1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 for (i = 0; i < count; i++) { 351 m = vm_page_alloc_contig_domain(NULL, 0, domain, 352 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 353 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 354 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 355 VM_MEMATTR_DEFAULT); 356 if (m == NULL) 357 break; 358 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 359 } 360 return (i); 361 } 362 363 static void 364 ktls_buffer_release(void *arg __unused, void **store, int count) 365 { 366 vm_page_t m; 367 int i, j; 368 369 for (i = 0; i < count; i++) { 370 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 371 for (j = 0; j < atop(ktls_maxlen); j++) { 372 (void)vm_page_unwire_noq(m + j); 373 vm_page_free(m + j); 374 } 375 } 376 } 377 378 static void 379 ktls_free_mext_contig(struct mbuf *m) 380 { 381 M_ASSERTEXTPG(m); 382 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 383 } 384 385 static int 386 ktls_init(void) 387 { 388 struct thread *td; 389 struct pcpu *pc; 390 int count, domain, error, i; 391 392 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 393 M_WAITOK | M_ZERO); 394 395 ktls_session_zone = uma_zcreate("ktls_session", 396 sizeof(struct ktls_session), 397 NULL, NULL, NULL, NULL, 398 UMA_ALIGN_CACHE, 0); 399 400 if (ktls_sw_buffer_cache) { 401 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 402 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 403 ktls_buffer_import, ktls_buffer_release, NULL, 404 UMA_ZONE_FIRSTTOUCH); 405 } 406 407 /* 408 * Initialize the workqueues to run the TLS work. We create a 409 * work queue for each CPU. 410 */ 411 CPU_FOREACH(i) { 412 STAILQ_INIT(&ktls_wq[i].m_head); 413 STAILQ_INIT(&ktls_wq[i].so_head); 414 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 415 if (ktls_bind_threads > 1) { 416 pc = pcpu_find(i); 417 domain = pc->pc_domain; 418 count = ktls_domains[domain].count; 419 ktls_domains[domain].cpu[count] = i; 420 ktls_domains[domain].count++; 421 } 422 ktls_cpuid_lookup[ktls_number_threads] = i; 423 ktls_number_threads++; 424 } 425 426 /* 427 * If we somehow have an empty domain, fall back to choosing 428 * among all KTLS threads. 429 */ 430 if (ktls_bind_threads > 1) { 431 for (i = 0; i < vm_ndomains; i++) { 432 if (ktls_domains[i].count == 0) { 433 ktls_bind_threads = 1; 434 break; 435 } 436 } 437 } 438 439 /* Start kthreads for each workqueue. */ 440 CPU_FOREACH(i) { 441 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 442 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 443 if (error) { 444 printf("Can't add KTLS thread %d error %d\n", i, error); 445 return (error); 446 } 447 } 448 449 /* 450 * Start an allocation thread per-domain to perform blocking allocations 451 * of 16k physically contiguous TLS crypto destination buffers. 452 */ 453 if (ktls_sw_buffer_cache) { 454 for (domain = 0; domain < vm_ndomains; domain++) { 455 if (VM_DOMAIN_EMPTY(domain)) 456 continue; 457 if (CPU_EMPTY(&cpuset_domain[domain])) 458 continue; 459 error = kproc_kthread_add(ktls_alloc_thread, 460 &ktls_domains[domain], &ktls_proc, 461 &ktls_domains[domain].alloc_td.td, 462 0, 0, "KTLS", "alloc_%d", domain); 463 if (error) { 464 printf("Can't add KTLS alloc thread %d error %d\n", 465 domain, error); 466 return (error); 467 } 468 } 469 } 470 471 if (bootverbose) 472 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 473 return (0); 474 } 475 476 static int 477 ktls_start_kthreads(void) 478 { 479 int error, state; 480 481 start: 482 state = atomic_load_acq_int(&ktls_init_state); 483 if (__predict_true(state > 0)) 484 return (0); 485 if (state < 0) 486 return (ENXIO); 487 488 sx_xlock(&ktls_init_lock); 489 if (ktls_init_state != 0) { 490 sx_xunlock(&ktls_init_lock); 491 goto start; 492 } 493 494 error = ktls_init(); 495 if (error == 0) 496 state = 1; 497 else 498 state = -1; 499 atomic_store_rel_int(&ktls_init_state, state); 500 sx_xunlock(&ktls_init_lock); 501 return (error); 502 } 503 504 #if defined(INET) || defined(INET6) 505 static int 506 ktls_create_session(struct socket *so, struct tls_enable *en, 507 struct ktls_session **tlsp) 508 { 509 struct ktls_session *tls; 510 int error; 511 512 /* Only TLS 1.0 - 1.3 are supported. */ 513 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 514 return (EINVAL); 515 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 516 en->tls_vminor > TLS_MINOR_VER_THREE) 517 return (EINVAL); 518 519 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 520 return (EINVAL); 521 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 522 return (EINVAL); 523 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 524 return (EINVAL); 525 526 /* All supported algorithms require a cipher key. */ 527 if (en->cipher_key_len == 0) 528 return (EINVAL); 529 530 /* No flags are currently supported. */ 531 if (en->flags != 0) 532 return (EINVAL); 533 534 /* Common checks for supported algorithms. */ 535 switch (en->cipher_algorithm) { 536 case CRYPTO_AES_NIST_GCM_16: 537 /* 538 * auth_algorithm isn't used, but permit GMAC values 539 * for compatibility. 540 */ 541 switch (en->auth_algorithm) { 542 case 0: 543 #ifdef COMPAT_FREEBSD12 544 /* XXX: Really 13.0-current COMPAT. */ 545 case CRYPTO_AES_128_NIST_GMAC: 546 case CRYPTO_AES_192_NIST_GMAC: 547 case CRYPTO_AES_256_NIST_GMAC: 548 #endif 549 break; 550 default: 551 return (EINVAL); 552 } 553 if (en->auth_key_len != 0) 554 return (EINVAL); 555 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 556 en->iv_len != TLS_AEAD_GCM_LEN) || 557 (en->tls_vminor == TLS_MINOR_VER_THREE && 558 en->iv_len != TLS_1_3_GCM_IV_LEN)) 559 return (EINVAL); 560 break; 561 case CRYPTO_AES_CBC: 562 switch (en->auth_algorithm) { 563 case CRYPTO_SHA1_HMAC: 564 /* 565 * TLS 1.0 requires an implicit IV. TLS 1.1+ 566 * all use explicit IVs. 567 */ 568 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 569 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 570 return (EINVAL); 571 break; 572 } 573 574 /* FALLTHROUGH */ 575 case CRYPTO_SHA2_256_HMAC: 576 case CRYPTO_SHA2_384_HMAC: 577 /* Ignore any supplied IV. */ 578 en->iv_len = 0; 579 break; 580 default: 581 return (EINVAL); 582 } 583 if (en->auth_key_len == 0) 584 return (EINVAL); 585 if (en->tls_vminor != TLS_MINOR_VER_ZERO && 586 en->tls_vminor != TLS_MINOR_VER_ONE && 587 en->tls_vminor != TLS_MINOR_VER_TWO) 588 return (EINVAL); 589 break; 590 case CRYPTO_CHACHA20_POLY1305: 591 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 592 return (EINVAL); 593 if (en->tls_vminor != TLS_MINOR_VER_TWO && 594 en->tls_vminor != TLS_MINOR_VER_THREE) 595 return (EINVAL); 596 if (en->iv_len != TLS_CHACHA20_IV_LEN) 597 return (EINVAL); 598 break; 599 default: 600 return (EINVAL); 601 } 602 603 error = ktls_start_kthreads(); 604 if (error != 0) 605 return (error); 606 607 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 608 609 counter_u64_add(ktls_offload_active, 1); 610 611 refcount_init(&tls->refcount, 1); 612 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 613 614 tls->wq_index = ktls_get_cpu(so); 615 616 tls->params.cipher_algorithm = en->cipher_algorithm; 617 tls->params.auth_algorithm = en->auth_algorithm; 618 tls->params.tls_vmajor = en->tls_vmajor; 619 tls->params.tls_vminor = en->tls_vminor; 620 tls->params.flags = en->flags; 621 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 622 623 /* Set the header and trailer lengths. */ 624 tls->params.tls_hlen = sizeof(struct tls_record_layer); 625 switch (en->cipher_algorithm) { 626 case CRYPTO_AES_NIST_GCM_16: 627 /* 628 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 629 * nonce. TLS 1.3 uses a 12 byte implicit IV. 630 */ 631 if (en->tls_vminor < TLS_MINOR_VER_THREE) 632 tls->params.tls_hlen += sizeof(uint64_t); 633 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 634 tls->params.tls_bs = 1; 635 break; 636 case CRYPTO_AES_CBC: 637 switch (en->auth_algorithm) { 638 case CRYPTO_SHA1_HMAC: 639 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 640 /* Implicit IV, no nonce. */ 641 tls->sequential_records = true; 642 tls->next_seqno = be64dec(en->rec_seq); 643 STAILQ_INIT(&tls->pending_records); 644 } else { 645 tls->params.tls_hlen += AES_BLOCK_LEN; 646 } 647 tls->params.tls_tlen = AES_BLOCK_LEN + 648 SHA1_HASH_LEN; 649 break; 650 case CRYPTO_SHA2_256_HMAC: 651 tls->params.tls_hlen += AES_BLOCK_LEN; 652 tls->params.tls_tlen = AES_BLOCK_LEN + 653 SHA2_256_HASH_LEN; 654 break; 655 case CRYPTO_SHA2_384_HMAC: 656 tls->params.tls_hlen += AES_BLOCK_LEN; 657 tls->params.tls_tlen = AES_BLOCK_LEN + 658 SHA2_384_HASH_LEN; 659 break; 660 default: 661 panic("invalid hmac"); 662 } 663 tls->params.tls_bs = AES_BLOCK_LEN; 664 break; 665 case CRYPTO_CHACHA20_POLY1305: 666 /* 667 * Chacha20 uses a 12 byte implicit IV. 668 */ 669 tls->params.tls_tlen = POLY1305_HASH_LEN; 670 tls->params.tls_bs = 1; 671 break; 672 default: 673 panic("invalid cipher"); 674 } 675 676 /* 677 * TLS 1.3 includes optional padding which we do not support, 678 * and also puts the "real" record type at the end of the 679 * encrypted data. 680 */ 681 if (en->tls_vminor == TLS_MINOR_VER_THREE) 682 tls->params.tls_tlen += sizeof(uint8_t); 683 684 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 685 ("TLS header length too long: %d", tls->params.tls_hlen)); 686 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 687 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 688 689 if (en->auth_key_len != 0) { 690 tls->params.auth_key_len = en->auth_key_len; 691 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 692 M_WAITOK); 693 error = copyin(en->auth_key, tls->params.auth_key, 694 en->auth_key_len); 695 if (error) 696 goto out; 697 } 698 699 tls->params.cipher_key_len = en->cipher_key_len; 700 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 701 error = copyin(en->cipher_key, tls->params.cipher_key, 702 en->cipher_key_len); 703 if (error) 704 goto out; 705 706 /* 707 * This holds the implicit portion of the nonce for AEAD 708 * ciphers and the initial implicit IV for TLS 1.0. The 709 * explicit portions of the IV are generated in ktls_frame(). 710 */ 711 if (en->iv_len != 0) { 712 tls->params.iv_len = en->iv_len; 713 error = copyin(en->iv, tls->params.iv, en->iv_len); 714 if (error) 715 goto out; 716 717 /* 718 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 719 * counter to generate unique explicit IVs. 720 * 721 * Store this counter in the last 8 bytes of the IV 722 * array so that it is 8-byte aligned. 723 */ 724 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 725 en->tls_vminor == TLS_MINOR_VER_TWO) 726 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 727 } 728 729 *tlsp = tls; 730 return (0); 731 732 out: 733 ktls_cleanup(tls); 734 return (error); 735 } 736 737 static struct ktls_session * 738 ktls_clone_session(struct ktls_session *tls) 739 { 740 struct ktls_session *tls_new; 741 742 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 743 744 counter_u64_add(ktls_offload_active, 1); 745 746 refcount_init(&tls_new->refcount, 1); 747 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 748 749 /* Copy fields from existing session. */ 750 tls_new->params = tls->params; 751 tls_new->wq_index = tls->wq_index; 752 753 /* Deep copy keys. */ 754 if (tls_new->params.auth_key != NULL) { 755 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 756 M_KTLS, M_WAITOK); 757 memcpy(tls_new->params.auth_key, tls->params.auth_key, 758 tls->params.auth_key_len); 759 } 760 761 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 762 M_WAITOK); 763 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 764 tls->params.cipher_key_len); 765 766 return (tls_new); 767 } 768 #endif 769 770 static void 771 ktls_cleanup(struct ktls_session *tls) 772 { 773 774 counter_u64_add(ktls_offload_active, -1); 775 switch (tls->mode) { 776 case TCP_TLS_MODE_SW: 777 switch (tls->params.cipher_algorithm) { 778 case CRYPTO_AES_CBC: 779 counter_u64_add(ktls_sw_cbc, -1); 780 break; 781 case CRYPTO_AES_NIST_GCM_16: 782 counter_u64_add(ktls_sw_gcm, -1); 783 break; 784 case CRYPTO_CHACHA20_POLY1305: 785 counter_u64_add(ktls_sw_chacha20, -1); 786 break; 787 } 788 ktls_ocf_free(tls); 789 break; 790 case TCP_TLS_MODE_IFNET: 791 switch (tls->params.cipher_algorithm) { 792 case CRYPTO_AES_CBC: 793 counter_u64_add(ktls_ifnet_cbc, -1); 794 break; 795 case CRYPTO_AES_NIST_GCM_16: 796 counter_u64_add(ktls_ifnet_gcm, -1); 797 break; 798 case CRYPTO_CHACHA20_POLY1305: 799 counter_u64_add(ktls_ifnet_chacha20, -1); 800 break; 801 } 802 if (tls->snd_tag != NULL) 803 m_snd_tag_rele(tls->snd_tag); 804 break; 805 #ifdef TCP_OFFLOAD 806 case TCP_TLS_MODE_TOE: 807 switch (tls->params.cipher_algorithm) { 808 case CRYPTO_AES_CBC: 809 counter_u64_add(ktls_toe_cbc, -1); 810 break; 811 case CRYPTO_AES_NIST_GCM_16: 812 counter_u64_add(ktls_toe_gcm, -1); 813 break; 814 case CRYPTO_CHACHA20_POLY1305: 815 counter_u64_add(ktls_toe_chacha20, -1); 816 break; 817 } 818 break; 819 #endif 820 } 821 if (tls->params.auth_key != NULL) { 822 zfree(tls->params.auth_key, M_KTLS); 823 tls->params.auth_key = NULL; 824 tls->params.auth_key_len = 0; 825 } 826 if (tls->params.cipher_key != NULL) { 827 zfree(tls->params.cipher_key, M_KTLS); 828 tls->params.cipher_key = NULL; 829 tls->params.cipher_key_len = 0; 830 } 831 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 832 } 833 834 #if defined(INET) || defined(INET6) 835 836 #ifdef TCP_OFFLOAD 837 static int 838 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 839 { 840 struct inpcb *inp; 841 struct tcpcb *tp; 842 int error; 843 844 inp = so->so_pcb; 845 INP_WLOCK(inp); 846 if (inp->inp_flags2 & INP_FREED) { 847 INP_WUNLOCK(inp); 848 return (ECONNRESET); 849 } 850 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 851 INP_WUNLOCK(inp); 852 return (ECONNRESET); 853 } 854 if (inp->inp_socket == NULL) { 855 INP_WUNLOCK(inp); 856 return (ECONNRESET); 857 } 858 tp = intotcpcb(inp); 859 if (!(tp->t_flags & TF_TOE)) { 860 INP_WUNLOCK(inp); 861 return (EOPNOTSUPP); 862 } 863 864 error = tcp_offload_alloc_tls_session(tp, tls, direction); 865 INP_WUNLOCK(inp); 866 if (error == 0) { 867 tls->mode = TCP_TLS_MODE_TOE; 868 switch (tls->params.cipher_algorithm) { 869 case CRYPTO_AES_CBC: 870 counter_u64_add(ktls_toe_cbc, 1); 871 break; 872 case CRYPTO_AES_NIST_GCM_16: 873 counter_u64_add(ktls_toe_gcm, 1); 874 break; 875 case CRYPTO_CHACHA20_POLY1305: 876 counter_u64_add(ktls_toe_chacha20, 1); 877 break; 878 } 879 } 880 return (error); 881 } 882 #endif 883 884 /* 885 * Common code used when first enabling ifnet TLS on a connection or 886 * when allocating a new ifnet TLS session due to a routing change. 887 * This function allocates a new TLS send tag on whatever interface 888 * the connection is currently routed over. 889 */ 890 static int 891 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 892 struct m_snd_tag **mstp) 893 { 894 union if_snd_tag_alloc_params params; 895 struct ifnet *ifp; 896 struct nhop_object *nh; 897 struct tcpcb *tp; 898 int error; 899 900 INP_RLOCK(inp); 901 if (inp->inp_flags2 & INP_FREED) { 902 INP_RUNLOCK(inp); 903 return (ECONNRESET); 904 } 905 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 906 INP_RUNLOCK(inp); 907 return (ECONNRESET); 908 } 909 if (inp->inp_socket == NULL) { 910 INP_RUNLOCK(inp); 911 return (ECONNRESET); 912 } 913 tp = intotcpcb(inp); 914 915 /* 916 * Check administrative controls on ifnet TLS to determine if 917 * ifnet TLS should be denied. 918 * 919 * - Always permit 'force' requests. 920 * - ktls_ifnet_permitted == 0: always deny. 921 */ 922 if (!force && ktls_ifnet_permitted == 0) { 923 INP_RUNLOCK(inp); 924 return (ENXIO); 925 } 926 927 /* 928 * XXX: Use the cached route in the inpcb to find the 929 * interface. This should perhaps instead use 930 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 931 * enabled after a connection has completed key negotiation in 932 * userland, the cached route will be present in practice. 933 */ 934 nh = inp->inp_route.ro_nh; 935 if (nh == NULL) { 936 INP_RUNLOCK(inp); 937 return (ENXIO); 938 } 939 ifp = nh->nh_ifp; 940 if_ref(ifp); 941 942 /* 943 * Allocate a TLS + ratelimit tag if the connection has an 944 * existing pacing rate. 945 */ 946 if (tp->t_pacing_rate != -1 && 947 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 948 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 949 params.tls_rate_limit.inp = inp; 950 params.tls_rate_limit.tls = tls; 951 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 952 } else { 953 params.hdr.type = IF_SND_TAG_TYPE_TLS; 954 params.tls.inp = inp; 955 params.tls.tls = tls; 956 } 957 params.hdr.flowid = inp->inp_flowid; 958 params.hdr.flowtype = inp->inp_flowtype; 959 params.hdr.numa_domain = inp->inp_numa_domain; 960 INP_RUNLOCK(inp); 961 962 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 963 error = EOPNOTSUPP; 964 goto out; 965 } 966 if (inp->inp_vflag & INP_IPV6) { 967 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 968 error = EOPNOTSUPP; 969 goto out; 970 } 971 } else { 972 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 973 error = EOPNOTSUPP; 974 goto out; 975 } 976 } 977 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 978 out: 979 if_rele(ifp); 980 return (error); 981 } 982 983 static int 984 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 985 { 986 struct m_snd_tag *mst; 987 int error; 988 989 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 990 if (error == 0) { 991 tls->mode = TCP_TLS_MODE_IFNET; 992 tls->snd_tag = mst; 993 switch (tls->params.cipher_algorithm) { 994 case CRYPTO_AES_CBC: 995 counter_u64_add(ktls_ifnet_cbc, 1); 996 break; 997 case CRYPTO_AES_NIST_GCM_16: 998 counter_u64_add(ktls_ifnet_gcm, 1); 999 break; 1000 case CRYPTO_CHACHA20_POLY1305: 1001 counter_u64_add(ktls_ifnet_chacha20, 1); 1002 break; 1003 } 1004 } 1005 return (error); 1006 } 1007 1008 static int 1009 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1010 { 1011 int error; 1012 1013 error = ktls_ocf_try(so, tls, direction); 1014 if (error) 1015 return (error); 1016 tls->mode = TCP_TLS_MODE_SW; 1017 switch (tls->params.cipher_algorithm) { 1018 case CRYPTO_AES_CBC: 1019 counter_u64_add(ktls_sw_cbc, 1); 1020 break; 1021 case CRYPTO_AES_NIST_GCM_16: 1022 counter_u64_add(ktls_sw_gcm, 1); 1023 break; 1024 case CRYPTO_CHACHA20_POLY1305: 1025 counter_u64_add(ktls_sw_chacha20, 1); 1026 break; 1027 } 1028 return (0); 1029 } 1030 1031 /* 1032 * KTLS RX stores data in the socket buffer as a list of TLS records, 1033 * where each record is stored as a control message containg the TLS 1034 * header followed by data mbufs containing the decrypted data. This 1035 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1036 * both encrypted and decrypted data. TLS records decrypted by a NIC 1037 * should be queued to the socket buffer as records, but encrypted 1038 * data which needs to be decrypted by software arrives as a stream of 1039 * regular mbufs which need to be converted. In addition, there may 1040 * already be pending encrypted data in the socket buffer when KTLS RX 1041 * is enabled. 1042 * 1043 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1044 * is used: 1045 * 1046 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1047 * 1048 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1049 * from the first mbuf. Once all of the data for that TLS record is 1050 * queued, the socket is queued to a worker thread. 1051 * 1052 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1053 * the TLS chain. Each TLS record is detached from the TLS chain, 1054 * decrypted, and inserted into the regular socket buffer chain as 1055 * record starting with a control message holding the TLS header and 1056 * a chain of mbufs holding the encrypted data. 1057 */ 1058 1059 static void 1060 sb_mark_notready(struct sockbuf *sb) 1061 { 1062 struct mbuf *m; 1063 1064 m = sb->sb_mb; 1065 sb->sb_mtls = m; 1066 sb->sb_mb = NULL; 1067 sb->sb_mbtail = NULL; 1068 sb->sb_lastrecord = NULL; 1069 for (; m != NULL; m = m->m_next) { 1070 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1071 __func__)); 1072 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1073 __func__)); 1074 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1075 __func__)); 1076 m->m_flags |= M_NOTREADY; 1077 sb->sb_acc -= m->m_len; 1078 sb->sb_tlscc += m->m_len; 1079 sb->sb_mtlstail = m; 1080 } 1081 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1082 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1083 sb->sb_ccc)); 1084 } 1085 1086 int 1087 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1088 { 1089 struct ktls_session *tls; 1090 int error; 1091 1092 if (!ktls_offload_enable) 1093 return (ENOTSUP); 1094 if (SOLISTENING(so)) 1095 return (EINVAL); 1096 1097 counter_u64_add(ktls_offload_enable_calls, 1); 1098 1099 /* 1100 * This should always be true since only the TCP socket option 1101 * invokes this function. 1102 */ 1103 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1104 return (EINVAL); 1105 1106 /* 1107 * XXX: Don't overwrite existing sessions. We should permit 1108 * this to support rekeying in the future. 1109 */ 1110 if (so->so_rcv.sb_tls_info != NULL) 1111 return (EALREADY); 1112 1113 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1114 return (ENOTSUP); 1115 1116 /* TLS 1.3 is not yet supported. */ 1117 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1118 en->tls_vminor == TLS_MINOR_VER_THREE) 1119 return (ENOTSUP); 1120 1121 error = ktls_create_session(so, en, &tls); 1122 if (error) 1123 return (error); 1124 1125 #ifdef TCP_OFFLOAD 1126 error = ktls_try_toe(so, tls, KTLS_RX); 1127 if (error) 1128 #endif 1129 error = ktls_try_sw(so, tls, KTLS_RX); 1130 1131 if (error) { 1132 ktls_cleanup(tls); 1133 return (error); 1134 } 1135 1136 /* Mark the socket as using TLS offload. */ 1137 SOCKBUF_LOCK(&so->so_rcv); 1138 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1139 so->so_rcv.sb_tls_info = tls; 1140 so->so_rcv.sb_flags |= SB_TLS_RX; 1141 1142 /* Mark existing data as not ready until it can be decrypted. */ 1143 if (tls->mode != TCP_TLS_MODE_TOE) { 1144 sb_mark_notready(&so->so_rcv); 1145 ktls_check_rx(&so->so_rcv); 1146 } 1147 SOCKBUF_UNLOCK(&so->so_rcv); 1148 1149 counter_u64_add(ktls_offload_total, 1); 1150 1151 return (0); 1152 } 1153 1154 int 1155 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1156 { 1157 struct ktls_session *tls; 1158 struct inpcb *inp; 1159 int error; 1160 1161 if (!ktls_offload_enable) 1162 return (ENOTSUP); 1163 if (SOLISTENING(so)) 1164 return (EINVAL); 1165 1166 counter_u64_add(ktls_offload_enable_calls, 1); 1167 1168 /* 1169 * This should always be true since only the TCP socket option 1170 * invokes this function. 1171 */ 1172 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1173 return (EINVAL); 1174 1175 /* 1176 * XXX: Don't overwrite existing sessions. We should permit 1177 * this to support rekeying in the future. 1178 */ 1179 if (so->so_snd.sb_tls_info != NULL) 1180 return (EALREADY); 1181 1182 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1183 return (ENOTSUP); 1184 1185 /* TLS requires ext pgs */ 1186 if (mb_use_ext_pgs == 0) 1187 return (ENXIO); 1188 1189 error = ktls_create_session(so, en, &tls); 1190 if (error) 1191 return (error); 1192 1193 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1194 #ifdef TCP_OFFLOAD 1195 error = ktls_try_toe(so, tls, KTLS_TX); 1196 if (error) 1197 #endif 1198 error = ktls_try_ifnet(so, tls, false); 1199 if (error) 1200 error = ktls_try_sw(so, tls, KTLS_TX); 1201 1202 if (error) { 1203 ktls_cleanup(tls); 1204 return (error); 1205 } 1206 1207 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1208 if (error) { 1209 ktls_cleanup(tls); 1210 return (error); 1211 } 1212 1213 /* 1214 * Write lock the INP when setting sb_tls_info so that 1215 * routines in tcp_ratelimit.c can read sb_tls_info while 1216 * holding the INP lock. 1217 */ 1218 inp = so->so_pcb; 1219 INP_WLOCK(inp); 1220 SOCKBUF_LOCK(&so->so_snd); 1221 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1222 so->so_snd.sb_tls_info = tls; 1223 if (tls->mode != TCP_TLS_MODE_SW) 1224 so->so_snd.sb_flags |= SB_TLS_IFNET; 1225 SOCKBUF_UNLOCK(&so->so_snd); 1226 INP_WUNLOCK(inp); 1227 SOCK_IO_SEND_UNLOCK(so); 1228 1229 counter_u64_add(ktls_offload_total, 1); 1230 1231 return (0); 1232 } 1233 1234 int 1235 ktls_get_rx_mode(struct socket *so, int *modep) 1236 { 1237 struct ktls_session *tls; 1238 struct inpcb *inp; 1239 1240 if (SOLISTENING(so)) 1241 return (EINVAL); 1242 inp = so->so_pcb; 1243 INP_WLOCK_ASSERT(inp); 1244 SOCK_RECVBUF_LOCK(so); 1245 tls = so->so_rcv.sb_tls_info; 1246 if (tls == NULL) 1247 *modep = TCP_TLS_MODE_NONE; 1248 else 1249 *modep = tls->mode; 1250 SOCK_RECVBUF_UNLOCK(so); 1251 return (0); 1252 } 1253 1254 int 1255 ktls_get_tx_mode(struct socket *so, int *modep) 1256 { 1257 struct ktls_session *tls; 1258 struct inpcb *inp; 1259 1260 if (SOLISTENING(so)) 1261 return (EINVAL); 1262 inp = so->so_pcb; 1263 INP_WLOCK_ASSERT(inp); 1264 SOCK_SENDBUF_LOCK(so); 1265 tls = so->so_snd.sb_tls_info; 1266 if (tls == NULL) 1267 *modep = TCP_TLS_MODE_NONE; 1268 else 1269 *modep = tls->mode; 1270 SOCK_SENDBUF_UNLOCK(so); 1271 return (0); 1272 } 1273 1274 /* 1275 * Switch between SW and ifnet TLS sessions as requested. 1276 */ 1277 int 1278 ktls_set_tx_mode(struct socket *so, int mode) 1279 { 1280 struct ktls_session *tls, *tls_new; 1281 struct inpcb *inp; 1282 int error; 1283 1284 if (SOLISTENING(so)) 1285 return (EINVAL); 1286 switch (mode) { 1287 case TCP_TLS_MODE_SW: 1288 case TCP_TLS_MODE_IFNET: 1289 break; 1290 default: 1291 return (EINVAL); 1292 } 1293 1294 inp = so->so_pcb; 1295 INP_WLOCK_ASSERT(inp); 1296 SOCKBUF_LOCK(&so->so_snd); 1297 tls = so->so_snd.sb_tls_info; 1298 if (tls == NULL) { 1299 SOCKBUF_UNLOCK(&so->so_snd); 1300 return (0); 1301 } 1302 1303 if (tls->mode == mode) { 1304 SOCKBUF_UNLOCK(&so->so_snd); 1305 return (0); 1306 } 1307 1308 tls = ktls_hold(tls); 1309 SOCKBUF_UNLOCK(&so->so_snd); 1310 INP_WUNLOCK(inp); 1311 1312 tls_new = ktls_clone_session(tls); 1313 1314 if (mode == TCP_TLS_MODE_IFNET) 1315 error = ktls_try_ifnet(so, tls_new, true); 1316 else 1317 error = ktls_try_sw(so, tls_new, KTLS_TX); 1318 if (error) { 1319 counter_u64_add(ktls_switch_failed, 1); 1320 ktls_free(tls_new); 1321 ktls_free(tls); 1322 INP_WLOCK(inp); 1323 return (error); 1324 } 1325 1326 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1327 if (error) { 1328 counter_u64_add(ktls_switch_failed, 1); 1329 ktls_free(tls_new); 1330 ktls_free(tls); 1331 INP_WLOCK(inp); 1332 return (error); 1333 } 1334 1335 /* 1336 * If we raced with another session change, keep the existing 1337 * session. 1338 */ 1339 if (tls != so->so_snd.sb_tls_info) { 1340 counter_u64_add(ktls_switch_failed, 1); 1341 SOCK_IO_SEND_UNLOCK(so); 1342 ktls_free(tls_new); 1343 ktls_free(tls); 1344 INP_WLOCK(inp); 1345 return (EBUSY); 1346 } 1347 1348 SOCKBUF_LOCK(&so->so_snd); 1349 so->so_snd.sb_tls_info = tls_new; 1350 if (tls_new->mode != TCP_TLS_MODE_SW) 1351 so->so_snd.sb_flags |= SB_TLS_IFNET; 1352 SOCKBUF_UNLOCK(&so->so_snd); 1353 SOCK_IO_SEND_UNLOCK(so); 1354 1355 /* 1356 * Drop two references on 'tls'. The first is for the 1357 * ktls_hold() above. The second drops the reference from the 1358 * socket buffer. 1359 */ 1360 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1361 ktls_free(tls); 1362 ktls_free(tls); 1363 1364 if (mode == TCP_TLS_MODE_IFNET) 1365 counter_u64_add(ktls_switch_to_ifnet, 1); 1366 else 1367 counter_u64_add(ktls_switch_to_sw, 1); 1368 1369 INP_WLOCK(inp); 1370 return (0); 1371 } 1372 1373 /* 1374 * Try to allocate a new TLS send tag. This task is scheduled when 1375 * ip_output detects a route change while trying to transmit a packet 1376 * holding a TLS record. If a new tag is allocated, replace the tag 1377 * in the TLS session. Subsequent packets on the connection will use 1378 * the new tag. If a new tag cannot be allocated, drop the 1379 * connection. 1380 */ 1381 static void 1382 ktls_reset_send_tag(void *context, int pending) 1383 { 1384 struct epoch_tracker et; 1385 struct ktls_session *tls; 1386 struct m_snd_tag *old, *new; 1387 struct inpcb *inp; 1388 struct tcpcb *tp; 1389 int error; 1390 1391 MPASS(pending == 1); 1392 1393 tls = context; 1394 inp = tls->inp; 1395 1396 /* 1397 * Free the old tag first before allocating a new one. 1398 * ip[6]_output_send() will treat a NULL send tag the same as 1399 * an ifp mismatch and drop packets until a new tag is 1400 * allocated. 1401 * 1402 * Write-lock the INP when changing tls->snd_tag since 1403 * ip[6]_output_send() holds a read-lock when reading the 1404 * pointer. 1405 */ 1406 INP_WLOCK(inp); 1407 old = tls->snd_tag; 1408 tls->snd_tag = NULL; 1409 INP_WUNLOCK(inp); 1410 if (old != NULL) 1411 m_snd_tag_rele(old); 1412 1413 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1414 1415 if (error == 0) { 1416 INP_WLOCK(inp); 1417 tls->snd_tag = new; 1418 mtx_pool_lock(mtxpool_sleep, tls); 1419 tls->reset_pending = false; 1420 mtx_pool_unlock(mtxpool_sleep, tls); 1421 if (!in_pcbrele_wlocked(inp)) 1422 INP_WUNLOCK(inp); 1423 1424 counter_u64_add(ktls_ifnet_reset, 1); 1425 1426 /* 1427 * XXX: Should we kick tcp_output explicitly now that 1428 * the send tag is fixed or just rely on timers? 1429 */ 1430 } else { 1431 NET_EPOCH_ENTER(et); 1432 INP_WLOCK(inp); 1433 if (!in_pcbrele_wlocked(inp)) { 1434 if (!(inp->inp_flags & INP_TIMEWAIT) && 1435 !(inp->inp_flags & INP_DROPPED)) { 1436 tp = intotcpcb(inp); 1437 CURVNET_SET(tp->t_vnet); 1438 tp = tcp_drop(tp, ECONNABORTED); 1439 CURVNET_RESTORE(); 1440 if (tp != NULL) 1441 INP_WUNLOCK(inp); 1442 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1443 } else 1444 INP_WUNLOCK(inp); 1445 } 1446 NET_EPOCH_EXIT(et); 1447 1448 counter_u64_add(ktls_ifnet_reset_failed, 1); 1449 1450 /* 1451 * Leave reset_pending true to avoid future tasks while 1452 * the socket goes away. 1453 */ 1454 } 1455 1456 ktls_free(tls); 1457 } 1458 1459 int 1460 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1461 { 1462 1463 if (inp == NULL) 1464 return (ENOBUFS); 1465 1466 INP_LOCK_ASSERT(inp); 1467 1468 /* 1469 * See if we should schedule a task to update the send tag for 1470 * this session. 1471 */ 1472 mtx_pool_lock(mtxpool_sleep, tls); 1473 if (!tls->reset_pending) { 1474 (void) ktls_hold(tls); 1475 in_pcbref(inp); 1476 tls->inp = inp; 1477 tls->reset_pending = true; 1478 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1479 } 1480 mtx_pool_unlock(mtxpool_sleep, tls); 1481 return (ENOBUFS); 1482 } 1483 1484 #ifdef RATELIMIT 1485 int 1486 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1487 { 1488 union if_snd_tag_modify_params params = { 1489 .rate_limit.max_rate = max_pacing_rate, 1490 .rate_limit.flags = M_NOWAIT, 1491 }; 1492 struct m_snd_tag *mst; 1493 1494 /* Can't get to the inp, but it should be locked. */ 1495 /* INP_LOCK_ASSERT(inp); */ 1496 1497 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1498 1499 if (tls->snd_tag == NULL) { 1500 /* 1501 * Resetting send tag, ignore this change. The 1502 * pending reset may or may not see this updated rate 1503 * in the tcpcb. If it doesn't, we will just lose 1504 * this rate change. 1505 */ 1506 return (0); 1507 } 1508 1509 MPASS(tls->snd_tag != NULL); 1510 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1511 1512 mst = tls->snd_tag; 1513 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1514 } 1515 #endif 1516 #endif 1517 1518 void 1519 ktls_destroy(struct ktls_session *tls) 1520 { 1521 1522 if (tls->sequential_records) { 1523 struct mbuf *m, *n; 1524 int page_count; 1525 1526 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1527 page_count = m->m_epg_enc_cnt; 1528 while (page_count > 0) { 1529 KASSERT(page_count >= m->m_epg_nrdy, 1530 ("%s: too few pages", __func__)); 1531 page_count -= m->m_epg_nrdy; 1532 m = m_free(m); 1533 } 1534 } 1535 } 1536 ktls_cleanup(tls); 1537 uma_zfree(ktls_session_zone, tls); 1538 } 1539 1540 void 1541 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1542 { 1543 1544 for (; m != NULL; m = m->m_next) { 1545 KASSERT((m->m_flags & M_EXTPG) != 0, 1546 ("ktls_seq: mapped mbuf %p", m)); 1547 1548 m->m_epg_seqno = sb->sb_tls_seqno; 1549 sb->sb_tls_seqno++; 1550 } 1551 } 1552 1553 /* 1554 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1555 * mbuf in the chain must be an unmapped mbuf. The payload of the 1556 * mbuf must be populated with the payload of each TLS record. 1557 * 1558 * The record_type argument specifies the TLS record type used when 1559 * populating the TLS header. 1560 * 1561 * The enq_count argument on return is set to the number of pages of 1562 * payload data for this entire chain that need to be encrypted via SW 1563 * encryption. The returned value should be passed to ktls_enqueue 1564 * when scheduling encryption of this chain of mbufs. To handle the 1565 * special case of empty fragments for TLS 1.0 sessions, an empty 1566 * fragment counts as one page. 1567 */ 1568 void 1569 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1570 uint8_t record_type) 1571 { 1572 struct tls_record_layer *tlshdr; 1573 struct mbuf *m; 1574 uint64_t *noncep; 1575 uint16_t tls_len; 1576 int maxlen; 1577 1578 maxlen = tls->params.max_frame_len; 1579 *enq_cnt = 0; 1580 for (m = top; m != NULL; m = m->m_next) { 1581 /* 1582 * All mbufs in the chain should be TLS records whose 1583 * payload does not exceed the maximum frame length. 1584 * 1585 * Empty TLS records are permitted when using CBC. 1586 */ 1587 KASSERT(m->m_len <= maxlen && 1588 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1589 m->m_len >= 0 : m->m_len > 0), 1590 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1591 1592 /* 1593 * TLS frames require unmapped mbufs to store session 1594 * info. 1595 */ 1596 KASSERT((m->m_flags & M_EXTPG) != 0, 1597 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1598 1599 tls_len = m->m_len; 1600 1601 /* Save a reference to the session. */ 1602 m->m_epg_tls = ktls_hold(tls); 1603 1604 m->m_epg_hdrlen = tls->params.tls_hlen; 1605 m->m_epg_trllen = tls->params.tls_tlen; 1606 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1607 int bs, delta; 1608 1609 /* 1610 * AES-CBC pads messages to a multiple of the 1611 * block size. Note that the padding is 1612 * applied after the digest and the encryption 1613 * is done on the "plaintext || mac || padding". 1614 * At least one byte of padding is always 1615 * present. 1616 * 1617 * Compute the final trailer length assuming 1618 * at most one block of padding. 1619 * tls->params.tls_tlen is the maximum 1620 * possible trailer length (padding + digest). 1621 * delta holds the number of excess padding 1622 * bytes if the maximum were used. Those 1623 * extra bytes are removed. 1624 */ 1625 bs = tls->params.tls_bs; 1626 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1627 m->m_epg_trllen -= delta; 1628 } 1629 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1630 1631 /* Populate the TLS header. */ 1632 tlshdr = (void *)m->m_epg_hdr; 1633 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1634 1635 /* 1636 * TLS 1.3 masquarades as TLS 1.2 with a record type 1637 * of TLS_RLTYPE_APP. 1638 */ 1639 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1640 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1641 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1642 tlshdr->tls_type = TLS_RLTYPE_APP; 1643 /* save the real record type for later */ 1644 m->m_epg_record_type = record_type; 1645 m->m_epg_trail[0] = record_type; 1646 } else { 1647 tlshdr->tls_vminor = tls->params.tls_vminor; 1648 tlshdr->tls_type = record_type; 1649 } 1650 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1651 1652 /* 1653 * Store nonces / explicit IVs after the end of the 1654 * TLS header. 1655 * 1656 * For GCM with TLS 1.2, an 8 byte nonce is copied 1657 * from the end of the IV. The nonce is then 1658 * incremented for use by the next record. 1659 * 1660 * For CBC, a random nonce is inserted for TLS 1.1+. 1661 */ 1662 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1663 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1664 noncep = (uint64_t *)(tls->params.iv + 8); 1665 be64enc(tlshdr + 1, *noncep); 1666 (*noncep)++; 1667 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1668 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1669 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1670 1671 /* 1672 * When using SW encryption, mark the mbuf not ready. 1673 * It will be marked ready via sbready() after the 1674 * record has been encrypted. 1675 * 1676 * When using ifnet TLS, unencrypted TLS records are 1677 * sent down the stack to the NIC. 1678 */ 1679 if (tls->mode == TCP_TLS_MODE_SW) { 1680 m->m_flags |= M_NOTREADY; 1681 if (__predict_false(tls_len == 0)) { 1682 /* TLS 1.0 empty fragment. */ 1683 m->m_epg_nrdy = 1; 1684 } else 1685 m->m_epg_nrdy = m->m_epg_npgs; 1686 *enq_cnt += m->m_epg_nrdy; 1687 } 1688 } 1689 } 1690 1691 void 1692 ktls_check_rx(struct sockbuf *sb) 1693 { 1694 struct tls_record_layer hdr; 1695 struct ktls_wq *wq; 1696 struct socket *so; 1697 bool running; 1698 1699 SOCKBUF_LOCK_ASSERT(sb); 1700 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1701 __func__, sb)); 1702 so = __containerof(sb, struct socket, so_rcv); 1703 1704 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1705 return; 1706 1707 /* Is there enough queued for a TLS header? */ 1708 if (sb->sb_tlscc < sizeof(hdr)) { 1709 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1710 so->so_error = EMSGSIZE; 1711 return; 1712 } 1713 1714 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1715 1716 /* Is the entire record queued? */ 1717 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1718 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1719 so->so_error = EMSGSIZE; 1720 return; 1721 } 1722 1723 sb->sb_flags |= SB_TLS_RX_RUNNING; 1724 1725 soref(so); 1726 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1727 mtx_lock(&wq->mtx); 1728 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1729 running = wq->running; 1730 mtx_unlock(&wq->mtx); 1731 if (!running) 1732 wakeup(wq); 1733 counter_u64_add(ktls_cnt_rx_queued, 1); 1734 } 1735 1736 static struct mbuf * 1737 ktls_detach_record(struct sockbuf *sb, int len) 1738 { 1739 struct mbuf *m, *n, *top; 1740 int remain; 1741 1742 SOCKBUF_LOCK_ASSERT(sb); 1743 MPASS(len <= sb->sb_tlscc); 1744 1745 /* 1746 * If TLS chain is the exact size of the record, 1747 * just grab the whole record. 1748 */ 1749 top = sb->sb_mtls; 1750 if (sb->sb_tlscc == len) { 1751 sb->sb_mtls = NULL; 1752 sb->sb_mtlstail = NULL; 1753 goto out; 1754 } 1755 1756 /* 1757 * While it would be nice to use m_split() here, we need 1758 * to know exactly what m_split() allocates to update the 1759 * accounting, so do it inline instead. 1760 */ 1761 remain = len; 1762 for (m = top; remain > m->m_len; m = m->m_next) 1763 remain -= m->m_len; 1764 1765 /* Easy case: don't have to split 'm'. */ 1766 if (remain == m->m_len) { 1767 sb->sb_mtls = m->m_next; 1768 if (sb->sb_mtls == NULL) 1769 sb->sb_mtlstail = NULL; 1770 m->m_next = NULL; 1771 goto out; 1772 } 1773 1774 /* 1775 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1776 * with M_NOWAIT first. 1777 */ 1778 n = m_get(M_NOWAIT, MT_DATA); 1779 if (n == NULL) { 1780 /* 1781 * Use M_WAITOK with socket buffer unlocked. If 1782 * 'sb_mtls' changes while the lock is dropped, return 1783 * NULL to force the caller to retry. 1784 */ 1785 SOCKBUF_UNLOCK(sb); 1786 1787 n = m_get(M_WAITOK, MT_DATA); 1788 1789 SOCKBUF_LOCK(sb); 1790 if (sb->sb_mtls != top) { 1791 m_free(n); 1792 return (NULL); 1793 } 1794 } 1795 n->m_flags |= M_NOTREADY; 1796 1797 /* Store remainder in 'n'. */ 1798 n->m_len = m->m_len - remain; 1799 if (m->m_flags & M_EXT) { 1800 n->m_data = m->m_data + remain; 1801 mb_dupcl(n, m); 1802 } else { 1803 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1804 } 1805 1806 /* Trim 'm' and update accounting. */ 1807 m->m_len -= n->m_len; 1808 sb->sb_tlscc -= n->m_len; 1809 sb->sb_ccc -= n->m_len; 1810 1811 /* Account for 'n'. */ 1812 sballoc_ktls_rx(sb, n); 1813 1814 /* Insert 'n' into the TLS chain. */ 1815 sb->sb_mtls = n; 1816 n->m_next = m->m_next; 1817 if (sb->sb_mtlstail == m) 1818 sb->sb_mtlstail = n; 1819 1820 /* Detach the record from the TLS chain. */ 1821 m->m_next = NULL; 1822 1823 out: 1824 MPASS(m_length(top, NULL) == len); 1825 for (m = top; m != NULL; m = m->m_next) 1826 sbfree_ktls_rx(sb, m); 1827 sb->sb_tlsdcc = len; 1828 sb->sb_ccc += len; 1829 SBCHECK(sb); 1830 return (top); 1831 } 1832 1833 static void 1834 ktls_decrypt(struct socket *so) 1835 { 1836 char tls_header[MBUF_PEXT_HDR_LEN]; 1837 struct ktls_session *tls; 1838 struct sockbuf *sb; 1839 struct tls_record_layer *hdr; 1840 struct tls_get_record tgr; 1841 struct mbuf *control, *data, *m; 1842 uint64_t seqno; 1843 int error, remain, tls_len, trail_len; 1844 1845 hdr = (struct tls_record_layer *)tls_header; 1846 sb = &so->so_rcv; 1847 SOCKBUF_LOCK(sb); 1848 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1849 ("%s: socket %p not running", __func__, so)); 1850 1851 tls = sb->sb_tls_info; 1852 MPASS(tls != NULL); 1853 1854 for (;;) { 1855 /* Is there enough queued for a TLS header? */ 1856 if (sb->sb_tlscc < tls->params.tls_hlen) 1857 break; 1858 1859 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1860 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1861 1862 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1863 hdr->tls_vminor != tls->params.tls_vminor) 1864 error = EINVAL; 1865 else if (tls_len < tls->params.tls_hlen || tls_len > 1866 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1867 tls->params.tls_tlen) 1868 error = EMSGSIZE; 1869 else 1870 error = 0; 1871 if (__predict_false(error != 0)) { 1872 /* 1873 * We have a corrupted record and are likely 1874 * out of sync. The connection isn't 1875 * recoverable at this point, so abort it. 1876 */ 1877 SOCKBUF_UNLOCK(sb); 1878 counter_u64_add(ktls_offload_corrupted_records, 1); 1879 1880 CURVNET_SET(so->so_vnet); 1881 so->so_proto->pr_usrreqs->pru_abort(so); 1882 so->so_error = error; 1883 CURVNET_RESTORE(); 1884 goto deref; 1885 } 1886 1887 /* Is the entire record queued? */ 1888 if (sb->sb_tlscc < tls_len) 1889 break; 1890 1891 /* 1892 * Split out the portion of the mbuf chain containing 1893 * this TLS record. 1894 */ 1895 data = ktls_detach_record(sb, tls_len); 1896 if (data == NULL) 1897 continue; 1898 MPASS(sb->sb_tlsdcc == tls_len); 1899 1900 seqno = sb->sb_tls_seqno; 1901 sb->sb_tls_seqno++; 1902 SBCHECK(sb); 1903 SOCKBUF_UNLOCK(sb); 1904 1905 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1906 if (error) { 1907 counter_u64_add(ktls_offload_failed_crypto, 1); 1908 1909 SOCKBUF_LOCK(sb); 1910 if (sb->sb_tlsdcc == 0) { 1911 /* 1912 * sbcut/drop/flush discarded these 1913 * mbufs. 1914 */ 1915 m_freem(data); 1916 break; 1917 } 1918 1919 /* 1920 * Drop this TLS record's data, but keep 1921 * decrypting subsequent records. 1922 */ 1923 sb->sb_ccc -= tls_len; 1924 sb->sb_tlsdcc = 0; 1925 1926 CURVNET_SET(so->so_vnet); 1927 so->so_error = EBADMSG; 1928 sorwakeup_locked(so); 1929 CURVNET_RESTORE(); 1930 1931 m_freem(data); 1932 1933 SOCKBUF_LOCK(sb); 1934 continue; 1935 } 1936 1937 /* Allocate the control mbuf. */ 1938 tgr.tls_type = hdr->tls_type; 1939 tgr.tls_vmajor = hdr->tls_vmajor; 1940 tgr.tls_vminor = hdr->tls_vminor; 1941 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1942 trail_len); 1943 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1944 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1945 1946 SOCKBUF_LOCK(sb); 1947 if (sb->sb_tlsdcc == 0) { 1948 /* sbcut/drop/flush discarded these mbufs. */ 1949 MPASS(sb->sb_tlscc == 0); 1950 m_freem(data); 1951 m_freem(control); 1952 break; 1953 } 1954 1955 /* 1956 * Clear the 'dcc' accounting in preparation for 1957 * adding the decrypted record. 1958 */ 1959 sb->sb_ccc -= tls_len; 1960 sb->sb_tlsdcc = 0; 1961 SBCHECK(sb); 1962 1963 /* If there is no payload, drop all of the data. */ 1964 if (tgr.tls_length == htobe16(0)) { 1965 m_freem(data); 1966 data = NULL; 1967 } else { 1968 /* Trim header. */ 1969 remain = tls->params.tls_hlen; 1970 while (remain > 0) { 1971 if (data->m_len > remain) { 1972 data->m_data += remain; 1973 data->m_len -= remain; 1974 break; 1975 } 1976 remain -= data->m_len; 1977 data = m_free(data); 1978 } 1979 1980 /* Trim trailer and clear M_NOTREADY. */ 1981 remain = be16toh(tgr.tls_length); 1982 m = data; 1983 for (m = data; remain > m->m_len; m = m->m_next) { 1984 m->m_flags &= ~M_NOTREADY; 1985 remain -= m->m_len; 1986 } 1987 m->m_len = remain; 1988 m_freem(m->m_next); 1989 m->m_next = NULL; 1990 m->m_flags &= ~M_NOTREADY; 1991 1992 /* Set EOR on the final mbuf. */ 1993 m->m_flags |= M_EOR; 1994 } 1995 1996 sbappendcontrol_locked(sb, data, control, 0); 1997 } 1998 1999 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2000 2001 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2002 so->so_error = EMSGSIZE; 2003 2004 sorwakeup_locked(so); 2005 2006 deref: 2007 SOCKBUF_UNLOCK_ASSERT(sb); 2008 2009 CURVNET_SET(so->so_vnet); 2010 SOCK_LOCK(so); 2011 sorele(so); 2012 CURVNET_RESTORE(); 2013 } 2014 2015 void 2016 ktls_enqueue_to_free(struct mbuf *m) 2017 { 2018 struct ktls_wq *wq; 2019 bool running; 2020 2021 /* Mark it for freeing. */ 2022 m->m_epg_flags |= EPG_FLAG_2FREE; 2023 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2024 mtx_lock(&wq->mtx); 2025 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2026 running = wq->running; 2027 mtx_unlock(&wq->mtx); 2028 if (!running) 2029 wakeup(wq); 2030 } 2031 2032 static void * 2033 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2034 { 2035 void *buf; 2036 int domain, running; 2037 2038 if (m->m_epg_npgs <= 2) 2039 return (NULL); 2040 if (ktls_buffer_zone == NULL) 2041 return (NULL); 2042 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2043 /* 2044 * Rate-limit allocation attempts after a failure. 2045 * ktls_buffer_import() will acquire a per-domain mutex to check 2046 * the free page queues and may fail consistently if memory is 2047 * fragmented. 2048 */ 2049 return (NULL); 2050 } 2051 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2052 if (buf == NULL) { 2053 domain = PCPU_GET(domain); 2054 wq->lastallocfail = ticks; 2055 2056 /* 2057 * Note that this check is "racy", but the races are 2058 * harmless, and are either a spurious wakeup if 2059 * multiple threads fail allocations before the alloc 2060 * thread wakes, or waiting an extra second in case we 2061 * see an old value of running == true. 2062 */ 2063 if (!VM_DOMAIN_EMPTY(domain)) { 2064 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2065 if (!running) 2066 wakeup(&ktls_domains[domain].alloc_td); 2067 } 2068 } 2069 return (buf); 2070 } 2071 2072 static int 2073 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2074 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2075 { 2076 vm_page_t pg; 2077 int error, i, len, off; 2078 2079 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2080 ("%p not unready & nomap mbuf\n", m)); 2081 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2082 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2083 ktls_maxlen)); 2084 2085 /* Anonymous mbufs are encrypted in place. */ 2086 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2087 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2088 2089 /* 2090 * For file-backed mbufs (from sendfile), anonymous wired 2091 * pages are allocated and used as the encryption destination. 2092 */ 2093 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2094 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2095 m->m_epg_1st_off; 2096 state->dst_iov[0].iov_base = (char *)state->cbuf + 2097 m->m_epg_1st_off; 2098 state->dst_iov[0].iov_len = len; 2099 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2100 i = 1; 2101 } else { 2102 off = m->m_epg_1st_off; 2103 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2104 do { 2105 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2106 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | 2107 VM_ALLOC_WIRED | VM_ALLOC_WAITFAIL); 2108 } while (pg == NULL); 2109 2110 len = m_epg_pagelen(m, i, off); 2111 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2112 state->dst_iov[i].iov_base = 2113 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2114 state->dst_iov[i].iov_len = len; 2115 } 2116 } 2117 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2118 state->dst_iov[i].iov_base = m->m_epg_trail; 2119 state->dst_iov[i].iov_len = m->m_epg_trllen; 2120 2121 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2122 2123 if (__predict_false(error != 0)) { 2124 /* Free the anonymous pages. */ 2125 if (state->cbuf != NULL) 2126 uma_zfree(ktls_buffer_zone, state->cbuf); 2127 else { 2128 for (i = 0; i < m->m_epg_npgs; i++) { 2129 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2130 (void)vm_page_unwire_noq(pg); 2131 vm_page_free(pg); 2132 } 2133 } 2134 } 2135 return (error); 2136 } 2137 2138 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2139 static u_int 2140 ktls_batched_records(struct mbuf *m) 2141 { 2142 int page_count, records; 2143 2144 records = 0; 2145 page_count = m->m_epg_enc_cnt; 2146 while (page_count > 0) { 2147 records++; 2148 page_count -= m->m_epg_nrdy; 2149 m = m->m_next; 2150 } 2151 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2152 return (records); 2153 } 2154 2155 void 2156 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2157 { 2158 struct ktls_session *tls; 2159 struct ktls_wq *wq; 2160 int queued; 2161 bool running; 2162 2163 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2164 (M_EXTPG | M_NOTREADY)), 2165 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2166 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2167 2168 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2169 2170 m->m_epg_enc_cnt = page_count; 2171 2172 /* 2173 * Save a pointer to the socket. The caller is responsible 2174 * for taking an additional reference via soref(). 2175 */ 2176 m->m_epg_so = so; 2177 2178 queued = 1; 2179 tls = m->m_epg_tls; 2180 wq = &ktls_wq[tls->wq_index]; 2181 mtx_lock(&wq->mtx); 2182 if (__predict_false(tls->sequential_records)) { 2183 /* 2184 * For TLS 1.0, records must be encrypted 2185 * sequentially. For a given connection, all records 2186 * queued to the associated work queue are processed 2187 * sequentially. However, sendfile(2) might complete 2188 * I/O requests spanning multiple TLS records out of 2189 * order. Here we ensure TLS records are enqueued to 2190 * the work queue in FIFO order. 2191 * 2192 * tls->next_seqno holds the sequence number of the 2193 * next TLS record that should be enqueued to the work 2194 * queue. If this next record is not tls->next_seqno, 2195 * it must be a future record, so insert it, sorted by 2196 * TLS sequence number, into tls->pending_records and 2197 * return. 2198 * 2199 * If this TLS record matches tls->next_seqno, place 2200 * it in the work queue and then check 2201 * tls->pending_records to see if any 2202 * previously-queued records are now ready for 2203 * encryption. 2204 */ 2205 if (m->m_epg_seqno != tls->next_seqno) { 2206 struct mbuf *n, *p; 2207 2208 p = NULL; 2209 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2210 if (n->m_epg_seqno > m->m_epg_seqno) 2211 break; 2212 p = n; 2213 } 2214 if (n == NULL) 2215 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2216 m_epg_stailq); 2217 else if (p == NULL) 2218 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2219 m_epg_stailq); 2220 else 2221 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2222 m_epg_stailq); 2223 mtx_unlock(&wq->mtx); 2224 counter_u64_add(ktls_cnt_tx_pending, 1); 2225 return; 2226 } 2227 2228 tls->next_seqno += ktls_batched_records(m); 2229 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2230 2231 while (!STAILQ_EMPTY(&tls->pending_records)) { 2232 struct mbuf *n; 2233 2234 n = STAILQ_FIRST(&tls->pending_records); 2235 if (n->m_epg_seqno != tls->next_seqno) 2236 break; 2237 2238 queued++; 2239 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2240 tls->next_seqno += ktls_batched_records(n); 2241 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2242 } 2243 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2244 } else 2245 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2246 2247 running = wq->running; 2248 mtx_unlock(&wq->mtx); 2249 if (!running) 2250 wakeup(wq); 2251 counter_u64_add(ktls_cnt_tx_queued, queued); 2252 } 2253 2254 /* 2255 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2256 * the pages from the file and replace them with the anonymous pages 2257 * allocated in ktls_encrypt_record(). 2258 */ 2259 static void 2260 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2261 { 2262 int i; 2263 2264 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2265 2266 /* Free the old pages. */ 2267 m->m_ext.ext_free(m); 2268 2269 /* Replace them with the new pages. */ 2270 if (state->cbuf != NULL) { 2271 for (i = 0; i < m->m_epg_npgs; i++) 2272 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2273 2274 /* Contig pages should go back to the cache. */ 2275 m->m_ext.ext_free = ktls_free_mext_contig; 2276 } else { 2277 for (i = 0; i < m->m_epg_npgs; i++) 2278 m->m_epg_pa[i] = state->parray[i]; 2279 2280 /* Use the basic free routine. */ 2281 m->m_ext.ext_free = mb_free_mext_pgs; 2282 } 2283 2284 /* Pages are now writable. */ 2285 m->m_epg_flags |= EPG_FLAG_ANON; 2286 } 2287 2288 static __noinline void 2289 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2290 { 2291 struct ktls_ocf_encrypt_state state; 2292 struct ktls_session *tls; 2293 struct socket *so; 2294 struct mbuf *m; 2295 int error, npages, total_pages; 2296 2297 so = top->m_epg_so; 2298 tls = top->m_epg_tls; 2299 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2300 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2301 #ifdef INVARIANTS 2302 top->m_epg_so = NULL; 2303 #endif 2304 total_pages = top->m_epg_enc_cnt; 2305 npages = 0; 2306 2307 /* 2308 * Encrypt the TLS records in the chain of mbufs starting with 2309 * 'top'. 'total_pages' gives us a total count of pages and is 2310 * used to know when we have finished encrypting the TLS 2311 * records originally queued with 'top'. 2312 * 2313 * NB: These mbufs are queued in the socket buffer and 2314 * 'm_next' is traversing the mbufs in the socket buffer. The 2315 * socket buffer lock is not held while traversing this chain. 2316 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2317 * pointers should be stable. However, the 'm_next' of the 2318 * last mbuf encrypted is not necessarily NULL. It can point 2319 * to other mbufs appended while 'top' was on the TLS work 2320 * queue. 2321 * 2322 * Each mbuf holds an entire TLS record. 2323 */ 2324 error = 0; 2325 for (m = top; npages != total_pages; m = m->m_next) { 2326 KASSERT(m->m_epg_tls == tls, 2327 ("different TLS sessions in a single mbuf chain: %p vs %p", 2328 tls, m->m_epg_tls)); 2329 KASSERT(npages + m->m_epg_npgs <= total_pages, 2330 ("page count mismatch: top %p, total_pages %d, m %p", top, 2331 total_pages, m)); 2332 2333 error = ktls_encrypt_record(wq, m, tls, &state); 2334 if (error) { 2335 counter_u64_add(ktls_offload_failed_crypto, 1); 2336 break; 2337 } 2338 2339 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2340 ktls_finish_nonanon(m, &state); 2341 2342 npages += m->m_epg_nrdy; 2343 2344 /* 2345 * Drop a reference to the session now that it is no 2346 * longer needed. Existing code depends on encrypted 2347 * records having no associated session vs 2348 * yet-to-be-encrypted records having an associated 2349 * session. 2350 */ 2351 m->m_epg_tls = NULL; 2352 ktls_free(tls); 2353 } 2354 2355 CURVNET_SET(so->so_vnet); 2356 if (error == 0) { 2357 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2358 } else { 2359 so->so_proto->pr_usrreqs->pru_abort(so); 2360 so->so_error = EIO; 2361 mb_free_notready(top, total_pages); 2362 } 2363 2364 SOCK_LOCK(so); 2365 sorele(so); 2366 CURVNET_RESTORE(); 2367 } 2368 2369 void 2370 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2371 { 2372 struct ktls_session *tls; 2373 struct socket *so; 2374 struct mbuf *m; 2375 int npages; 2376 2377 m = state->m; 2378 2379 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2380 ktls_finish_nonanon(m, state); 2381 2382 so = state->so; 2383 free(state, M_KTLS); 2384 2385 /* 2386 * Drop a reference to the session now that it is no longer 2387 * needed. Existing code depends on encrypted records having 2388 * no associated session vs yet-to-be-encrypted records having 2389 * an associated session. 2390 */ 2391 tls = m->m_epg_tls; 2392 m->m_epg_tls = NULL; 2393 ktls_free(tls); 2394 2395 if (error != 0) 2396 counter_u64_add(ktls_offload_failed_crypto, 1); 2397 2398 CURVNET_SET(so->so_vnet); 2399 npages = m->m_epg_nrdy; 2400 2401 if (error == 0) { 2402 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2403 } else { 2404 so->so_proto->pr_usrreqs->pru_abort(so); 2405 so->so_error = EIO; 2406 mb_free_notready(m, npages); 2407 } 2408 2409 SOCK_LOCK(so); 2410 sorele(so); 2411 CURVNET_RESTORE(); 2412 } 2413 2414 /* 2415 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2416 * (coprocessors) where encryption does not use host CPU resources and 2417 * it can be beneficial to queue more requests than CPUs. 2418 */ 2419 static __noinline void 2420 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2421 { 2422 struct ktls_ocf_encrypt_state *state; 2423 struct ktls_session *tls; 2424 struct socket *so; 2425 struct mbuf *m, *n; 2426 int error, mpages, npages, total_pages; 2427 2428 so = top->m_epg_so; 2429 tls = top->m_epg_tls; 2430 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2431 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2432 #ifdef INVARIANTS 2433 top->m_epg_so = NULL; 2434 #endif 2435 total_pages = top->m_epg_enc_cnt; 2436 npages = 0; 2437 2438 error = 0; 2439 for (m = top; npages != total_pages; m = n) { 2440 KASSERT(m->m_epg_tls == tls, 2441 ("different TLS sessions in a single mbuf chain: %p vs %p", 2442 tls, m->m_epg_tls)); 2443 KASSERT(npages + m->m_epg_npgs <= total_pages, 2444 ("page count mismatch: top %p, total_pages %d, m %p", top, 2445 total_pages, m)); 2446 2447 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2448 soref(so); 2449 state->so = so; 2450 state->m = m; 2451 2452 mpages = m->m_epg_nrdy; 2453 n = m->m_next; 2454 2455 error = ktls_encrypt_record(wq, m, tls, state); 2456 if (error) { 2457 counter_u64_add(ktls_offload_failed_crypto, 1); 2458 free(state, M_KTLS); 2459 CURVNET_SET(so->so_vnet); 2460 SOCK_LOCK(so); 2461 sorele(so); 2462 CURVNET_RESTORE(); 2463 break; 2464 } 2465 2466 npages += mpages; 2467 } 2468 2469 CURVNET_SET(so->so_vnet); 2470 if (error != 0) { 2471 so->so_proto->pr_usrreqs->pru_abort(so); 2472 so->so_error = EIO; 2473 mb_free_notready(m, total_pages - npages); 2474 } 2475 2476 SOCK_LOCK(so); 2477 sorele(so); 2478 CURVNET_RESTORE(); 2479 } 2480 2481 static int 2482 ktls_bind_domain(int domain) 2483 { 2484 int error; 2485 2486 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2487 if (error != 0) 2488 return (error); 2489 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2490 return (0); 2491 } 2492 2493 static void 2494 ktls_alloc_thread(void *ctx) 2495 { 2496 struct ktls_domain_info *ktls_domain = ctx; 2497 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2498 void **buf; 2499 struct sysctl_oid *oid; 2500 char name[80]; 2501 int domain, error, i, nbufs; 2502 2503 domain = ktls_domain - ktls_domains; 2504 if (bootverbose) 2505 printf("Starting KTLS alloc thread for domain %d\n", domain); 2506 error = ktls_bind_domain(domain); 2507 if (error) 2508 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2509 domain, error); 2510 snprintf(name, sizeof(name), "domain%d", domain); 2511 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2512 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2513 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2514 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2515 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2516 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2517 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2518 CTLFLAG_RD, &sc->running, 0, "thread running"); 2519 2520 buf = NULL; 2521 nbufs = 0; 2522 for (;;) { 2523 atomic_store_int(&sc->running, 0); 2524 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2525 atomic_store_int(&sc->running, 1); 2526 sc->wakeups++; 2527 if (nbufs != ktls_max_alloc) { 2528 free(buf, M_KTLS); 2529 nbufs = atomic_load_int(&ktls_max_alloc); 2530 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2531 M_WAITOK | M_ZERO); 2532 } 2533 /* 2534 * Below we allocate nbufs with different allocation 2535 * flags than we use when allocating normally during 2536 * encryption in the ktls worker thread. We specify 2537 * M_NORECLAIM in the worker thread. However, we omit 2538 * that flag here and add M_WAITOK so that the VM 2539 * system is permitted to perform expensive work to 2540 * defragment memory. We do this here, as it does not 2541 * matter if this thread blocks. If we block a ktls 2542 * worker thread, we risk developing backlogs of 2543 * buffers to be encrypted, leading to surges of 2544 * traffic and potential NIC output drops. 2545 */ 2546 for (i = 0; i < nbufs; i++) { 2547 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2548 sc->allocs++; 2549 } 2550 for (i = 0; i < nbufs; i++) { 2551 uma_zfree(ktls_buffer_zone, buf[i]); 2552 buf[i] = NULL; 2553 } 2554 } 2555 } 2556 2557 static void 2558 ktls_work_thread(void *ctx) 2559 { 2560 struct ktls_wq *wq = ctx; 2561 struct mbuf *m, *n; 2562 struct socket *so, *son; 2563 STAILQ_HEAD(, mbuf) local_m_head; 2564 STAILQ_HEAD(, socket) local_so_head; 2565 int cpu; 2566 2567 cpu = wq - ktls_wq; 2568 if (bootverbose) 2569 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2570 2571 /* 2572 * Bind to a core. If ktls_bind_threads is > 1, then 2573 * we bind to the NUMA domain instead. 2574 */ 2575 if (ktls_bind_threads) { 2576 int error; 2577 2578 if (ktls_bind_threads > 1) { 2579 struct pcpu *pc = pcpu_find(cpu); 2580 2581 error = ktls_bind_domain(pc->pc_domain); 2582 } else { 2583 cpuset_t mask; 2584 2585 CPU_SETOF(cpu, &mask); 2586 error = cpuset_setthread(curthread->td_tid, &mask); 2587 } 2588 if (error) 2589 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2590 cpu, error); 2591 } 2592 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2593 fpu_kern_thread(0); 2594 #endif 2595 for (;;) { 2596 mtx_lock(&wq->mtx); 2597 while (STAILQ_EMPTY(&wq->m_head) && 2598 STAILQ_EMPTY(&wq->so_head)) { 2599 wq->running = false; 2600 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2601 wq->running = true; 2602 } 2603 2604 STAILQ_INIT(&local_m_head); 2605 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2606 STAILQ_INIT(&local_so_head); 2607 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2608 mtx_unlock(&wq->mtx); 2609 2610 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2611 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2612 ktls_free(m->m_epg_tls); 2613 m_free_raw(m); 2614 } else { 2615 if (m->m_epg_tls->sync_dispatch) 2616 ktls_encrypt(wq, m); 2617 else 2618 ktls_encrypt_async(wq, m); 2619 counter_u64_add(ktls_cnt_tx_queued, -1); 2620 } 2621 } 2622 2623 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2624 ktls_decrypt(so); 2625 counter_u64_add(ktls_cnt_rx_queued, -1); 2626 } 2627 } 2628 } 2629 2630 #if defined(INET) || defined(INET6) 2631 static void 2632 ktls_disable_ifnet_help(void *context, int pending __unused) 2633 { 2634 struct ktls_session *tls; 2635 struct inpcb *inp; 2636 struct tcpcb *tp; 2637 struct socket *so; 2638 int err; 2639 2640 tls = context; 2641 inp = tls->inp; 2642 if (inp == NULL) 2643 return; 2644 INP_WLOCK(inp); 2645 so = inp->inp_socket; 2646 MPASS(so != NULL); 2647 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2648 (inp->inp_flags2 & INP_FREED)) { 2649 goto out; 2650 } 2651 2652 if (so->so_snd.sb_tls_info != NULL) 2653 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2654 else 2655 err = ENXIO; 2656 if (err == 0) { 2657 counter_u64_add(ktls_ifnet_disable_ok, 1); 2658 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2659 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2660 (inp->inp_flags2 & INP_FREED) == 0 && 2661 (tp = intotcpcb(inp)) != NULL && 2662 tp->t_fb->tfb_hwtls_change != NULL) 2663 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2664 } else { 2665 counter_u64_add(ktls_ifnet_disable_fail, 1); 2666 } 2667 2668 out: 2669 SOCK_LOCK(so); 2670 sorele(so); 2671 if (!in_pcbrele_wlocked(inp)) 2672 INP_WUNLOCK(inp); 2673 ktls_free(tls); 2674 } 2675 2676 /* 2677 * Called when re-transmits are becoming a substantial portion of the 2678 * sends on this connection. When this happens, we transition the 2679 * connection to software TLS. This is needed because most inline TLS 2680 * NICs keep crypto state only for in-order transmits. This means 2681 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2682 * re-DMA the entire TLS record up to and including the current 2683 * segment. This means that when re-transmitting the last ~1448 byte 2684 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2685 * of magnitude more data than we are sending. This can cause the 2686 * PCIe link to saturate well before the network, which can cause 2687 * output drops, and a general loss of capacity. 2688 */ 2689 void 2690 ktls_disable_ifnet(void *arg) 2691 { 2692 struct tcpcb *tp; 2693 struct inpcb *inp; 2694 struct socket *so; 2695 struct ktls_session *tls; 2696 2697 tp = arg; 2698 inp = tp->t_inpcb; 2699 INP_WLOCK_ASSERT(inp); 2700 so = inp->inp_socket; 2701 SOCK_LOCK(so); 2702 tls = so->so_snd.sb_tls_info; 2703 if (tls->disable_ifnet_pending) { 2704 SOCK_UNLOCK(so); 2705 return; 2706 } 2707 2708 /* 2709 * note that disable_ifnet_pending is never cleared; disabling 2710 * ifnet can only be done once per session, so we never want 2711 * to do it again 2712 */ 2713 2714 (void)ktls_hold(tls); 2715 in_pcbref(inp); 2716 soref(so); 2717 tls->disable_ifnet_pending = true; 2718 tls->inp = inp; 2719 SOCK_UNLOCK(so); 2720 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2721 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2722 } 2723 #endif 2724