1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 } __aligned(CACHE_LINE_SIZE); 86 87 struct ktls_domain_info { 88 int count; 89 int cpu[MAXCPU]; 90 }; 91 92 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 93 static struct ktls_wq *ktls_wq; 94 static struct proc *ktls_proc; 95 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 96 static struct rmlock ktls_backends_lock; 97 static uma_zone_t ktls_session_zone; 98 static uint16_t ktls_cpuid_lookup[MAXCPU]; 99 100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "Kernel TLS offload"); 102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload stats"); 104 105 static int ktls_allow_unload; 106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 107 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 108 109 #ifdef RSS 110 static int ktls_bind_threads = 1; 111 #else 112 static int ktls_bind_threads; 113 #endif 114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 115 &ktls_bind_threads, 0, 116 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 117 118 static u_int ktls_maxlen = 16384; 119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 120 &ktls_maxlen, 0, "Maximum TLS record size"); 121 122 static int ktls_number_threads; 123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 124 &ktls_number_threads, 0, 125 "Number of TLS threads in thread-pool"); 126 127 static bool ktls_offload_enable; 128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 129 &ktls_offload_enable, 0, 130 "Enable support for kernel TLS offload"); 131 132 static bool ktls_cbc_enable = true; 133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 134 &ktls_cbc_enable, 1, 135 "Enable Support of AES-CBC crypto for kernel TLS"); 136 137 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 139 &ktls_tasks_active, "Number of active tasks"); 140 141 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 143 &ktls_cnt_tx_queued, 144 "Number of TLS records in queue to tasks for SW encryption"); 145 146 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 148 &ktls_cnt_rx_queued, 149 "Number of TLS sockets in queue to tasks for SW decryption"); 150 151 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 153 CTLFLAG_RD, &ktls_offload_total, 154 "Total successful TLS setups (parameters set)"); 155 156 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 158 CTLFLAG_RD, &ktls_offload_enable_calls, 159 "Total number of TLS enable calls made"); 160 161 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 163 &ktls_offload_active, "Total Active TLS sessions"); 164 165 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 167 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 168 169 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 171 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 175 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 176 177 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 179 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 180 181 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 183 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 184 185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 186 "Software TLS session stats"); 187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 188 "Hardware (ifnet) TLS session stats"); 189 #ifdef TCP_OFFLOAD 190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 191 "TOE TLS session stats"); 192 #endif 193 194 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 196 "Active number of software TLS sessions using AES-CBC"); 197 198 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 200 "Active number of software TLS sessions using AES-GCM"); 201 202 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 204 &ktls_ifnet_cbc, 205 "Active number of ifnet TLS sessions using AES-CBC"); 206 207 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 209 &ktls_ifnet_gcm, 210 "Active number of ifnet TLS sessions using AES-GCM"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 214 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 218 &ktls_ifnet_reset_dropped, 219 "TLS sessions dropped after failing to update ifnet send tag"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 223 &ktls_ifnet_reset_failed, 224 "TLS sessions that failed to allocate a new ifnet send tag"); 225 226 static int ktls_ifnet_permitted; 227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 228 &ktls_ifnet_permitted, 1, 229 "Whether to permit hardware (ifnet) TLS sessions"); 230 231 #ifdef TCP_OFFLOAD 232 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 234 &ktls_toe_cbc, 235 "Active number of TOE TLS sessions using AES-CBC"); 236 237 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 239 &ktls_toe_gcm, 240 "Active number of TOE TLS sessions using AES-GCM"); 241 #endif 242 243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 244 245 static void ktls_cleanup(struct ktls_session *tls); 246 #if defined(INET) || defined(INET6) 247 static void ktls_reset_send_tag(void *context, int pending); 248 #endif 249 static void ktls_work_thread(void *ctx); 250 251 int 252 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 253 { 254 struct ktls_crypto_backend *curr_be, *tmp; 255 256 if (be->api_version != KTLS_API_VERSION) { 257 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 258 be->api_version, KTLS_API_VERSION, 259 be->name); 260 return (EINVAL); 261 } 262 263 rm_wlock(&ktls_backends_lock); 264 printf("KTLS: Registering crypto method %s with prio %d\n", 265 be->name, be->prio); 266 if (LIST_EMPTY(&ktls_backends)) { 267 LIST_INSERT_HEAD(&ktls_backends, be, next); 268 } else { 269 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 270 if (curr_be->prio < be->prio) { 271 LIST_INSERT_BEFORE(curr_be, be, next); 272 break; 273 } 274 if (LIST_NEXT(curr_be, next) == NULL) { 275 LIST_INSERT_AFTER(curr_be, be, next); 276 break; 277 } 278 } 279 } 280 rm_wunlock(&ktls_backends_lock); 281 return (0); 282 } 283 284 int 285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 286 { 287 struct ktls_crypto_backend *tmp; 288 289 /* 290 * Don't error if the backend isn't registered. This permits 291 * MOD_UNLOAD handlers to use this function unconditionally. 292 */ 293 rm_wlock(&ktls_backends_lock); 294 LIST_FOREACH(tmp, &ktls_backends, next) { 295 if (tmp == be) 296 break; 297 } 298 if (tmp == NULL) { 299 rm_wunlock(&ktls_backends_lock); 300 return (0); 301 } 302 303 if (!ktls_allow_unload) { 304 rm_wunlock(&ktls_backends_lock); 305 printf( 306 "KTLS: Deregistering crypto method %s is not supported\n", 307 be->name); 308 return (EBUSY); 309 } 310 311 if (be->use_count) { 312 rm_wunlock(&ktls_backends_lock); 313 return (EBUSY); 314 } 315 316 LIST_REMOVE(be, next); 317 rm_wunlock(&ktls_backends_lock); 318 return (0); 319 } 320 321 #if defined(INET) || defined(INET6) 322 static u_int 323 ktls_get_cpu(struct socket *so) 324 { 325 struct inpcb *inp; 326 #ifdef NUMA 327 struct ktls_domain_info *di; 328 #endif 329 u_int cpuid; 330 331 inp = sotoinpcb(so); 332 #ifdef RSS 333 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 334 if (cpuid != NETISR_CPUID_NONE) 335 return (cpuid); 336 #endif 337 /* 338 * Just use the flowid to shard connections in a repeatable 339 * fashion. Note that some crypto backends rely on the 340 * serialization provided by having the same connection use 341 * the same queue. 342 */ 343 #ifdef NUMA 344 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 345 di = &ktls_domains[inp->inp_numa_domain]; 346 cpuid = di->cpu[inp->inp_flowid % di->count]; 347 } else 348 #endif 349 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 350 return (cpuid); 351 } 352 #endif 353 354 static void 355 ktls_init(void *dummy __unused) 356 { 357 struct thread *td; 358 struct pcpu *pc; 359 cpuset_t mask; 360 int count, domain, error, i; 361 362 rm_init(&ktls_backends_lock, "ktls backends"); 363 LIST_INIT(&ktls_backends); 364 365 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 366 M_WAITOK | M_ZERO); 367 368 ktls_session_zone = uma_zcreate("ktls_session", 369 sizeof(struct ktls_session), 370 NULL, NULL, NULL, NULL, 371 UMA_ALIGN_CACHE, 0); 372 373 /* 374 * Initialize the workqueues to run the TLS work. We create a 375 * work queue for each CPU. 376 */ 377 CPU_FOREACH(i) { 378 STAILQ_INIT(&ktls_wq[i].m_head); 379 STAILQ_INIT(&ktls_wq[i].so_head); 380 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 381 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 382 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 383 if (error) 384 panic("Can't add KTLS thread %d error %d", i, error); 385 386 /* 387 * Bind threads to cores. If ktls_bind_threads is > 388 * 1, then we bind to the NUMA domain. 389 */ 390 if (ktls_bind_threads) { 391 if (ktls_bind_threads > 1) { 392 pc = pcpu_find(i); 393 domain = pc->pc_domain; 394 CPU_COPY(&cpuset_domain[domain], &mask); 395 count = ktls_domains[domain].count; 396 ktls_domains[domain].cpu[count] = i; 397 ktls_domains[domain].count++; 398 } else { 399 CPU_SETOF(i, &mask); 400 } 401 error = cpuset_setthread(td->td_tid, &mask); 402 if (error) 403 panic( 404 "Unable to bind KTLS thread for CPU %d error %d", 405 i, error); 406 } 407 ktls_cpuid_lookup[ktls_number_threads] = i; 408 ktls_number_threads++; 409 } 410 411 /* 412 * If we somehow have an empty domain, fall back to choosing 413 * among all KTLS threads. 414 */ 415 if (ktls_bind_threads > 1) { 416 for (i = 0; i < vm_ndomains; i++) { 417 if (ktls_domains[i].count == 0) { 418 ktls_bind_threads = 1; 419 break; 420 } 421 } 422 } 423 424 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 425 } 426 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 427 428 #if defined(INET) || defined(INET6) 429 static int 430 ktls_create_session(struct socket *so, struct tls_enable *en, 431 struct ktls_session **tlsp) 432 { 433 struct ktls_session *tls; 434 int error; 435 436 /* Only TLS 1.0 - 1.3 are supported. */ 437 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 438 return (EINVAL); 439 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 440 en->tls_vminor > TLS_MINOR_VER_THREE) 441 return (EINVAL); 442 443 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 444 return (EINVAL); 445 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 446 return (EINVAL); 447 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 448 return (EINVAL); 449 450 /* All supported algorithms require a cipher key. */ 451 if (en->cipher_key_len == 0) 452 return (EINVAL); 453 454 /* No flags are currently supported. */ 455 if (en->flags != 0) 456 return (EINVAL); 457 458 /* Common checks for supported algorithms. */ 459 switch (en->cipher_algorithm) { 460 case CRYPTO_AES_NIST_GCM_16: 461 /* 462 * auth_algorithm isn't used, but permit GMAC values 463 * for compatibility. 464 */ 465 switch (en->auth_algorithm) { 466 case 0: 467 #ifdef COMPAT_FREEBSD12 468 /* XXX: Really 13.0-current COMPAT. */ 469 case CRYPTO_AES_128_NIST_GMAC: 470 case CRYPTO_AES_192_NIST_GMAC: 471 case CRYPTO_AES_256_NIST_GMAC: 472 #endif 473 break; 474 default: 475 return (EINVAL); 476 } 477 if (en->auth_key_len != 0) 478 return (EINVAL); 479 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 480 en->iv_len != TLS_AEAD_GCM_LEN) || 481 (en->tls_vminor == TLS_MINOR_VER_THREE && 482 en->iv_len != TLS_1_3_GCM_IV_LEN)) 483 return (EINVAL); 484 break; 485 case CRYPTO_AES_CBC: 486 switch (en->auth_algorithm) { 487 case CRYPTO_SHA1_HMAC: 488 /* 489 * TLS 1.0 requires an implicit IV. TLS 1.1+ 490 * all use explicit IVs. 491 */ 492 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 493 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 494 return (EINVAL); 495 break; 496 } 497 498 /* FALLTHROUGH */ 499 case CRYPTO_SHA2_256_HMAC: 500 case CRYPTO_SHA2_384_HMAC: 501 /* Ignore any supplied IV. */ 502 en->iv_len = 0; 503 break; 504 default: 505 return (EINVAL); 506 } 507 if (en->auth_key_len == 0) 508 return (EINVAL); 509 break; 510 default: 511 return (EINVAL); 512 } 513 514 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 515 516 counter_u64_add(ktls_offload_active, 1); 517 518 refcount_init(&tls->refcount, 1); 519 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 520 521 tls->wq_index = ktls_get_cpu(so); 522 523 tls->params.cipher_algorithm = en->cipher_algorithm; 524 tls->params.auth_algorithm = en->auth_algorithm; 525 tls->params.tls_vmajor = en->tls_vmajor; 526 tls->params.tls_vminor = en->tls_vminor; 527 tls->params.flags = en->flags; 528 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 529 530 /* Set the header and trailer lengths. */ 531 tls->params.tls_hlen = sizeof(struct tls_record_layer); 532 switch (en->cipher_algorithm) { 533 case CRYPTO_AES_NIST_GCM_16: 534 /* 535 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 536 * nonce. TLS 1.3 uses a 12 byte implicit IV. 537 */ 538 if (en->tls_vminor < TLS_MINOR_VER_THREE) 539 tls->params.tls_hlen += sizeof(uint64_t); 540 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 541 542 /* 543 * TLS 1.3 includes optional padding which we 544 * do not support, and also puts the "real" record 545 * type at the end of the encrypted data. 546 */ 547 if (en->tls_vminor == TLS_MINOR_VER_THREE) 548 tls->params.tls_tlen += sizeof(uint8_t); 549 550 tls->params.tls_bs = 1; 551 break; 552 case CRYPTO_AES_CBC: 553 switch (en->auth_algorithm) { 554 case CRYPTO_SHA1_HMAC: 555 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 556 /* Implicit IV, no nonce. */ 557 } else { 558 tls->params.tls_hlen += AES_BLOCK_LEN; 559 } 560 tls->params.tls_tlen = AES_BLOCK_LEN + 561 SHA1_HASH_LEN; 562 break; 563 case CRYPTO_SHA2_256_HMAC: 564 tls->params.tls_hlen += AES_BLOCK_LEN; 565 tls->params.tls_tlen = AES_BLOCK_LEN + 566 SHA2_256_HASH_LEN; 567 break; 568 case CRYPTO_SHA2_384_HMAC: 569 tls->params.tls_hlen += AES_BLOCK_LEN; 570 tls->params.tls_tlen = AES_BLOCK_LEN + 571 SHA2_384_HASH_LEN; 572 break; 573 default: 574 panic("invalid hmac"); 575 } 576 tls->params.tls_bs = AES_BLOCK_LEN; 577 break; 578 default: 579 panic("invalid cipher"); 580 } 581 582 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 583 ("TLS header length too long: %d", tls->params.tls_hlen)); 584 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 585 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 586 587 if (en->auth_key_len != 0) { 588 tls->params.auth_key_len = en->auth_key_len; 589 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 590 M_WAITOK); 591 error = copyin(en->auth_key, tls->params.auth_key, 592 en->auth_key_len); 593 if (error) 594 goto out; 595 } 596 597 tls->params.cipher_key_len = en->cipher_key_len; 598 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 599 error = copyin(en->cipher_key, tls->params.cipher_key, 600 en->cipher_key_len); 601 if (error) 602 goto out; 603 604 /* 605 * This holds the implicit portion of the nonce for GCM and 606 * the initial implicit IV for TLS 1.0. The explicit portions 607 * of the IV are generated in ktls_frame(). 608 */ 609 if (en->iv_len != 0) { 610 tls->params.iv_len = en->iv_len; 611 error = copyin(en->iv, tls->params.iv, en->iv_len); 612 if (error) 613 goto out; 614 615 /* 616 * For TLS 1.2, generate an 8-byte nonce as a counter 617 * to generate unique explicit IVs. 618 * 619 * Store this counter in the last 8 bytes of the IV 620 * array so that it is 8-byte aligned. 621 */ 622 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 623 en->tls_vminor == TLS_MINOR_VER_TWO) 624 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 625 } 626 627 *tlsp = tls; 628 return (0); 629 630 out: 631 ktls_cleanup(tls); 632 return (error); 633 } 634 635 static struct ktls_session * 636 ktls_clone_session(struct ktls_session *tls) 637 { 638 struct ktls_session *tls_new; 639 640 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 641 642 counter_u64_add(ktls_offload_active, 1); 643 644 refcount_init(&tls_new->refcount, 1); 645 646 /* Copy fields from existing session. */ 647 tls_new->params = tls->params; 648 tls_new->wq_index = tls->wq_index; 649 650 /* Deep copy keys. */ 651 if (tls_new->params.auth_key != NULL) { 652 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 653 M_KTLS, M_WAITOK); 654 memcpy(tls_new->params.auth_key, tls->params.auth_key, 655 tls->params.auth_key_len); 656 } 657 658 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 659 M_WAITOK); 660 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 661 tls->params.cipher_key_len); 662 663 return (tls_new); 664 } 665 #endif 666 667 static void 668 ktls_cleanup(struct ktls_session *tls) 669 { 670 671 counter_u64_add(ktls_offload_active, -1); 672 switch (tls->mode) { 673 case TCP_TLS_MODE_SW: 674 MPASS(tls->be != NULL); 675 switch (tls->params.cipher_algorithm) { 676 case CRYPTO_AES_CBC: 677 counter_u64_add(ktls_sw_cbc, -1); 678 break; 679 case CRYPTO_AES_NIST_GCM_16: 680 counter_u64_add(ktls_sw_gcm, -1); 681 break; 682 } 683 tls->free(tls); 684 break; 685 case TCP_TLS_MODE_IFNET: 686 switch (tls->params.cipher_algorithm) { 687 case CRYPTO_AES_CBC: 688 counter_u64_add(ktls_ifnet_cbc, -1); 689 break; 690 case CRYPTO_AES_NIST_GCM_16: 691 counter_u64_add(ktls_ifnet_gcm, -1); 692 break; 693 } 694 if (tls->snd_tag != NULL) 695 m_snd_tag_rele(tls->snd_tag); 696 break; 697 #ifdef TCP_OFFLOAD 698 case TCP_TLS_MODE_TOE: 699 switch (tls->params.cipher_algorithm) { 700 case CRYPTO_AES_CBC: 701 counter_u64_add(ktls_toe_cbc, -1); 702 break; 703 case CRYPTO_AES_NIST_GCM_16: 704 counter_u64_add(ktls_toe_gcm, -1); 705 break; 706 } 707 break; 708 #endif 709 } 710 if (tls->params.auth_key != NULL) { 711 zfree(tls->params.auth_key, M_KTLS); 712 tls->params.auth_key = NULL; 713 tls->params.auth_key_len = 0; 714 } 715 if (tls->params.cipher_key != NULL) { 716 zfree(tls->params.cipher_key, M_KTLS); 717 tls->params.cipher_key = NULL; 718 tls->params.cipher_key_len = 0; 719 } 720 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 721 } 722 723 #if defined(INET) || defined(INET6) 724 725 #ifdef TCP_OFFLOAD 726 static int 727 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 728 { 729 struct inpcb *inp; 730 struct tcpcb *tp; 731 int error; 732 733 inp = so->so_pcb; 734 INP_WLOCK(inp); 735 if (inp->inp_flags2 & INP_FREED) { 736 INP_WUNLOCK(inp); 737 return (ECONNRESET); 738 } 739 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 740 INP_WUNLOCK(inp); 741 return (ECONNRESET); 742 } 743 if (inp->inp_socket == NULL) { 744 INP_WUNLOCK(inp); 745 return (ECONNRESET); 746 } 747 tp = intotcpcb(inp); 748 if (!(tp->t_flags & TF_TOE)) { 749 INP_WUNLOCK(inp); 750 return (EOPNOTSUPP); 751 } 752 753 error = tcp_offload_alloc_tls_session(tp, tls, direction); 754 INP_WUNLOCK(inp); 755 if (error == 0) { 756 tls->mode = TCP_TLS_MODE_TOE; 757 switch (tls->params.cipher_algorithm) { 758 case CRYPTO_AES_CBC: 759 counter_u64_add(ktls_toe_cbc, 1); 760 break; 761 case CRYPTO_AES_NIST_GCM_16: 762 counter_u64_add(ktls_toe_gcm, 1); 763 break; 764 } 765 } 766 return (error); 767 } 768 #endif 769 770 /* 771 * Common code used when first enabling ifnet TLS on a connection or 772 * when allocating a new ifnet TLS session due to a routing change. 773 * This function allocates a new TLS send tag on whatever interface 774 * the connection is currently routed over. 775 */ 776 static int 777 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 778 struct m_snd_tag **mstp) 779 { 780 union if_snd_tag_alloc_params params; 781 struct ifnet *ifp; 782 struct nhop_object *nh; 783 struct tcpcb *tp; 784 int error; 785 786 INP_RLOCK(inp); 787 if (inp->inp_flags2 & INP_FREED) { 788 INP_RUNLOCK(inp); 789 return (ECONNRESET); 790 } 791 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 792 INP_RUNLOCK(inp); 793 return (ECONNRESET); 794 } 795 if (inp->inp_socket == NULL) { 796 INP_RUNLOCK(inp); 797 return (ECONNRESET); 798 } 799 tp = intotcpcb(inp); 800 801 /* 802 * Check administrative controls on ifnet TLS to determine if 803 * ifnet TLS should be denied. 804 * 805 * - Always permit 'force' requests. 806 * - ktls_ifnet_permitted == 0: always deny. 807 */ 808 if (!force && ktls_ifnet_permitted == 0) { 809 INP_RUNLOCK(inp); 810 return (ENXIO); 811 } 812 813 /* 814 * XXX: Use the cached route in the inpcb to find the 815 * interface. This should perhaps instead use 816 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 817 * enabled after a connection has completed key negotiation in 818 * userland, the cached route will be present in practice. 819 */ 820 nh = inp->inp_route.ro_nh; 821 if (nh == NULL) { 822 INP_RUNLOCK(inp); 823 return (ENXIO); 824 } 825 ifp = nh->nh_ifp; 826 if_ref(ifp); 827 828 /* 829 * Allocate a TLS + ratelimit tag if the connection has an 830 * existing pacing rate. 831 */ 832 if (tp->t_pacing_rate != -1 && 833 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 834 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 835 params.tls_rate_limit.inp = inp; 836 params.tls_rate_limit.tls = tls; 837 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 838 } else { 839 params.hdr.type = IF_SND_TAG_TYPE_TLS; 840 params.tls.inp = inp; 841 params.tls.tls = tls; 842 } 843 params.hdr.flowid = inp->inp_flowid; 844 params.hdr.flowtype = inp->inp_flowtype; 845 params.hdr.numa_domain = inp->inp_numa_domain; 846 INP_RUNLOCK(inp); 847 848 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 849 error = EOPNOTSUPP; 850 goto out; 851 } 852 if (inp->inp_vflag & INP_IPV6) { 853 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 854 error = EOPNOTSUPP; 855 goto out; 856 } 857 } else { 858 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 859 error = EOPNOTSUPP; 860 goto out; 861 } 862 } 863 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 864 out: 865 if_rele(ifp); 866 return (error); 867 } 868 869 static int 870 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 871 { 872 struct m_snd_tag *mst; 873 int error; 874 875 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 876 if (error == 0) { 877 tls->mode = TCP_TLS_MODE_IFNET; 878 tls->snd_tag = mst; 879 switch (tls->params.cipher_algorithm) { 880 case CRYPTO_AES_CBC: 881 counter_u64_add(ktls_ifnet_cbc, 1); 882 break; 883 case CRYPTO_AES_NIST_GCM_16: 884 counter_u64_add(ktls_ifnet_gcm, 1); 885 break; 886 } 887 } 888 return (error); 889 } 890 891 static int 892 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 893 { 894 struct rm_priotracker prio; 895 struct ktls_crypto_backend *be; 896 897 /* 898 * Choose the best software crypto backend. Backends are 899 * stored in sorted priority order (larget value == most 900 * important at the head of the list), so this just stops on 901 * the first backend that claims the session by returning 902 * success. 903 */ 904 if (ktls_allow_unload) 905 rm_rlock(&ktls_backends_lock, &prio); 906 LIST_FOREACH(be, &ktls_backends, next) { 907 if (be->try(so, tls, direction) == 0) 908 break; 909 KASSERT(tls->cipher == NULL, 910 ("ktls backend leaked a cipher pointer")); 911 } 912 if (be != NULL) { 913 if (ktls_allow_unload) 914 be->use_count++; 915 tls->be = be; 916 } 917 if (ktls_allow_unload) 918 rm_runlock(&ktls_backends_lock, &prio); 919 if (be == NULL) 920 return (EOPNOTSUPP); 921 tls->mode = TCP_TLS_MODE_SW; 922 switch (tls->params.cipher_algorithm) { 923 case CRYPTO_AES_CBC: 924 counter_u64_add(ktls_sw_cbc, 1); 925 break; 926 case CRYPTO_AES_NIST_GCM_16: 927 counter_u64_add(ktls_sw_gcm, 1); 928 break; 929 } 930 return (0); 931 } 932 933 /* 934 * KTLS RX stores data in the socket buffer as a list of TLS records, 935 * where each record is stored as a control message containg the TLS 936 * header followed by data mbufs containing the decrypted data. This 937 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 938 * both encrypted and decrypted data. TLS records decrypted by a NIC 939 * should be queued to the socket buffer as records, but encrypted 940 * data which needs to be decrypted by software arrives as a stream of 941 * regular mbufs which need to be converted. In addition, there may 942 * already be pending encrypted data in the socket buffer when KTLS RX 943 * is enabled. 944 * 945 * To manage not-yet-decrypted data for KTLS RX, the following scheme 946 * is used: 947 * 948 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 949 * 950 * - ktls_check_rx checks this chain of mbufs reading the TLS header 951 * from the first mbuf. Once all of the data for that TLS record is 952 * queued, the socket is queued to a worker thread. 953 * 954 * - The worker thread calls ktls_decrypt to decrypt TLS records in 955 * the TLS chain. Each TLS record is detached from the TLS chain, 956 * decrypted, and inserted into the regular socket buffer chain as 957 * record starting with a control message holding the TLS header and 958 * a chain of mbufs holding the encrypted data. 959 */ 960 961 static void 962 sb_mark_notready(struct sockbuf *sb) 963 { 964 struct mbuf *m; 965 966 m = sb->sb_mb; 967 sb->sb_mtls = m; 968 sb->sb_mb = NULL; 969 sb->sb_mbtail = NULL; 970 sb->sb_lastrecord = NULL; 971 for (; m != NULL; m = m->m_next) { 972 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 973 __func__)); 974 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 975 __func__)); 976 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 977 __func__)); 978 m->m_flags |= M_NOTREADY; 979 sb->sb_acc -= m->m_len; 980 sb->sb_tlscc += m->m_len; 981 sb->sb_mtlstail = m; 982 } 983 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 984 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 985 sb->sb_ccc)); 986 } 987 988 int 989 ktls_enable_rx(struct socket *so, struct tls_enable *en) 990 { 991 struct ktls_session *tls; 992 int error; 993 994 if (!ktls_offload_enable) 995 return (ENOTSUP); 996 if (SOLISTENING(so)) 997 return (EINVAL); 998 999 counter_u64_add(ktls_offload_enable_calls, 1); 1000 1001 /* 1002 * This should always be true since only the TCP socket option 1003 * invokes this function. 1004 */ 1005 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1006 return (EINVAL); 1007 1008 /* 1009 * XXX: Don't overwrite existing sessions. We should permit 1010 * this to support rekeying in the future. 1011 */ 1012 if (so->so_rcv.sb_tls_info != NULL) 1013 return (EALREADY); 1014 1015 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1016 return (ENOTSUP); 1017 1018 /* TLS 1.3 is not yet supported. */ 1019 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1020 en->tls_vminor == TLS_MINOR_VER_THREE) 1021 return (ENOTSUP); 1022 1023 error = ktls_create_session(so, en, &tls); 1024 if (error) 1025 return (error); 1026 1027 #ifdef TCP_OFFLOAD 1028 error = ktls_try_toe(so, tls, KTLS_RX); 1029 if (error) 1030 #endif 1031 error = ktls_try_sw(so, tls, KTLS_RX); 1032 1033 if (error) { 1034 ktls_cleanup(tls); 1035 return (error); 1036 } 1037 1038 /* Mark the socket as using TLS offload. */ 1039 SOCKBUF_LOCK(&so->so_rcv); 1040 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1041 so->so_rcv.sb_tls_info = tls; 1042 so->so_rcv.sb_flags |= SB_TLS_RX; 1043 1044 /* Mark existing data as not ready until it can be decrypted. */ 1045 sb_mark_notready(&so->so_rcv); 1046 ktls_check_rx(&so->so_rcv); 1047 SOCKBUF_UNLOCK(&so->so_rcv); 1048 1049 counter_u64_add(ktls_offload_total, 1); 1050 1051 return (0); 1052 } 1053 1054 int 1055 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1056 { 1057 struct ktls_session *tls; 1058 struct inpcb *inp; 1059 int error; 1060 1061 if (!ktls_offload_enable) 1062 return (ENOTSUP); 1063 if (SOLISTENING(so)) 1064 return (EINVAL); 1065 1066 counter_u64_add(ktls_offload_enable_calls, 1); 1067 1068 /* 1069 * This should always be true since only the TCP socket option 1070 * invokes this function. 1071 */ 1072 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1073 return (EINVAL); 1074 1075 /* 1076 * XXX: Don't overwrite existing sessions. We should permit 1077 * this to support rekeying in the future. 1078 */ 1079 if (so->so_snd.sb_tls_info != NULL) 1080 return (EALREADY); 1081 1082 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1083 return (ENOTSUP); 1084 1085 /* TLS requires ext pgs */ 1086 if (mb_use_ext_pgs == 0) 1087 return (ENXIO); 1088 1089 error = ktls_create_session(so, en, &tls); 1090 if (error) 1091 return (error); 1092 1093 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1094 #ifdef TCP_OFFLOAD 1095 error = ktls_try_toe(so, tls, KTLS_TX); 1096 if (error) 1097 #endif 1098 error = ktls_try_ifnet(so, tls, false); 1099 if (error) 1100 error = ktls_try_sw(so, tls, KTLS_TX); 1101 1102 if (error) { 1103 ktls_cleanup(tls); 1104 return (error); 1105 } 1106 1107 error = sblock(&so->so_snd, SBL_WAIT); 1108 if (error) { 1109 ktls_cleanup(tls); 1110 return (error); 1111 } 1112 1113 /* 1114 * Write lock the INP when setting sb_tls_info so that 1115 * routines in tcp_ratelimit.c can read sb_tls_info while 1116 * holding the INP lock. 1117 */ 1118 inp = so->so_pcb; 1119 INP_WLOCK(inp); 1120 SOCKBUF_LOCK(&so->so_snd); 1121 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1122 so->so_snd.sb_tls_info = tls; 1123 if (tls->mode != TCP_TLS_MODE_SW) 1124 so->so_snd.sb_flags |= SB_TLS_IFNET; 1125 SOCKBUF_UNLOCK(&so->so_snd); 1126 INP_WUNLOCK(inp); 1127 sbunlock(&so->so_snd); 1128 1129 counter_u64_add(ktls_offload_total, 1); 1130 1131 return (0); 1132 } 1133 1134 int 1135 ktls_get_rx_mode(struct socket *so) 1136 { 1137 struct ktls_session *tls; 1138 struct inpcb *inp; 1139 int mode; 1140 1141 if (SOLISTENING(so)) 1142 return (EINVAL); 1143 inp = so->so_pcb; 1144 INP_WLOCK_ASSERT(inp); 1145 SOCKBUF_LOCK(&so->so_rcv); 1146 tls = so->so_rcv.sb_tls_info; 1147 if (tls == NULL) 1148 mode = TCP_TLS_MODE_NONE; 1149 else 1150 mode = tls->mode; 1151 SOCKBUF_UNLOCK(&so->so_rcv); 1152 return (mode); 1153 } 1154 1155 int 1156 ktls_get_tx_mode(struct socket *so) 1157 { 1158 struct ktls_session *tls; 1159 struct inpcb *inp; 1160 int mode; 1161 1162 if (SOLISTENING(so)) 1163 return (EINVAL); 1164 inp = so->so_pcb; 1165 INP_WLOCK_ASSERT(inp); 1166 SOCKBUF_LOCK(&so->so_snd); 1167 tls = so->so_snd.sb_tls_info; 1168 if (tls == NULL) 1169 mode = TCP_TLS_MODE_NONE; 1170 else 1171 mode = tls->mode; 1172 SOCKBUF_UNLOCK(&so->so_snd); 1173 return (mode); 1174 } 1175 1176 /* 1177 * Switch between SW and ifnet TLS sessions as requested. 1178 */ 1179 int 1180 ktls_set_tx_mode(struct socket *so, int mode) 1181 { 1182 struct ktls_session *tls, *tls_new; 1183 struct inpcb *inp; 1184 int error; 1185 1186 if (SOLISTENING(so)) 1187 return (EINVAL); 1188 switch (mode) { 1189 case TCP_TLS_MODE_SW: 1190 case TCP_TLS_MODE_IFNET: 1191 break; 1192 default: 1193 return (EINVAL); 1194 } 1195 1196 inp = so->so_pcb; 1197 INP_WLOCK_ASSERT(inp); 1198 SOCKBUF_LOCK(&so->so_snd); 1199 tls = so->so_snd.sb_tls_info; 1200 if (tls == NULL) { 1201 SOCKBUF_UNLOCK(&so->so_snd); 1202 return (0); 1203 } 1204 1205 if (tls->mode == mode) { 1206 SOCKBUF_UNLOCK(&so->so_snd); 1207 return (0); 1208 } 1209 1210 tls = ktls_hold(tls); 1211 SOCKBUF_UNLOCK(&so->so_snd); 1212 INP_WUNLOCK(inp); 1213 1214 tls_new = ktls_clone_session(tls); 1215 1216 if (mode == TCP_TLS_MODE_IFNET) 1217 error = ktls_try_ifnet(so, tls_new, true); 1218 else 1219 error = ktls_try_sw(so, tls_new, KTLS_TX); 1220 if (error) { 1221 counter_u64_add(ktls_switch_failed, 1); 1222 ktls_free(tls_new); 1223 ktls_free(tls); 1224 INP_WLOCK(inp); 1225 return (error); 1226 } 1227 1228 error = sblock(&so->so_snd, SBL_WAIT); 1229 if (error) { 1230 counter_u64_add(ktls_switch_failed, 1); 1231 ktls_free(tls_new); 1232 ktls_free(tls); 1233 INP_WLOCK(inp); 1234 return (error); 1235 } 1236 1237 /* 1238 * If we raced with another session change, keep the existing 1239 * session. 1240 */ 1241 if (tls != so->so_snd.sb_tls_info) { 1242 counter_u64_add(ktls_switch_failed, 1); 1243 sbunlock(&so->so_snd); 1244 ktls_free(tls_new); 1245 ktls_free(tls); 1246 INP_WLOCK(inp); 1247 return (EBUSY); 1248 } 1249 1250 SOCKBUF_LOCK(&so->so_snd); 1251 so->so_snd.sb_tls_info = tls_new; 1252 if (tls_new->mode != TCP_TLS_MODE_SW) 1253 so->so_snd.sb_flags |= SB_TLS_IFNET; 1254 SOCKBUF_UNLOCK(&so->so_snd); 1255 sbunlock(&so->so_snd); 1256 1257 /* 1258 * Drop two references on 'tls'. The first is for the 1259 * ktls_hold() above. The second drops the reference from the 1260 * socket buffer. 1261 */ 1262 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1263 ktls_free(tls); 1264 ktls_free(tls); 1265 1266 if (mode == TCP_TLS_MODE_IFNET) 1267 counter_u64_add(ktls_switch_to_ifnet, 1); 1268 else 1269 counter_u64_add(ktls_switch_to_sw, 1); 1270 1271 INP_WLOCK(inp); 1272 return (0); 1273 } 1274 1275 /* 1276 * Try to allocate a new TLS send tag. This task is scheduled when 1277 * ip_output detects a route change while trying to transmit a packet 1278 * holding a TLS record. If a new tag is allocated, replace the tag 1279 * in the TLS session. Subsequent packets on the connection will use 1280 * the new tag. If a new tag cannot be allocated, drop the 1281 * connection. 1282 */ 1283 static void 1284 ktls_reset_send_tag(void *context, int pending) 1285 { 1286 struct epoch_tracker et; 1287 struct ktls_session *tls; 1288 struct m_snd_tag *old, *new; 1289 struct inpcb *inp; 1290 struct tcpcb *tp; 1291 int error; 1292 1293 MPASS(pending == 1); 1294 1295 tls = context; 1296 inp = tls->inp; 1297 1298 /* 1299 * Free the old tag first before allocating a new one. 1300 * ip[6]_output_send() will treat a NULL send tag the same as 1301 * an ifp mismatch and drop packets until a new tag is 1302 * allocated. 1303 * 1304 * Write-lock the INP when changing tls->snd_tag since 1305 * ip[6]_output_send() holds a read-lock when reading the 1306 * pointer. 1307 */ 1308 INP_WLOCK(inp); 1309 old = tls->snd_tag; 1310 tls->snd_tag = NULL; 1311 INP_WUNLOCK(inp); 1312 if (old != NULL) 1313 m_snd_tag_rele(old); 1314 1315 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1316 1317 if (error == 0) { 1318 INP_WLOCK(inp); 1319 tls->snd_tag = new; 1320 mtx_pool_lock(mtxpool_sleep, tls); 1321 tls->reset_pending = false; 1322 mtx_pool_unlock(mtxpool_sleep, tls); 1323 if (!in_pcbrele_wlocked(inp)) 1324 INP_WUNLOCK(inp); 1325 1326 counter_u64_add(ktls_ifnet_reset, 1); 1327 1328 /* 1329 * XXX: Should we kick tcp_output explicitly now that 1330 * the send tag is fixed or just rely on timers? 1331 */ 1332 } else { 1333 NET_EPOCH_ENTER(et); 1334 INP_WLOCK(inp); 1335 if (!in_pcbrele_wlocked(inp)) { 1336 if (!(inp->inp_flags & INP_TIMEWAIT) && 1337 !(inp->inp_flags & INP_DROPPED)) { 1338 tp = intotcpcb(inp); 1339 CURVNET_SET(tp->t_vnet); 1340 tp = tcp_drop(tp, ECONNABORTED); 1341 CURVNET_RESTORE(); 1342 if (tp != NULL) 1343 INP_WUNLOCK(inp); 1344 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1345 } else 1346 INP_WUNLOCK(inp); 1347 } 1348 NET_EPOCH_EXIT(et); 1349 1350 counter_u64_add(ktls_ifnet_reset_failed, 1); 1351 1352 /* 1353 * Leave reset_pending true to avoid future tasks while 1354 * the socket goes away. 1355 */ 1356 } 1357 1358 ktls_free(tls); 1359 } 1360 1361 int 1362 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1363 { 1364 1365 if (inp == NULL) 1366 return (ENOBUFS); 1367 1368 INP_LOCK_ASSERT(inp); 1369 1370 /* 1371 * See if we should schedule a task to update the send tag for 1372 * this session. 1373 */ 1374 mtx_pool_lock(mtxpool_sleep, tls); 1375 if (!tls->reset_pending) { 1376 (void) ktls_hold(tls); 1377 in_pcbref(inp); 1378 tls->inp = inp; 1379 tls->reset_pending = true; 1380 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1381 } 1382 mtx_pool_unlock(mtxpool_sleep, tls); 1383 return (ENOBUFS); 1384 } 1385 1386 #ifdef RATELIMIT 1387 int 1388 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1389 { 1390 union if_snd_tag_modify_params params = { 1391 .rate_limit.max_rate = max_pacing_rate, 1392 .rate_limit.flags = M_NOWAIT, 1393 }; 1394 struct m_snd_tag *mst; 1395 struct ifnet *ifp; 1396 int error; 1397 1398 /* Can't get to the inp, but it should be locked. */ 1399 /* INP_LOCK_ASSERT(inp); */ 1400 1401 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1402 1403 if (tls->snd_tag == NULL) { 1404 /* 1405 * Resetting send tag, ignore this change. The 1406 * pending reset may or may not see this updated rate 1407 * in the tcpcb. If it doesn't, we will just lose 1408 * this rate change. 1409 */ 1410 return (0); 1411 } 1412 1413 MPASS(tls->snd_tag != NULL); 1414 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1415 1416 mst = tls->snd_tag; 1417 ifp = mst->ifp; 1418 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1419 } 1420 #endif 1421 #endif 1422 1423 void 1424 ktls_destroy(struct ktls_session *tls) 1425 { 1426 struct rm_priotracker prio; 1427 1428 ktls_cleanup(tls); 1429 if (tls->be != NULL && ktls_allow_unload) { 1430 rm_rlock(&ktls_backends_lock, &prio); 1431 tls->be->use_count--; 1432 rm_runlock(&ktls_backends_lock, &prio); 1433 } 1434 uma_zfree(ktls_session_zone, tls); 1435 } 1436 1437 void 1438 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1439 { 1440 1441 for (; m != NULL; m = m->m_next) { 1442 KASSERT((m->m_flags & M_EXTPG) != 0, 1443 ("ktls_seq: mapped mbuf %p", m)); 1444 1445 m->m_epg_seqno = sb->sb_tls_seqno; 1446 sb->sb_tls_seqno++; 1447 } 1448 } 1449 1450 /* 1451 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1452 * mbuf in the chain must be an unmapped mbuf. The payload of the 1453 * mbuf must be populated with the payload of each TLS record. 1454 * 1455 * The record_type argument specifies the TLS record type used when 1456 * populating the TLS header. 1457 * 1458 * The enq_count argument on return is set to the number of pages of 1459 * payload data for this entire chain that need to be encrypted via SW 1460 * encryption. The returned value should be passed to ktls_enqueue 1461 * when scheduling encryption of this chain of mbufs. To handle the 1462 * special case of empty fragments for TLS 1.0 sessions, an empty 1463 * fragment counts as one page. 1464 */ 1465 void 1466 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1467 uint8_t record_type) 1468 { 1469 struct tls_record_layer *tlshdr; 1470 struct mbuf *m; 1471 uint64_t *noncep; 1472 uint16_t tls_len; 1473 int maxlen; 1474 1475 maxlen = tls->params.max_frame_len; 1476 *enq_cnt = 0; 1477 for (m = top; m != NULL; m = m->m_next) { 1478 /* 1479 * All mbufs in the chain should be TLS records whose 1480 * payload does not exceed the maximum frame length. 1481 * 1482 * Empty TLS records are permitted when using CBC. 1483 */ 1484 KASSERT(m->m_len <= maxlen && 1485 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1486 m->m_len >= 0 : m->m_len > 0), 1487 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1488 1489 /* 1490 * TLS frames require unmapped mbufs to store session 1491 * info. 1492 */ 1493 KASSERT((m->m_flags & M_EXTPG) != 0, 1494 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1495 1496 tls_len = m->m_len; 1497 1498 /* Save a reference to the session. */ 1499 m->m_epg_tls = ktls_hold(tls); 1500 1501 m->m_epg_hdrlen = tls->params.tls_hlen; 1502 m->m_epg_trllen = tls->params.tls_tlen; 1503 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1504 int bs, delta; 1505 1506 /* 1507 * AES-CBC pads messages to a multiple of the 1508 * block size. Note that the padding is 1509 * applied after the digest and the encryption 1510 * is done on the "plaintext || mac || padding". 1511 * At least one byte of padding is always 1512 * present. 1513 * 1514 * Compute the final trailer length assuming 1515 * at most one block of padding. 1516 * tls->params.sb_tls_tlen is the maximum 1517 * possible trailer length (padding + digest). 1518 * delta holds the number of excess padding 1519 * bytes if the maximum were used. Those 1520 * extra bytes are removed. 1521 */ 1522 bs = tls->params.tls_bs; 1523 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1524 m->m_epg_trllen -= delta; 1525 } 1526 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1527 1528 /* Populate the TLS header. */ 1529 tlshdr = (void *)m->m_epg_hdr; 1530 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1531 1532 /* 1533 * TLS 1.3 masquarades as TLS 1.2 with a record type 1534 * of TLS_RLTYPE_APP. 1535 */ 1536 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1537 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1538 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1539 tlshdr->tls_type = TLS_RLTYPE_APP; 1540 /* save the real record type for later */ 1541 m->m_epg_record_type = record_type; 1542 m->m_epg_trail[0] = record_type; 1543 } else { 1544 tlshdr->tls_vminor = tls->params.tls_vminor; 1545 tlshdr->tls_type = record_type; 1546 } 1547 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1548 1549 /* 1550 * Store nonces / explicit IVs after the end of the 1551 * TLS header. 1552 * 1553 * For GCM with TLS 1.2, an 8 byte nonce is copied 1554 * from the end of the IV. The nonce is then 1555 * incremented for use by the next record. 1556 * 1557 * For CBC, a random nonce is inserted for TLS 1.1+. 1558 */ 1559 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1560 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1561 noncep = (uint64_t *)(tls->params.iv + 8); 1562 be64enc(tlshdr + 1, *noncep); 1563 (*noncep)++; 1564 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1565 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1566 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1567 1568 /* 1569 * When using SW encryption, mark the mbuf not ready. 1570 * It will be marked ready via sbready() after the 1571 * record has been encrypted. 1572 * 1573 * When using ifnet TLS, unencrypted TLS records are 1574 * sent down the stack to the NIC. 1575 */ 1576 if (tls->mode == TCP_TLS_MODE_SW) { 1577 m->m_flags |= M_NOTREADY; 1578 m->m_epg_nrdy = m->m_epg_npgs; 1579 if (__predict_false(tls_len == 0)) { 1580 /* TLS 1.0 empty fragment. */ 1581 *enq_cnt += 1; 1582 } else 1583 *enq_cnt += m->m_epg_npgs; 1584 } 1585 } 1586 } 1587 1588 void 1589 ktls_check_rx(struct sockbuf *sb) 1590 { 1591 struct tls_record_layer hdr; 1592 struct ktls_wq *wq; 1593 struct socket *so; 1594 bool running; 1595 1596 SOCKBUF_LOCK_ASSERT(sb); 1597 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1598 __func__, sb)); 1599 so = __containerof(sb, struct socket, so_rcv); 1600 1601 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1602 return; 1603 1604 /* Is there enough queued for a TLS header? */ 1605 if (sb->sb_tlscc < sizeof(hdr)) { 1606 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1607 so->so_error = EMSGSIZE; 1608 return; 1609 } 1610 1611 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1612 1613 /* Is the entire record queued? */ 1614 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1615 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1616 so->so_error = EMSGSIZE; 1617 return; 1618 } 1619 1620 sb->sb_flags |= SB_TLS_RX_RUNNING; 1621 1622 soref(so); 1623 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1624 mtx_lock(&wq->mtx); 1625 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1626 running = wq->running; 1627 mtx_unlock(&wq->mtx); 1628 if (!running) 1629 wakeup(wq); 1630 counter_u64_add(ktls_cnt_rx_queued, 1); 1631 } 1632 1633 static struct mbuf * 1634 ktls_detach_record(struct sockbuf *sb, int len) 1635 { 1636 struct mbuf *m, *n, *top; 1637 int remain; 1638 1639 SOCKBUF_LOCK_ASSERT(sb); 1640 MPASS(len <= sb->sb_tlscc); 1641 1642 /* 1643 * If TLS chain is the exact size of the record, 1644 * just grab the whole record. 1645 */ 1646 top = sb->sb_mtls; 1647 if (sb->sb_tlscc == len) { 1648 sb->sb_mtls = NULL; 1649 sb->sb_mtlstail = NULL; 1650 goto out; 1651 } 1652 1653 /* 1654 * While it would be nice to use m_split() here, we need 1655 * to know exactly what m_split() allocates to update the 1656 * accounting, so do it inline instead. 1657 */ 1658 remain = len; 1659 for (m = top; remain > m->m_len; m = m->m_next) 1660 remain -= m->m_len; 1661 1662 /* Easy case: don't have to split 'm'. */ 1663 if (remain == m->m_len) { 1664 sb->sb_mtls = m->m_next; 1665 if (sb->sb_mtls == NULL) 1666 sb->sb_mtlstail = NULL; 1667 m->m_next = NULL; 1668 goto out; 1669 } 1670 1671 /* 1672 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1673 * with M_NOWAIT first. 1674 */ 1675 n = m_get(M_NOWAIT, MT_DATA); 1676 if (n == NULL) { 1677 /* 1678 * Use M_WAITOK with socket buffer unlocked. If 1679 * 'sb_mtls' changes while the lock is dropped, return 1680 * NULL to force the caller to retry. 1681 */ 1682 SOCKBUF_UNLOCK(sb); 1683 1684 n = m_get(M_WAITOK, MT_DATA); 1685 1686 SOCKBUF_LOCK(sb); 1687 if (sb->sb_mtls != top) { 1688 m_free(n); 1689 return (NULL); 1690 } 1691 } 1692 n->m_flags |= M_NOTREADY; 1693 1694 /* Store remainder in 'n'. */ 1695 n->m_len = m->m_len - remain; 1696 if (m->m_flags & M_EXT) { 1697 n->m_data = m->m_data + remain; 1698 mb_dupcl(n, m); 1699 } else { 1700 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1701 } 1702 1703 /* Trim 'm' and update accounting. */ 1704 m->m_len -= n->m_len; 1705 sb->sb_tlscc -= n->m_len; 1706 sb->sb_ccc -= n->m_len; 1707 1708 /* Account for 'n'. */ 1709 sballoc_ktls_rx(sb, n); 1710 1711 /* Insert 'n' into the TLS chain. */ 1712 sb->sb_mtls = n; 1713 n->m_next = m->m_next; 1714 if (sb->sb_mtlstail == m) 1715 sb->sb_mtlstail = n; 1716 1717 /* Detach the record from the TLS chain. */ 1718 m->m_next = NULL; 1719 1720 out: 1721 MPASS(m_length(top, NULL) == len); 1722 for (m = top; m != NULL; m = m->m_next) 1723 sbfree_ktls_rx(sb, m); 1724 sb->sb_tlsdcc = len; 1725 sb->sb_ccc += len; 1726 SBCHECK(sb); 1727 return (top); 1728 } 1729 1730 static void 1731 ktls_decrypt(struct socket *so) 1732 { 1733 char tls_header[MBUF_PEXT_HDR_LEN]; 1734 struct ktls_session *tls; 1735 struct sockbuf *sb; 1736 struct tls_record_layer *hdr; 1737 struct tls_get_record tgr; 1738 struct mbuf *control, *data, *m; 1739 uint64_t seqno; 1740 int error, remain, tls_len, trail_len; 1741 1742 hdr = (struct tls_record_layer *)tls_header; 1743 sb = &so->so_rcv; 1744 SOCKBUF_LOCK(sb); 1745 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1746 ("%s: socket %p not running", __func__, so)); 1747 1748 tls = sb->sb_tls_info; 1749 MPASS(tls != NULL); 1750 1751 for (;;) { 1752 /* Is there enough queued for a TLS header? */ 1753 if (sb->sb_tlscc < tls->params.tls_hlen) 1754 break; 1755 1756 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1757 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1758 1759 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1760 hdr->tls_vminor != tls->params.tls_vminor) 1761 error = EINVAL; 1762 else if (tls_len < tls->params.tls_hlen || tls_len > 1763 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1764 tls->params.tls_tlen) 1765 error = EMSGSIZE; 1766 else 1767 error = 0; 1768 if (__predict_false(error != 0)) { 1769 /* 1770 * We have a corrupted record and are likely 1771 * out of sync. The connection isn't 1772 * recoverable at this point, so abort it. 1773 */ 1774 SOCKBUF_UNLOCK(sb); 1775 counter_u64_add(ktls_offload_corrupted_records, 1); 1776 1777 CURVNET_SET(so->so_vnet); 1778 so->so_proto->pr_usrreqs->pru_abort(so); 1779 so->so_error = error; 1780 CURVNET_RESTORE(); 1781 goto deref; 1782 } 1783 1784 /* Is the entire record queued? */ 1785 if (sb->sb_tlscc < tls_len) 1786 break; 1787 1788 /* 1789 * Split out the portion of the mbuf chain containing 1790 * this TLS record. 1791 */ 1792 data = ktls_detach_record(sb, tls_len); 1793 if (data == NULL) 1794 continue; 1795 MPASS(sb->sb_tlsdcc == tls_len); 1796 1797 seqno = sb->sb_tls_seqno; 1798 sb->sb_tls_seqno++; 1799 SBCHECK(sb); 1800 SOCKBUF_UNLOCK(sb); 1801 1802 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1803 if (error) { 1804 counter_u64_add(ktls_offload_failed_crypto, 1); 1805 1806 SOCKBUF_LOCK(sb); 1807 if (sb->sb_tlsdcc == 0) { 1808 /* 1809 * sbcut/drop/flush discarded these 1810 * mbufs. 1811 */ 1812 m_freem(data); 1813 break; 1814 } 1815 1816 /* 1817 * Drop this TLS record's data, but keep 1818 * decrypting subsequent records. 1819 */ 1820 sb->sb_ccc -= tls_len; 1821 sb->sb_tlsdcc = 0; 1822 1823 CURVNET_SET(so->so_vnet); 1824 so->so_error = EBADMSG; 1825 sorwakeup_locked(so); 1826 CURVNET_RESTORE(); 1827 1828 m_freem(data); 1829 1830 SOCKBUF_LOCK(sb); 1831 continue; 1832 } 1833 1834 /* Allocate the control mbuf. */ 1835 tgr.tls_type = hdr->tls_type; 1836 tgr.tls_vmajor = hdr->tls_vmajor; 1837 tgr.tls_vminor = hdr->tls_vminor; 1838 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1839 trail_len); 1840 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1841 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1842 1843 SOCKBUF_LOCK(sb); 1844 if (sb->sb_tlsdcc == 0) { 1845 /* sbcut/drop/flush discarded these mbufs. */ 1846 MPASS(sb->sb_tlscc == 0); 1847 m_freem(data); 1848 m_freem(control); 1849 break; 1850 } 1851 1852 /* 1853 * Clear the 'dcc' accounting in preparation for 1854 * adding the decrypted record. 1855 */ 1856 sb->sb_ccc -= tls_len; 1857 sb->sb_tlsdcc = 0; 1858 SBCHECK(sb); 1859 1860 /* If there is no payload, drop all of the data. */ 1861 if (tgr.tls_length == htobe16(0)) { 1862 m_freem(data); 1863 data = NULL; 1864 } else { 1865 /* Trim header. */ 1866 remain = tls->params.tls_hlen; 1867 while (remain > 0) { 1868 if (data->m_len > remain) { 1869 data->m_data += remain; 1870 data->m_len -= remain; 1871 break; 1872 } 1873 remain -= data->m_len; 1874 data = m_free(data); 1875 } 1876 1877 /* Trim trailer and clear M_NOTREADY. */ 1878 remain = be16toh(tgr.tls_length); 1879 m = data; 1880 for (m = data; remain > m->m_len; m = m->m_next) { 1881 m->m_flags &= ~M_NOTREADY; 1882 remain -= m->m_len; 1883 } 1884 m->m_len = remain; 1885 m_freem(m->m_next); 1886 m->m_next = NULL; 1887 m->m_flags &= ~M_NOTREADY; 1888 1889 /* Set EOR on the final mbuf. */ 1890 m->m_flags |= M_EOR; 1891 } 1892 1893 sbappendcontrol_locked(sb, data, control, 0); 1894 } 1895 1896 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1897 1898 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1899 so->so_error = EMSGSIZE; 1900 1901 sorwakeup_locked(so); 1902 1903 deref: 1904 SOCKBUF_UNLOCK_ASSERT(sb); 1905 1906 CURVNET_SET(so->so_vnet); 1907 SOCK_LOCK(so); 1908 sorele(so); 1909 CURVNET_RESTORE(); 1910 } 1911 1912 void 1913 ktls_enqueue_to_free(struct mbuf *m) 1914 { 1915 struct ktls_wq *wq; 1916 bool running; 1917 1918 /* Mark it for freeing. */ 1919 m->m_epg_flags |= EPG_FLAG_2FREE; 1920 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1921 mtx_lock(&wq->mtx); 1922 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1923 running = wq->running; 1924 mtx_unlock(&wq->mtx); 1925 if (!running) 1926 wakeup(wq); 1927 } 1928 1929 void 1930 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1931 { 1932 struct ktls_wq *wq; 1933 bool running; 1934 1935 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1936 (M_EXTPG | M_NOTREADY)), 1937 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1938 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1939 1940 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1941 1942 m->m_epg_enc_cnt = page_count; 1943 1944 /* 1945 * Save a pointer to the socket. The caller is responsible 1946 * for taking an additional reference via soref(). 1947 */ 1948 m->m_epg_so = so; 1949 1950 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1951 mtx_lock(&wq->mtx); 1952 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1953 running = wq->running; 1954 mtx_unlock(&wq->mtx); 1955 if (!running) 1956 wakeup(wq); 1957 counter_u64_add(ktls_cnt_tx_queued, 1); 1958 } 1959 1960 static __noinline void 1961 ktls_encrypt(struct mbuf *top) 1962 { 1963 struct ktls_session *tls; 1964 struct socket *so; 1965 struct mbuf *m; 1966 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1967 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1968 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1969 vm_page_t pg; 1970 int error, i, len, npages, off, total_pages; 1971 bool is_anon; 1972 1973 so = top->m_epg_so; 1974 tls = top->m_epg_tls; 1975 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1976 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 1977 #ifdef INVARIANTS 1978 top->m_epg_so = NULL; 1979 #endif 1980 total_pages = top->m_epg_enc_cnt; 1981 npages = 0; 1982 1983 /* 1984 * Encrypt the TLS records in the chain of mbufs starting with 1985 * 'top'. 'total_pages' gives us a total count of pages and is 1986 * used to know when we have finished encrypting the TLS 1987 * records originally queued with 'top'. 1988 * 1989 * NB: These mbufs are queued in the socket buffer and 1990 * 'm_next' is traversing the mbufs in the socket buffer. The 1991 * socket buffer lock is not held while traversing this chain. 1992 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1993 * pointers should be stable. However, the 'm_next' of the 1994 * last mbuf encrypted is not necessarily NULL. It can point 1995 * to other mbufs appended while 'top' was on the TLS work 1996 * queue. 1997 * 1998 * Each mbuf holds an entire TLS record. 1999 */ 2000 error = 0; 2001 for (m = top; npages != total_pages; m = m->m_next) { 2002 KASSERT(m->m_epg_tls == tls, 2003 ("different TLS sessions in a single mbuf chain: %p vs %p", 2004 tls, m->m_epg_tls)); 2005 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2006 (M_EXTPG | M_NOTREADY), 2007 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2008 KASSERT(npages + m->m_epg_npgs <= total_pages, 2009 ("page count mismatch: top %p, total_pages %d, m %p", top, 2010 total_pages, m)); 2011 2012 /* 2013 * Generate source and destination ivoecs to pass to 2014 * the SW encryption backend. For writable mbufs, the 2015 * destination iovec is a copy of the source and 2016 * encryption is done in place. For file-backed mbufs 2017 * (from sendfile), anonymous wired pages are 2018 * allocated and assigned to the destination iovec. 2019 */ 2020 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2021 2022 off = m->m_epg_1st_off; 2023 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2024 len = m_epg_pagelen(m, i, off); 2025 src_iov[i].iov_len = len; 2026 src_iov[i].iov_base = 2027 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 2028 off; 2029 2030 if (is_anon) { 2031 dst_iov[i].iov_base = src_iov[i].iov_base; 2032 dst_iov[i].iov_len = src_iov[i].iov_len; 2033 continue; 2034 } 2035 retry_page: 2036 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2037 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 2038 if (pg == NULL) { 2039 vm_wait(NULL); 2040 goto retry_page; 2041 } 2042 parray[i] = VM_PAGE_TO_PHYS(pg); 2043 dst_iov[i].iov_base = 2044 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 2045 dst_iov[i].iov_len = len; 2046 } 2047 2048 if (__predict_false(m->m_epg_npgs == 0)) { 2049 /* TLS 1.0 empty fragment. */ 2050 npages++; 2051 } else 2052 npages += i; 2053 2054 error = (*tls->sw_encrypt)(tls, 2055 (const struct tls_record_layer *)m->m_epg_hdr, 2056 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 2057 m->m_epg_record_type); 2058 if (error) { 2059 counter_u64_add(ktls_offload_failed_crypto, 1); 2060 break; 2061 } 2062 2063 /* 2064 * For file-backed mbufs, release the file-backed 2065 * pages and replace them in the ext_pgs array with 2066 * the anonymous wired pages allocated above. 2067 */ 2068 if (!is_anon) { 2069 /* Free the old pages. */ 2070 m->m_ext.ext_free(m); 2071 2072 /* Replace them with the new pages. */ 2073 for (i = 0; i < m->m_epg_npgs; i++) 2074 m->m_epg_pa[i] = parray[i]; 2075 2076 /* Use the basic free routine. */ 2077 m->m_ext.ext_free = mb_free_mext_pgs; 2078 2079 /* Pages are now writable. */ 2080 m->m_epg_flags |= EPG_FLAG_ANON; 2081 } 2082 2083 /* 2084 * Drop a reference to the session now that it is no 2085 * longer needed. Existing code depends on encrypted 2086 * records having no associated session vs 2087 * yet-to-be-encrypted records having an associated 2088 * session. 2089 */ 2090 m->m_epg_tls = NULL; 2091 ktls_free(tls); 2092 } 2093 2094 CURVNET_SET(so->so_vnet); 2095 if (error == 0) { 2096 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2097 } else { 2098 so->so_proto->pr_usrreqs->pru_abort(so); 2099 so->so_error = EIO; 2100 mb_free_notready(top, total_pages); 2101 } 2102 2103 SOCK_LOCK(so); 2104 sorele(so); 2105 CURVNET_RESTORE(); 2106 } 2107 2108 static void 2109 ktls_work_thread(void *ctx) 2110 { 2111 struct ktls_wq *wq = ctx; 2112 struct mbuf *m, *n; 2113 struct socket *so, *son; 2114 STAILQ_HEAD(, mbuf) local_m_head; 2115 STAILQ_HEAD(, socket) local_so_head; 2116 2117 if (ktls_bind_threads > 1) { 2118 curthread->td_domain.dr_policy = 2119 DOMAINSET_PREF(PCPU_GET(domain)); 2120 } 2121 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2122 fpu_kern_thread(0); 2123 #endif 2124 for (;;) { 2125 mtx_lock(&wq->mtx); 2126 while (STAILQ_EMPTY(&wq->m_head) && 2127 STAILQ_EMPTY(&wq->so_head)) { 2128 wq->running = false; 2129 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2130 wq->running = true; 2131 } 2132 2133 STAILQ_INIT(&local_m_head); 2134 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2135 STAILQ_INIT(&local_so_head); 2136 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2137 mtx_unlock(&wq->mtx); 2138 2139 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2140 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2141 ktls_free(m->m_epg_tls); 2142 uma_zfree(zone_mbuf, m); 2143 } else { 2144 ktls_encrypt(m); 2145 counter_u64_add(ktls_cnt_tx_queued, -1); 2146 } 2147 } 2148 2149 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2150 ktls_decrypt(so); 2151 counter_u64_add(ktls_cnt_rx_queued, -1); 2152 } 2153 } 2154 } 2155