mb->m_len; 2333 } 2334 offset += len; 2335 2336 for (; mb != NULL; mb = mb->m_next) { 2337 m_flags_ored |= mb->m_flags; 2338 m_flags_anded &= mb->m_flags; 2339 2340 if (offset <= mb->m_len) 2341 break; 2342 offset -= mb->m_len; 2343 } 2344 MPASS(mb != NULL || offset == 0); 2345 2346 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2347 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2348 else 2349 return ((m_flags_ored & M_DECRYPTED) ? 2350 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2351 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2352 } 2353 2354 /* 2355 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2356 */ 2357 static int 2358 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2359 { 2360 union if_snd_tag_modify_params params; 2361 struct m_snd_tag *mst; 2362 struct inpcb *inp; 2363 struct tcpcb *tp; 2364 2365 mst = so->so_rcv.sb_tls_info->snd_tag; 2366 if (__predict_false(mst == NULL)) 2367 return (EINVAL); 2368 2369 inp = sotoinpcb(so); 2370 if (__predict_false(inp == NULL)) 2371 return (EINVAL); 2372 2373 INP_RLOCK(inp); 2374 if (inp->inp_flags & INP_DROPPED) { 2375 INP_RUNLOCK(inp); 2376 return (ECONNRESET); 2377 } 2378 2379 tp = intotcpcb(inp); 2380 MPASS(tp != NULL); 2381 2382 /* Get the TCP sequence number of the next valid TLS header. */ 2383 SOCKBUF_LOCK(&so->so_rcv); 2384 params.tls_rx.tls_hdr_tcp_sn = 2385 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2386 params.tls_rx.tls_rec_length = tls_len; 2387 params.tls_rx.tls_seq_number = tls_rcd_num; 2388 SOCKBUF_UNLOCK(&so->so_rcv); 2389 2390 INP_RUNLOCK(inp); 2391 2392 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2393 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2394 } 2395 2396 static void 2397 ktls_drop(struct socket *so, int error) 2398 { 2399 struct epoch_tracker et; 2400 struct inpcb *inp = sotoinpcb(so); 2401 struct tcpcb *tp; 2402 2403 NET_EPOCH_ENTER(et); 2404 INP_WLOCK(inp); 2405 if (!(inp->inp_flags & INP_DROPPED)) { 2406 tp = intotcpcb(inp); 2407 CURVNET_SET(inp->inp_vnet); 2408 tp = tcp_drop(tp, error); 2409 CURVNET_RESTORE(); 2410 if (tp != NULL) 2411 INP_WUNLOCK(inp); 2412 } else { 2413 so->so_error = error; 2414 SOCK_RECVBUF_LOCK(so); 2415 sorwakeup_locked(so); 2416 INP_WUNLOCK(inp); 2417 } 2418 NET_EPOCH_EXIT(et); 2419 } 2420 2421 static void 2422 ktls_decrypt(struct socket *so) 2423 { 2424 char tls_header[MBUF_PEXT_HDR_LEN]; 2425 struct ktls_session *tls; 2426 struct sockbuf *sb; 2427 struct tls_record_layer *hdr; 2428 struct tls_get_record tgr; 2429 struct mbuf *control, *data, *m; 2430 ktls_mbuf_crypto_st_t state; 2431 uint64_t seqno; 2432 int error, remain, tls_len, trail_len; 2433 bool tls13; 2434 uint8_t vminor, record_type; 2435 2436 hdr = (struct tls_record_layer *)tls_header; 2437 sb = &so->so_rcv; 2438 SOCKBUF_LOCK(sb); 2439 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2440 ("%s: socket %p not running", __func__, so)); 2441 2442 tls = sb->sb_tls_info; 2443 MPASS(tls != NULL); 2444 2445 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2446 if (tls13) 2447 vminor = TLS_MINOR_VER_TWO; 2448 else 2449 vminor = tls->params.tls_vminor; 2450 for (;;) { 2451 /* Is there enough queued for a TLS header? */ 2452 if (sb->sb_tlscc < tls->params.tls_hlen) 2453 break; 2454 2455 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2456 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2457 2458 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2459 hdr->tls_vminor != vminor) 2460 error = EINVAL; 2461 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2462 error = EINVAL; 2463 else if (tls_len < tls->params.tls_hlen || tls_len > 2464 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2465 tls->params.tls_tlen) 2466 error = EMSGSIZE; 2467 else 2468 error = 0; 2469 if (__predict_false(error != 0)) { 2470 /* 2471 * We have a corrupted record and are likely 2472 * out of sync. The connection isn't 2473 * recoverable at this point, so abort it. 2474 */ 2475 SOCKBUF_UNLOCK(sb); 2476 counter_u64_add(ktls_offload_corrupted_records, 1); 2477 2478 ktls_drop(so, error); 2479 goto deref; 2480 } 2481 2482 /* Is the entire record queued? */ 2483 if (sb->sb_tlscc < tls_len) 2484 break; 2485 2486 /* 2487 * Split out the portion of the mbuf chain containing 2488 * this TLS record. 2489 */ 2490 data = ktls_detach_record(sb, tls_len); 2491 if (data == NULL) 2492 continue; 2493 MPASS(sb->sb_tlsdcc == tls_len); 2494 2495 seqno = sb->sb_tls_seqno; 2496 sb->sb_tls_seqno++; 2497 SBCHECK(sb); 2498 SOCKBUF_UNLOCK(sb); 2499 2500 /* get crypto state for this TLS record */ 2501 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2502 2503 switch (state) { 2504 case KTLS_MBUF_CRYPTO_ST_MIXED: 2505 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2506 if (error) 2507 break; 2508 /* FALLTHROUGH */ 2509 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2510 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2511 &trail_len); 2512 if (__predict_true(error == 0)) { 2513 if (tls13) { 2514 error = tls13_find_record_type(tls, data, 2515 tls_len, &trail_len, &record_type); 2516 } else { 2517 record_type = hdr->tls_type; 2518 } 2519 } 2520 break; 2521 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2522 /* 2523 * NIC TLS is only supported for AEAD 2524 * ciphersuites which used a fixed sized 2525 * trailer. 2526 */ 2527 if (tls13) { 2528 trail_len = tls->params.tls_tlen - 1; 2529 error = tls13_find_record_type(tls, data, 2530 tls_len, &trail_len, &record_type); 2531 } else { 2532 trail_len = tls->params.tls_tlen; 2533 error = 0; 2534 record_type = hdr->tls_type; 2535 } 2536 break; 2537 default: 2538 error = EINVAL; 2539 break; 2540 } 2541 if (error) { 2542 counter_u64_add(ktls_offload_failed_crypto, 1); 2543 2544 SOCKBUF_LOCK(sb); 2545 if (sb->sb_tlsdcc == 0) { 2546 /* 2547 * sbcut/drop/flush discarded these 2548 * mbufs. 2549 */ 2550 m_freem(data); 2551 break; 2552 } 2553 2554 /* 2555 * Drop this TLS record's data, but keep 2556 * decrypting subsequent records. 2557 */ 2558 sb->sb_ccc -= tls_len; 2559 sb->sb_tlsdcc = 0; 2560 2561 if (error != EMSGSIZE) 2562 error = EBADMSG; 2563 CURVNET_SET(so->so_vnet); 2564 so->so_error = error; 2565 sorwakeup_locked(so); 2566 CURVNET_RESTORE(); 2567 2568 m_freem(data); 2569 2570 SOCKBUF_LOCK(sb); 2571 continue; 2572 } 2573 2574 /* Allocate the control mbuf. */ 2575 memset(&tgr, 0, sizeof(tgr)); 2576 tgr.tls_type = record_type; 2577 tgr.tls_vmajor = hdr->tls_vmajor; 2578 tgr.tls_vminor = hdr->tls_vminor; 2579 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2580 trail_len); 2581 control = sbcreatecontrol(&tgr, sizeof(tgr), 2582 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2583 2584 SOCKBUF_LOCK(sb); 2585 if (sb->sb_tlsdcc == 0) { 2586 /* sbcut/drop/flush discarded these mbufs. */ 2587 MPASS(sb->sb_tlscc == 0); 2588 m_freem(data); 2589 m_freem(control); 2590 break; 2591 } 2592 2593 /* 2594 * Clear the 'dcc' accounting in preparation for 2595 * adding the decrypted record. 2596 */ 2597 sb->sb_ccc -= tls_len; 2598 sb->sb_tlsdcc = 0; 2599 SBCHECK(sb); 2600 2601 /* If there is no payload, drop all of the data. */ 2602 if (tgr.tls_length == htobe16(0)) { 2603 m_freem(data); 2604 data = NULL; 2605 } else { 2606 /* Trim header. */ 2607 remain = tls->params.tls_hlen; 2608 while (remain > 0) { 2609 if (data->m_len > remain) { 2610 data->m_data += remain; 2611 data->m_len -= remain; 2612 break; 2613 } 2614 remain -= data->m_len; 2615 data = m_free(data); 2616 } 2617 2618 /* Trim trailer and clear M_NOTREADY. */ 2619 remain = be16toh(tgr.tls_length); 2620 m = data; 2621 for (m = data; remain > m->m_len; m = m->m_next) { 2622 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2623 remain -= m->m_len; 2624 } 2625 m->m_len = remain; 2626 m_freem(m->m_next); 2627 m->m_next = NULL; 2628 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2629 2630 /* Set EOR on the final mbuf. */ 2631 m->m_flags |= M_EOR; 2632 } 2633 2634 sbappendcontrol_locked(sb, data, control, 0); 2635 2636 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2637 sb->sb_flags |= SB_TLS_RX_RESYNC; 2638 SOCKBUF_UNLOCK(sb); 2639 ktls_resync_ifnet(so, tls_len, seqno); 2640 SOCKBUF_LOCK(sb); 2641 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2642 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2643 SOCKBUF_UNLOCK(sb); 2644 ktls_resync_ifnet(so, 0, seqno); 2645 SOCKBUF_LOCK(sb); 2646 } 2647 } 2648 2649 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2650 2651 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2652 so->so_error = EMSGSIZE; 2653 2654 sorwakeup_locked(so); 2655 2656 deref: 2657 SOCKBUF_UNLOCK_ASSERT(sb); 2658 2659 CURVNET_SET(so->so_vnet); 2660 sorele(so); 2661 CURVNET_RESTORE(); 2662 } 2663 2664 void 2665 ktls_enqueue_to_free(struct mbuf *m) 2666 { 2667 struct ktls_wq *wq; 2668 bool running; 2669 2670 /* Mark it for freeing. */ 2671 m->m_epg_flags |= EPG_FLAG_2FREE; 2672 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2673 mtx_lock(&wq->mtx); 2674 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2675 running = wq->running; 2676 mtx_unlock(&wq->mtx); 2677 if (!running) 2678 wakeup(wq); 2679 } 2680 2681 static void * 2682 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2683 { 2684 void *buf; 2685 int domain, running; 2686 2687 if (m->m_epg_npgs <= 2) 2688 return (NULL); 2689 if (ktls_buffer_zone == NULL) 2690 return (NULL); 2691 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2692 /* 2693 * Rate-limit allocation attempts after a failure. 2694 * ktls_buffer_import() will acquire a per-domain mutex to check 2695 * the free page queues and may fail consistently if memory is 2696 * fragmented. 2697 */ 2698 return (NULL); 2699 } 2700 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2701 if (buf == NULL) { 2702 domain = PCPU_GET(domain); 2703 wq->lastallocfail = ticks; 2704 2705 /* 2706 * Note that this check is "racy", but the races are 2707 * harmless, and are either a spurious wakeup if 2708 * multiple threads fail allocations before the alloc 2709 * thread wakes, or waiting an extra second in case we 2710 * see an old value of running == true. 2711 */ 2712 if (!VM_DOMAIN_EMPTY(domain)) { 2713 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2714 if (!running) 2715 wakeup(&ktls_domains[domain].alloc_td); 2716 } 2717 } 2718 return (buf); 2719 } 2720 2721 static int 2722 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2723 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2724 { 2725 vm_page_t pg; 2726 int error, i, len, off; 2727 2728 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2729 ("%p not unready & nomap mbuf\n", m)); 2730 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2731 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2732 ktls_maxlen)); 2733 2734 /* Anonymous mbufs are encrypted in place. */ 2735 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2736 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2737 2738 /* 2739 * For file-backed mbufs (from sendfile), anonymous wired 2740 * pages are allocated and used as the encryption destination. 2741 */ 2742 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2743 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2744 m->m_epg_1st_off; 2745 state->dst_iov[0].iov_base = (char *)state->cbuf + 2746 m->m_epg_1st_off; 2747 state->dst_iov[0].iov_len = len; 2748 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2749 i = 1; 2750 } else { 2751 off = m->m_epg_1st_off; 2752 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2753 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2754 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2755 len = m_epg_pagelen(m, i, off); 2756 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2757 state->dst_iov[i].iov_base = 2758 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2759 state->dst_iov[i].iov_len = len; 2760 } 2761 } 2762 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2763 state->dst_iov[i].iov_base = m->m_epg_trail; 2764 state->dst_iov[i].iov_len = m->m_epg_trllen; 2765 2766 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2767 2768 if (__predict_false(error != 0)) { 2769 /* Free the anonymous pages. */ 2770 if (state->cbuf != NULL) 2771 uma_zfree(ktls_buffer_zone, state->cbuf); 2772 else { 2773 for (i = 0; i < m->m_epg_npgs; i++) { 2774 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2775 (void)vm_page_unwire_noq(pg); 2776 vm_page_free(pg); 2777 } 2778 } 2779 } 2780 return (error); 2781 } 2782 2783 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2784 static u_int 2785 ktls_batched_records(struct mbuf *m) 2786 { 2787 int page_count, records; 2788 2789 records = 0; 2790 page_count = m->m_epg_enc_cnt; 2791 while (page_count > 0) { 2792 records++; 2793 page_count -= m->m_epg_nrdy; 2794 m = m->m_next; 2795 } 2796 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2797 return (records); 2798 } 2799 2800 void 2801 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2802 { 2803 struct ktls_session *tls; 2804 struct ktls_wq *wq; 2805 int queued; 2806 bool running; 2807 2808 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2809 (M_EXTPG | M_NOTREADY)), 2810 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2811 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2812 2813 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2814 2815 m->m_epg_enc_cnt = page_count; 2816 2817 /* 2818 * Save a pointer to the socket. The caller is responsible 2819 * for taking an additional reference via soref(). 2820 */ 2821 m->m_epg_so = so; 2822 2823 queued = 1; 2824 tls = m->m_epg_tls; 2825 wq = &ktls_wq[tls->wq_index]; 2826 mtx_lock(&wq->mtx); 2827 if (__predict_false(tls->sequential_records)) { 2828 /* 2829 * For TLS 1.0, records must be encrypted 2830 * sequentially. For a given connection, all records 2831 * queued to the associated work queue are processed 2832 * sequentially. However, sendfile(2) might complete 2833 * I/O requests spanning multiple TLS records out of 2834 * order. Here we ensure TLS records are enqueued to 2835 * the work queue in FIFO order. 2836 * 2837 * tls->next_seqno holds the sequence number of the 2838 * next TLS record that should be enqueued to the work 2839 * queue. If this next record is not tls->next_seqno, 2840 * it must be a future record, so insert it, sorted by 2841 * TLS sequence number, into tls->pending_records and 2842 * return. 2843 * 2844 * If this TLS record matches tls->next_seqno, place 2845 * it in the work queue and then check 2846 * tls->pending_records to see if any 2847 * previously-queued records are now ready for 2848 * encryption. 2849 */ 2850 if (m->m_epg_seqno != tls->next_seqno) { 2851 struct mbuf *n, *p; 2852 2853 p = NULL; 2854 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2855 if (n->m_epg_seqno > m->m_epg_seqno) 2856 break; 2857 p = n; 2858 } 2859 if (n == NULL) 2860 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2861 m_epg_stailq); 2862 else if (p == NULL) 2863 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2864 m_epg_stailq); 2865 else 2866 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2867 m_epg_stailq); 2868 mtx_unlock(&wq->mtx); 2869 counter_u64_add(ktls_cnt_tx_pending, 1); 2870 return; 2871 } 2872 2873 tls->next_seqno += ktls_batched_records(m); 2874 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2875 2876 while (!STAILQ_EMPTY(&tls->pending_records)) { 2877 struct mbuf *n; 2878 2879 n = STAILQ_FIRST(&tls->pending_records); 2880 if (n->m_epg_seqno != tls->next_seqno) 2881 break; 2882 2883 queued++; 2884 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2885 tls->next_seqno += ktls_batched_records(n); 2886 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2887 } 2888 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2889 } else 2890 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2891 2892 running = wq->running; 2893 mtx_unlock(&wq->mtx); 2894 if (!running) 2895 wakeup(wq); 2896 counter_u64_add(ktls_cnt_tx_queued, queued); 2897 } 2898 2899 /* 2900 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2901 * the pages from the file and replace them with the anonymous pages 2902 * allocated in ktls_encrypt_record(). 2903 */ 2904 static void 2905 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2906 { 2907 int i; 2908 2909 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2910 2911 /* Free the old pages. */ 2912 m->m_ext.ext_free(m); 2913 2914 /* Replace them with the new pages. */ 2915 if (state->cbuf != NULL) { 2916 for (i = 0; i < m->m_epg_npgs; i++) 2917 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2918 2919 /* Contig pages should go back to the cache. */ 2920 m->m_ext.ext_free = ktls_free_mext_contig; 2921 } else { 2922 for (i = 0; i < m->m_epg_npgs; i++) 2923 m->m_epg_pa[i] = state->parray[i]; 2924 2925 /* Use the basic free routine. */ 2926 m->m_ext.ext_free = mb_free_mext_pgs; 2927 } 2928 2929 /* Pages are now writable. */ 2930 m->m_epg_flags |= EPG_FLAG_ANON; 2931 } 2932 2933 static __noinline void 2934 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2935 { 2936 struct ktls_ocf_encrypt_state state; 2937 struct ktls_session *tls; 2938 struct socket *so; 2939 struct mbuf *m; 2940 int error, npages, total_pages; 2941 2942 so = top->m_epg_so; 2943 tls = top->m_epg_tls; 2944 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2945 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2946 #ifdef INVARIANTS 2947 top->m_epg_so = NULL; 2948 #endif 2949 total_pages = top->m_epg_enc_cnt; 2950 npages = 0; 2951 2952 /* 2953 * Encrypt the TLS records in the chain of mbufs starting with 2954 * 'top'. 'total_pages' gives us a total count of pages and is 2955 * used to know when we have finished encrypting the TLS 2956 * records originally queued with 'top'. 2957 * 2958 * NB: These mbufs are queued in the socket buffer and 2959 * 'm_next' is traversing the mbufs in the socket buffer. The 2960 * socket buffer lock is not held while traversing this chain. 2961 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2962 * pointers should be stable. However, the 'm_next' of the 2963 * last mbuf encrypted is not necessarily NULL. It can point 2964 * to other mbufs appended while 'top' was on the TLS work 2965 * queue. 2966 * 2967 * Each mbuf holds an entire TLS record. 2968 */ 2969 error = 0; 2970 for (m = top; npages != total_pages; m = m->m_next) { 2971 KASSERT(m->m_epg_tls == tls, 2972 ("different TLS sessions in a single mbuf chain: %p vs %p", 2973 tls, m->m_epg_tls)); 2974 KASSERT(npages + m->m_epg_npgs <= total_pages, 2975 ("page count mismatch: top %p, total_pages %d, m %p", top, 2976 total_pages, m)); 2977 2978 error = ktls_encrypt_record(wq, m, tls, &state); 2979 if (error) { 2980 counter_u64_add(ktls_offload_failed_crypto, 1); 2981 break; 2982 } 2983 2984 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2985 ktls_finish_nonanon(m, &state); 2986 2987 npages += m->m_epg_nrdy; 2988 2989 /* 2990 * Drop a reference to the session now that it is no 2991 * longer needed. Existing code depends on encrypted 2992 * records having no associated session vs 2993 * yet-to-be-encrypted records having an associated 2994 * session. 2995 */ 2996 m->m_epg_tls = NULL; 2997 ktls_free(tls); 2998 } 2999 3000 CURVNET_SET(so->so_vnet); 3001 if (error == 0) { 3002 (void)so->so_proto->pr_ready(so, top, npages); 3003 } else { 3004 ktls_drop(so, EIO); 3005 mb_free_notready(top, total_pages); 3006 } 3007 3008 sorele(so); 3009 CURVNET_RESTORE(); 3010 } 3011 3012 void 3013 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3014 { 3015 struct ktls_session *tls; 3016 struct socket *so; 3017 struct mbuf *m; 3018 int npages; 3019 3020 m = state->m; 3021 3022 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3023 ktls_finish_nonanon(m, state); 3024 3025 so = state->so; 3026 free(state, M_KTLS); 3027 3028 /* 3029 * Drop a reference to the session now that it is no longer 3030 * needed. Existing code depends on encrypted records having 3031 * no associated session vs yet-to-be-encrypted records having 3032 * an associated session. 3033 */ 3034 tls = m->m_epg_tls; 3035 m->m_epg_tls = NULL; 3036 ktls_free(tls); 3037 3038 if (error != 0) 3039 counter_u64_add(ktls_offload_failed_crypto, 1); 3040 3041 CURVNET_SET(so->so_vnet); 3042 npages = m->m_epg_nrdy; 3043 3044 if (error == 0) { 3045 (void)so->so_proto->pr_ready(so, m, npages); 3046 } else { 3047 ktls_drop(so, EIO); 3048 mb_free_notready(m, npages); 3049 } 3050 3051 sorele(so); 3052 CURVNET_RESTORE(); 3053 } 3054 3055 /* 3056 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3057 * (coprocessors) where encryption does not use host CPU resources and 3058 * it can be beneficial to queue more requests than CPUs. 3059 */ 3060 static __noinline void 3061 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3062 { 3063 struct ktls_ocf_encrypt_state *state; 3064 struct ktls_session *tls; 3065 struct socket *so; 3066 struct mbuf *m, *n; 3067 int error, mpages, npages, total_pages; 3068 3069 so = top->m_epg_so; 3070 tls = top->m_epg_tls; 3071 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3072 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3073 #ifdef INVARIANTS 3074 top->m_epg_so = NULL; 3075 #endif 3076 total_pages = top->m_epg_enc_cnt; 3077 npages = 0; 3078 3079 error = 0; 3080 for (m = top; npages != total_pages; m = n) { 3081 KASSERT(m->m_epg_tls == tls, 3082 ("different TLS sessions in a single mbuf chain: %p vs %p", 3083 tls, m->m_epg_tls)); 3084 KASSERT(npages + m->m_epg_npgs <= total_pages, 3085 ("page count mismatch: top %p, total_pages %d, m %p", top, 3086 total_pages, m)); 3087 3088 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3089 soref(so); 3090 state->so = so; 3091 state->m = m; 3092 3093 mpages = m->m_epg_nrdy; 3094 n = m->m_next; 3095 3096 error = ktls_encrypt_record(wq, m, tls, state); 3097 if (error) { 3098 counter_u64_add(ktls_offload_failed_crypto, 1); 3099 free(state, M_KTLS); 3100 CURVNET_SET(so->so_vnet); 3101 sorele(so); 3102 CURVNET_RESTORE(); 3103 break; 3104 } 3105 3106 npages += mpages; 3107 } 3108 3109 CURVNET_SET(so->so_vnet); 3110 if (error != 0) { 3111 ktls_drop(so, EIO); 3112 mb_free_notready(m, total_pages - npages); 3113 } 3114 3115 sorele(so); 3116 CURVNET_RESTORE(); 3117 } 3118 3119 static int 3120 ktls_bind_domain(int domain) 3121 { 3122 int error; 3123 3124 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3125 if (error != 0) 3126 return (error); 3127 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3128 return (0); 3129 } 3130 3131 static void 3132 ktls_alloc_thread(void *ctx) 3133 { 3134 struct ktls_domain_info *ktls_domain = ctx; 3135 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 3136 void **buf; 3137 struct sysctl_oid *oid; 3138 char name[80]; 3139 int domain, error, i, nbufs; 3140 3141 domain = ktls_domain - ktls_domains; 3142 if (bootverbose) 3143 printf("Starting KTLS alloc thread for domain %d\n", domain); 3144 error = ktls_bind_domain(domain); 3145 if (error) 3146 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 3147 domain, error); 3148 snprintf(name, sizeof(name), "domain%d", domain); 3149 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3150 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3151 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 3152 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 3153 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3154 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3155 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3156 CTLFLAG_RD, &sc->running, 0, "thread running"); 3157 3158 buf = NULL; 3159 nbufs = 0; 3160 for (;;) { 3161 atomic_store_int(&sc->running, 0); 3162 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3163 atomic_store_int(&sc->running, 1); 3164 sc->wakeups++; 3165 if (nbufs != ktls_max_alloc) { 3166 free(buf, M_KTLS); 3167 nbufs = atomic_load_int(&ktls_max_alloc); 3168 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 3169 M_WAITOK | M_ZERO); 3170 } 3171 /* 3172 * Below we allocate nbufs with different allocation 3173 * flags than we use when allocating normally during 3174 * encryption in the ktls worker thread. We specify 3175 * M_NORECLAIM in the worker thread. However, we omit 3176 * that flag here and add M_WAITOK so that the VM 3177 * system is permitted to perform expensive work to 3178 * defragment memory. We do this here, as it does not 3179 * matter if this thread blocks. If we block a ktls 3180 * worker thread, we risk developing backlogs of 3181 * buffers to be encrypted, leading to surges of 3182 * traffic and potential NIC output drops. 3183 */ 3184 for (i = 0; i < nbufs; i++) { 3185 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 3186 sc->allocs++; 3187 } 3188 for (i = 0; i < nbufs; i++) { 3189 uma_zfree(ktls_buffer_zone, buf[i]); 3190 buf[i] = NULL; 3191 } 3192 } 3193 } 3194 3195 static void 3196 ktls_work_thread(void *ctx) 3197 { 3198 struct ktls_wq *wq = ctx; 3199 struct mbuf *m, *n; 3200 struct socket *so, *son; 3201 STAILQ_HEAD(, mbuf) local_m_head; 3202 STAILQ_HEAD(, socket) local_so_head; 3203 int cpu; 3204 3205 cpu = wq - ktls_wq; 3206 if (bootverbose) 3207 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3208 3209 /* 3210 * Bind to a core. If ktls_bind_threads is > 1, then 3211 * we bind to the NUMA domain instead. 3212 */ 3213 if (ktls_bind_threads) { 3214 int error; 3215 3216 if (ktls_bind_threads > 1) { 3217 struct pcpu *pc = pcpu_find(cpu); 3218 3219 error = ktls_bind_domain(pc->pc_domain); 3220 } else { 3221 cpuset_t mask; 3222 3223 CPU_SETOF(cpu, &mask); 3224 error = cpuset_setthread(curthread->td_tid, &mask); 3225 } 3226 if (error) 3227 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3228 cpu, error); 3229 } 3230 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3231 fpu_kern_thread(0); 3232 #endif 3233 for (;;) { 3234 mtx_lock(&wq->mtx); 3235 while (STAILQ_EMPTY(&wq->m_head) && 3236 STAILQ_EMPTY(&wq->so_head)) { 3237 wq->running = false; 3238 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3239 wq->running = true; 3240 } 3241 3242 STAILQ_INIT(&local_m_head); 3243 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3244 STAILQ_INIT(&local_so_head); 3245 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3246 mtx_unlock(&wq->mtx); 3247 3248 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3249 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3250 ktls_free(m->m_epg_tls); 3251 m_free_raw(m); 3252 } else { 3253 if (m->m_epg_tls->sync_dispatch) 3254 ktls_encrypt(wq, m); 3255 else 3256 ktls_encrypt_async(wq, m); 3257 counter_u64_add(ktls_cnt_tx_queued, -1); 3258 } 3259 } 3260 3261 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3262 ktls_decrypt(so); 3263 counter_u64_add(ktls_cnt_rx_queued, -1); 3264 } 3265 } 3266 } 3267 3268 #if defined(INET) || defined(INET6) 3269 static void 3270 ktls_disable_ifnet_help(void *context, int pending __unused) 3271 { 3272 struct ktls_session *tls; 3273 struct inpcb *inp; 3274 struct tcpcb *tp; 3275 struct socket *so; 3276 int err; 3277 3278 tls = context; 3279 inp = tls->inp; 3280 if (inp == NULL) 3281 return; 3282 INP_WLOCK(inp); 3283 so = inp->inp_socket; 3284 MPASS(so != NULL); 3285 if (inp->inp_flags & INP_DROPPED) { 3286 goto out; 3287 } 3288 3289 if (so->so_snd.sb_tls_info != NULL) 3290 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3291 else 3292 err = ENXIO; 3293 if (err == 0) { 3294 counter_u64_add(ktls_ifnet_disable_ok, 1); 3295 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3296 if ((inp->inp_flags & INP_DROPPED) == 0 && 3297 (tp = intotcpcb(inp)) != NULL && 3298 tp->t_fb->tfb_hwtls_change != NULL) 3299 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3300 } else { 3301 counter_u64_add(ktls_ifnet_disable_fail, 1); 3302 } 3303 3304 out: 3305 CURVNET_SET(so->so_vnet); 3306 sorele(so); 3307 CURVNET_RESTORE(); 3308 INP_WUNLOCK(inp); 3309 ktls_free(tls); 3310 } 3311 3312 /* 3313 * Called when re-transmits are becoming a substantial portion of the 3314 * sends on this connection. When this happens, we transition the 3315 * connection to software TLS. This is needed because most inline TLS 3316 * NICs keep crypto state only for in-order transmits. This means 3317 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3318 * re-DMA the entire TLS record up to and including the current 3319 * segment. This means that when re-transmitting the last ~1448 byte 3320 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3321 * of magnitude more data than we are sending. This can cause the 3322 * PCIe link to saturate well before the network, which can cause 3323 * output drops, and a general loss of capacity. 3324 */ 3325 void 3326 ktls_disable_ifnet(void *arg) 3327 { 3328 struct tcpcb *tp; 3329 struct inpcb *inp; 3330 struct socket *so; 3331 struct ktls_session *tls; 3332 3333 tp = arg; 3334 inp = tptoinpcb(tp); 3335 INP_WLOCK_ASSERT(inp); 3336 so = inp->inp_socket; 3337 SOCK_LOCK(so); 3338 tls = so->so_snd.sb_tls_info; 3339 if (tp->t_nic_ktls_xmit_dis == 1) { 3340 SOCK_UNLOCK(so); 3341 return; 3342 } 3343 3344 /* 3345 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3346 * ifnet can only be done once per connection, so we never want 3347 * to do it again 3348 */ 3349 3350 (void)ktls_hold(tls); 3351 soref(so); 3352 tp->t_nic_ktls_xmit_dis = 1; 3353 SOCK_UNLOCK(so); 3354 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3355 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3356 } 3357 #endif 3358