1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #include <net/if.h> 58 #include <net/if_var.h> 59 #ifdef RSS 60 #include <net/netisr.h> 61 #include <net/rss_config.h> 62 #endif 63 #if defined(INET) || defined(INET6) 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 #endif 67 #include <netinet/tcp_var.h> 68 #ifdef TCP_OFFLOAD 69 #include <netinet/tcp_offload.h> 70 #endif 71 #include <opencrypto/xform.h> 72 #include <vm/uma_dbg.h> 73 #include <vm/vm.h> 74 #include <vm/vm_pageout.h> 75 #include <vm/vm_page.h> 76 77 struct ktls_wq { 78 struct mtx mtx; 79 STAILQ_HEAD(, mbuf_ext_pgs) head; 80 bool running; 81 } __aligned(CACHE_LINE_SIZE); 82 83 static struct ktls_wq *ktls_wq; 84 static struct proc *ktls_proc; 85 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 86 static struct rmlock ktls_backends_lock; 87 static uma_zone_t ktls_session_zone; 88 static uint16_t ktls_cpuid_lookup[MAXCPU]; 89 90 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 91 "Kernel TLS offload"); 92 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 93 "Kernel TLS offload stats"); 94 95 static int ktls_allow_unload; 96 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 97 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 98 99 #ifdef RSS 100 static int ktls_bind_threads = 1; 101 #else 102 static int ktls_bind_threads; 103 #endif 104 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 105 &ktls_bind_threads, 0, 106 "Bind crypto threads to cores or domains at boot"); 107 108 static u_int ktls_maxlen = 16384; 109 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 110 &ktls_maxlen, 0, "Maximum TLS record size"); 111 112 static int ktls_number_threads; 113 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 114 &ktls_number_threads, 0, 115 "Number of TLS threads in thread-pool"); 116 117 static bool ktls_offload_enable; 118 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 119 &ktls_offload_enable, 0, 120 "Enable support for kernel TLS offload"); 121 122 static bool ktls_cbc_enable = true; 123 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 124 &ktls_cbc_enable, 1, 125 "Enable Support of AES-CBC crypto for kernel TLS"); 126 127 static counter_u64_t ktls_tasks_active; 128 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 129 &ktls_tasks_active, "Number of active tasks"); 130 131 static counter_u64_t ktls_cnt_on; 132 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD, 133 &ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto"); 134 135 static counter_u64_t ktls_offload_total; 136 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 137 CTLFLAG_RD, &ktls_offload_total, 138 "Total successful TLS setups (parameters set)"); 139 140 static counter_u64_t ktls_offload_enable_calls; 141 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 142 CTLFLAG_RD, &ktls_offload_enable_calls, 143 "Total number of TLS enable calls made"); 144 145 static counter_u64_t ktls_offload_active; 146 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 147 &ktls_offload_active, "Total Active TLS sessions"); 148 149 static counter_u64_t ktls_offload_failed_crypto; 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 151 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 152 153 static counter_u64_t ktls_switch_to_ifnet; 154 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 155 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 156 157 static counter_u64_t ktls_switch_to_sw; 158 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 159 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 160 161 static counter_u64_t ktls_switch_failed; 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 163 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 164 165 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 166 "Software TLS session stats"); 167 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 168 "Hardware (ifnet) TLS session stats"); 169 #ifdef TCP_OFFLOAD 170 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 171 "TOE TLS session stats"); 172 #endif 173 174 static counter_u64_t ktls_sw_cbc; 175 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 176 "Active number of software TLS sessions using AES-CBC"); 177 178 static counter_u64_t ktls_sw_gcm; 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 180 "Active number of software TLS sessions using AES-GCM"); 181 182 static counter_u64_t ktls_ifnet_cbc; 183 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 184 &ktls_ifnet_cbc, 185 "Active number of ifnet TLS sessions using AES-CBC"); 186 187 static counter_u64_t ktls_ifnet_gcm; 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 189 &ktls_ifnet_gcm, 190 "Active number of ifnet TLS sessions using AES-GCM"); 191 192 static counter_u64_t ktls_ifnet_reset; 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 194 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 195 196 static counter_u64_t ktls_ifnet_reset_dropped; 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 198 &ktls_ifnet_reset_dropped, 199 "TLS sessions dropped after failing to update ifnet send tag"); 200 201 static counter_u64_t ktls_ifnet_reset_failed; 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 203 &ktls_ifnet_reset_failed, 204 "TLS sessions that failed to allocate a new ifnet send tag"); 205 206 static int ktls_ifnet_permitted; 207 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 208 &ktls_ifnet_permitted, 1, 209 "Whether to permit hardware (ifnet) TLS sessions"); 210 211 #ifdef TCP_OFFLOAD 212 static counter_u64_t ktls_toe_cbc; 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 214 &ktls_toe_cbc, 215 "Active number of TOE TLS sessions using AES-CBC"); 216 217 static counter_u64_t ktls_toe_gcm; 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 219 &ktls_toe_gcm, 220 "Active number of TOE TLS sessions using AES-GCM"); 221 #endif 222 223 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 224 225 static void ktls_cleanup(struct ktls_session *tls); 226 #if defined(INET) || defined(INET6) 227 static void ktls_reset_send_tag(void *context, int pending); 228 #endif 229 static void ktls_work_thread(void *ctx); 230 231 int 232 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 233 { 234 struct ktls_crypto_backend *curr_be, *tmp; 235 236 if (be->api_version != KTLS_API_VERSION) { 237 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 238 be->api_version, KTLS_API_VERSION, 239 be->name); 240 return (EINVAL); 241 } 242 243 rm_wlock(&ktls_backends_lock); 244 printf("KTLS: Registering crypto method %s with prio %d\n", 245 be->name, be->prio); 246 if (LIST_EMPTY(&ktls_backends)) { 247 LIST_INSERT_HEAD(&ktls_backends, be, next); 248 } else { 249 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 250 if (curr_be->prio < be->prio) { 251 LIST_INSERT_BEFORE(curr_be, be, next); 252 break; 253 } 254 if (LIST_NEXT(curr_be, next) == NULL) { 255 LIST_INSERT_AFTER(curr_be, be, next); 256 break; 257 } 258 } 259 } 260 rm_wunlock(&ktls_backends_lock); 261 return (0); 262 } 263 264 int 265 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 266 { 267 struct ktls_crypto_backend *tmp; 268 269 /* 270 * Don't error if the backend isn't registered. This permits 271 * MOD_UNLOAD handlers to use this function unconditionally. 272 */ 273 rm_wlock(&ktls_backends_lock); 274 LIST_FOREACH(tmp, &ktls_backends, next) { 275 if (tmp == be) 276 break; 277 } 278 if (tmp == NULL) { 279 rm_wunlock(&ktls_backends_lock); 280 return (0); 281 } 282 283 if (!ktls_allow_unload) { 284 rm_wunlock(&ktls_backends_lock); 285 printf( 286 "KTLS: Deregistering crypto method %s is not supported\n", 287 be->name); 288 return (EBUSY); 289 } 290 291 if (be->use_count) { 292 rm_wunlock(&ktls_backends_lock); 293 return (EBUSY); 294 } 295 296 LIST_REMOVE(be, next); 297 rm_wunlock(&ktls_backends_lock); 298 return (0); 299 } 300 301 #if defined(INET) || defined(INET6) 302 static u_int 303 ktls_get_cpu(struct socket *so) 304 { 305 struct inpcb *inp; 306 u_int cpuid; 307 308 inp = sotoinpcb(so); 309 #ifdef RSS 310 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 311 if (cpuid != NETISR_CPUID_NONE) 312 return (cpuid); 313 #endif 314 /* 315 * Just use the flowid to shard connections in a repeatable 316 * fashion. Note that some crypto backends rely on the 317 * serialization provided by having the same connection use 318 * the same queue. 319 */ 320 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 321 return (cpuid); 322 } 323 #endif 324 325 static void 326 ktls_init(void *dummy __unused) 327 { 328 struct thread *td; 329 struct pcpu *pc; 330 cpuset_t mask; 331 int error, i; 332 333 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 334 ktls_cnt_on = counter_u64_alloc(M_WAITOK); 335 ktls_offload_total = counter_u64_alloc(M_WAITOK); 336 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 337 ktls_offload_active = counter_u64_alloc(M_WAITOK); 338 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 339 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 340 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 341 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 342 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 343 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 344 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 345 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 346 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 347 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 348 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 349 #ifdef TCP_OFFLOAD 350 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 351 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 352 #endif 353 354 rm_init(&ktls_backends_lock, "ktls backends"); 355 LIST_INIT(&ktls_backends); 356 357 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 358 M_WAITOK | M_ZERO); 359 360 ktls_session_zone = uma_zcreate("ktls_session", 361 sizeof(struct ktls_session), 362 NULL, NULL, NULL, NULL, 363 UMA_ALIGN_CACHE, 0); 364 365 /* 366 * Initialize the workqueues to run the TLS work. We create a 367 * work queue for each CPU. 368 */ 369 CPU_FOREACH(i) { 370 STAILQ_INIT(&ktls_wq[i].head); 371 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 372 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 373 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 374 if (error) 375 panic("Can't add KTLS thread %d error %d", i, error); 376 377 /* 378 * Bind threads to cores. If ktls_bind_threads is > 379 * 1, then we bind to the NUMA domain. 380 */ 381 if (ktls_bind_threads) { 382 if (ktls_bind_threads > 1) { 383 pc = pcpu_find(i); 384 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 385 } else { 386 CPU_SETOF(i, &mask); 387 } 388 error = cpuset_setthread(td->td_tid, &mask); 389 if (error) 390 panic( 391 "Unable to bind KTLS thread for CPU %d error %d", 392 i, error); 393 } 394 ktls_cpuid_lookup[ktls_number_threads] = i; 395 ktls_number_threads++; 396 } 397 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 398 } 399 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 400 401 #if defined(INET) || defined(INET6) 402 static int 403 ktls_create_session(struct socket *so, struct tls_enable *en, 404 struct ktls_session **tlsp) 405 { 406 struct ktls_session *tls; 407 int error; 408 409 /* Only TLS 1.0 - 1.3 are supported. */ 410 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 411 return (EINVAL); 412 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 413 en->tls_vminor > TLS_MINOR_VER_THREE) 414 return (EINVAL); 415 416 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 417 return (EINVAL); 418 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 419 return (EINVAL); 420 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 421 return (EINVAL); 422 423 /* All supported algorithms require a cipher key. */ 424 if (en->cipher_key_len == 0) 425 return (EINVAL); 426 427 /* No flags are currently supported. */ 428 if (en->flags != 0) 429 return (EINVAL); 430 431 /* Common checks for supported algorithms. */ 432 switch (en->cipher_algorithm) { 433 case CRYPTO_AES_NIST_GCM_16: 434 /* 435 * auth_algorithm isn't used, but permit GMAC values 436 * for compatibility. 437 */ 438 switch (en->auth_algorithm) { 439 case 0: 440 case CRYPTO_AES_128_NIST_GMAC: 441 case CRYPTO_AES_192_NIST_GMAC: 442 case CRYPTO_AES_256_NIST_GMAC: 443 break; 444 default: 445 return (EINVAL); 446 } 447 if (en->auth_key_len != 0) 448 return (EINVAL); 449 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 450 en->iv_len != TLS_AEAD_GCM_LEN) || 451 (en->tls_vminor == TLS_MINOR_VER_THREE && 452 en->iv_len != TLS_1_3_GCM_IV_LEN)) 453 return (EINVAL); 454 break; 455 case CRYPTO_AES_CBC: 456 switch (en->auth_algorithm) { 457 case CRYPTO_SHA1_HMAC: 458 /* 459 * TLS 1.0 requires an implicit IV. TLS 1.1+ 460 * all use explicit IVs. 461 */ 462 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 463 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 464 return (EINVAL); 465 break; 466 } 467 468 /* FALLTHROUGH */ 469 case CRYPTO_SHA2_256_HMAC: 470 case CRYPTO_SHA2_384_HMAC: 471 /* Ignore any supplied IV. */ 472 en->iv_len = 0; 473 break; 474 default: 475 return (EINVAL); 476 } 477 if (en->auth_key_len == 0) 478 return (EINVAL); 479 break; 480 default: 481 return (EINVAL); 482 } 483 484 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 485 486 counter_u64_add(ktls_offload_active, 1); 487 488 refcount_init(&tls->refcount, 1); 489 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 490 491 tls->wq_index = ktls_get_cpu(so); 492 493 tls->params.cipher_algorithm = en->cipher_algorithm; 494 tls->params.auth_algorithm = en->auth_algorithm; 495 tls->params.tls_vmajor = en->tls_vmajor; 496 tls->params.tls_vminor = en->tls_vminor; 497 tls->params.flags = en->flags; 498 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 499 500 /* Set the header and trailer lengths. */ 501 tls->params.tls_hlen = sizeof(struct tls_record_layer); 502 switch (en->cipher_algorithm) { 503 case CRYPTO_AES_NIST_GCM_16: 504 /* 505 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 506 * nonce. TLS 1.3 uses a 12 byte implicit IV. 507 */ 508 if (en->tls_vminor < TLS_MINOR_VER_THREE) 509 tls->params.tls_hlen += sizeof(uint64_t); 510 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 511 512 /* 513 * TLS 1.3 includes optional padding which we 514 * do not support, and also puts the "real" record 515 * type at the end of the encrypted data. 516 */ 517 if (en->tls_vminor == TLS_MINOR_VER_THREE) 518 tls->params.tls_tlen += sizeof(uint8_t); 519 520 tls->params.tls_bs = 1; 521 break; 522 case CRYPTO_AES_CBC: 523 switch (en->auth_algorithm) { 524 case CRYPTO_SHA1_HMAC: 525 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 526 /* Implicit IV, no nonce. */ 527 } else { 528 tls->params.tls_hlen += AES_BLOCK_LEN; 529 } 530 tls->params.tls_tlen = AES_BLOCK_LEN + 531 SHA1_HASH_LEN; 532 break; 533 case CRYPTO_SHA2_256_HMAC: 534 tls->params.tls_hlen += AES_BLOCK_LEN; 535 tls->params.tls_tlen = AES_BLOCK_LEN + 536 SHA2_256_HASH_LEN; 537 break; 538 case CRYPTO_SHA2_384_HMAC: 539 tls->params.tls_hlen += AES_BLOCK_LEN; 540 tls->params.tls_tlen = AES_BLOCK_LEN + 541 SHA2_384_HASH_LEN; 542 break; 543 default: 544 panic("invalid hmac"); 545 } 546 tls->params.tls_bs = AES_BLOCK_LEN; 547 break; 548 default: 549 panic("invalid cipher"); 550 } 551 552 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 553 ("TLS header length too long: %d", tls->params.tls_hlen)); 554 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 555 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 556 557 if (en->auth_key_len != 0) { 558 tls->params.auth_key_len = en->auth_key_len; 559 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 560 M_WAITOK); 561 error = copyin(en->auth_key, tls->params.auth_key, 562 en->auth_key_len); 563 if (error) 564 goto out; 565 } 566 567 tls->params.cipher_key_len = en->cipher_key_len; 568 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 569 error = copyin(en->cipher_key, tls->params.cipher_key, 570 en->cipher_key_len); 571 if (error) 572 goto out; 573 574 /* 575 * This holds the implicit portion of the nonce for GCM and 576 * the initial implicit IV for TLS 1.0. The explicit portions 577 * of the IV are generated in ktls_frame(). 578 */ 579 if (en->iv_len != 0) { 580 tls->params.iv_len = en->iv_len; 581 error = copyin(en->iv, tls->params.iv, en->iv_len); 582 if (error) 583 goto out; 584 585 /* 586 * For TLS 1.2, generate an 8-byte nonce as a counter 587 * to generate unique explicit IVs. 588 * 589 * Store this counter in the last 8 bytes of the IV 590 * array so that it is 8-byte aligned. 591 */ 592 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 593 en->tls_vminor == TLS_MINOR_VER_TWO) 594 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 595 } 596 597 *tlsp = tls; 598 return (0); 599 600 out: 601 ktls_cleanup(tls); 602 return (error); 603 } 604 605 static struct ktls_session * 606 ktls_clone_session(struct ktls_session *tls) 607 { 608 struct ktls_session *tls_new; 609 610 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 611 612 counter_u64_add(ktls_offload_active, 1); 613 614 refcount_init(&tls_new->refcount, 1); 615 616 /* Copy fields from existing session. */ 617 tls_new->params = tls->params; 618 tls_new->wq_index = tls->wq_index; 619 620 /* Deep copy keys. */ 621 if (tls_new->params.auth_key != NULL) { 622 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 623 M_KTLS, M_WAITOK); 624 memcpy(tls_new->params.auth_key, tls->params.auth_key, 625 tls->params.auth_key_len); 626 } 627 628 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 629 M_WAITOK); 630 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 631 tls->params.cipher_key_len); 632 633 return (tls_new); 634 } 635 #endif 636 637 static void 638 ktls_cleanup(struct ktls_session *tls) 639 { 640 641 counter_u64_add(ktls_offload_active, -1); 642 switch (tls->mode) { 643 case TCP_TLS_MODE_SW: 644 MPASS(tls->be != NULL); 645 switch (tls->params.cipher_algorithm) { 646 case CRYPTO_AES_CBC: 647 counter_u64_add(ktls_sw_cbc, -1); 648 break; 649 case CRYPTO_AES_NIST_GCM_16: 650 counter_u64_add(ktls_sw_gcm, -1); 651 break; 652 } 653 tls->free(tls); 654 break; 655 case TCP_TLS_MODE_IFNET: 656 switch (tls->params.cipher_algorithm) { 657 case CRYPTO_AES_CBC: 658 counter_u64_add(ktls_ifnet_cbc, -1); 659 break; 660 case CRYPTO_AES_NIST_GCM_16: 661 counter_u64_add(ktls_ifnet_gcm, -1); 662 break; 663 } 664 m_snd_tag_rele(tls->snd_tag); 665 break; 666 #ifdef TCP_OFFLOAD 667 case TCP_TLS_MODE_TOE: 668 switch (tls->params.cipher_algorithm) { 669 case CRYPTO_AES_CBC: 670 counter_u64_add(ktls_toe_cbc, -1); 671 break; 672 case CRYPTO_AES_NIST_GCM_16: 673 counter_u64_add(ktls_toe_gcm, -1); 674 break; 675 } 676 break; 677 #endif 678 } 679 if (tls->params.auth_key != NULL) { 680 explicit_bzero(tls->params.auth_key, tls->params.auth_key_len); 681 free(tls->params.auth_key, M_KTLS); 682 tls->params.auth_key = NULL; 683 tls->params.auth_key_len = 0; 684 } 685 if (tls->params.cipher_key != NULL) { 686 explicit_bzero(tls->params.cipher_key, 687 tls->params.cipher_key_len); 688 free(tls->params.cipher_key, M_KTLS); 689 tls->params.cipher_key = NULL; 690 tls->params.cipher_key_len = 0; 691 } 692 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 693 } 694 695 #if defined(INET) || defined(INET6) 696 697 #ifdef TCP_OFFLOAD 698 static int 699 ktls_try_toe(struct socket *so, struct ktls_session *tls) 700 { 701 struct inpcb *inp; 702 struct tcpcb *tp; 703 int error; 704 705 inp = so->so_pcb; 706 INP_WLOCK(inp); 707 if (inp->inp_flags2 & INP_FREED) { 708 INP_WUNLOCK(inp); 709 return (ECONNRESET); 710 } 711 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 712 INP_WUNLOCK(inp); 713 return (ECONNRESET); 714 } 715 if (inp->inp_socket == NULL) { 716 INP_WUNLOCK(inp); 717 return (ECONNRESET); 718 } 719 tp = intotcpcb(inp); 720 if (tp->tod == NULL) { 721 INP_WUNLOCK(inp); 722 return (EOPNOTSUPP); 723 } 724 725 error = tcp_offload_alloc_tls_session(tp, tls); 726 INP_WUNLOCK(inp); 727 if (error == 0) { 728 tls->mode = TCP_TLS_MODE_TOE; 729 switch (tls->params.cipher_algorithm) { 730 case CRYPTO_AES_CBC: 731 counter_u64_add(ktls_toe_cbc, 1); 732 break; 733 case CRYPTO_AES_NIST_GCM_16: 734 counter_u64_add(ktls_toe_gcm, 1); 735 break; 736 } 737 } 738 return (error); 739 } 740 #endif 741 742 /* 743 * Common code used when first enabling ifnet TLS on a connection or 744 * when allocating a new ifnet TLS session due to a routing change. 745 * This function allocates a new TLS send tag on whatever interface 746 * the connection is currently routed over. 747 */ 748 static int 749 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 750 struct m_snd_tag **mstp) 751 { 752 union if_snd_tag_alloc_params params; 753 struct ifnet *ifp; 754 struct rtentry *rt; 755 struct tcpcb *tp; 756 int error; 757 758 INP_RLOCK(inp); 759 if (inp->inp_flags2 & INP_FREED) { 760 INP_RUNLOCK(inp); 761 return (ECONNRESET); 762 } 763 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 764 INP_RUNLOCK(inp); 765 return (ECONNRESET); 766 } 767 if (inp->inp_socket == NULL) { 768 INP_RUNLOCK(inp); 769 return (ECONNRESET); 770 } 771 tp = intotcpcb(inp); 772 773 /* 774 * Check administrative controls on ifnet TLS to determine if 775 * ifnet TLS should be denied. 776 * 777 * - Always permit 'force' requests. 778 * - ktls_ifnet_permitted == 0: always deny. 779 */ 780 if (!force && ktls_ifnet_permitted == 0) { 781 INP_RUNLOCK(inp); 782 return (ENXIO); 783 } 784 785 /* 786 * XXX: Use the cached route in the inpcb to find the 787 * interface. This should perhaps instead use 788 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 789 * enabled after a connection has completed key negotiation in 790 * userland, the cached route will be present in practice. 791 */ 792 rt = inp->inp_route.ro_rt; 793 if (rt == NULL || rt->rt_ifp == NULL) { 794 INP_RUNLOCK(inp); 795 return (ENXIO); 796 } 797 ifp = rt->rt_ifp; 798 if_ref(ifp); 799 800 params.hdr.type = IF_SND_TAG_TYPE_TLS; 801 params.hdr.flowid = inp->inp_flowid; 802 params.hdr.flowtype = inp->inp_flowtype; 803 params.hdr.numa_domain = inp->inp_numa_domain; 804 params.tls.inp = inp; 805 params.tls.tls = tls; 806 INP_RUNLOCK(inp); 807 808 if (ifp->if_snd_tag_alloc == NULL) { 809 error = EOPNOTSUPP; 810 goto out; 811 } 812 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 813 error = EOPNOTSUPP; 814 goto out; 815 } 816 if (inp->inp_vflag & INP_IPV6) { 817 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 818 error = EOPNOTSUPP; 819 goto out; 820 } 821 } else { 822 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 823 error = EOPNOTSUPP; 824 goto out; 825 } 826 } 827 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 828 out: 829 if_rele(ifp); 830 return (error); 831 } 832 833 static int 834 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 835 { 836 struct m_snd_tag *mst; 837 int error; 838 839 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 840 if (error == 0) { 841 tls->mode = TCP_TLS_MODE_IFNET; 842 tls->snd_tag = mst; 843 switch (tls->params.cipher_algorithm) { 844 case CRYPTO_AES_CBC: 845 counter_u64_add(ktls_ifnet_cbc, 1); 846 break; 847 case CRYPTO_AES_NIST_GCM_16: 848 counter_u64_add(ktls_ifnet_gcm, 1); 849 break; 850 } 851 } 852 return (error); 853 } 854 855 static int 856 ktls_try_sw(struct socket *so, struct ktls_session *tls) 857 { 858 struct rm_priotracker prio; 859 struct ktls_crypto_backend *be; 860 861 /* 862 * Choose the best software crypto backend. Backends are 863 * stored in sorted priority order (larget value == most 864 * important at the head of the list), so this just stops on 865 * the first backend that claims the session by returning 866 * success. 867 */ 868 if (ktls_allow_unload) 869 rm_rlock(&ktls_backends_lock, &prio); 870 LIST_FOREACH(be, &ktls_backends, next) { 871 if (be->try(so, tls) == 0) 872 break; 873 KASSERT(tls->cipher == NULL, 874 ("ktls backend leaked a cipher pointer")); 875 } 876 if (be != NULL) { 877 if (ktls_allow_unload) 878 be->use_count++; 879 tls->be = be; 880 } 881 if (ktls_allow_unload) 882 rm_runlock(&ktls_backends_lock, &prio); 883 if (be == NULL) 884 return (EOPNOTSUPP); 885 tls->mode = TCP_TLS_MODE_SW; 886 switch (tls->params.cipher_algorithm) { 887 case CRYPTO_AES_CBC: 888 counter_u64_add(ktls_sw_cbc, 1); 889 break; 890 case CRYPTO_AES_NIST_GCM_16: 891 counter_u64_add(ktls_sw_gcm, 1); 892 break; 893 } 894 return (0); 895 } 896 897 int 898 ktls_enable_tx(struct socket *so, struct tls_enable *en) 899 { 900 struct ktls_session *tls; 901 int error; 902 903 if (!ktls_offload_enable) 904 return (ENOTSUP); 905 906 counter_u64_add(ktls_offload_enable_calls, 1); 907 908 /* 909 * This should always be true since only the TCP socket option 910 * invokes this function. 911 */ 912 if (so->so_proto->pr_protocol != IPPROTO_TCP) 913 return (EINVAL); 914 915 /* 916 * XXX: Don't overwrite existing sessions. We should permit 917 * this to support rekeying in the future. 918 */ 919 if (so->so_snd.sb_tls_info != NULL) 920 return (EALREADY); 921 922 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 923 return (ENOTSUP); 924 925 /* TLS requires ext pgs */ 926 if (mb_use_ext_pgs == 0) 927 return (ENXIO); 928 929 error = ktls_create_session(so, en, &tls); 930 if (error) 931 return (error); 932 933 /* Prefer TOE -> ifnet TLS -> software TLS. */ 934 #ifdef TCP_OFFLOAD 935 error = ktls_try_toe(so, tls); 936 if (error) 937 #endif 938 error = ktls_try_ifnet(so, tls, false); 939 if (error) 940 error = ktls_try_sw(so, tls); 941 942 if (error) { 943 ktls_cleanup(tls); 944 return (error); 945 } 946 947 error = sblock(&so->so_snd, SBL_WAIT); 948 if (error) { 949 ktls_cleanup(tls); 950 return (error); 951 } 952 953 SOCKBUF_LOCK(&so->so_snd); 954 so->so_snd.sb_tls_info = tls; 955 if (tls->mode != TCP_TLS_MODE_SW) 956 so->so_snd.sb_flags |= SB_TLS_IFNET; 957 SOCKBUF_UNLOCK(&so->so_snd); 958 sbunlock(&so->so_snd); 959 960 counter_u64_add(ktls_offload_total, 1); 961 962 return (0); 963 } 964 965 int 966 ktls_get_tx_mode(struct socket *so) 967 { 968 struct ktls_session *tls; 969 struct inpcb *inp; 970 int mode; 971 972 inp = so->so_pcb; 973 INP_WLOCK_ASSERT(inp); 974 SOCKBUF_LOCK(&so->so_snd); 975 tls = so->so_snd.sb_tls_info; 976 if (tls == NULL) 977 mode = TCP_TLS_MODE_NONE; 978 else 979 mode = tls->mode; 980 SOCKBUF_UNLOCK(&so->so_snd); 981 return (mode); 982 } 983 984 /* 985 * Switch between SW and ifnet TLS sessions as requested. 986 */ 987 int 988 ktls_set_tx_mode(struct socket *so, int mode) 989 { 990 struct ktls_session *tls, *tls_new; 991 struct inpcb *inp; 992 int error; 993 994 switch (mode) { 995 case TCP_TLS_MODE_SW: 996 case TCP_TLS_MODE_IFNET: 997 break; 998 default: 999 return (EINVAL); 1000 } 1001 1002 inp = so->so_pcb; 1003 INP_WLOCK_ASSERT(inp); 1004 SOCKBUF_LOCK(&so->so_snd); 1005 tls = so->so_snd.sb_tls_info; 1006 if (tls == NULL) { 1007 SOCKBUF_UNLOCK(&so->so_snd); 1008 return (0); 1009 } 1010 1011 if (tls->mode == mode) { 1012 SOCKBUF_UNLOCK(&so->so_snd); 1013 return (0); 1014 } 1015 1016 tls = ktls_hold(tls); 1017 SOCKBUF_UNLOCK(&so->so_snd); 1018 INP_WUNLOCK(inp); 1019 1020 tls_new = ktls_clone_session(tls); 1021 1022 if (mode == TCP_TLS_MODE_IFNET) 1023 error = ktls_try_ifnet(so, tls_new, true); 1024 else 1025 error = ktls_try_sw(so, tls_new); 1026 if (error) { 1027 counter_u64_add(ktls_switch_failed, 1); 1028 ktls_free(tls_new); 1029 ktls_free(tls); 1030 INP_WLOCK(inp); 1031 return (error); 1032 } 1033 1034 error = sblock(&so->so_snd, SBL_WAIT); 1035 if (error) { 1036 counter_u64_add(ktls_switch_failed, 1); 1037 ktls_free(tls_new); 1038 ktls_free(tls); 1039 INP_WLOCK(inp); 1040 return (error); 1041 } 1042 1043 /* 1044 * If we raced with another session change, keep the existing 1045 * session. 1046 */ 1047 if (tls != so->so_snd.sb_tls_info) { 1048 counter_u64_add(ktls_switch_failed, 1); 1049 sbunlock(&so->so_snd); 1050 ktls_free(tls_new); 1051 ktls_free(tls); 1052 INP_WLOCK(inp); 1053 return (EBUSY); 1054 } 1055 1056 SOCKBUF_LOCK(&so->so_snd); 1057 so->so_snd.sb_tls_info = tls_new; 1058 if (tls_new->mode != TCP_TLS_MODE_SW) 1059 so->so_snd.sb_flags |= SB_TLS_IFNET; 1060 SOCKBUF_UNLOCK(&so->so_snd); 1061 sbunlock(&so->so_snd); 1062 1063 /* 1064 * Drop two references on 'tls'. The first is for the 1065 * ktls_hold() above. The second drops the reference from the 1066 * socket buffer. 1067 */ 1068 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1069 ktls_free(tls); 1070 ktls_free(tls); 1071 1072 if (mode == TCP_TLS_MODE_IFNET) 1073 counter_u64_add(ktls_switch_to_ifnet, 1); 1074 else 1075 counter_u64_add(ktls_switch_to_sw, 1); 1076 1077 INP_WLOCK(inp); 1078 return (0); 1079 } 1080 1081 /* 1082 * Try to allocate a new TLS send tag. This task is scheduled when 1083 * ip_output detects a route change while trying to transmit a packet 1084 * holding a TLS record. If a new tag is allocated, replace the tag 1085 * in the TLS session. Subsequent packets on the connection will use 1086 * the new tag. If a new tag cannot be allocated, drop the 1087 * connection. 1088 */ 1089 static void 1090 ktls_reset_send_tag(void *context, int pending) 1091 { 1092 struct epoch_tracker et; 1093 struct ktls_session *tls; 1094 struct m_snd_tag *old, *new; 1095 struct inpcb *inp; 1096 struct tcpcb *tp; 1097 int error; 1098 1099 MPASS(pending == 1); 1100 1101 tls = context; 1102 inp = tls->inp; 1103 1104 /* 1105 * Free the old tag first before allocating a new one. 1106 * ip[6]_output_send() will treat a NULL send tag the same as 1107 * an ifp mismatch and drop packets until a new tag is 1108 * allocated. 1109 * 1110 * Write-lock the INP when changing tls->snd_tag since 1111 * ip[6]_output_send() holds a read-lock when reading the 1112 * pointer. 1113 */ 1114 INP_WLOCK(inp); 1115 old = tls->snd_tag; 1116 tls->snd_tag = NULL; 1117 INP_WUNLOCK(inp); 1118 if (old != NULL) 1119 m_snd_tag_rele(old); 1120 1121 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1122 1123 if (error == 0) { 1124 INP_WLOCK(inp); 1125 tls->snd_tag = new; 1126 mtx_pool_lock(mtxpool_sleep, tls); 1127 tls->reset_pending = false; 1128 mtx_pool_unlock(mtxpool_sleep, tls); 1129 if (!in_pcbrele_wlocked(inp)) 1130 INP_WUNLOCK(inp); 1131 1132 counter_u64_add(ktls_ifnet_reset, 1); 1133 1134 /* 1135 * XXX: Should we kick tcp_output explicitly now that 1136 * the send tag is fixed or just rely on timers? 1137 */ 1138 } else { 1139 NET_EPOCH_ENTER(et); 1140 INP_WLOCK(inp); 1141 if (!in_pcbrele_wlocked(inp)) { 1142 if (!(inp->inp_flags & INP_TIMEWAIT) && 1143 !(inp->inp_flags & INP_DROPPED)) { 1144 tp = intotcpcb(inp); 1145 CURVNET_SET(tp->t_vnet); 1146 tp = tcp_drop(tp, ECONNABORTED); 1147 CURVNET_RESTORE(); 1148 if (tp != NULL) 1149 INP_WUNLOCK(inp); 1150 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1151 } else 1152 INP_WUNLOCK(inp); 1153 } 1154 NET_EPOCH_EXIT(et); 1155 1156 counter_u64_add(ktls_ifnet_reset_failed, 1); 1157 1158 /* 1159 * Leave reset_pending true to avoid future tasks while 1160 * the socket goes away. 1161 */ 1162 } 1163 1164 ktls_free(tls); 1165 } 1166 1167 int 1168 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1169 { 1170 1171 if (inp == NULL) 1172 return (ENOBUFS); 1173 1174 INP_LOCK_ASSERT(inp); 1175 1176 /* 1177 * See if we should schedule a task to update the send tag for 1178 * this session. 1179 */ 1180 mtx_pool_lock(mtxpool_sleep, tls); 1181 if (!tls->reset_pending) { 1182 (void) ktls_hold(tls); 1183 in_pcbref(inp); 1184 tls->inp = inp; 1185 tls->reset_pending = true; 1186 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1187 } 1188 mtx_pool_unlock(mtxpool_sleep, tls); 1189 return (ENOBUFS); 1190 } 1191 #endif 1192 1193 void 1194 ktls_destroy(struct ktls_session *tls) 1195 { 1196 struct rm_priotracker prio; 1197 1198 ktls_cleanup(tls); 1199 if (tls->be != NULL && ktls_allow_unload) { 1200 rm_rlock(&ktls_backends_lock, &prio); 1201 tls->be->use_count--; 1202 rm_runlock(&ktls_backends_lock, &prio); 1203 } 1204 uma_zfree(ktls_session_zone, tls); 1205 } 1206 1207 void 1208 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1209 { 1210 struct mbuf_ext_pgs *pgs; 1211 1212 for (; m != NULL; m = m->m_next) { 1213 KASSERT((m->m_flags & M_NOMAP) != 0, 1214 ("ktls_seq: mapped mbuf %p", m)); 1215 1216 pgs = m->m_ext.ext_pgs; 1217 pgs->seqno = sb->sb_tls_seqno; 1218 sb->sb_tls_seqno++; 1219 } 1220 } 1221 1222 /* 1223 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1224 * mbuf in the chain must be an unmapped mbuf. The payload of the 1225 * mbuf must be populated with the payload of each TLS record. 1226 * 1227 * The record_type argument specifies the TLS record type used when 1228 * populating the TLS header. 1229 * 1230 * The enq_count argument on return is set to the number of pages of 1231 * payload data for this entire chain that need to be encrypted via SW 1232 * encryption. The returned value should be passed to ktls_enqueue 1233 * when scheduling encryption of this chain of mbufs. 1234 */ 1235 void 1236 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1237 uint8_t record_type) 1238 { 1239 struct tls_record_layer *tlshdr; 1240 struct mbuf *m; 1241 struct mbuf_ext_pgs *pgs; 1242 uint64_t *noncep; 1243 uint16_t tls_len; 1244 int maxlen; 1245 1246 maxlen = tls->params.max_frame_len; 1247 *enq_cnt = 0; 1248 for (m = top; m != NULL; m = m->m_next) { 1249 /* 1250 * All mbufs in the chain should be non-empty TLS 1251 * records whose payload does not exceed the maximum 1252 * frame length. 1253 */ 1254 KASSERT(m->m_len <= maxlen && m->m_len > 0, 1255 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1256 /* 1257 * TLS frames require unmapped mbufs to store session 1258 * info. 1259 */ 1260 KASSERT((m->m_flags & M_NOMAP) != 0, 1261 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1262 1263 tls_len = m->m_len; 1264 pgs = m->m_ext.ext_pgs; 1265 1266 /* Save a reference to the session. */ 1267 pgs->tls = ktls_hold(tls); 1268 1269 pgs->hdr_len = tls->params.tls_hlen; 1270 pgs->trail_len = tls->params.tls_tlen; 1271 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1272 int bs, delta; 1273 1274 /* 1275 * AES-CBC pads messages to a multiple of the 1276 * block size. Note that the padding is 1277 * applied after the digest and the encryption 1278 * is done on the "plaintext || mac || padding". 1279 * At least one byte of padding is always 1280 * present. 1281 * 1282 * Compute the final trailer length assuming 1283 * at most one block of padding. 1284 * tls->params.sb_tls_tlen is the maximum 1285 * possible trailer length (padding + digest). 1286 * delta holds the number of excess padding 1287 * bytes if the maximum were used. Those 1288 * extra bytes are removed. 1289 */ 1290 bs = tls->params.tls_bs; 1291 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1292 pgs->trail_len -= delta; 1293 } 1294 m->m_len += pgs->hdr_len + pgs->trail_len; 1295 1296 /* Populate the TLS header. */ 1297 tlshdr = (void *)pgs->hdr; 1298 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1299 1300 /* 1301 * TLS 1.3 masquarades as TLS 1.2 with a record type 1302 * of TLS_RLTYPE_APP. 1303 */ 1304 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1305 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1306 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1307 tlshdr->tls_type = TLS_RLTYPE_APP; 1308 /* save the real record type for later */ 1309 pgs->record_type = record_type; 1310 } else { 1311 tlshdr->tls_vminor = tls->params.tls_vminor; 1312 tlshdr->tls_type = record_type; 1313 } 1314 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1315 1316 /* 1317 * Store nonces / explicit IVs after the end of the 1318 * TLS header. 1319 * 1320 * For GCM with TLS 1.2, an 8 byte nonce is copied 1321 * from the end of the IV. The nonce is then 1322 * incremented for use by the next record. 1323 * 1324 * For CBC, a random nonce is inserted for TLS 1.1+. 1325 */ 1326 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1327 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1328 noncep = (uint64_t *)(tls->params.iv + 8); 1329 be64enc(tlshdr + 1, *noncep); 1330 (*noncep)++; 1331 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1332 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1333 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1334 1335 /* 1336 * When using SW encryption, mark the mbuf not ready. 1337 * It will be marked ready via sbready() after the 1338 * record has been encrypted. 1339 * 1340 * When using ifnet TLS, unencrypted TLS records are 1341 * sent down the stack to the NIC. 1342 */ 1343 if (tls->mode == TCP_TLS_MODE_SW) { 1344 m->m_flags |= M_NOTREADY; 1345 pgs->nrdy = pgs->npgs; 1346 *enq_cnt += pgs->npgs; 1347 } 1348 } 1349 } 1350 1351 void 1352 ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs) 1353 { 1354 struct ktls_wq *wq; 1355 bool running; 1356 1357 /* Mark it for freeing. */ 1358 pgs->mbuf = NULL; 1359 wq = &ktls_wq[pgs->tls->wq_index]; 1360 mtx_lock(&wq->mtx); 1361 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1362 running = wq->running; 1363 mtx_unlock(&wq->mtx); 1364 if (!running) 1365 wakeup(wq); 1366 } 1367 1368 void 1369 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1370 { 1371 struct mbuf_ext_pgs *pgs; 1372 struct ktls_wq *wq; 1373 bool running; 1374 1375 KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1376 (M_NOMAP | M_NOTREADY)), 1377 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1378 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1379 1380 pgs = m->m_ext.ext_pgs; 1381 1382 KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1383 1384 pgs->enc_cnt = page_count; 1385 pgs->mbuf = m; 1386 1387 /* 1388 * Save a pointer to the socket. The caller is responsible 1389 * for taking an additional reference via soref(). 1390 */ 1391 pgs->so = so; 1392 1393 wq = &ktls_wq[pgs->tls->wq_index]; 1394 mtx_lock(&wq->mtx); 1395 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1396 running = wq->running; 1397 mtx_unlock(&wq->mtx); 1398 if (!running) 1399 wakeup(wq); 1400 counter_u64_add(ktls_cnt_on, 1); 1401 } 1402 1403 static __noinline void 1404 ktls_encrypt(struct mbuf_ext_pgs *pgs) 1405 { 1406 struct ktls_session *tls; 1407 struct socket *so; 1408 struct mbuf *m, *top; 1409 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1410 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1411 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1412 vm_page_t pg; 1413 int error, i, len, npages, off, total_pages; 1414 bool is_anon; 1415 1416 so = pgs->so; 1417 tls = pgs->tls; 1418 top = pgs->mbuf; 1419 KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs)); 1420 KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs)); 1421 #ifdef INVARIANTS 1422 pgs->so = NULL; 1423 pgs->mbuf = NULL; 1424 #endif 1425 total_pages = pgs->enc_cnt; 1426 npages = 0; 1427 1428 /* 1429 * Encrypt the TLS records in the chain of mbufs starting with 1430 * 'top'. 'total_pages' gives us a total count of pages and is 1431 * used to know when we have finished encrypting the TLS 1432 * records originally queued with 'top'. 1433 * 1434 * NB: These mbufs are queued in the socket buffer and 1435 * 'm_next' is traversing the mbufs in the socket buffer. The 1436 * socket buffer lock is not held while traversing this chain. 1437 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1438 * pointers should be stable. However, the 'm_next' of the 1439 * last mbuf encrypted is not necessarily NULL. It can point 1440 * to other mbufs appended while 'top' was on the TLS work 1441 * queue. 1442 * 1443 * Each mbuf holds an entire TLS record. 1444 */ 1445 error = 0; 1446 for (m = top; npages != total_pages; m = m->m_next) { 1447 pgs = m->m_ext.ext_pgs; 1448 1449 KASSERT(pgs->tls == tls, 1450 ("different TLS sessions in a single mbuf chain: %p vs %p", 1451 tls, pgs->tls)); 1452 KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1453 (M_NOMAP | M_NOTREADY), 1454 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1455 KASSERT(npages + pgs->npgs <= total_pages, 1456 ("page count mismatch: top %p, total_pages %d, m %p", top, 1457 total_pages, m)); 1458 1459 /* 1460 * Generate source and destination ivoecs to pass to 1461 * the SW encryption backend. For writable mbufs, the 1462 * destination iovec is a copy of the source and 1463 * encryption is done in place. For file-backed mbufs 1464 * (from sendfile), anonymous wired pages are 1465 * allocated and assigned to the destination iovec. 1466 */ 1467 is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0; 1468 1469 off = pgs->first_pg_off; 1470 for (i = 0; i < pgs->npgs; i++, off = 0) { 1471 len = mbuf_ext_pg_len(pgs, i, off); 1472 src_iov[i].iov_len = len; 1473 src_iov[i].iov_base = 1474 (char *)(void *)PHYS_TO_DMAP(pgs->pa[i]) + off; 1475 1476 if (is_anon) { 1477 dst_iov[i].iov_base = src_iov[i].iov_base; 1478 dst_iov[i].iov_len = src_iov[i].iov_len; 1479 continue; 1480 } 1481 retry_page: 1482 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1483 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1484 if (pg == NULL) { 1485 vm_wait(NULL); 1486 goto retry_page; 1487 } 1488 parray[i] = VM_PAGE_TO_PHYS(pg); 1489 dst_iov[i].iov_base = 1490 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1491 dst_iov[i].iov_len = len; 1492 } 1493 1494 npages += i; 1495 1496 error = (*tls->sw_encrypt)(tls, 1497 (const struct tls_record_layer *)pgs->hdr, 1498 pgs->trail, src_iov, dst_iov, i, pgs->seqno, 1499 pgs->record_type); 1500 if (error) { 1501 counter_u64_add(ktls_offload_failed_crypto, 1); 1502 break; 1503 } 1504 1505 /* 1506 * For file-backed mbufs, release the file-backed 1507 * pages and replace them in the ext_pgs array with 1508 * the anonymous wired pages allocated above. 1509 */ 1510 if (!is_anon) { 1511 /* Free the old pages. */ 1512 m->m_ext.ext_free(m); 1513 1514 /* Replace them with the new pages. */ 1515 for (i = 0; i < pgs->npgs; i++) 1516 pgs->pa[i] = parray[i]; 1517 1518 /* Use the basic free routine. */ 1519 m->m_ext.ext_free = mb_free_mext_pgs; 1520 1521 /* Pages are now writable. */ 1522 pgs->flags |= MBUF_PEXT_FLAG_ANON; 1523 } 1524 1525 /* 1526 * Drop a reference to the session now that it is no 1527 * longer needed. Existing code depends on encrypted 1528 * records having no associated session vs 1529 * yet-to-be-encrypted records having an associated 1530 * session. 1531 */ 1532 pgs->tls = NULL; 1533 ktls_free(tls); 1534 } 1535 1536 CURVNET_SET(so->so_vnet); 1537 if (error == 0) { 1538 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 1539 } else { 1540 so->so_proto->pr_usrreqs->pru_abort(so); 1541 so->so_error = EIO; 1542 mb_free_notready(top, total_pages); 1543 } 1544 1545 SOCK_LOCK(so); 1546 sorele(so); 1547 CURVNET_RESTORE(); 1548 } 1549 1550 static void 1551 ktls_work_thread(void *ctx) 1552 { 1553 struct ktls_wq *wq = ctx; 1554 struct mbuf_ext_pgs *p, *n; 1555 struct ktls_session *tls; 1556 STAILQ_HEAD(, mbuf_ext_pgs) local_head; 1557 1558 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 1559 fpu_kern_thread(0); 1560 #endif 1561 for (;;) { 1562 mtx_lock(&wq->mtx); 1563 while (STAILQ_EMPTY(&wq->head)) { 1564 wq->running = false; 1565 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 1566 wq->running = true; 1567 } 1568 1569 STAILQ_INIT(&local_head); 1570 STAILQ_CONCAT(&local_head, &wq->head); 1571 mtx_unlock(&wq->mtx); 1572 1573 STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) { 1574 if (p->mbuf != NULL) { 1575 ktls_encrypt(p); 1576 counter_u64_add(ktls_cnt_on, -1); 1577 } else { 1578 tls = p->tls; 1579 ktls_free(tls); 1580 uma_zfree(zone_extpgs, p); 1581 } 1582 } 1583 } 1584 } 1585