1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #ifdef RSS 60 #include <net/netisr.h> 61 #include <net/rss_config.h> 62 #endif 63 #include <net/route.h> 64 #include <net/route/nhop.h> 65 #if defined(INET) || defined(INET6) 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #endif 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/xform.h> 74 #include <vm/uma_dbg.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 79 struct ktls_wq { 80 struct mtx mtx; 81 STAILQ_HEAD(, mbuf) m_head; 82 STAILQ_HEAD(, socket) so_head; 83 bool running; 84 } __aligned(CACHE_LINE_SIZE); 85 86 static struct ktls_wq *ktls_wq; 87 static struct proc *ktls_proc; 88 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 89 static struct rmlock ktls_backends_lock; 90 static uma_zone_t ktls_session_zone; 91 static uint16_t ktls_cpuid_lookup[MAXCPU]; 92 93 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 94 "Kernel TLS offload"); 95 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 96 "Kernel TLS offload stats"); 97 98 static int ktls_allow_unload; 99 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 100 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 101 102 #ifdef RSS 103 static int ktls_bind_threads = 1; 104 #else 105 static int ktls_bind_threads; 106 #endif 107 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 108 &ktls_bind_threads, 0, 109 "Bind crypto threads to cores or domains at boot"); 110 111 static u_int ktls_maxlen = 16384; 112 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 113 &ktls_maxlen, 0, "Maximum TLS record size"); 114 115 static int ktls_number_threads; 116 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 117 &ktls_number_threads, 0, 118 "Number of TLS threads in thread-pool"); 119 120 static bool ktls_offload_enable; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 122 &ktls_offload_enable, 0, 123 "Enable support for kernel TLS offload"); 124 125 static bool ktls_cbc_enable = true; 126 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 127 &ktls_cbc_enable, 1, 128 "Enable Support of AES-CBC crypto for kernel TLS"); 129 130 static counter_u64_t ktls_tasks_active; 131 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 132 &ktls_tasks_active, "Number of active tasks"); 133 134 static counter_u64_t ktls_cnt_tx_queued; 135 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 136 &ktls_cnt_tx_queued, 137 "Number of TLS records in queue to tasks for SW encryption"); 138 139 static counter_u64_t ktls_cnt_rx_queued; 140 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 141 &ktls_cnt_rx_queued, 142 "Number of TLS sockets in queue to tasks for SW decryption"); 143 144 static counter_u64_t ktls_offload_total; 145 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 146 CTLFLAG_RD, &ktls_offload_total, 147 "Total successful TLS setups (parameters set)"); 148 149 static counter_u64_t ktls_offload_enable_calls; 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 151 CTLFLAG_RD, &ktls_offload_enable_calls, 152 "Total number of TLS enable calls made"); 153 154 static counter_u64_t ktls_offload_active; 155 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 156 &ktls_offload_active, "Total Active TLS sessions"); 157 158 static counter_u64_t ktls_offload_corrupted_records; 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 160 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 161 162 static counter_u64_t ktls_offload_failed_crypto; 163 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 164 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 165 166 static counter_u64_t ktls_switch_to_ifnet; 167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 168 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 169 170 static counter_u64_t ktls_switch_to_sw; 171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 172 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 173 174 static counter_u64_t ktls_switch_failed; 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 176 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 177 178 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 179 "Software TLS session stats"); 180 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 181 "Hardware (ifnet) TLS session stats"); 182 #ifdef TCP_OFFLOAD 183 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 184 "TOE TLS session stats"); 185 #endif 186 187 static counter_u64_t ktls_sw_cbc; 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 189 "Active number of software TLS sessions using AES-CBC"); 190 191 static counter_u64_t ktls_sw_gcm; 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 193 "Active number of software TLS sessions using AES-GCM"); 194 195 static counter_u64_t ktls_ifnet_cbc; 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 197 &ktls_ifnet_cbc, 198 "Active number of ifnet TLS sessions using AES-CBC"); 199 200 static counter_u64_t ktls_ifnet_gcm; 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 202 &ktls_ifnet_gcm, 203 "Active number of ifnet TLS sessions using AES-GCM"); 204 205 static counter_u64_t ktls_ifnet_reset; 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 207 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 208 209 static counter_u64_t ktls_ifnet_reset_dropped; 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 211 &ktls_ifnet_reset_dropped, 212 "TLS sessions dropped after failing to update ifnet send tag"); 213 214 static counter_u64_t ktls_ifnet_reset_failed; 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 216 &ktls_ifnet_reset_failed, 217 "TLS sessions that failed to allocate a new ifnet send tag"); 218 219 static int ktls_ifnet_permitted; 220 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 221 &ktls_ifnet_permitted, 1, 222 "Whether to permit hardware (ifnet) TLS sessions"); 223 224 #ifdef TCP_OFFLOAD 225 static counter_u64_t ktls_toe_cbc; 226 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 227 &ktls_toe_cbc, 228 "Active number of TOE TLS sessions using AES-CBC"); 229 230 static counter_u64_t ktls_toe_gcm; 231 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 232 &ktls_toe_gcm, 233 "Active number of TOE TLS sessions using AES-GCM"); 234 #endif 235 236 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 237 238 static void ktls_cleanup(struct ktls_session *tls); 239 #if defined(INET) || defined(INET6) 240 static void ktls_reset_send_tag(void *context, int pending); 241 #endif 242 static void ktls_work_thread(void *ctx); 243 244 int 245 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 246 { 247 struct ktls_crypto_backend *curr_be, *tmp; 248 249 if (be->api_version != KTLS_API_VERSION) { 250 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 251 be->api_version, KTLS_API_VERSION, 252 be->name); 253 return (EINVAL); 254 } 255 256 rm_wlock(&ktls_backends_lock); 257 printf("KTLS: Registering crypto method %s with prio %d\n", 258 be->name, be->prio); 259 if (LIST_EMPTY(&ktls_backends)) { 260 LIST_INSERT_HEAD(&ktls_backends, be, next); 261 } else { 262 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 263 if (curr_be->prio < be->prio) { 264 LIST_INSERT_BEFORE(curr_be, be, next); 265 break; 266 } 267 if (LIST_NEXT(curr_be, next) == NULL) { 268 LIST_INSERT_AFTER(curr_be, be, next); 269 break; 270 } 271 } 272 } 273 rm_wunlock(&ktls_backends_lock); 274 return (0); 275 } 276 277 int 278 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 279 { 280 struct ktls_crypto_backend *tmp; 281 282 /* 283 * Don't error if the backend isn't registered. This permits 284 * MOD_UNLOAD handlers to use this function unconditionally. 285 */ 286 rm_wlock(&ktls_backends_lock); 287 LIST_FOREACH(tmp, &ktls_backends, next) { 288 if (tmp == be) 289 break; 290 } 291 if (tmp == NULL) { 292 rm_wunlock(&ktls_backends_lock); 293 return (0); 294 } 295 296 if (!ktls_allow_unload) { 297 rm_wunlock(&ktls_backends_lock); 298 printf( 299 "KTLS: Deregistering crypto method %s is not supported\n", 300 be->name); 301 return (EBUSY); 302 } 303 304 if (be->use_count) { 305 rm_wunlock(&ktls_backends_lock); 306 return (EBUSY); 307 } 308 309 LIST_REMOVE(be, next); 310 rm_wunlock(&ktls_backends_lock); 311 return (0); 312 } 313 314 #if defined(INET) || defined(INET6) 315 static u_int 316 ktls_get_cpu(struct socket *so) 317 { 318 struct inpcb *inp; 319 u_int cpuid; 320 321 inp = sotoinpcb(so); 322 #ifdef RSS 323 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 324 if (cpuid != NETISR_CPUID_NONE) 325 return (cpuid); 326 #endif 327 /* 328 * Just use the flowid to shard connections in a repeatable 329 * fashion. Note that some crypto backends rely on the 330 * serialization provided by having the same connection use 331 * the same queue. 332 */ 333 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 334 return (cpuid); 335 } 336 #endif 337 338 static void 339 ktls_init(void *dummy __unused) 340 { 341 struct thread *td; 342 struct pcpu *pc; 343 cpuset_t mask; 344 int error, i; 345 346 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 347 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK); 348 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK); 349 ktls_offload_total = counter_u64_alloc(M_WAITOK); 350 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 351 ktls_offload_active = counter_u64_alloc(M_WAITOK); 352 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK); 353 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 354 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 355 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 356 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 357 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 358 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 359 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 360 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 361 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 362 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 363 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 364 #ifdef TCP_OFFLOAD 365 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 366 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 367 #endif 368 369 rm_init(&ktls_backends_lock, "ktls backends"); 370 LIST_INIT(&ktls_backends); 371 372 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 373 M_WAITOK | M_ZERO); 374 375 ktls_session_zone = uma_zcreate("ktls_session", 376 sizeof(struct ktls_session), 377 NULL, NULL, NULL, NULL, 378 UMA_ALIGN_CACHE, 0); 379 380 /* 381 * Initialize the workqueues to run the TLS work. We create a 382 * work queue for each CPU. 383 */ 384 CPU_FOREACH(i) { 385 STAILQ_INIT(&ktls_wq[i].m_head); 386 STAILQ_INIT(&ktls_wq[i].so_head); 387 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 388 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 389 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 390 if (error) 391 panic("Can't add KTLS thread %d error %d", i, error); 392 393 /* 394 * Bind threads to cores. If ktls_bind_threads is > 395 * 1, then we bind to the NUMA domain. 396 */ 397 if (ktls_bind_threads) { 398 if (ktls_bind_threads > 1) { 399 pc = pcpu_find(i); 400 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 401 } else { 402 CPU_SETOF(i, &mask); 403 } 404 error = cpuset_setthread(td->td_tid, &mask); 405 if (error) 406 panic( 407 "Unable to bind KTLS thread for CPU %d error %d", 408 i, error); 409 } 410 ktls_cpuid_lookup[ktls_number_threads] = i; 411 ktls_number_threads++; 412 } 413 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 414 } 415 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 416 417 #if defined(INET) || defined(INET6) 418 static int 419 ktls_create_session(struct socket *so, struct tls_enable *en, 420 struct ktls_session **tlsp) 421 { 422 struct ktls_session *tls; 423 int error; 424 425 /* Only TLS 1.0 - 1.3 are supported. */ 426 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 427 return (EINVAL); 428 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 429 en->tls_vminor > TLS_MINOR_VER_THREE) 430 return (EINVAL); 431 432 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 433 return (EINVAL); 434 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 435 return (EINVAL); 436 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 437 return (EINVAL); 438 439 /* All supported algorithms require a cipher key. */ 440 if (en->cipher_key_len == 0) 441 return (EINVAL); 442 443 /* No flags are currently supported. */ 444 if (en->flags != 0) 445 return (EINVAL); 446 447 /* Common checks for supported algorithms. */ 448 switch (en->cipher_algorithm) { 449 case CRYPTO_AES_NIST_GCM_16: 450 /* 451 * auth_algorithm isn't used, but permit GMAC values 452 * for compatibility. 453 */ 454 switch (en->auth_algorithm) { 455 case 0: 456 #ifdef COMPAT_FREEBSD12 457 /* XXX: Really 13.0-current COMPAT. */ 458 case CRYPTO_AES_128_NIST_GMAC: 459 case CRYPTO_AES_192_NIST_GMAC: 460 case CRYPTO_AES_256_NIST_GMAC: 461 #endif 462 break; 463 default: 464 return (EINVAL); 465 } 466 if (en->auth_key_len != 0) 467 return (EINVAL); 468 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 469 en->iv_len != TLS_AEAD_GCM_LEN) || 470 (en->tls_vminor == TLS_MINOR_VER_THREE && 471 en->iv_len != TLS_1_3_GCM_IV_LEN)) 472 return (EINVAL); 473 break; 474 case CRYPTO_AES_CBC: 475 switch (en->auth_algorithm) { 476 case CRYPTO_SHA1_HMAC: 477 /* 478 * TLS 1.0 requires an implicit IV. TLS 1.1+ 479 * all use explicit IVs. 480 */ 481 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 482 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 483 return (EINVAL); 484 break; 485 } 486 487 /* FALLTHROUGH */ 488 case CRYPTO_SHA2_256_HMAC: 489 case CRYPTO_SHA2_384_HMAC: 490 /* Ignore any supplied IV. */ 491 en->iv_len = 0; 492 break; 493 default: 494 return (EINVAL); 495 } 496 if (en->auth_key_len == 0) 497 return (EINVAL); 498 break; 499 default: 500 return (EINVAL); 501 } 502 503 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 504 505 counter_u64_add(ktls_offload_active, 1); 506 507 refcount_init(&tls->refcount, 1); 508 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 509 510 tls->wq_index = ktls_get_cpu(so); 511 512 tls->params.cipher_algorithm = en->cipher_algorithm; 513 tls->params.auth_algorithm = en->auth_algorithm; 514 tls->params.tls_vmajor = en->tls_vmajor; 515 tls->params.tls_vminor = en->tls_vminor; 516 tls->params.flags = en->flags; 517 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 518 519 /* Set the header and trailer lengths. */ 520 tls->params.tls_hlen = sizeof(struct tls_record_layer); 521 switch (en->cipher_algorithm) { 522 case CRYPTO_AES_NIST_GCM_16: 523 /* 524 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 525 * nonce. TLS 1.3 uses a 12 byte implicit IV. 526 */ 527 if (en->tls_vminor < TLS_MINOR_VER_THREE) 528 tls->params.tls_hlen += sizeof(uint64_t); 529 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 530 531 /* 532 * TLS 1.3 includes optional padding which we 533 * do not support, and also puts the "real" record 534 * type at the end of the encrypted data. 535 */ 536 if (en->tls_vminor == TLS_MINOR_VER_THREE) 537 tls->params.tls_tlen += sizeof(uint8_t); 538 539 tls->params.tls_bs = 1; 540 break; 541 case CRYPTO_AES_CBC: 542 switch (en->auth_algorithm) { 543 case CRYPTO_SHA1_HMAC: 544 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 545 /* Implicit IV, no nonce. */ 546 } else { 547 tls->params.tls_hlen += AES_BLOCK_LEN; 548 } 549 tls->params.tls_tlen = AES_BLOCK_LEN + 550 SHA1_HASH_LEN; 551 break; 552 case CRYPTO_SHA2_256_HMAC: 553 tls->params.tls_hlen += AES_BLOCK_LEN; 554 tls->params.tls_tlen = AES_BLOCK_LEN + 555 SHA2_256_HASH_LEN; 556 break; 557 case CRYPTO_SHA2_384_HMAC: 558 tls->params.tls_hlen += AES_BLOCK_LEN; 559 tls->params.tls_tlen = AES_BLOCK_LEN + 560 SHA2_384_HASH_LEN; 561 break; 562 default: 563 panic("invalid hmac"); 564 } 565 tls->params.tls_bs = AES_BLOCK_LEN; 566 break; 567 default: 568 panic("invalid cipher"); 569 } 570 571 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 572 ("TLS header length too long: %d", tls->params.tls_hlen)); 573 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 574 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 575 576 if (en->auth_key_len != 0) { 577 tls->params.auth_key_len = en->auth_key_len; 578 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 579 M_WAITOK); 580 error = copyin(en->auth_key, tls->params.auth_key, 581 en->auth_key_len); 582 if (error) 583 goto out; 584 } 585 586 tls->params.cipher_key_len = en->cipher_key_len; 587 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 588 error = copyin(en->cipher_key, tls->params.cipher_key, 589 en->cipher_key_len); 590 if (error) 591 goto out; 592 593 /* 594 * This holds the implicit portion of the nonce for GCM and 595 * the initial implicit IV for TLS 1.0. The explicit portions 596 * of the IV are generated in ktls_frame(). 597 */ 598 if (en->iv_len != 0) { 599 tls->params.iv_len = en->iv_len; 600 error = copyin(en->iv, tls->params.iv, en->iv_len); 601 if (error) 602 goto out; 603 604 /* 605 * For TLS 1.2, generate an 8-byte nonce as a counter 606 * to generate unique explicit IVs. 607 * 608 * Store this counter in the last 8 bytes of the IV 609 * array so that it is 8-byte aligned. 610 */ 611 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 612 en->tls_vminor == TLS_MINOR_VER_TWO) 613 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 614 } 615 616 *tlsp = tls; 617 return (0); 618 619 out: 620 ktls_cleanup(tls); 621 return (error); 622 } 623 624 static struct ktls_session * 625 ktls_clone_session(struct ktls_session *tls) 626 { 627 struct ktls_session *tls_new; 628 629 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 630 631 counter_u64_add(ktls_offload_active, 1); 632 633 refcount_init(&tls_new->refcount, 1); 634 635 /* Copy fields from existing session. */ 636 tls_new->params = tls->params; 637 tls_new->wq_index = tls->wq_index; 638 639 /* Deep copy keys. */ 640 if (tls_new->params.auth_key != NULL) { 641 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 642 M_KTLS, M_WAITOK); 643 memcpy(tls_new->params.auth_key, tls->params.auth_key, 644 tls->params.auth_key_len); 645 } 646 647 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 648 M_WAITOK); 649 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 650 tls->params.cipher_key_len); 651 652 return (tls_new); 653 } 654 #endif 655 656 static void 657 ktls_cleanup(struct ktls_session *tls) 658 { 659 660 counter_u64_add(ktls_offload_active, -1); 661 switch (tls->mode) { 662 case TCP_TLS_MODE_SW: 663 MPASS(tls->be != NULL); 664 switch (tls->params.cipher_algorithm) { 665 case CRYPTO_AES_CBC: 666 counter_u64_add(ktls_sw_cbc, -1); 667 break; 668 case CRYPTO_AES_NIST_GCM_16: 669 counter_u64_add(ktls_sw_gcm, -1); 670 break; 671 } 672 tls->free(tls); 673 break; 674 case TCP_TLS_MODE_IFNET: 675 switch (tls->params.cipher_algorithm) { 676 case CRYPTO_AES_CBC: 677 counter_u64_add(ktls_ifnet_cbc, -1); 678 break; 679 case CRYPTO_AES_NIST_GCM_16: 680 counter_u64_add(ktls_ifnet_gcm, -1); 681 break; 682 } 683 m_snd_tag_rele(tls->snd_tag); 684 break; 685 #ifdef TCP_OFFLOAD 686 case TCP_TLS_MODE_TOE: 687 switch (tls->params.cipher_algorithm) { 688 case CRYPTO_AES_CBC: 689 counter_u64_add(ktls_toe_cbc, -1); 690 break; 691 case CRYPTO_AES_NIST_GCM_16: 692 counter_u64_add(ktls_toe_gcm, -1); 693 break; 694 } 695 break; 696 #endif 697 } 698 if (tls->params.auth_key != NULL) { 699 zfree(tls->params.auth_key, M_KTLS); 700 tls->params.auth_key = NULL; 701 tls->params.auth_key_len = 0; 702 } 703 if (tls->params.cipher_key != NULL) { 704 zfree(tls->params.cipher_key, M_KTLS); 705 tls->params.cipher_key = NULL; 706 tls->params.cipher_key_len = 0; 707 } 708 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 709 } 710 711 #if defined(INET) || defined(INET6) 712 713 #ifdef TCP_OFFLOAD 714 static int 715 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 716 { 717 struct inpcb *inp; 718 struct tcpcb *tp; 719 int error; 720 721 inp = so->so_pcb; 722 INP_WLOCK(inp); 723 if (inp->inp_flags2 & INP_FREED) { 724 INP_WUNLOCK(inp); 725 return (ECONNRESET); 726 } 727 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 728 INP_WUNLOCK(inp); 729 return (ECONNRESET); 730 } 731 if (inp->inp_socket == NULL) { 732 INP_WUNLOCK(inp); 733 return (ECONNRESET); 734 } 735 tp = intotcpcb(inp); 736 if (tp->tod == NULL) { 737 INP_WUNLOCK(inp); 738 return (EOPNOTSUPP); 739 } 740 741 error = tcp_offload_alloc_tls_session(tp, tls, direction); 742 INP_WUNLOCK(inp); 743 if (error == 0) { 744 tls->mode = TCP_TLS_MODE_TOE; 745 switch (tls->params.cipher_algorithm) { 746 case CRYPTO_AES_CBC: 747 counter_u64_add(ktls_toe_cbc, 1); 748 break; 749 case CRYPTO_AES_NIST_GCM_16: 750 counter_u64_add(ktls_toe_gcm, 1); 751 break; 752 } 753 } 754 return (error); 755 } 756 #endif 757 758 /* 759 * Common code used when first enabling ifnet TLS on a connection or 760 * when allocating a new ifnet TLS session due to a routing change. 761 * This function allocates a new TLS send tag on whatever interface 762 * the connection is currently routed over. 763 */ 764 static int 765 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 766 struct m_snd_tag **mstp) 767 { 768 union if_snd_tag_alloc_params params; 769 struct ifnet *ifp; 770 struct nhop_object *nh; 771 struct tcpcb *tp; 772 int error; 773 774 INP_RLOCK(inp); 775 if (inp->inp_flags2 & INP_FREED) { 776 INP_RUNLOCK(inp); 777 return (ECONNRESET); 778 } 779 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 780 INP_RUNLOCK(inp); 781 return (ECONNRESET); 782 } 783 if (inp->inp_socket == NULL) { 784 INP_RUNLOCK(inp); 785 return (ECONNRESET); 786 } 787 tp = intotcpcb(inp); 788 789 /* 790 * Check administrative controls on ifnet TLS to determine if 791 * ifnet TLS should be denied. 792 * 793 * - Always permit 'force' requests. 794 * - ktls_ifnet_permitted == 0: always deny. 795 */ 796 if (!force && ktls_ifnet_permitted == 0) { 797 INP_RUNLOCK(inp); 798 return (ENXIO); 799 } 800 801 /* 802 * XXX: Use the cached route in the inpcb to find the 803 * interface. This should perhaps instead use 804 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 805 * enabled after a connection has completed key negotiation in 806 * userland, the cached route will be present in practice. 807 */ 808 nh = inp->inp_route.ro_nh; 809 if (nh == NULL) { 810 INP_RUNLOCK(inp); 811 return (ENXIO); 812 } 813 ifp = nh->nh_ifp; 814 if_ref(ifp); 815 816 params.hdr.type = IF_SND_TAG_TYPE_TLS; 817 params.hdr.flowid = inp->inp_flowid; 818 params.hdr.flowtype = inp->inp_flowtype; 819 params.hdr.numa_domain = inp->inp_numa_domain; 820 params.tls.inp = inp; 821 params.tls.tls = tls; 822 INP_RUNLOCK(inp); 823 824 if (ifp->if_snd_tag_alloc == NULL) { 825 error = EOPNOTSUPP; 826 goto out; 827 } 828 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 829 error = EOPNOTSUPP; 830 goto out; 831 } 832 if (inp->inp_vflag & INP_IPV6) { 833 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 834 error = EOPNOTSUPP; 835 goto out; 836 } 837 } else { 838 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 839 error = EOPNOTSUPP; 840 goto out; 841 } 842 } 843 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 844 out: 845 if_rele(ifp); 846 return (error); 847 } 848 849 static int 850 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 851 { 852 struct m_snd_tag *mst; 853 int error; 854 855 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 856 if (error == 0) { 857 tls->mode = TCP_TLS_MODE_IFNET; 858 tls->snd_tag = mst; 859 switch (tls->params.cipher_algorithm) { 860 case CRYPTO_AES_CBC: 861 counter_u64_add(ktls_ifnet_cbc, 1); 862 break; 863 case CRYPTO_AES_NIST_GCM_16: 864 counter_u64_add(ktls_ifnet_gcm, 1); 865 break; 866 } 867 } 868 return (error); 869 } 870 871 static int 872 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 873 { 874 struct rm_priotracker prio; 875 struct ktls_crypto_backend *be; 876 877 /* 878 * Choose the best software crypto backend. Backends are 879 * stored in sorted priority order (larget value == most 880 * important at the head of the list), so this just stops on 881 * the first backend that claims the session by returning 882 * success. 883 */ 884 if (ktls_allow_unload) 885 rm_rlock(&ktls_backends_lock, &prio); 886 LIST_FOREACH(be, &ktls_backends, next) { 887 if (be->try(so, tls, direction) == 0) 888 break; 889 KASSERT(tls->cipher == NULL, 890 ("ktls backend leaked a cipher pointer")); 891 } 892 if (be != NULL) { 893 if (ktls_allow_unload) 894 be->use_count++; 895 tls->be = be; 896 } 897 if (ktls_allow_unload) 898 rm_runlock(&ktls_backends_lock, &prio); 899 if (be == NULL) 900 return (EOPNOTSUPP); 901 tls->mode = TCP_TLS_MODE_SW; 902 switch (tls->params.cipher_algorithm) { 903 case CRYPTO_AES_CBC: 904 counter_u64_add(ktls_sw_cbc, 1); 905 break; 906 case CRYPTO_AES_NIST_GCM_16: 907 counter_u64_add(ktls_sw_gcm, 1); 908 break; 909 } 910 return (0); 911 } 912 913 /* 914 * KTLS RX stores data in the socket buffer as a list of TLS records, 915 * where each record is stored as a control message containg the TLS 916 * header followed by data mbufs containing the decrypted data. This 917 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 918 * both encrypted and decrypted data. TLS records decrypted by a NIC 919 * should be queued to the socket buffer as records, but encrypted 920 * data which needs to be decrypted by software arrives as a stream of 921 * regular mbufs which need to be converted. In addition, there may 922 * already be pending encrypted data in the socket buffer when KTLS RX 923 * is enabled. 924 * 925 * To manage not-yet-decrypted data for KTLS RX, the following scheme 926 * is used: 927 * 928 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 929 * 930 * - ktls_check_rx checks this chain of mbufs reading the TLS header 931 * from the first mbuf. Once all of the data for that TLS record is 932 * queued, the socket is queued to a worker thread. 933 * 934 * - The worker thread calls ktls_decrypt to decrypt TLS records in 935 * the TLS chain. Each TLS record is detached from the TLS chain, 936 * decrypted, and inserted into the regular socket buffer chain as 937 * record starting with a control message holding the TLS header and 938 * a chain of mbufs holding the encrypted data. 939 */ 940 941 static void 942 sb_mark_notready(struct sockbuf *sb) 943 { 944 struct mbuf *m; 945 946 m = sb->sb_mb; 947 sb->sb_mtls = m; 948 sb->sb_mb = NULL; 949 sb->sb_mbtail = NULL; 950 sb->sb_lastrecord = NULL; 951 for (; m != NULL; m = m->m_next) { 952 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 953 __func__)); 954 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 955 __func__)); 956 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 957 __func__)); 958 m->m_flags |= M_NOTREADY; 959 sb->sb_acc -= m->m_len; 960 sb->sb_tlscc += m->m_len; 961 sb->sb_mtlstail = m; 962 } 963 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 964 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 965 sb->sb_ccc)); 966 } 967 968 int 969 ktls_enable_rx(struct socket *so, struct tls_enable *en) 970 { 971 struct ktls_session *tls; 972 int error; 973 974 if (!ktls_offload_enable) 975 return (ENOTSUP); 976 977 counter_u64_add(ktls_offload_enable_calls, 1); 978 979 /* 980 * This should always be true since only the TCP socket option 981 * invokes this function. 982 */ 983 if (so->so_proto->pr_protocol != IPPROTO_TCP) 984 return (EINVAL); 985 986 /* 987 * XXX: Don't overwrite existing sessions. We should permit 988 * this to support rekeying in the future. 989 */ 990 if (so->so_rcv.sb_tls_info != NULL) 991 return (EALREADY); 992 993 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 994 return (ENOTSUP); 995 996 /* TLS 1.3 is not yet supported. */ 997 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 998 en->tls_vminor == TLS_MINOR_VER_THREE) 999 return (ENOTSUP); 1000 1001 error = ktls_create_session(so, en, &tls); 1002 if (error) 1003 return (error); 1004 1005 #ifdef TCP_OFFLOAD 1006 error = ktls_try_toe(so, tls, KTLS_RX); 1007 if (error) 1008 #endif 1009 error = ktls_try_sw(so, tls, KTLS_RX); 1010 1011 if (error) { 1012 ktls_cleanup(tls); 1013 return (error); 1014 } 1015 1016 /* Mark the socket as using TLS offload. */ 1017 SOCKBUF_LOCK(&so->so_rcv); 1018 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1019 so->so_rcv.sb_tls_info = tls; 1020 so->so_rcv.sb_flags |= SB_TLS_RX; 1021 1022 /* Mark existing data as not ready until it can be decrypted. */ 1023 sb_mark_notready(&so->so_rcv); 1024 ktls_check_rx(&so->so_rcv); 1025 SOCKBUF_UNLOCK(&so->so_rcv); 1026 1027 counter_u64_add(ktls_offload_total, 1); 1028 1029 return (0); 1030 } 1031 1032 int 1033 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1034 { 1035 struct ktls_session *tls; 1036 int error; 1037 1038 if (!ktls_offload_enable) 1039 return (ENOTSUP); 1040 1041 counter_u64_add(ktls_offload_enable_calls, 1); 1042 1043 /* 1044 * This should always be true since only the TCP socket option 1045 * invokes this function. 1046 */ 1047 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1048 return (EINVAL); 1049 1050 /* 1051 * XXX: Don't overwrite existing sessions. We should permit 1052 * this to support rekeying in the future. 1053 */ 1054 if (so->so_snd.sb_tls_info != NULL) 1055 return (EALREADY); 1056 1057 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1058 return (ENOTSUP); 1059 1060 /* TLS requires ext pgs */ 1061 if (mb_use_ext_pgs == 0) 1062 return (ENXIO); 1063 1064 error = ktls_create_session(so, en, &tls); 1065 if (error) 1066 return (error); 1067 1068 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1069 #ifdef TCP_OFFLOAD 1070 error = ktls_try_toe(so, tls, KTLS_TX); 1071 if (error) 1072 #endif 1073 error = ktls_try_ifnet(so, tls, false); 1074 if (error) 1075 error = ktls_try_sw(so, tls, KTLS_TX); 1076 1077 if (error) { 1078 ktls_cleanup(tls); 1079 return (error); 1080 } 1081 1082 error = sblock(&so->so_snd, SBL_WAIT); 1083 if (error) { 1084 ktls_cleanup(tls); 1085 return (error); 1086 } 1087 1088 SOCKBUF_LOCK(&so->so_snd); 1089 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1090 so->so_snd.sb_tls_info = tls; 1091 if (tls->mode != TCP_TLS_MODE_SW) 1092 so->so_snd.sb_flags |= SB_TLS_IFNET; 1093 SOCKBUF_UNLOCK(&so->so_snd); 1094 sbunlock(&so->so_snd); 1095 1096 counter_u64_add(ktls_offload_total, 1); 1097 1098 return (0); 1099 } 1100 1101 int 1102 ktls_get_rx_mode(struct socket *so) 1103 { 1104 struct ktls_session *tls; 1105 struct inpcb *inp; 1106 int mode; 1107 1108 inp = so->so_pcb; 1109 INP_WLOCK_ASSERT(inp); 1110 SOCKBUF_LOCK(&so->so_rcv); 1111 tls = so->so_rcv.sb_tls_info; 1112 if (tls == NULL) 1113 mode = TCP_TLS_MODE_NONE; 1114 else 1115 mode = tls->mode; 1116 SOCKBUF_UNLOCK(&so->so_rcv); 1117 return (mode); 1118 } 1119 1120 int 1121 ktls_get_tx_mode(struct socket *so) 1122 { 1123 struct ktls_session *tls; 1124 struct inpcb *inp; 1125 int mode; 1126 1127 inp = so->so_pcb; 1128 INP_WLOCK_ASSERT(inp); 1129 SOCKBUF_LOCK(&so->so_snd); 1130 tls = so->so_snd.sb_tls_info; 1131 if (tls == NULL) 1132 mode = TCP_TLS_MODE_NONE; 1133 else 1134 mode = tls->mode; 1135 SOCKBUF_UNLOCK(&so->so_snd); 1136 return (mode); 1137 } 1138 1139 /* 1140 * Switch between SW and ifnet TLS sessions as requested. 1141 */ 1142 int 1143 ktls_set_tx_mode(struct socket *so, int mode) 1144 { 1145 struct ktls_session *tls, *tls_new; 1146 struct inpcb *inp; 1147 int error; 1148 1149 switch (mode) { 1150 case TCP_TLS_MODE_SW: 1151 case TCP_TLS_MODE_IFNET: 1152 break; 1153 default: 1154 return (EINVAL); 1155 } 1156 1157 inp = so->so_pcb; 1158 INP_WLOCK_ASSERT(inp); 1159 SOCKBUF_LOCK(&so->so_snd); 1160 tls = so->so_snd.sb_tls_info; 1161 if (tls == NULL) { 1162 SOCKBUF_UNLOCK(&so->so_snd); 1163 return (0); 1164 } 1165 1166 if (tls->mode == mode) { 1167 SOCKBUF_UNLOCK(&so->so_snd); 1168 return (0); 1169 } 1170 1171 tls = ktls_hold(tls); 1172 SOCKBUF_UNLOCK(&so->so_snd); 1173 INP_WUNLOCK(inp); 1174 1175 tls_new = ktls_clone_session(tls); 1176 1177 if (mode == TCP_TLS_MODE_IFNET) 1178 error = ktls_try_ifnet(so, tls_new, true); 1179 else 1180 error = ktls_try_sw(so, tls_new, KTLS_TX); 1181 if (error) { 1182 counter_u64_add(ktls_switch_failed, 1); 1183 ktls_free(tls_new); 1184 ktls_free(tls); 1185 INP_WLOCK(inp); 1186 return (error); 1187 } 1188 1189 error = sblock(&so->so_snd, SBL_WAIT); 1190 if (error) { 1191 counter_u64_add(ktls_switch_failed, 1); 1192 ktls_free(tls_new); 1193 ktls_free(tls); 1194 INP_WLOCK(inp); 1195 return (error); 1196 } 1197 1198 /* 1199 * If we raced with another session change, keep the existing 1200 * session. 1201 */ 1202 if (tls != so->so_snd.sb_tls_info) { 1203 counter_u64_add(ktls_switch_failed, 1); 1204 sbunlock(&so->so_snd); 1205 ktls_free(tls_new); 1206 ktls_free(tls); 1207 INP_WLOCK(inp); 1208 return (EBUSY); 1209 } 1210 1211 SOCKBUF_LOCK(&so->so_snd); 1212 so->so_snd.sb_tls_info = tls_new; 1213 if (tls_new->mode != TCP_TLS_MODE_SW) 1214 so->so_snd.sb_flags |= SB_TLS_IFNET; 1215 SOCKBUF_UNLOCK(&so->so_snd); 1216 sbunlock(&so->so_snd); 1217 1218 /* 1219 * Drop two references on 'tls'. The first is for the 1220 * ktls_hold() above. The second drops the reference from the 1221 * socket buffer. 1222 */ 1223 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1224 ktls_free(tls); 1225 ktls_free(tls); 1226 1227 if (mode == TCP_TLS_MODE_IFNET) 1228 counter_u64_add(ktls_switch_to_ifnet, 1); 1229 else 1230 counter_u64_add(ktls_switch_to_sw, 1); 1231 1232 INP_WLOCK(inp); 1233 return (0); 1234 } 1235 1236 /* 1237 * Try to allocate a new TLS send tag. This task is scheduled when 1238 * ip_output detects a route change while trying to transmit a packet 1239 * holding a TLS record. If a new tag is allocated, replace the tag 1240 * in the TLS session. Subsequent packets on the connection will use 1241 * the new tag. If a new tag cannot be allocated, drop the 1242 * connection. 1243 */ 1244 static void 1245 ktls_reset_send_tag(void *context, int pending) 1246 { 1247 struct epoch_tracker et; 1248 struct ktls_session *tls; 1249 struct m_snd_tag *old, *new; 1250 struct inpcb *inp; 1251 struct tcpcb *tp; 1252 int error; 1253 1254 MPASS(pending == 1); 1255 1256 tls = context; 1257 inp = tls->inp; 1258 1259 /* 1260 * Free the old tag first before allocating a new one. 1261 * ip[6]_output_send() will treat a NULL send tag the same as 1262 * an ifp mismatch and drop packets until a new tag is 1263 * allocated. 1264 * 1265 * Write-lock the INP when changing tls->snd_tag since 1266 * ip[6]_output_send() holds a read-lock when reading the 1267 * pointer. 1268 */ 1269 INP_WLOCK(inp); 1270 old = tls->snd_tag; 1271 tls->snd_tag = NULL; 1272 INP_WUNLOCK(inp); 1273 if (old != NULL) 1274 m_snd_tag_rele(old); 1275 1276 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1277 1278 if (error == 0) { 1279 INP_WLOCK(inp); 1280 tls->snd_tag = new; 1281 mtx_pool_lock(mtxpool_sleep, tls); 1282 tls->reset_pending = false; 1283 mtx_pool_unlock(mtxpool_sleep, tls); 1284 if (!in_pcbrele_wlocked(inp)) 1285 INP_WUNLOCK(inp); 1286 1287 counter_u64_add(ktls_ifnet_reset, 1); 1288 1289 /* 1290 * XXX: Should we kick tcp_output explicitly now that 1291 * the send tag is fixed or just rely on timers? 1292 */ 1293 } else { 1294 NET_EPOCH_ENTER(et); 1295 INP_WLOCK(inp); 1296 if (!in_pcbrele_wlocked(inp)) { 1297 if (!(inp->inp_flags & INP_TIMEWAIT) && 1298 !(inp->inp_flags & INP_DROPPED)) { 1299 tp = intotcpcb(inp); 1300 CURVNET_SET(tp->t_vnet); 1301 tp = tcp_drop(tp, ECONNABORTED); 1302 CURVNET_RESTORE(); 1303 if (tp != NULL) 1304 INP_WUNLOCK(inp); 1305 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1306 } else 1307 INP_WUNLOCK(inp); 1308 } 1309 NET_EPOCH_EXIT(et); 1310 1311 counter_u64_add(ktls_ifnet_reset_failed, 1); 1312 1313 /* 1314 * Leave reset_pending true to avoid future tasks while 1315 * the socket goes away. 1316 */ 1317 } 1318 1319 ktls_free(tls); 1320 } 1321 1322 int 1323 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1324 { 1325 1326 if (inp == NULL) 1327 return (ENOBUFS); 1328 1329 INP_LOCK_ASSERT(inp); 1330 1331 /* 1332 * See if we should schedule a task to update the send tag for 1333 * this session. 1334 */ 1335 mtx_pool_lock(mtxpool_sleep, tls); 1336 if (!tls->reset_pending) { 1337 (void) ktls_hold(tls); 1338 in_pcbref(inp); 1339 tls->inp = inp; 1340 tls->reset_pending = true; 1341 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1342 } 1343 mtx_pool_unlock(mtxpool_sleep, tls); 1344 return (ENOBUFS); 1345 } 1346 #endif 1347 1348 void 1349 ktls_destroy(struct ktls_session *tls) 1350 { 1351 struct rm_priotracker prio; 1352 1353 ktls_cleanup(tls); 1354 if (tls->be != NULL && ktls_allow_unload) { 1355 rm_rlock(&ktls_backends_lock, &prio); 1356 tls->be->use_count--; 1357 rm_runlock(&ktls_backends_lock, &prio); 1358 } 1359 uma_zfree(ktls_session_zone, tls); 1360 } 1361 1362 void 1363 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1364 { 1365 1366 for (; m != NULL; m = m->m_next) { 1367 KASSERT((m->m_flags & M_EXTPG) != 0, 1368 ("ktls_seq: mapped mbuf %p", m)); 1369 1370 m->m_epg_seqno = sb->sb_tls_seqno; 1371 sb->sb_tls_seqno++; 1372 } 1373 } 1374 1375 /* 1376 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1377 * mbuf in the chain must be an unmapped mbuf. The payload of the 1378 * mbuf must be populated with the payload of each TLS record. 1379 * 1380 * The record_type argument specifies the TLS record type used when 1381 * populating the TLS header. 1382 * 1383 * The enq_count argument on return is set to the number of pages of 1384 * payload data for this entire chain that need to be encrypted via SW 1385 * encryption. The returned value should be passed to ktls_enqueue 1386 * when scheduling encryption of this chain of mbufs. 1387 */ 1388 void 1389 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1390 uint8_t record_type) 1391 { 1392 struct tls_record_layer *tlshdr; 1393 struct mbuf *m; 1394 uint64_t *noncep; 1395 uint16_t tls_len; 1396 int maxlen; 1397 1398 maxlen = tls->params.max_frame_len; 1399 *enq_cnt = 0; 1400 for (m = top; m != NULL; m = m->m_next) { 1401 /* 1402 * All mbufs in the chain should be non-empty TLS 1403 * records whose payload does not exceed the maximum 1404 * frame length. 1405 */ 1406 KASSERT(m->m_len <= maxlen && m->m_len > 0, 1407 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1408 /* 1409 * TLS frames require unmapped mbufs to store session 1410 * info. 1411 */ 1412 KASSERT((m->m_flags & M_EXTPG) != 0, 1413 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1414 1415 tls_len = m->m_len; 1416 1417 /* Save a reference to the session. */ 1418 m->m_epg_tls = ktls_hold(tls); 1419 1420 m->m_epg_hdrlen = tls->params.tls_hlen; 1421 m->m_epg_trllen = tls->params.tls_tlen; 1422 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1423 int bs, delta; 1424 1425 /* 1426 * AES-CBC pads messages to a multiple of the 1427 * block size. Note that the padding is 1428 * applied after the digest and the encryption 1429 * is done on the "plaintext || mac || padding". 1430 * At least one byte of padding is always 1431 * present. 1432 * 1433 * Compute the final trailer length assuming 1434 * at most one block of padding. 1435 * tls->params.sb_tls_tlen is the maximum 1436 * possible trailer length (padding + digest). 1437 * delta holds the number of excess padding 1438 * bytes if the maximum were used. Those 1439 * extra bytes are removed. 1440 */ 1441 bs = tls->params.tls_bs; 1442 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1443 m->m_epg_trllen -= delta; 1444 } 1445 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1446 1447 /* Populate the TLS header. */ 1448 tlshdr = (void *)m->m_epg_hdr; 1449 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1450 1451 /* 1452 * TLS 1.3 masquarades as TLS 1.2 with a record type 1453 * of TLS_RLTYPE_APP. 1454 */ 1455 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1456 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1457 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1458 tlshdr->tls_type = TLS_RLTYPE_APP; 1459 /* save the real record type for later */ 1460 m->m_epg_record_type = record_type; 1461 m->m_epg_trail[0] = record_type; 1462 } else { 1463 tlshdr->tls_vminor = tls->params.tls_vminor; 1464 tlshdr->tls_type = record_type; 1465 } 1466 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1467 1468 /* 1469 * Store nonces / explicit IVs after the end of the 1470 * TLS header. 1471 * 1472 * For GCM with TLS 1.2, an 8 byte nonce is copied 1473 * from the end of the IV. The nonce is then 1474 * incremented for use by the next record. 1475 * 1476 * For CBC, a random nonce is inserted for TLS 1.1+. 1477 */ 1478 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1479 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1480 noncep = (uint64_t *)(tls->params.iv + 8); 1481 be64enc(tlshdr + 1, *noncep); 1482 (*noncep)++; 1483 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1484 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1485 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1486 1487 /* 1488 * When using SW encryption, mark the mbuf not ready. 1489 * It will be marked ready via sbready() after the 1490 * record has been encrypted. 1491 * 1492 * When using ifnet TLS, unencrypted TLS records are 1493 * sent down the stack to the NIC. 1494 */ 1495 if (tls->mode == TCP_TLS_MODE_SW) { 1496 m->m_flags |= M_NOTREADY; 1497 m->m_epg_nrdy = m->m_epg_npgs; 1498 *enq_cnt += m->m_epg_npgs; 1499 } 1500 } 1501 } 1502 1503 void 1504 ktls_check_rx(struct sockbuf *sb) 1505 { 1506 struct tls_record_layer hdr; 1507 struct ktls_wq *wq; 1508 struct socket *so; 1509 bool running; 1510 1511 SOCKBUF_LOCK_ASSERT(sb); 1512 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1513 __func__, sb)); 1514 so = __containerof(sb, struct socket, so_rcv); 1515 1516 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1517 return; 1518 1519 /* Is there enough queued for a TLS header? */ 1520 if (sb->sb_tlscc < sizeof(hdr)) { 1521 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1522 so->so_error = EMSGSIZE; 1523 return; 1524 } 1525 1526 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1527 1528 /* Is the entire record queued? */ 1529 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1530 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1531 so->so_error = EMSGSIZE; 1532 return; 1533 } 1534 1535 sb->sb_flags |= SB_TLS_RX_RUNNING; 1536 1537 soref(so); 1538 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1539 mtx_lock(&wq->mtx); 1540 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1541 running = wq->running; 1542 mtx_unlock(&wq->mtx); 1543 if (!running) 1544 wakeup(wq); 1545 counter_u64_add(ktls_cnt_rx_queued, 1); 1546 } 1547 1548 static struct mbuf * 1549 ktls_detach_record(struct sockbuf *sb, int len) 1550 { 1551 struct mbuf *m, *n, *top; 1552 int remain; 1553 1554 SOCKBUF_LOCK_ASSERT(sb); 1555 MPASS(len <= sb->sb_tlscc); 1556 1557 /* 1558 * If TLS chain is the exact size of the record, 1559 * just grab the whole record. 1560 */ 1561 top = sb->sb_mtls; 1562 if (sb->sb_tlscc == len) { 1563 sb->sb_mtls = NULL; 1564 sb->sb_mtlstail = NULL; 1565 goto out; 1566 } 1567 1568 /* 1569 * While it would be nice to use m_split() here, we need 1570 * to know exactly what m_split() allocates to update the 1571 * accounting, so do it inline instead. 1572 */ 1573 remain = len; 1574 for (m = top; remain > m->m_len; m = m->m_next) 1575 remain -= m->m_len; 1576 1577 /* Easy case: don't have to split 'm'. */ 1578 if (remain == m->m_len) { 1579 sb->sb_mtls = m->m_next; 1580 if (sb->sb_mtls == NULL) 1581 sb->sb_mtlstail = NULL; 1582 m->m_next = NULL; 1583 goto out; 1584 } 1585 1586 /* 1587 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1588 * with M_NOWAIT first. 1589 */ 1590 n = m_get(M_NOWAIT, MT_DATA); 1591 if (n == NULL) { 1592 /* 1593 * Use M_WAITOK with socket buffer unlocked. If 1594 * 'sb_mtls' changes while the lock is dropped, return 1595 * NULL to force the caller to retry. 1596 */ 1597 SOCKBUF_UNLOCK(sb); 1598 1599 n = m_get(M_WAITOK, MT_DATA); 1600 1601 SOCKBUF_LOCK(sb); 1602 if (sb->sb_mtls != top) { 1603 m_free(n); 1604 return (NULL); 1605 } 1606 } 1607 n->m_flags |= M_NOTREADY; 1608 1609 /* Store remainder in 'n'. */ 1610 n->m_len = m->m_len - remain; 1611 if (m->m_flags & M_EXT) { 1612 n->m_data = m->m_data + remain; 1613 mb_dupcl(n, m); 1614 } else { 1615 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1616 } 1617 1618 /* Trim 'm' and update accounting. */ 1619 m->m_len -= n->m_len; 1620 sb->sb_tlscc -= n->m_len; 1621 sb->sb_ccc -= n->m_len; 1622 1623 /* Account for 'n'. */ 1624 sballoc_ktls_rx(sb, n); 1625 1626 /* Insert 'n' into the TLS chain. */ 1627 sb->sb_mtls = n; 1628 n->m_next = m->m_next; 1629 if (sb->sb_mtlstail == m) 1630 sb->sb_mtlstail = n; 1631 1632 /* Detach the record from the TLS chain. */ 1633 m->m_next = NULL; 1634 1635 out: 1636 MPASS(m_length(top, NULL) == len); 1637 for (m = top; m != NULL; m = m->m_next) 1638 sbfree_ktls_rx(sb, m); 1639 sb->sb_tlsdcc = len; 1640 sb->sb_ccc += len; 1641 SBCHECK(sb); 1642 return (top); 1643 } 1644 1645 static int 1646 m_segments(struct mbuf *m, int skip) 1647 { 1648 int count; 1649 1650 while (skip >= m->m_len) { 1651 skip -= m->m_len; 1652 m = m->m_next; 1653 } 1654 1655 for (count = 0; m != NULL; count++) 1656 m = m->m_next; 1657 return (count); 1658 } 1659 1660 static void 1661 ktls_decrypt(struct socket *so) 1662 { 1663 char tls_header[MBUF_PEXT_HDR_LEN]; 1664 struct ktls_session *tls; 1665 struct sockbuf *sb; 1666 struct tls_record_layer *hdr; 1667 struct tls_get_record tgr; 1668 struct mbuf *control, *data, *m; 1669 uint64_t seqno; 1670 int error, remain, tls_len, trail_len; 1671 1672 hdr = (struct tls_record_layer *)tls_header; 1673 sb = &so->so_rcv; 1674 SOCKBUF_LOCK(sb); 1675 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1676 ("%s: socket %p not running", __func__, so)); 1677 1678 tls = sb->sb_tls_info; 1679 MPASS(tls != NULL); 1680 1681 for (;;) { 1682 /* Is there enough queued for a TLS header? */ 1683 if (sb->sb_tlscc < tls->params.tls_hlen) 1684 break; 1685 1686 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1687 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1688 1689 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1690 hdr->tls_vminor != tls->params.tls_vminor) 1691 error = EINVAL; 1692 else if (tls_len < tls->params.tls_hlen || tls_len > 1693 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1694 tls->params.tls_tlen) 1695 error = EMSGSIZE; 1696 else 1697 error = 0; 1698 if (__predict_false(error != 0)) { 1699 /* 1700 * We have a corrupted record and are likely 1701 * out of sync. The connection isn't 1702 * recoverable at this point, so abort it. 1703 */ 1704 SOCKBUF_UNLOCK(sb); 1705 counter_u64_add(ktls_offload_corrupted_records, 1); 1706 1707 CURVNET_SET(so->so_vnet); 1708 so->so_proto->pr_usrreqs->pru_abort(so); 1709 so->so_error = error; 1710 CURVNET_RESTORE(); 1711 goto deref; 1712 } 1713 1714 /* Is the entire record queued? */ 1715 if (sb->sb_tlscc < tls_len) 1716 break; 1717 1718 /* 1719 * Split out the portion of the mbuf chain containing 1720 * this TLS record. 1721 */ 1722 data = ktls_detach_record(sb, tls_len); 1723 if (data == NULL) 1724 continue; 1725 MPASS(sb->sb_tlsdcc == tls_len); 1726 1727 seqno = sb->sb_tls_seqno; 1728 sb->sb_tls_seqno++; 1729 SBCHECK(sb); 1730 SOCKBUF_UNLOCK(sb); 1731 1732 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1733 if (error) { 1734 counter_u64_add(ktls_offload_failed_crypto, 1); 1735 1736 SOCKBUF_LOCK(sb); 1737 if (sb->sb_tlsdcc == 0) { 1738 /* 1739 * sbcut/drop/flush discarded these 1740 * mbufs. 1741 */ 1742 m_freem(data); 1743 break; 1744 } 1745 1746 /* 1747 * Drop this TLS record's data, but keep 1748 * decrypting subsequent records. 1749 */ 1750 sb->sb_ccc -= tls_len; 1751 sb->sb_tlsdcc = 0; 1752 1753 CURVNET_SET(so->so_vnet); 1754 so->so_error = EBADMSG; 1755 sorwakeup_locked(so); 1756 CURVNET_RESTORE(); 1757 1758 m_freem(data); 1759 1760 SOCKBUF_LOCK(sb); 1761 continue; 1762 } 1763 1764 /* Allocate the control mbuf. */ 1765 tgr.tls_type = hdr->tls_type; 1766 tgr.tls_vmajor = hdr->tls_vmajor; 1767 tgr.tls_vminor = hdr->tls_vminor; 1768 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1769 trail_len); 1770 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1771 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1772 1773 SOCKBUF_LOCK(sb); 1774 if (sb->sb_tlsdcc == 0) { 1775 /* sbcut/drop/flush discarded these mbufs. */ 1776 MPASS(sb->sb_tlscc == 0); 1777 m_freem(data); 1778 m_freem(control); 1779 break; 1780 } 1781 1782 /* 1783 * Clear the 'dcc' accounting in preparation for 1784 * adding the decrypted record. 1785 */ 1786 sb->sb_ccc -= tls_len; 1787 sb->sb_tlsdcc = 0; 1788 SBCHECK(sb); 1789 1790 /* If there is no payload, drop all of the data. */ 1791 if (tgr.tls_length == htobe16(0)) { 1792 m_freem(data); 1793 data = NULL; 1794 } else { 1795 /* Trim header. */ 1796 remain = tls->params.tls_hlen; 1797 while (remain > 0) { 1798 if (data->m_len > remain) { 1799 data->m_data += remain; 1800 data->m_len -= remain; 1801 break; 1802 } 1803 remain -= data->m_len; 1804 data = m_free(data); 1805 } 1806 1807 /* Trim trailer and clear M_NOTREADY. */ 1808 remain = be16toh(tgr.tls_length); 1809 m = data; 1810 for (m = data; remain > m->m_len; m = m->m_next) { 1811 m->m_flags &= ~M_NOTREADY; 1812 remain -= m->m_len; 1813 } 1814 m->m_len = remain; 1815 m_freem(m->m_next); 1816 m->m_next = NULL; 1817 m->m_flags &= ~M_NOTREADY; 1818 1819 /* Set EOR on the final mbuf. */ 1820 m->m_flags |= M_EOR; 1821 } 1822 1823 sbappendcontrol_locked(sb, data, control, 0); 1824 } 1825 1826 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1827 1828 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1829 so->so_error = EMSGSIZE; 1830 1831 sorwakeup_locked(so); 1832 1833 deref: 1834 SOCKBUF_UNLOCK_ASSERT(sb); 1835 1836 CURVNET_SET(so->so_vnet); 1837 SOCK_LOCK(so); 1838 sorele(so); 1839 CURVNET_RESTORE(); 1840 } 1841 1842 void 1843 ktls_enqueue_to_free(struct mbuf *m) 1844 { 1845 struct ktls_wq *wq; 1846 bool running; 1847 1848 /* Mark it for freeing. */ 1849 m->m_epg_flags |= EPG_FLAG_2FREE; 1850 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1851 mtx_lock(&wq->mtx); 1852 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1853 running = wq->running; 1854 mtx_unlock(&wq->mtx); 1855 if (!running) 1856 wakeup(wq); 1857 } 1858 1859 void 1860 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1861 { 1862 struct ktls_wq *wq; 1863 bool running; 1864 1865 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1866 (M_EXTPG | M_NOTREADY)), 1867 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1868 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1869 1870 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1871 1872 m->m_epg_enc_cnt = page_count; 1873 1874 /* 1875 * Save a pointer to the socket. The caller is responsible 1876 * for taking an additional reference via soref(). 1877 */ 1878 m->m_epg_so = so; 1879 1880 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1881 mtx_lock(&wq->mtx); 1882 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1883 running = wq->running; 1884 mtx_unlock(&wq->mtx); 1885 if (!running) 1886 wakeup(wq); 1887 counter_u64_add(ktls_cnt_tx_queued, 1); 1888 } 1889 1890 static __noinline void 1891 ktls_encrypt(struct mbuf *top) 1892 { 1893 struct ktls_session *tls; 1894 struct socket *so; 1895 struct mbuf *m; 1896 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1897 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1898 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1899 vm_page_t pg; 1900 int error, i, len, npages, off, total_pages; 1901 bool is_anon; 1902 1903 so = top->m_epg_so; 1904 tls = top->m_epg_tls; 1905 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1906 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 1907 #ifdef INVARIANTS 1908 top->m_epg_so = NULL; 1909 #endif 1910 total_pages = top->m_epg_enc_cnt; 1911 npages = 0; 1912 1913 /* 1914 * Encrypt the TLS records in the chain of mbufs starting with 1915 * 'top'. 'total_pages' gives us a total count of pages and is 1916 * used to know when we have finished encrypting the TLS 1917 * records originally queued with 'top'. 1918 * 1919 * NB: These mbufs are queued in the socket buffer and 1920 * 'm_next' is traversing the mbufs in the socket buffer. The 1921 * socket buffer lock is not held while traversing this chain. 1922 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1923 * pointers should be stable. However, the 'm_next' of the 1924 * last mbuf encrypted is not necessarily NULL. It can point 1925 * to other mbufs appended while 'top' was on the TLS work 1926 * queue. 1927 * 1928 * Each mbuf holds an entire TLS record. 1929 */ 1930 error = 0; 1931 for (m = top; npages != total_pages; m = m->m_next) { 1932 KASSERT(m->m_epg_tls == tls, 1933 ("different TLS sessions in a single mbuf chain: %p vs %p", 1934 tls, m->m_epg_tls)); 1935 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1936 (M_EXTPG | M_NOTREADY), 1937 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1938 KASSERT(npages + m->m_epg_npgs <= total_pages, 1939 ("page count mismatch: top %p, total_pages %d, m %p", top, 1940 total_pages, m)); 1941 1942 /* 1943 * Generate source and destination ivoecs to pass to 1944 * the SW encryption backend. For writable mbufs, the 1945 * destination iovec is a copy of the source and 1946 * encryption is done in place. For file-backed mbufs 1947 * (from sendfile), anonymous wired pages are 1948 * allocated and assigned to the destination iovec. 1949 */ 1950 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 1951 1952 off = m->m_epg_1st_off; 1953 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 1954 len = m_epg_pagelen(m, i, off); 1955 src_iov[i].iov_len = len; 1956 src_iov[i].iov_base = 1957 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 1958 off; 1959 1960 if (is_anon) { 1961 dst_iov[i].iov_base = src_iov[i].iov_base; 1962 dst_iov[i].iov_len = src_iov[i].iov_len; 1963 continue; 1964 } 1965 retry_page: 1966 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1967 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1968 if (pg == NULL) { 1969 vm_wait(NULL); 1970 goto retry_page; 1971 } 1972 parray[i] = VM_PAGE_TO_PHYS(pg); 1973 dst_iov[i].iov_base = 1974 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1975 dst_iov[i].iov_len = len; 1976 } 1977 1978 npages += i; 1979 1980 error = (*tls->sw_encrypt)(tls, 1981 (const struct tls_record_layer *)m->m_epg_hdr, 1982 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 1983 m->m_epg_record_type); 1984 if (error) { 1985 counter_u64_add(ktls_offload_failed_crypto, 1); 1986 break; 1987 } 1988 1989 /* 1990 * For file-backed mbufs, release the file-backed 1991 * pages and replace them in the ext_pgs array with 1992 * the anonymous wired pages allocated above. 1993 */ 1994 if (!is_anon) { 1995 /* Free the old pages. */ 1996 m->m_ext.ext_free(m); 1997 1998 /* Replace them with the new pages. */ 1999 for (i = 0; i < m->m_epg_npgs; i++) 2000 m->m_epg_pa[i] = parray[i]; 2001 2002 /* Use the basic free routine. */ 2003 m->m_ext.ext_free = mb_free_mext_pgs; 2004 2005 /* Pages are now writable. */ 2006 m->m_epg_flags |= EPG_FLAG_ANON; 2007 } 2008 2009 /* 2010 * Drop a reference to the session now that it is no 2011 * longer needed. Existing code depends on encrypted 2012 * records having no associated session vs 2013 * yet-to-be-encrypted records having an associated 2014 * session. 2015 */ 2016 m->m_epg_tls = NULL; 2017 ktls_free(tls); 2018 } 2019 2020 CURVNET_SET(so->so_vnet); 2021 if (error == 0) { 2022 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2023 } else { 2024 so->so_proto->pr_usrreqs->pru_abort(so); 2025 so->so_error = EIO; 2026 mb_free_notready(top, total_pages); 2027 } 2028 2029 SOCK_LOCK(so); 2030 sorele(so); 2031 CURVNET_RESTORE(); 2032 } 2033 2034 static void 2035 ktls_work_thread(void *ctx) 2036 { 2037 struct ktls_wq *wq = ctx; 2038 struct mbuf *m, *n; 2039 struct socket *so, *son; 2040 STAILQ_HEAD(, mbuf) local_m_head; 2041 STAILQ_HEAD(, socket) local_so_head; 2042 2043 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2044 fpu_kern_thread(0); 2045 #endif 2046 for (;;) { 2047 mtx_lock(&wq->mtx); 2048 while (STAILQ_EMPTY(&wq->m_head) && 2049 STAILQ_EMPTY(&wq->so_head)) { 2050 wq->running = false; 2051 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2052 wq->running = true; 2053 } 2054 2055 STAILQ_INIT(&local_m_head); 2056 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2057 STAILQ_INIT(&local_so_head); 2058 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2059 mtx_unlock(&wq->mtx); 2060 2061 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2062 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2063 ktls_free(m->m_epg_tls); 2064 uma_zfree(zone_mbuf, m); 2065 } else { 2066 ktls_encrypt(m); 2067 counter_u64_add(ktls_cnt_tx_queued, -1); 2068 } 2069 } 2070 2071 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2072 ktls_decrypt(so); 2073 counter_u64_add(ktls_cnt_rx_queued, -1); 2074 } 2075 } 2076 } 2077