xref: /freebsd/sys/kern/uipc_ktls.c (revision 8bd5e2f15cc9756e7d6b7feb43ec47f18a38e2bf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/domainset.h>
40 #include <sys/endian.h>
41 #include <sys/ktls.h>
42 #include <sys/lock.h>
43 #include <sys/mbuf.h>
44 #include <sys/mutex.h>
45 #include <sys/rmlock.h>
46 #include <sys/proc.h>
47 #include <sys/protosw.h>
48 #include <sys/refcount.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/taskqueue.h>
54 #include <sys/kthread.h>
55 #include <sys/uio.h>
56 #include <sys/vmmeter.h>
57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
58 #include <machine/pcb.h>
59 #endif
60 #include <machine/vmparam.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #ifdef RSS
64 #include <net/netisr.h>
65 #include <net/rss_config.h>
66 #endif
67 #include <net/route.h>
68 #include <net/route/nhop.h>
69 #if defined(INET) || defined(INET6)
70 #include <netinet/in.h>
71 #include <netinet/in_pcb.h>
72 #endif
73 #include <netinet/tcp_var.h>
74 #ifdef TCP_OFFLOAD
75 #include <netinet/tcp_offload.h>
76 #endif
77 #include <opencrypto/cryptodev.h>
78 #include <opencrypto/ktls.h>
79 #include <vm/uma_dbg.h>
80 #include <vm/vm.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pagequeue.h>
84 
85 struct ktls_wq {
86 	struct mtx	mtx;
87 	STAILQ_HEAD(, mbuf) m_head;
88 	STAILQ_HEAD(, socket) so_head;
89 	bool		running;
90 	int		lastallocfail;
91 } __aligned(CACHE_LINE_SIZE);
92 
93 struct ktls_alloc_thread {
94 	uint64_t wakeups;
95 	uint64_t allocs;
96 	struct thread *td;
97 	int running;
98 };
99 
100 struct ktls_domain_info {
101 	int count;
102 	int cpu[MAXCPU];
103 	struct ktls_alloc_thread alloc_td;
104 };
105 
106 struct ktls_domain_info ktls_domains[MAXMEMDOM];
107 static struct ktls_wq *ktls_wq;
108 static struct proc *ktls_proc;
109 static uma_zone_t ktls_session_zone;
110 static uma_zone_t ktls_buffer_zone;
111 static uint16_t ktls_cpuid_lookup[MAXCPU];
112 static int ktls_init_state;
113 static struct sx ktls_init_lock;
114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
115 
116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117     "Kernel TLS offload");
118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
119     "Kernel TLS offload stats");
120 
121 #ifdef RSS
122 static int ktls_bind_threads = 1;
123 #else
124 static int ktls_bind_threads;
125 #endif
126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
127     &ktls_bind_threads, 0,
128     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
129 
130 static u_int ktls_maxlen = 16384;
131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
132     &ktls_maxlen, 0, "Maximum TLS record size");
133 
134 static int ktls_number_threads;
135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
136     &ktls_number_threads, 0,
137     "Number of TLS threads in thread-pool");
138 
139 unsigned int ktls_ifnet_max_rexmit_pct = 2;
140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
141     &ktls_ifnet_max_rexmit_pct, 2,
142     "Max percent bytes retransmitted before ifnet TLS is disabled");
143 
144 static bool ktls_offload_enable;
145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
146     &ktls_offload_enable, 0,
147     "Enable support for kernel TLS offload");
148 
149 static bool ktls_cbc_enable = true;
150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
151     &ktls_cbc_enable, 1,
152     "Enable Support of AES-CBC crypto for kernel TLS");
153 
154 static bool ktls_sw_buffer_cache = true;
155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
156     &ktls_sw_buffer_cache, 1,
157     "Enable caching of output buffers for SW encryption");
158 
159 static int ktls_max_alloc = 128;
160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN,
161     &ktls_max_alloc, 128,
162     "Max number of 16k buffers to allocate in thread context");
163 
164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
166     &ktls_tasks_active, "Number of active tasks");
167 
168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
170     &ktls_cnt_tx_pending,
171     "Number of TLS 1.0 records waiting for earlier TLS records");
172 
173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
175     &ktls_cnt_tx_queued,
176     "Number of TLS records in queue to tasks for SW encryption");
177 
178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
180     &ktls_cnt_rx_queued,
181     "Number of TLS sockets in queue to tasks for SW decryption");
182 
183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
185     CTLFLAG_RD, &ktls_offload_total,
186     "Total successful TLS setups (parameters set)");
187 
188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
190     CTLFLAG_RD, &ktls_offload_enable_calls,
191     "Total number of TLS enable calls made");
192 
193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
195     &ktls_offload_active, "Total Active TLS sessions");
196 
197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
199     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
200 
201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
203     &ktls_offload_failed_crypto, "Total TLS crypto failures");
204 
205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
207     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
208 
209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
211     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
212 
213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
215     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
216 
217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
219     &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
220 
221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
223     &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
224 
225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226     "Software TLS session stats");
227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228     "Hardware (ifnet) TLS session stats");
229 #ifdef TCP_OFFLOAD
230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231     "TOE TLS session stats");
232 #endif
233 
234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236     "Active number of software TLS sessions using AES-CBC");
237 
238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240     "Active number of software TLS sessions using AES-GCM");
241 
242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244     &ktls_sw_chacha20,
245     "Active number of software TLS sessions using Chacha20-Poly1305");
246 
247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249     &ktls_ifnet_cbc,
250     "Active number of ifnet TLS sessions using AES-CBC");
251 
252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254     &ktls_ifnet_gcm,
255     "Active number of ifnet TLS sessions using AES-GCM");
256 
257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259     &ktls_ifnet_chacha20,
260     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261 
262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265 
266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268     &ktls_ifnet_reset_dropped,
269     "TLS sessions dropped after failing to update ifnet send tag");
270 
271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273     &ktls_ifnet_reset_failed,
274     "TLS sessions that failed to allocate a new ifnet send tag");
275 
276 static int ktls_ifnet_permitted;
277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278     &ktls_ifnet_permitted, 1,
279     "Whether to permit hardware (ifnet) TLS sessions");
280 
281 #ifdef TCP_OFFLOAD
282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284     &ktls_toe_cbc,
285     "Active number of TOE TLS sessions using AES-CBC");
286 
287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289     &ktls_toe_gcm,
290     "Active number of TOE TLS sessions using AES-GCM");
291 
292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294     &ktls_toe_chacha20,
295     "Active number of TOE TLS sessions using Chacha20-Poly1305");
296 #endif
297 
298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299 
300 static void ktls_cleanup(struct ktls_session *tls);
301 #if defined(INET) || defined(INET6)
302 static void ktls_reset_send_tag(void *context, int pending);
303 #endif
304 static void ktls_work_thread(void *ctx);
305 static void ktls_alloc_thread(void *ctx);
306 
307 #if defined(INET) || defined(INET6)
308 static u_int
309 ktls_get_cpu(struct socket *so)
310 {
311 	struct inpcb *inp;
312 #ifdef NUMA
313 	struct ktls_domain_info *di;
314 #endif
315 	u_int cpuid;
316 
317 	inp = sotoinpcb(so);
318 #ifdef RSS
319 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
320 	if (cpuid != NETISR_CPUID_NONE)
321 		return (cpuid);
322 #endif
323 	/*
324 	 * Just use the flowid to shard connections in a repeatable
325 	 * fashion.  Note that TLS 1.0 sessions rely on the
326 	 * serialization provided by having the same connection use
327 	 * the same queue.
328 	 */
329 #ifdef NUMA
330 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
331 		di = &ktls_domains[inp->inp_numa_domain];
332 		cpuid = di->cpu[inp->inp_flowid % di->count];
333 	} else
334 #endif
335 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
336 	return (cpuid);
337 }
338 #endif
339 
340 static int
341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
342 {
343 	vm_page_t m;
344 	int i, req;
345 
346 	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
347 	    ("%s: ktls max length %d is not page size-aligned",
348 	    __func__, ktls_maxlen));
349 
350 	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
351 	for (i = 0; i < count; i++) {
352 		m = vm_page_alloc_noobj_contig_domain(domain, req,
353 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
354 		    VM_MEMATTR_DEFAULT);
355 		if (m == NULL)
356 			break;
357 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
358 	}
359 	return (i);
360 }
361 
362 static void
363 ktls_buffer_release(void *arg __unused, void **store, int count)
364 {
365 	vm_page_t m;
366 	int i, j;
367 
368 	for (i = 0; i < count; i++) {
369 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
370 		for (j = 0; j < atop(ktls_maxlen); j++) {
371 			(void)vm_page_unwire_noq(m + j);
372 			vm_page_free(m + j);
373 		}
374 	}
375 }
376 
377 static void
378 ktls_free_mext_contig(struct mbuf *m)
379 {
380 	M_ASSERTEXTPG(m);
381 	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
382 }
383 
384 static int
385 ktls_init(void)
386 {
387 	struct thread *td;
388 	struct pcpu *pc;
389 	int count, domain, error, i;
390 
391 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
392 	    M_WAITOK | M_ZERO);
393 
394 	ktls_session_zone = uma_zcreate("ktls_session",
395 	    sizeof(struct ktls_session),
396 	    NULL, NULL, NULL, NULL,
397 	    UMA_ALIGN_CACHE, 0);
398 
399 	if (ktls_sw_buffer_cache) {
400 		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
401 		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
402 		    ktls_buffer_import, ktls_buffer_release, NULL,
403 		    UMA_ZONE_FIRSTTOUCH);
404 	}
405 
406 	/*
407 	 * Initialize the workqueues to run the TLS work.  We create a
408 	 * work queue for each CPU.
409 	 */
410 	CPU_FOREACH(i) {
411 		STAILQ_INIT(&ktls_wq[i].m_head);
412 		STAILQ_INIT(&ktls_wq[i].so_head);
413 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
414 		if (ktls_bind_threads > 1) {
415 			pc = pcpu_find(i);
416 			domain = pc->pc_domain;
417 			count = ktls_domains[domain].count;
418 			ktls_domains[domain].cpu[count] = i;
419 			ktls_domains[domain].count++;
420 		}
421 		ktls_cpuid_lookup[ktls_number_threads] = i;
422 		ktls_number_threads++;
423 	}
424 
425 	/*
426 	 * If we somehow have an empty domain, fall back to choosing
427 	 * among all KTLS threads.
428 	 */
429 	if (ktls_bind_threads > 1) {
430 		for (i = 0; i < vm_ndomains; i++) {
431 			if (ktls_domains[i].count == 0) {
432 				ktls_bind_threads = 1;
433 				break;
434 			}
435 		}
436 	}
437 
438 	/* Start kthreads for each workqueue. */
439 	CPU_FOREACH(i) {
440 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
441 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
442 		if (error) {
443 			printf("Can't add KTLS thread %d error %d\n", i, error);
444 			return (error);
445 		}
446 	}
447 
448 	/*
449 	 * Start an allocation thread per-domain to perform blocking allocations
450 	 * of 16k physically contiguous TLS crypto destination buffers.
451 	 */
452 	if (ktls_sw_buffer_cache) {
453 		for (domain = 0; domain < vm_ndomains; domain++) {
454 			if (VM_DOMAIN_EMPTY(domain))
455 				continue;
456 			if (CPU_EMPTY(&cpuset_domain[domain]))
457 				continue;
458 			error = kproc_kthread_add(ktls_alloc_thread,
459 			    &ktls_domains[domain], &ktls_proc,
460 			    &ktls_domains[domain].alloc_td.td,
461 			    0, 0, "KTLS", "alloc_%d", domain);
462 			if (error) {
463 				printf("Can't add KTLS alloc thread %d error %d\n",
464 				    domain, error);
465 				return (error);
466 			}
467 		}
468 	}
469 
470 	if (bootverbose)
471 		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
472 	return (0);
473 }
474 
475 static int
476 ktls_start_kthreads(void)
477 {
478 	int error, state;
479 
480 start:
481 	state = atomic_load_acq_int(&ktls_init_state);
482 	if (__predict_true(state > 0))
483 		return (0);
484 	if (state < 0)
485 		return (ENXIO);
486 
487 	sx_xlock(&ktls_init_lock);
488 	if (ktls_init_state != 0) {
489 		sx_xunlock(&ktls_init_lock);
490 		goto start;
491 	}
492 
493 	error = ktls_init();
494 	if (error == 0)
495 		state = 1;
496 	else
497 		state = -1;
498 	atomic_store_rel_int(&ktls_init_state, state);
499 	sx_xunlock(&ktls_init_lock);
500 	return (error);
501 }
502 
503 #if defined(INET) || defined(INET6)
504 static int
505 ktls_create_session(struct socket *so, struct tls_enable *en,
506     struct ktls_session **tlsp)
507 {
508 	struct ktls_session *tls;
509 	int error;
510 
511 	/* Only TLS 1.0 - 1.3 are supported. */
512 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
513 		return (EINVAL);
514 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
515 	    en->tls_vminor > TLS_MINOR_VER_THREE)
516 		return (EINVAL);
517 
518 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
519 		return (EINVAL);
520 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
521 		return (EINVAL);
522 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
523 		return (EINVAL);
524 
525 	/* All supported algorithms require a cipher key. */
526 	if (en->cipher_key_len == 0)
527 		return (EINVAL);
528 
529 	/* No flags are currently supported. */
530 	if (en->flags != 0)
531 		return (EINVAL);
532 
533 	/* Common checks for supported algorithms. */
534 	switch (en->cipher_algorithm) {
535 	case CRYPTO_AES_NIST_GCM_16:
536 		/*
537 		 * auth_algorithm isn't used, but permit GMAC values
538 		 * for compatibility.
539 		 */
540 		switch (en->auth_algorithm) {
541 		case 0:
542 #ifdef COMPAT_FREEBSD12
543 		/* XXX: Really 13.0-current COMPAT. */
544 		case CRYPTO_AES_128_NIST_GMAC:
545 		case CRYPTO_AES_192_NIST_GMAC:
546 		case CRYPTO_AES_256_NIST_GMAC:
547 #endif
548 			break;
549 		default:
550 			return (EINVAL);
551 		}
552 		if (en->auth_key_len != 0)
553 			return (EINVAL);
554 		switch (en->tls_vminor) {
555 		case TLS_MINOR_VER_TWO:
556 			if (en->iv_len != TLS_AEAD_GCM_LEN)
557 				return (EINVAL);
558 			break;
559 		case TLS_MINOR_VER_THREE:
560 			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
561 				return (EINVAL);
562 			break;
563 		default:
564 			return (EINVAL);
565 		}
566 		break;
567 	case CRYPTO_AES_CBC:
568 		switch (en->auth_algorithm) {
569 		case CRYPTO_SHA1_HMAC:
570 			break;
571 		case CRYPTO_SHA2_256_HMAC:
572 		case CRYPTO_SHA2_384_HMAC:
573 			if (en->tls_vminor != TLS_MINOR_VER_TWO)
574 				return (EINVAL);
575 			break;
576 		default:
577 			return (EINVAL);
578 		}
579 		if (en->auth_key_len == 0)
580 			return (EINVAL);
581 
582 		/*
583 		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
584 		 * use explicit IVs.
585 		 */
586 		switch (en->tls_vminor) {
587 		case TLS_MINOR_VER_ZERO:
588 			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
589 				return (EINVAL);
590 			break;
591 		case TLS_MINOR_VER_ONE:
592 		case TLS_MINOR_VER_TWO:
593 			/* Ignore any supplied IV. */
594 			en->iv_len = 0;
595 			break;
596 		default:
597 			return (EINVAL);
598 		}
599 		break;
600 	case CRYPTO_CHACHA20_POLY1305:
601 		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
602 			return (EINVAL);
603 		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
604 		    en->tls_vminor != TLS_MINOR_VER_THREE)
605 			return (EINVAL);
606 		if (en->iv_len != TLS_CHACHA20_IV_LEN)
607 			return (EINVAL);
608 		break;
609 	default:
610 		return (EINVAL);
611 	}
612 
613 	error = ktls_start_kthreads();
614 	if (error != 0)
615 		return (error);
616 
617 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
618 
619 	counter_u64_add(ktls_offload_active, 1);
620 
621 	refcount_init(&tls->refcount, 1);
622 	TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
623 
624 	tls->wq_index = ktls_get_cpu(so);
625 
626 	tls->params.cipher_algorithm = en->cipher_algorithm;
627 	tls->params.auth_algorithm = en->auth_algorithm;
628 	tls->params.tls_vmajor = en->tls_vmajor;
629 	tls->params.tls_vminor = en->tls_vminor;
630 	tls->params.flags = en->flags;
631 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
632 
633 	/* Set the header and trailer lengths. */
634 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
635 	switch (en->cipher_algorithm) {
636 	case CRYPTO_AES_NIST_GCM_16:
637 		/*
638 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
639 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
640 		 */
641 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
642 			tls->params.tls_hlen += sizeof(uint64_t);
643 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
644 		tls->params.tls_bs = 1;
645 		break;
646 	case CRYPTO_AES_CBC:
647 		switch (en->auth_algorithm) {
648 		case CRYPTO_SHA1_HMAC:
649 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
650 				/* Implicit IV, no nonce. */
651 				tls->sequential_records = true;
652 				tls->next_seqno = be64dec(en->rec_seq);
653 				STAILQ_INIT(&tls->pending_records);
654 			} else {
655 				tls->params.tls_hlen += AES_BLOCK_LEN;
656 			}
657 			tls->params.tls_tlen = AES_BLOCK_LEN +
658 			    SHA1_HASH_LEN;
659 			break;
660 		case CRYPTO_SHA2_256_HMAC:
661 			tls->params.tls_hlen += AES_BLOCK_LEN;
662 			tls->params.tls_tlen = AES_BLOCK_LEN +
663 			    SHA2_256_HASH_LEN;
664 			break;
665 		case CRYPTO_SHA2_384_HMAC:
666 			tls->params.tls_hlen += AES_BLOCK_LEN;
667 			tls->params.tls_tlen = AES_BLOCK_LEN +
668 			    SHA2_384_HASH_LEN;
669 			break;
670 		default:
671 			panic("invalid hmac");
672 		}
673 		tls->params.tls_bs = AES_BLOCK_LEN;
674 		break;
675 	case CRYPTO_CHACHA20_POLY1305:
676 		/*
677 		 * Chacha20 uses a 12 byte implicit IV.
678 		 */
679 		tls->params.tls_tlen = POLY1305_HASH_LEN;
680 		tls->params.tls_bs = 1;
681 		break;
682 	default:
683 		panic("invalid cipher");
684 	}
685 
686 	/*
687 	 * TLS 1.3 includes optional padding which we do not support,
688 	 * and also puts the "real" record type at the end of the
689 	 * encrypted data.
690 	 */
691 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
692 		tls->params.tls_tlen += sizeof(uint8_t);
693 
694 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
695 	    ("TLS header length too long: %d", tls->params.tls_hlen));
696 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
697 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
698 
699 	if (en->auth_key_len != 0) {
700 		tls->params.auth_key_len = en->auth_key_len;
701 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
702 		    M_WAITOK);
703 		error = copyin(en->auth_key, tls->params.auth_key,
704 		    en->auth_key_len);
705 		if (error)
706 			goto out;
707 	}
708 
709 	tls->params.cipher_key_len = en->cipher_key_len;
710 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
711 	error = copyin(en->cipher_key, tls->params.cipher_key,
712 	    en->cipher_key_len);
713 	if (error)
714 		goto out;
715 
716 	/*
717 	 * This holds the implicit portion of the nonce for AEAD
718 	 * ciphers and the initial implicit IV for TLS 1.0.  The
719 	 * explicit portions of the IV are generated in ktls_frame().
720 	 */
721 	if (en->iv_len != 0) {
722 		tls->params.iv_len = en->iv_len;
723 		error = copyin(en->iv, tls->params.iv, en->iv_len);
724 		if (error)
725 			goto out;
726 
727 		/*
728 		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
729 		 * counter to generate unique explicit IVs.
730 		 *
731 		 * Store this counter in the last 8 bytes of the IV
732 		 * array so that it is 8-byte aligned.
733 		 */
734 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
735 		    en->tls_vminor == TLS_MINOR_VER_TWO)
736 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
737 	}
738 
739 	*tlsp = tls;
740 	return (0);
741 
742 out:
743 	ktls_cleanup(tls);
744 	return (error);
745 }
746 
747 static struct ktls_session *
748 ktls_clone_session(struct ktls_session *tls)
749 {
750 	struct ktls_session *tls_new;
751 
752 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
753 
754 	counter_u64_add(ktls_offload_active, 1);
755 
756 	refcount_init(&tls_new->refcount, 1);
757 	TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new);
758 
759 	/* Copy fields from existing session. */
760 	tls_new->params = tls->params;
761 	tls_new->wq_index = tls->wq_index;
762 
763 	/* Deep copy keys. */
764 	if (tls_new->params.auth_key != NULL) {
765 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
766 		    M_KTLS, M_WAITOK);
767 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
768 		    tls->params.auth_key_len);
769 	}
770 
771 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
772 	    M_WAITOK);
773 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
774 	    tls->params.cipher_key_len);
775 
776 	return (tls_new);
777 }
778 #endif
779 
780 static void
781 ktls_cleanup(struct ktls_session *tls)
782 {
783 
784 	counter_u64_add(ktls_offload_active, -1);
785 	switch (tls->mode) {
786 	case TCP_TLS_MODE_SW:
787 		switch (tls->params.cipher_algorithm) {
788 		case CRYPTO_AES_CBC:
789 			counter_u64_add(ktls_sw_cbc, -1);
790 			break;
791 		case CRYPTO_AES_NIST_GCM_16:
792 			counter_u64_add(ktls_sw_gcm, -1);
793 			break;
794 		case CRYPTO_CHACHA20_POLY1305:
795 			counter_u64_add(ktls_sw_chacha20, -1);
796 			break;
797 		}
798 		break;
799 	case TCP_TLS_MODE_IFNET:
800 		switch (tls->params.cipher_algorithm) {
801 		case CRYPTO_AES_CBC:
802 			counter_u64_add(ktls_ifnet_cbc, -1);
803 			break;
804 		case CRYPTO_AES_NIST_GCM_16:
805 			counter_u64_add(ktls_ifnet_gcm, -1);
806 			break;
807 		case CRYPTO_CHACHA20_POLY1305:
808 			counter_u64_add(ktls_ifnet_chacha20, -1);
809 			break;
810 		}
811 		if (tls->snd_tag != NULL)
812 			m_snd_tag_rele(tls->snd_tag);
813 		break;
814 #ifdef TCP_OFFLOAD
815 	case TCP_TLS_MODE_TOE:
816 		switch (tls->params.cipher_algorithm) {
817 		case CRYPTO_AES_CBC:
818 			counter_u64_add(ktls_toe_cbc, -1);
819 			break;
820 		case CRYPTO_AES_NIST_GCM_16:
821 			counter_u64_add(ktls_toe_gcm, -1);
822 			break;
823 		case CRYPTO_CHACHA20_POLY1305:
824 			counter_u64_add(ktls_toe_chacha20, -1);
825 			break;
826 		}
827 		break;
828 #endif
829 	}
830 	if (tls->ocf_session != NULL)
831 		ktls_ocf_free(tls);
832 	if (tls->params.auth_key != NULL) {
833 		zfree(tls->params.auth_key, M_KTLS);
834 		tls->params.auth_key = NULL;
835 		tls->params.auth_key_len = 0;
836 	}
837 	if (tls->params.cipher_key != NULL) {
838 		zfree(tls->params.cipher_key, M_KTLS);
839 		tls->params.cipher_key = NULL;
840 		tls->params.cipher_key_len = 0;
841 	}
842 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
843 }
844 
845 #if defined(INET) || defined(INET6)
846 
847 #ifdef TCP_OFFLOAD
848 static int
849 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
850 {
851 	struct inpcb *inp;
852 	struct tcpcb *tp;
853 	int error;
854 
855 	inp = so->so_pcb;
856 	INP_WLOCK(inp);
857 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
858 		INP_WUNLOCK(inp);
859 		return (ECONNRESET);
860 	}
861 	if (inp->inp_socket == NULL) {
862 		INP_WUNLOCK(inp);
863 		return (ECONNRESET);
864 	}
865 	tp = intotcpcb(inp);
866 	if (!(tp->t_flags & TF_TOE)) {
867 		INP_WUNLOCK(inp);
868 		return (EOPNOTSUPP);
869 	}
870 
871 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
872 	INP_WUNLOCK(inp);
873 	if (error == 0) {
874 		tls->mode = TCP_TLS_MODE_TOE;
875 		switch (tls->params.cipher_algorithm) {
876 		case CRYPTO_AES_CBC:
877 			counter_u64_add(ktls_toe_cbc, 1);
878 			break;
879 		case CRYPTO_AES_NIST_GCM_16:
880 			counter_u64_add(ktls_toe_gcm, 1);
881 			break;
882 		case CRYPTO_CHACHA20_POLY1305:
883 			counter_u64_add(ktls_toe_chacha20, 1);
884 			break;
885 		}
886 	}
887 	return (error);
888 }
889 #endif
890 
891 /*
892  * Common code used when first enabling ifnet TLS on a connection or
893  * when allocating a new ifnet TLS session due to a routing change.
894  * This function allocates a new TLS send tag on whatever interface
895  * the connection is currently routed over.
896  */
897 static int
898 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
899     struct m_snd_tag **mstp)
900 {
901 	union if_snd_tag_alloc_params params;
902 	struct ifnet *ifp;
903 	struct nhop_object *nh;
904 	struct tcpcb *tp;
905 	int error;
906 
907 	INP_RLOCK(inp);
908 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
909 		INP_RUNLOCK(inp);
910 		return (ECONNRESET);
911 	}
912 	if (inp->inp_socket == NULL) {
913 		INP_RUNLOCK(inp);
914 		return (ECONNRESET);
915 	}
916 	tp = intotcpcb(inp);
917 
918 	/*
919 	 * Check administrative controls on ifnet TLS to determine if
920 	 * ifnet TLS should be denied.
921 	 *
922 	 * - Always permit 'force' requests.
923 	 * - ktls_ifnet_permitted == 0: always deny.
924 	 */
925 	if (!force && ktls_ifnet_permitted == 0) {
926 		INP_RUNLOCK(inp);
927 		return (ENXIO);
928 	}
929 
930 	/*
931 	 * XXX: Use the cached route in the inpcb to find the
932 	 * interface.  This should perhaps instead use
933 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
934 	 * enabled after a connection has completed key negotiation in
935 	 * userland, the cached route will be present in practice.
936 	 */
937 	nh = inp->inp_route.ro_nh;
938 	if (nh == NULL) {
939 		INP_RUNLOCK(inp);
940 		return (ENXIO);
941 	}
942 	ifp = nh->nh_ifp;
943 	if_ref(ifp);
944 
945 	/*
946 	 * Allocate a TLS + ratelimit tag if the connection has an
947 	 * existing pacing rate.
948 	 */
949 	if (tp->t_pacing_rate != -1 &&
950 	    (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
951 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
952 		params.tls_rate_limit.inp = inp;
953 		params.tls_rate_limit.tls = tls;
954 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
955 	} else {
956 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
957 		params.tls.inp = inp;
958 		params.tls.tls = tls;
959 	}
960 	params.hdr.flowid = inp->inp_flowid;
961 	params.hdr.flowtype = inp->inp_flowtype;
962 	params.hdr.numa_domain = inp->inp_numa_domain;
963 	INP_RUNLOCK(inp);
964 
965 	if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
966 		error = EOPNOTSUPP;
967 		goto out;
968 	}
969 	if (inp->inp_vflag & INP_IPV6) {
970 		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
971 			error = EOPNOTSUPP;
972 			goto out;
973 		}
974 	} else {
975 		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
976 			error = EOPNOTSUPP;
977 			goto out;
978 		}
979 	}
980 	error = m_snd_tag_alloc(ifp, &params, mstp);
981 out:
982 	if_rele(ifp);
983 	return (error);
984 }
985 
986 static int
987 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
988 {
989 	struct m_snd_tag *mst;
990 	int error;
991 
992 	error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
993 	if (error == 0) {
994 		tls->mode = TCP_TLS_MODE_IFNET;
995 		tls->snd_tag = mst;
996 		switch (tls->params.cipher_algorithm) {
997 		case CRYPTO_AES_CBC:
998 			counter_u64_add(ktls_ifnet_cbc, 1);
999 			break;
1000 		case CRYPTO_AES_NIST_GCM_16:
1001 			counter_u64_add(ktls_ifnet_gcm, 1);
1002 			break;
1003 		case CRYPTO_CHACHA20_POLY1305:
1004 			counter_u64_add(ktls_ifnet_chacha20, 1);
1005 			break;
1006 		}
1007 	}
1008 	return (error);
1009 }
1010 
1011 static void
1012 ktls_use_sw(struct ktls_session *tls)
1013 {
1014 	tls->mode = TCP_TLS_MODE_SW;
1015 	switch (tls->params.cipher_algorithm) {
1016 	case CRYPTO_AES_CBC:
1017 		counter_u64_add(ktls_sw_cbc, 1);
1018 		break;
1019 	case CRYPTO_AES_NIST_GCM_16:
1020 		counter_u64_add(ktls_sw_gcm, 1);
1021 		break;
1022 	case CRYPTO_CHACHA20_POLY1305:
1023 		counter_u64_add(ktls_sw_chacha20, 1);
1024 		break;
1025 	}
1026 }
1027 
1028 static int
1029 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
1030 {
1031 	int error;
1032 
1033 	error = ktls_ocf_try(so, tls, direction);
1034 	if (error)
1035 		return (error);
1036 	ktls_use_sw(tls);
1037 	return (0);
1038 }
1039 
1040 /*
1041  * KTLS RX stores data in the socket buffer as a list of TLS records,
1042  * where each record is stored as a control message containg the TLS
1043  * header followed by data mbufs containing the decrypted data.  This
1044  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1045  * both encrypted and decrypted data.  TLS records decrypted by a NIC
1046  * should be queued to the socket buffer as records, but encrypted
1047  * data which needs to be decrypted by software arrives as a stream of
1048  * regular mbufs which need to be converted.  In addition, there may
1049  * already be pending encrypted data in the socket buffer when KTLS RX
1050  * is enabled.
1051  *
1052  * To manage not-yet-decrypted data for KTLS RX, the following scheme
1053  * is used:
1054  *
1055  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1056  *
1057  * - ktls_check_rx checks this chain of mbufs reading the TLS header
1058  *   from the first mbuf.  Once all of the data for that TLS record is
1059  *   queued, the socket is queued to a worker thread.
1060  *
1061  * - The worker thread calls ktls_decrypt to decrypt TLS records in
1062  *   the TLS chain.  Each TLS record is detached from the TLS chain,
1063  *   decrypted, and inserted into the regular socket buffer chain as
1064  *   record starting with a control message holding the TLS header and
1065  *   a chain of mbufs holding the encrypted data.
1066  */
1067 
1068 static void
1069 sb_mark_notready(struct sockbuf *sb)
1070 {
1071 	struct mbuf *m;
1072 
1073 	m = sb->sb_mb;
1074 	sb->sb_mtls = m;
1075 	sb->sb_mb = NULL;
1076 	sb->sb_mbtail = NULL;
1077 	sb->sb_lastrecord = NULL;
1078 	for (; m != NULL; m = m->m_next) {
1079 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1080 		    __func__));
1081 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1082 		    __func__));
1083 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1084 		    __func__));
1085 		m->m_flags |= M_NOTREADY;
1086 		sb->sb_acc -= m->m_len;
1087 		sb->sb_tlscc += m->m_len;
1088 		sb->sb_mtlstail = m;
1089 	}
1090 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1091 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1092 	    sb->sb_ccc));
1093 }
1094 
1095 /*
1096  * Return information about the pending TLS data in a socket
1097  * buffer.  On return, 'seqno' is set to the sequence number
1098  * of the next TLS record to be received, 'resid' is set to
1099  * the amount of bytes still needed for the last pending
1100  * record.  The function returns 'false' if the last pending
1101  * record contains a partial TLS header.  In that case, 'resid'
1102  * is the number of bytes needed to complete the TLS header.
1103  */
1104 bool
1105 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1106 {
1107 	struct tls_record_layer hdr;
1108 	struct mbuf *m;
1109 	uint64_t seqno;
1110 	size_t resid;
1111 	u_int offset, record_len;
1112 
1113 	SOCKBUF_LOCK_ASSERT(sb);
1114 	MPASS(sb->sb_flags & SB_TLS_RX);
1115 	seqno = sb->sb_tls_seqno;
1116 	resid = sb->sb_tlscc;
1117 	m = sb->sb_mtls;
1118 	offset = 0;
1119 
1120 	if (resid == 0) {
1121 		*seqnop = seqno;
1122 		*residp = 0;
1123 		return (true);
1124 	}
1125 
1126 	for (;;) {
1127 		seqno++;
1128 
1129 		if (resid < sizeof(hdr)) {
1130 			*seqnop = seqno;
1131 			*residp = sizeof(hdr) - resid;
1132 			return (false);
1133 		}
1134 
1135 		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1136 
1137 		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1138 		if (resid <= record_len) {
1139 			*seqnop = seqno;
1140 			*residp = record_len - resid;
1141 			return (true);
1142 		}
1143 		resid -= record_len;
1144 
1145 		while (record_len != 0) {
1146 			if (m->m_len - offset > record_len) {
1147 				offset += record_len;
1148 				break;
1149 			}
1150 
1151 			record_len -= (m->m_len - offset);
1152 			offset = 0;
1153 			m = m->m_next;
1154 		}
1155 	}
1156 }
1157 
1158 int
1159 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1160 {
1161 	struct ktls_session *tls;
1162 	int error;
1163 
1164 	if (!ktls_offload_enable)
1165 		return (ENOTSUP);
1166 	if (SOLISTENING(so))
1167 		return (EINVAL);
1168 
1169 	counter_u64_add(ktls_offload_enable_calls, 1);
1170 
1171 	/*
1172 	 * This should always be true since only the TCP socket option
1173 	 * invokes this function.
1174 	 */
1175 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1176 		return (EINVAL);
1177 
1178 	/*
1179 	 * XXX: Don't overwrite existing sessions.  We should permit
1180 	 * this to support rekeying in the future.
1181 	 */
1182 	if (so->so_rcv.sb_tls_info != NULL)
1183 		return (EALREADY);
1184 
1185 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1186 		return (ENOTSUP);
1187 
1188 	error = ktls_create_session(so, en, &tls);
1189 	if (error)
1190 		return (error);
1191 
1192 	error = ktls_ocf_try(so, tls, KTLS_RX);
1193 	if (error) {
1194 		ktls_cleanup(tls);
1195 		return (error);
1196 	}
1197 
1198 	/* Mark the socket as using TLS offload. */
1199 	SOCKBUF_LOCK(&so->so_rcv);
1200 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1201 	so->so_rcv.sb_tls_info = tls;
1202 	so->so_rcv.sb_flags |= SB_TLS_RX;
1203 
1204 	/* Mark existing data as not ready until it can be decrypted. */
1205 	sb_mark_notready(&so->so_rcv);
1206 	ktls_check_rx(&so->so_rcv);
1207 	SOCKBUF_UNLOCK(&so->so_rcv);
1208 
1209 #ifdef TCP_OFFLOAD
1210 	error = ktls_try_toe(so, tls, KTLS_RX);
1211 	if (error)
1212 #endif
1213 		ktls_use_sw(tls);
1214 
1215 	counter_u64_add(ktls_offload_total, 1);
1216 
1217 	return (0);
1218 }
1219 
1220 int
1221 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1222 {
1223 	struct ktls_session *tls;
1224 	struct inpcb *inp;
1225 	int error;
1226 
1227 	if (!ktls_offload_enable)
1228 		return (ENOTSUP);
1229 	if (SOLISTENING(so))
1230 		return (EINVAL);
1231 
1232 	counter_u64_add(ktls_offload_enable_calls, 1);
1233 
1234 	/*
1235 	 * This should always be true since only the TCP socket option
1236 	 * invokes this function.
1237 	 */
1238 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1239 		return (EINVAL);
1240 
1241 	/*
1242 	 * XXX: Don't overwrite existing sessions.  We should permit
1243 	 * this to support rekeying in the future.
1244 	 */
1245 	if (so->so_snd.sb_tls_info != NULL)
1246 		return (EALREADY);
1247 
1248 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1249 		return (ENOTSUP);
1250 
1251 	/* TLS requires ext pgs */
1252 	if (mb_use_ext_pgs == 0)
1253 		return (ENXIO);
1254 
1255 	error = ktls_create_session(so, en, &tls);
1256 	if (error)
1257 		return (error);
1258 
1259 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1260 #ifdef TCP_OFFLOAD
1261 	error = ktls_try_toe(so, tls, KTLS_TX);
1262 	if (error)
1263 #endif
1264 		error = ktls_try_ifnet(so, tls, false);
1265 	if (error)
1266 		error = ktls_try_sw(so, tls, KTLS_TX);
1267 
1268 	if (error) {
1269 		ktls_cleanup(tls);
1270 		return (error);
1271 	}
1272 
1273 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1274 	if (error) {
1275 		ktls_cleanup(tls);
1276 		return (error);
1277 	}
1278 
1279 	/*
1280 	 * Write lock the INP when setting sb_tls_info so that
1281 	 * routines in tcp_ratelimit.c can read sb_tls_info while
1282 	 * holding the INP lock.
1283 	 */
1284 	inp = so->so_pcb;
1285 	INP_WLOCK(inp);
1286 	SOCKBUF_LOCK(&so->so_snd);
1287 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1288 	so->so_snd.sb_tls_info = tls;
1289 	if (tls->mode != TCP_TLS_MODE_SW)
1290 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1291 	SOCKBUF_UNLOCK(&so->so_snd);
1292 	INP_WUNLOCK(inp);
1293 	SOCK_IO_SEND_UNLOCK(so);
1294 
1295 	counter_u64_add(ktls_offload_total, 1);
1296 
1297 	return (0);
1298 }
1299 
1300 int
1301 ktls_get_rx_mode(struct socket *so, int *modep)
1302 {
1303 	struct ktls_session *tls;
1304 	struct inpcb *inp __diagused;
1305 
1306 	if (SOLISTENING(so))
1307 		return (EINVAL);
1308 	inp = so->so_pcb;
1309 	INP_WLOCK_ASSERT(inp);
1310 	SOCK_RECVBUF_LOCK(so);
1311 	tls = so->so_rcv.sb_tls_info;
1312 	if (tls == NULL)
1313 		*modep = TCP_TLS_MODE_NONE;
1314 	else
1315 		*modep = tls->mode;
1316 	SOCK_RECVBUF_UNLOCK(so);
1317 	return (0);
1318 }
1319 
1320 /*
1321  * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1322  *
1323  * This function gets information about the next TCP- and TLS-
1324  * sequence number to be processed by the TLS receive worker
1325  * thread. The information is extracted from the given "inpcb"
1326  * structure. The values are stored in host endian format at the two
1327  * given output pointer locations. The TCP sequence number points to
1328  * the beginning of the TLS header.
1329  *
1330  * This function returns zero on success, else a non-zero error code
1331  * is returned.
1332  */
1333 int
1334 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1335 {
1336 	struct socket *so;
1337 	struct tcpcb *tp;
1338 
1339 	INP_RLOCK(inp);
1340 	so = inp->inp_socket;
1341 	if (__predict_false(so == NULL)) {
1342 		INP_RUNLOCK(inp);
1343 		return (EINVAL);
1344 	}
1345 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1346 		INP_RUNLOCK(inp);
1347 		return (ECONNRESET);
1348 	}
1349 
1350 	tp = intotcpcb(inp);
1351 	MPASS(tp != NULL);
1352 
1353 	SOCKBUF_LOCK(&so->so_rcv);
1354 	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1355 	*tlsseq = so->so_rcv.sb_tls_seqno;
1356 	SOCKBUF_UNLOCK(&so->so_rcv);
1357 
1358 	INP_RUNLOCK(inp);
1359 
1360 	return (0);
1361 }
1362 
1363 int
1364 ktls_get_tx_mode(struct socket *so, int *modep)
1365 {
1366 	struct ktls_session *tls;
1367 	struct inpcb *inp __diagused;
1368 
1369 	if (SOLISTENING(so))
1370 		return (EINVAL);
1371 	inp = so->so_pcb;
1372 	INP_WLOCK_ASSERT(inp);
1373 	SOCK_SENDBUF_LOCK(so);
1374 	tls = so->so_snd.sb_tls_info;
1375 	if (tls == NULL)
1376 		*modep = TCP_TLS_MODE_NONE;
1377 	else
1378 		*modep = tls->mode;
1379 	SOCK_SENDBUF_UNLOCK(so);
1380 	return (0);
1381 }
1382 
1383 /*
1384  * Switch between SW and ifnet TLS sessions as requested.
1385  */
1386 int
1387 ktls_set_tx_mode(struct socket *so, int mode)
1388 {
1389 	struct ktls_session *tls, *tls_new;
1390 	struct inpcb *inp;
1391 	int error;
1392 
1393 	if (SOLISTENING(so))
1394 		return (EINVAL);
1395 	switch (mode) {
1396 	case TCP_TLS_MODE_SW:
1397 	case TCP_TLS_MODE_IFNET:
1398 		break;
1399 	default:
1400 		return (EINVAL);
1401 	}
1402 
1403 	inp = so->so_pcb;
1404 	INP_WLOCK_ASSERT(inp);
1405 	SOCKBUF_LOCK(&so->so_snd);
1406 	tls = so->so_snd.sb_tls_info;
1407 	if (tls == NULL) {
1408 		SOCKBUF_UNLOCK(&so->so_snd);
1409 		return (0);
1410 	}
1411 
1412 	if (tls->mode == mode) {
1413 		SOCKBUF_UNLOCK(&so->so_snd);
1414 		return (0);
1415 	}
1416 
1417 	tls = ktls_hold(tls);
1418 	SOCKBUF_UNLOCK(&so->so_snd);
1419 	INP_WUNLOCK(inp);
1420 
1421 	tls_new = ktls_clone_session(tls);
1422 
1423 	if (mode == TCP_TLS_MODE_IFNET)
1424 		error = ktls_try_ifnet(so, tls_new, true);
1425 	else
1426 		error = ktls_try_sw(so, tls_new, KTLS_TX);
1427 	if (error) {
1428 		counter_u64_add(ktls_switch_failed, 1);
1429 		ktls_free(tls_new);
1430 		ktls_free(tls);
1431 		INP_WLOCK(inp);
1432 		return (error);
1433 	}
1434 
1435 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1436 	if (error) {
1437 		counter_u64_add(ktls_switch_failed, 1);
1438 		ktls_free(tls_new);
1439 		ktls_free(tls);
1440 		INP_WLOCK(inp);
1441 		return (error);
1442 	}
1443 
1444 	/*
1445 	 * If we raced with another session change, keep the existing
1446 	 * session.
1447 	 */
1448 	if (tls != so->so_snd.sb_tls_info) {
1449 		counter_u64_add(ktls_switch_failed, 1);
1450 		SOCK_IO_SEND_UNLOCK(so);
1451 		ktls_free(tls_new);
1452 		ktls_free(tls);
1453 		INP_WLOCK(inp);
1454 		return (EBUSY);
1455 	}
1456 
1457 	SOCKBUF_LOCK(&so->so_snd);
1458 	so->so_snd.sb_tls_info = tls_new;
1459 	if (tls_new->mode != TCP_TLS_MODE_SW)
1460 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1461 	SOCKBUF_UNLOCK(&so->so_snd);
1462 	SOCK_IO_SEND_UNLOCK(so);
1463 
1464 	/*
1465 	 * Drop two references on 'tls'.  The first is for the
1466 	 * ktls_hold() above.  The second drops the reference from the
1467 	 * socket buffer.
1468 	 */
1469 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1470 	ktls_free(tls);
1471 	ktls_free(tls);
1472 
1473 	if (mode == TCP_TLS_MODE_IFNET)
1474 		counter_u64_add(ktls_switch_to_ifnet, 1);
1475 	else
1476 		counter_u64_add(ktls_switch_to_sw, 1);
1477 
1478 	INP_WLOCK(inp);
1479 	return (0);
1480 }
1481 
1482 /*
1483  * Try to allocate a new TLS send tag.  This task is scheduled when
1484  * ip_output detects a route change while trying to transmit a packet
1485  * holding a TLS record.  If a new tag is allocated, replace the tag
1486  * in the TLS session.  Subsequent packets on the connection will use
1487  * the new tag.  If a new tag cannot be allocated, drop the
1488  * connection.
1489  */
1490 static void
1491 ktls_reset_send_tag(void *context, int pending)
1492 {
1493 	struct epoch_tracker et;
1494 	struct ktls_session *tls;
1495 	struct m_snd_tag *old, *new;
1496 	struct inpcb *inp;
1497 	struct tcpcb *tp;
1498 	int error;
1499 
1500 	MPASS(pending == 1);
1501 
1502 	tls = context;
1503 	inp = tls->inp;
1504 
1505 	/*
1506 	 * Free the old tag first before allocating a new one.
1507 	 * ip[6]_output_send() will treat a NULL send tag the same as
1508 	 * an ifp mismatch and drop packets until a new tag is
1509 	 * allocated.
1510 	 *
1511 	 * Write-lock the INP when changing tls->snd_tag since
1512 	 * ip[6]_output_send() holds a read-lock when reading the
1513 	 * pointer.
1514 	 */
1515 	INP_WLOCK(inp);
1516 	old = tls->snd_tag;
1517 	tls->snd_tag = NULL;
1518 	INP_WUNLOCK(inp);
1519 	if (old != NULL)
1520 		m_snd_tag_rele(old);
1521 
1522 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1523 
1524 	if (error == 0) {
1525 		INP_WLOCK(inp);
1526 		tls->snd_tag = new;
1527 		mtx_pool_lock(mtxpool_sleep, tls);
1528 		tls->reset_pending = false;
1529 		mtx_pool_unlock(mtxpool_sleep, tls);
1530 		if (!in_pcbrele_wlocked(inp))
1531 			INP_WUNLOCK(inp);
1532 
1533 		counter_u64_add(ktls_ifnet_reset, 1);
1534 
1535 		/*
1536 		 * XXX: Should we kick tcp_output explicitly now that
1537 		 * the send tag is fixed or just rely on timers?
1538 		 */
1539 	} else {
1540 		NET_EPOCH_ENTER(et);
1541 		INP_WLOCK(inp);
1542 		if (!in_pcbrele_wlocked(inp)) {
1543 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1544 			    !(inp->inp_flags & INP_DROPPED)) {
1545 				tp = intotcpcb(inp);
1546 				CURVNET_SET(tp->t_vnet);
1547 				tp = tcp_drop(tp, ECONNABORTED);
1548 				CURVNET_RESTORE();
1549 				if (tp != NULL)
1550 					INP_WUNLOCK(inp);
1551 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1552 			} else
1553 				INP_WUNLOCK(inp);
1554 		}
1555 		NET_EPOCH_EXIT(et);
1556 
1557 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1558 
1559 		/*
1560 		 * Leave reset_pending true to avoid future tasks while
1561 		 * the socket goes away.
1562 		 */
1563 	}
1564 
1565 	ktls_free(tls);
1566 }
1567 
1568 int
1569 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1570 {
1571 
1572 	if (inp == NULL)
1573 		return (ENOBUFS);
1574 
1575 	INP_LOCK_ASSERT(inp);
1576 
1577 	/*
1578 	 * See if we should schedule a task to update the send tag for
1579 	 * this session.
1580 	 */
1581 	mtx_pool_lock(mtxpool_sleep, tls);
1582 	if (!tls->reset_pending) {
1583 		(void) ktls_hold(tls);
1584 		in_pcbref(inp);
1585 		tls->inp = inp;
1586 		tls->reset_pending = true;
1587 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1588 	}
1589 	mtx_pool_unlock(mtxpool_sleep, tls);
1590 	return (ENOBUFS);
1591 }
1592 
1593 #ifdef RATELIMIT
1594 int
1595 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1596 {
1597 	union if_snd_tag_modify_params params = {
1598 		.rate_limit.max_rate = max_pacing_rate,
1599 		.rate_limit.flags = M_NOWAIT,
1600 	};
1601 	struct m_snd_tag *mst;
1602 
1603 	/* Can't get to the inp, but it should be locked. */
1604 	/* INP_LOCK_ASSERT(inp); */
1605 
1606 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1607 
1608 	if (tls->snd_tag == NULL) {
1609 		/*
1610 		 * Resetting send tag, ignore this change.  The
1611 		 * pending reset may or may not see this updated rate
1612 		 * in the tcpcb.  If it doesn't, we will just lose
1613 		 * this rate change.
1614 		 */
1615 		return (0);
1616 	}
1617 
1618 	MPASS(tls->snd_tag != NULL);
1619 	MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1620 
1621 	mst = tls->snd_tag;
1622 	return (mst->sw->snd_tag_modify(mst, &params));
1623 }
1624 #endif
1625 #endif
1626 
1627 void
1628 ktls_destroy(struct ktls_session *tls)
1629 {
1630 
1631 	if (tls->sequential_records) {
1632 		struct mbuf *m, *n;
1633 		int page_count;
1634 
1635 		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1636 			page_count = m->m_epg_enc_cnt;
1637 			while (page_count > 0) {
1638 				KASSERT(page_count >= m->m_epg_nrdy,
1639 				    ("%s: too few pages", __func__));
1640 				page_count -= m->m_epg_nrdy;
1641 				m = m_free(m);
1642 			}
1643 		}
1644 	}
1645 	ktls_cleanup(tls);
1646 	uma_zfree(ktls_session_zone, tls);
1647 }
1648 
1649 void
1650 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1651 {
1652 
1653 	for (; m != NULL; m = m->m_next) {
1654 		KASSERT((m->m_flags & M_EXTPG) != 0,
1655 		    ("ktls_seq: mapped mbuf %p", m));
1656 
1657 		m->m_epg_seqno = sb->sb_tls_seqno;
1658 		sb->sb_tls_seqno++;
1659 	}
1660 }
1661 
1662 /*
1663  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1664  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1665  * mbuf must be populated with the payload of each TLS record.
1666  *
1667  * The record_type argument specifies the TLS record type used when
1668  * populating the TLS header.
1669  *
1670  * The enq_count argument on return is set to the number of pages of
1671  * payload data for this entire chain that need to be encrypted via SW
1672  * encryption.  The returned value should be passed to ktls_enqueue
1673  * when scheduling encryption of this chain of mbufs.  To handle the
1674  * special case of empty fragments for TLS 1.0 sessions, an empty
1675  * fragment counts as one page.
1676  */
1677 void
1678 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1679     uint8_t record_type)
1680 {
1681 	struct tls_record_layer *tlshdr;
1682 	struct mbuf *m;
1683 	uint64_t *noncep;
1684 	uint16_t tls_len;
1685 	int maxlen __diagused;
1686 
1687 	maxlen = tls->params.max_frame_len;
1688 	*enq_cnt = 0;
1689 	for (m = top; m != NULL; m = m->m_next) {
1690 		/*
1691 		 * All mbufs in the chain should be TLS records whose
1692 		 * payload does not exceed the maximum frame length.
1693 		 *
1694 		 * Empty TLS records are permitted when using CBC.
1695 		 */
1696 		KASSERT(m->m_len <= maxlen &&
1697 		    (tls->params.cipher_algorithm == CRYPTO_AES_CBC ?
1698 		    m->m_len >= 0 : m->m_len > 0),
1699 		    ("ktls_frame: m %p len %d\n", m, m->m_len));
1700 
1701 		/*
1702 		 * TLS frames require unmapped mbufs to store session
1703 		 * info.
1704 		 */
1705 		KASSERT((m->m_flags & M_EXTPG) != 0,
1706 		    ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
1707 
1708 		tls_len = m->m_len;
1709 
1710 		/* Save a reference to the session. */
1711 		m->m_epg_tls = ktls_hold(tls);
1712 
1713 		m->m_epg_hdrlen = tls->params.tls_hlen;
1714 		m->m_epg_trllen = tls->params.tls_tlen;
1715 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1716 			int bs, delta;
1717 
1718 			/*
1719 			 * AES-CBC pads messages to a multiple of the
1720 			 * block size.  Note that the padding is
1721 			 * applied after the digest and the encryption
1722 			 * is done on the "plaintext || mac || padding".
1723 			 * At least one byte of padding is always
1724 			 * present.
1725 			 *
1726 			 * Compute the final trailer length assuming
1727 			 * at most one block of padding.
1728 			 * tls->params.tls_tlen is the maximum
1729 			 * possible trailer length (padding + digest).
1730 			 * delta holds the number of excess padding
1731 			 * bytes if the maximum were used.  Those
1732 			 * extra bytes are removed.
1733 			 */
1734 			bs = tls->params.tls_bs;
1735 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1736 			m->m_epg_trllen -= delta;
1737 		}
1738 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1739 
1740 		/* Populate the TLS header. */
1741 		tlshdr = (void *)m->m_epg_hdr;
1742 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
1743 
1744 		/*
1745 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
1746 		 * of TLS_RLTYPE_APP.
1747 		 */
1748 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1749 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1750 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1751 			tlshdr->tls_type = TLS_RLTYPE_APP;
1752 			/* save the real record type for later */
1753 			m->m_epg_record_type = record_type;
1754 			m->m_epg_trail[0] = record_type;
1755 		} else {
1756 			tlshdr->tls_vminor = tls->params.tls_vminor;
1757 			tlshdr->tls_type = record_type;
1758 		}
1759 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1760 
1761 		/*
1762 		 * Store nonces / explicit IVs after the end of the
1763 		 * TLS header.
1764 		 *
1765 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
1766 		 * from the end of the IV.  The nonce is then
1767 		 * incremented for use by the next record.
1768 		 *
1769 		 * For CBC, a random nonce is inserted for TLS 1.1+.
1770 		 */
1771 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1772 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1773 			noncep = (uint64_t *)(tls->params.iv + 8);
1774 			be64enc(tlshdr + 1, *noncep);
1775 			(*noncep)++;
1776 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1777 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1778 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1779 
1780 		/*
1781 		 * When using SW encryption, mark the mbuf not ready.
1782 		 * It will be marked ready via sbready() after the
1783 		 * record has been encrypted.
1784 		 *
1785 		 * When using ifnet TLS, unencrypted TLS records are
1786 		 * sent down the stack to the NIC.
1787 		 */
1788 		if (tls->mode == TCP_TLS_MODE_SW) {
1789 			m->m_flags |= M_NOTREADY;
1790 			if (__predict_false(tls_len == 0)) {
1791 				/* TLS 1.0 empty fragment. */
1792 				m->m_epg_nrdy = 1;
1793 			} else
1794 				m->m_epg_nrdy = m->m_epg_npgs;
1795 			*enq_cnt += m->m_epg_nrdy;
1796 		}
1797 	}
1798 }
1799 
1800 void
1801 ktls_check_rx(struct sockbuf *sb)
1802 {
1803 	struct tls_record_layer hdr;
1804 	struct ktls_wq *wq;
1805 	struct socket *so;
1806 	bool running;
1807 
1808 	SOCKBUF_LOCK_ASSERT(sb);
1809 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1810 	    __func__, sb));
1811 	so = __containerof(sb, struct socket, so_rcv);
1812 
1813 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
1814 		return;
1815 
1816 	/* Is there enough queued for a TLS header? */
1817 	if (sb->sb_tlscc < sizeof(hdr)) {
1818 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1819 			so->so_error = EMSGSIZE;
1820 		return;
1821 	}
1822 
1823 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1824 
1825 	/* Is the entire record queued? */
1826 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1827 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1828 			so->so_error = EMSGSIZE;
1829 		return;
1830 	}
1831 
1832 	sb->sb_flags |= SB_TLS_RX_RUNNING;
1833 
1834 	soref(so);
1835 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1836 	mtx_lock(&wq->mtx);
1837 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1838 	running = wq->running;
1839 	mtx_unlock(&wq->mtx);
1840 	if (!running)
1841 		wakeup(wq);
1842 	counter_u64_add(ktls_cnt_rx_queued, 1);
1843 }
1844 
1845 static struct mbuf *
1846 ktls_detach_record(struct sockbuf *sb, int len)
1847 {
1848 	struct mbuf *m, *n, *top;
1849 	int remain;
1850 
1851 	SOCKBUF_LOCK_ASSERT(sb);
1852 	MPASS(len <= sb->sb_tlscc);
1853 
1854 	/*
1855 	 * If TLS chain is the exact size of the record,
1856 	 * just grab the whole record.
1857 	 */
1858 	top = sb->sb_mtls;
1859 	if (sb->sb_tlscc == len) {
1860 		sb->sb_mtls = NULL;
1861 		sb->sb_mtlstail = NULL;
1862 		goto out;
1863 	}
1864 
1865 	/*
1866 	 * While it would be nice to use m_split() here, we need
1867 	 * to know exactly what m_split() allocates to update the
1868 	 * accounting, so do it inline instead.
1869 	 */
1870 	remain = len;
1871 	for (m = top; remain > m->m_len; m = m->m_next)
1872 		remain -= m->m_len;
1873 
1874 	/* Easy case: don't have to split 'm'. */
1875 	if (remain == m->m_len) {
1876 		sb->sb_mtls = m->m_next;
1877 		if (sb->sb_mtls == NULL)
1878 			sb->sb_mtlstail = NULL;
1879 		m->m_next = NULL;
1880 		goto out;
1881 	}
1882 
1883 	/*
1884 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1885 	 * with M_NOWAIT first.
1886 	 */
1887 	n = m_get(M_NOWAIT, MT_DATA);
1888 	if (n == NULL) {
1889 		/*
1890 		 * Use M_WAITOK with socket buffer unlocked.  If
1891 		 * 'sb_mtls' changes while the lock is dropped, return
1892 		 * NULL to force the caller to retry.
1893 		 */
1894 		SOCKBUF_UNLOCK(sb);
1895 
1896 		n = m_get(M_WAITOK, MT_DATA);
1897 
1898 		SOCKBUF_LOCK(sb);
1899 		if (sb->sb_mtls != top) {
1900 			m_free(n);
1901 			return (NULL);
1902 		}
1903 	}
1904 	n->m_flags |= M_NOTREADY;
1905 
1906 	/* Store remainder in 'n'. */
1907 	n->m_len = m->m_len - remain;
1908 	if (m->m_flags & M_EXT) {
1909 		n->m_data = m->m_data + remain;
1910 		mb_dupcl(n, m);
1911 	} else {
1912 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1913 	}
1914 
1915 	/* Trim 'm' and update accounting. */
1916 	m->m_len -= n->m_len;
1917 	sb->sb_tlscc -= n->m_len;
1918 	sb->sb_ccc -= n->m_len;
1919 
1920 	/* Account for 'n'. */
1921 	sballoc_ktls_rx(sb, n);
1922 
1923 	/* Insert 'n' into the TLS chain. */
1924 	sb->sb_mtls = n;
1925 	n->m_next = m->m_next;
1926 	if (sb->sb_mtlstail == m)
1927 		sb->sb_mtlstail = n;
1928 
1929 	/* Detach the record from the TLS chain. */
1930 	m->m_next = NULL;
1931 
1932 out:
1933 	MPASS(m_length(top, NULL) == len);
1934 	for (m = top; m != NULL; m = m->m_next)
1935 		sbfree_ktls_rx(sb, m);
1936 	sb->sb_tlsdcc = len;
1937 	sb->sb_ccc += len;
1938 	SBCHECK(sb);
1939 	return (top);
1940 }
1941 
1942 /*
1943  * Determine the length of the trailing zero padding and find the real
1944  * record type in the byte before the padding.
1945  *
1946  * Walking the mbuf chain backwards is clumsy, so another option would
1947  * be to scan forwards remembering the last non-zero byte before the
1948  * trailer.  However, it would be expensive to scan the entire record.
1949  * Instead, find the last non-zero byte of each mbuf in the chain
1950  * keeping track of the relative offset of that nonzero byte.
1951  *
1952  * trail_len is the size of the MAC/tag on input and is set to the
1953  * size of the full trailer including padding and the record type on
1954  * return.
1955  */
1956 static int
1957 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
1958     int *trailer_len, uint8_t *record_typep)
1959 {
1960 	char *cp;
1961 	u_int digest_start, last_offset, m_len, offset;
1962 	uint8_t record_type;
1963 
1964 	digest_start = tls_len - *trailer_len;
1965 	last_offset = 0;
1966 	offset = 0;
1967 	for (; m != NULL && offset < digest_start;
1968 	     offset += m->m_len, m = m->m_next) {
1969 		/* Don't look for padding in the tag. */
1970 		m_len = min(digest_start - offset, m->m_len);
1971 		cp = mtod(m, char *);
1972 
1973 		/* Find last non-zero byte in this mbuf. */
1974 		while (m_len > 0 && cp[m_len - 1] == 0)
1975 			m_len--;
1976 		if (m_len > 0) {
1977 			record_type = cp[m_len - 1];
1978 			last_offset = offset + m_len;
1979 		}
1980 	}
1981 	if (last_offset < tls->params.tls_hlen)
1982 		return (EBADMSG);
1983 
1984 	*record_typep = record_type;
1985 	*trailer_len = tls_len - last_offset + 1;
1986 	return (0);
1987 }
1988 
1989 static void
1990 ktls_decrypt(struct socket *so)
1991 {
1992 	char tls_header[MBUF_PEXT_HDR_LEN];
1993 	struct ktls_session *tls;
1994 	struct sockbuf *sb;
1995 	struct tls_record_layer *hdr;
1996 	struct tls_get_record tgr;
1997 	struct mbuf *control, *data, *m;
1998 	uint64_t seqno;
1999 	int error, remain, tls_len, trail_len;
2000 	bool tls13;
2001 	uint8_t vminor, record_type;
2002 
2003 	hdr = (struct tls_record_layer *)tls_header;
2004 	sb = &so->so_rcv;
2005 	SOCKBUF_LOCK(sb);
2006 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2007 	    ("%s: socket %p not running", __func__, so));
2008 
2009 	tls = sb->sb_tls_info;
2010 	MPASS(tls != NULL);
2011 
2012 	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2013 	if (tls13)
2014 		vminor = TLS_MINOR_VER_TWO;
2015 	else
2016 		vminor = tls->params.tls_vminor;
2017 	for (;;) {
2018 		/* Is there enough queued for a TLS header? */
2019 		if (sb->sb_tlscc < tls->params.tls_hlen)
2020 			break;
2021 
2022 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2023 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2024 
2025 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2026 		    hdr->tls_vminor != vminor)
2027 			error = EINVAL;
2028 		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2029 			error = EINVAL;
2030 		else if (tls_len < tls->params.tls_hlen || tls_len >
2031 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2032 		    tls->params.tls_tlen)
2033 			error = EMSGSIZE;
2034 		else
2035 			error = 0;
2036 		if (__predict_false(error != 0)) {
2037 			/*
2038 			 * We have a corrupted record and are likely
2039 			 * out of sync.  The connection isn't
2040 			 * recoverable at this point, so abort it.
2041 			 */
2042 			SOCKBUF_UNLOCK(sb);
2043 			counter_u64_add(ktls_offload_corrupted_records, 1);
2044 
2045 			CURVNET_SET(so->so_vnet);
2046 			so->so_proto->pr_usrreqs->pru_abort(so);
2047 			so->so_error = error;
2048 			CURVNET_RESTORE();
2049 			goto deref;
2050 		}
2051 
2052 		/* Is the entire record queued? */
2053 		if (sb->sb_tlscc < tls_len)
2054 			break;
2055 
2056 		/*
2057 		 * Split out the portion of the mbuf chain containing
2058 		 * this TLS record.
2059 		 */
2060 		data = ktls_detach_record(sb, tls_len);
2061 		if (data == NULL)
2062 			continue;
2063 		MPASS(sb->sb_tlsdcc == tls_len);
2064 
2065 		seqno = sb->sb_tls_seqno;
2066 		sb->sb_tls_seqno++;
2067 		SBCHECK(sb);
2068 		SOCKBUF_UNLOCK(sb);
2069 
2070 		error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
2071 		if (error == 0) {
2072 			if (tls13)
2073 				error = tls13_find_record_type(tls, data,
2074 				    tls_len, &trail_len, &record_type);
2075 			else
2076 				record_type = hdr->tls_type;
2077 		}
2078 		if (error) {
2079 			counter_u64_add(ktls_offload_failed_crypto, 1);
2080 
2081 			SOCKBUF_LOCK(sb);
2082 			if (sb->sb_tlsdcc == 0) {
2083 				/*
2084 				 * sbcut/drop/flush discarded these
2085 				 * mbufs.
2086 				 */
2087 				m_freem(data);
2088 				break;
2089 			}
2090 
2091 			/*
2092 			 * Drop this TLS record's data, but keep
2093 			 * decrypting subsequent records.
2094 			 */
2095 			sb->sb_ccc -= tls_len;
2096 			sb->sb_tlsdcc = 0;
2097 
2098 			CURVNET_SET(so->so_vnet);
2099 			so->so_error = EBADMSG;
2100 			sorwakeup_locked(so);
2101 			CURVNET_RESTORE();
2102 
2103 			m_freem(data);
2104 
2105 			SOCKBUF_LOCK(sb);
2106 			continue;
2107 		}
2108 
2109 		/* Allocate the control mbuf. */
2110 		memset(&tgr, 0, sizeof(tgr));
2111 		tgr.tls_type = record_type;
2112 		tgr.tls_vmajor = hdr->tls_vmajor;
2113 		tgr.tls_vminor = hdr->tls_vminor;
2114 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2115 		    trail_len);
2116 		control = sbcreatecontrol_how(&tgr, sizeof(tgr),
2117 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2118 
2119 		SOCKBUF_LOCK(sb);
2120 		if (sb->sb_tlsdcc == 0) {
2121 			/* sbcut/drop/flush discarded these mbufs. */
2122 			MPASS(sb->sb_tlscc == 0);
2123 			m_freem(data);
2124 			m_freem(control);
2125 			break;
2126 		}
2127 
2128 		/*
2129 		 * Clear the 'dcc' accounting in preparation for
2130 		 * adding the decrypted record.
2131 		 */
2132 		sb->sb_ccc -= tls_len;
2133 		sb->sb_tlsdcc = 0;
2134 		SBCHECK(sb);
2135 
2136 		/* If there is no payload, drop all of the data. */
2137 		if (tgr.tls_length == htobe16(0)) {
2138 			m_freem(data);
2139 			data = NULL;
2140 		} else {
2141 			/* Trim header. */
2142 			remain = tls->params.tls_hlen;
2143 			while (remain > 0) {
2144 				if (data->m_len > remain) {
2145 					data->m_data += remain;
2146 					data->m_len -= remain;
2147 					break;
2148 				}
2149 				remain -= data->m_len;
2150 				data = m_free(data);
2151 			}
2152 
2153 			/* Trim trailer and clear M_NOTREADY. */
2154 			remain = be16toh(tgr.tls_length);
2155 			m = data;
2156 			for (m = data; remain > m->m_len; m = m->m_next) {
2157 				m->m_flags &= ~M_NOTREADY;
2158 				remain -= m->m_len;
2159 			}
2160 			m->m_len = remain;
2161 			m_freem(m->m_next);
2162 			m->m_next = NULL;
2163 			m->m_flags &= ~M_NOTREADY;
2164 
2165 			/* Set EOR on the final mbuf. */
2166 			m->m_flags |= M_EOR;
2167 		}
2168 
2169 		sbappendcontrol_locked(sb, data, control, 0);
2170 	}
2171 
2172 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2173 
2174 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2175 		so->so_error = EMSGSIZE;
2176 
2177 	sorwakeup_locked(so);
2178 
2179 deref:
2180 	SOCKBUF_UNLOCK_ASSERT(sb);
2181 
2182 	CURVNET_SET(so->so_vnet);
2183 	sorele(so);
2184 	CURVNET_RESTORE();
2185 }
2186 
2187 void
2188 ktls_enqueue_to_free(struct mbuf *m)
2189 {
2190 	struct ktls_wq *wq;
2191 	bool running;
2192 
2193 	/* Mark it for freeing. */
2194 	m->m_epg_flags |= EPG_FLAG_2FREE;
2195 	wq = &ktls_wq[m->m_epg_tls->wq_index];
2196 	mtx_lock(&wq->mtx);
2197 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2198 	running = wq->running;
2199 	mtx_unlock(&wq->mtx);
2200 	if (!running)
2201 		wakeup(wq);
2202 }
2203 
2204 static void *
2205 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2206 {
2207 	void *buf;
2208 	int domain, running;
2209 
2210 	if (m->m_epg_npgs <= 2)
2211 		return (NULL);
2212 	if (ktls_buffer_zone == NULL)
2213 		return (NULL);
2214 	if ((u_int)(ticks - wq->lastallocfail) < hz) {
2215 		/*
2216 		 * Rate-limit allocation attempts after a failure.
2217 		 * ktls_buffer_import() will acquire a per-domain mutex to check
2218 		 * the free page queues and may fail consistently if memory is
2219 		 * fragmented.
2220 		 */
2221 		return (NULL);
2222 	}
2223 	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2224 	if (buf == NULL) {
2225 		domain = PCPU_GET(domain);
2226 		wq->lastallocfail = ticks;
2227 
2228 		/*
2229 		 * Note that this check is "racy", but the races are
2230 		 * harmless, and are either a spurious wakeup if
2231 		 * multiple threads fail allocations before the alloc
2232 		 * thread wakes, or waiting an extra second in case we
2233 		 * see an old value of running == true.
2234 		 */
2235 		if (!VM_DOMAIN_EMPTY(domain)) {
2236 			running = atomic_load_int(&ktls_domains[domain].alloc_td.running);
2237 			if (!running)
2238 				wakeup(&ktls_domains[domain].alloc_td);
2239 		}
2240 	}
2241 	return (buf);
2242 }
2243 
2244 static int
2245 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2246     struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2247 {
2248 	vm_page_t pg;
2249 	int error, i, len, off;
2250 
2251 	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2252 	    ("%p not unready & nomap mbuf\n", m));
2253 	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2254 	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2255 	    ktls_maxlen));
2256 
2257 	/* Anonymous mbufs are encrypted in place. */
2258 	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2259 		return (tls->sw_encrypt(state, tls, m, NULL, 0));
2260 
2261 	/*
2262 	 * For file-backed mbufs (from sendfile), anonymous wired
2263 	 * pages are allocated and used as the encryption destination.
2264 	 */
2265 	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2266 		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2267 		    m->m_epg_1st_off;
2268 		state->dst_iov[0].iov_base = (char *)state->cbuf +
2269 		    m->m_epg_1st_off;
2270 		state->dst_iov[0].iov_len = len;
2271 		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2272 		i = 1;
2273 	} else {
2274 		off = m->m_epg_1st_off;
2275 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2276 			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2277 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2278 			len = m_epg_pagelen(m, i, off);
2279 			state->parray[i] = VM_PAGE_TO_PHYS(pg);
2280 			state->dst_iov[i].iov_base =
2281 			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2282 			state->dst_iov[i].iov_len = len;
2283 		}
2284 	}
2285 	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2286 	state->dst_iov[i].iov_base = m->m_epg_trail;
2287 	state->dst_iov[i].iov_len = m->m_epg_trllen;
2288 
2289 	error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1);
2290 
2291 	if (__predict_false(error != 0)) {
2292 		/* Free the anonymous pages. */
2293 		if (state->cbuf != NULL)
2294 			uma_zfree(ktls_buffer_zone, state->cbuf);
2295 		else {
2296 			for (i = 0; i < m->m_epg_npgs; i++) {
2297 				pg = PHYS_TO_VM_PAGE(state->parray[i]);
2298 				(void)vm_page_unwire_noq(pg);
2299 				vm_page_free(pg);
2300 			}
2301 		}
2302 	}
2303 	return (error);
2304 }
2305 
2306 /* Number of TLS records in a batch passed to ktls_enqueue(). */
2307 static u_int
2308 ktls_batched_records(struct mbuf *m)
2309 {
2310 	int page_count, records;
2311 
2312 	records = 0;
2313 	page_count = m->m_epg_enc_cnt;
2314 	while (page_count > 0) {
2315 		records++;
2316 		page_count -= m->m_epg_nrdy;
2317 		m = m->m_next;
2318 	}
2319 	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2320 	return (records);
2321 }
2322 
2323 void
2324 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2325 {
2326 	struct ktls_session *tls;
2327 	struct ktls_wq *wq;
2328 	int queued;
2329 	bool running;
2330 
2331 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2332 	    (M_EXTPG | M_NOTREADY)),
2333 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2334 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2335 
2336 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2337 
2338 	m->m_epg_enc_cnt = page_count;
2339 
2340 	/*
2341 	 * Save a pointer to the socket.  The caller is responsible
2342 	 * for taking an additional reference via soref().
2343 	 */
2344 	m->m_epg_so = so;
2345 
2346 	queued = 1;
2347 	tls = m->m_epg_tls;
2348 	wq = &ktls_wq[tls->wq_index];
2349 	mtx_lock(&wq->mtx);
2350 	if (__predict_false(tls->sequential_records)) {
2351 		/*
2352 		 * For TLS 1.0, records must be encrypted
2353 		 * sequentially.  For a given connection, all records
2354 		 * queued to the associated work queue are processed
2355 		 * sequentially.  However, sendfile(2) might complete
2356 		 * I/O requests spanning multiple TLS records out of
2357 		 * order.  Here we ensure TLS records are enqueued to
2358 		 * the work queue in FIFO order.
2359 		 *
2360 		 * tls->next_seqno holds the sequence number of the
2361 		 * next TLS record that should be enqueued to the work
2362 		 * queue.  If this next record is not tls->next_seqno,
2363 		 * it must be a future record, so insert it, sorted by
2364 		 * TLS sequence number, into tls->pending_records and
2365 		 * return.
2366 		 *
2367 		 * If this TLS record matches tls->next_seqno, place
2368 		 * it in the work queue and then check
2369 		 * tls->pending_records to see if any
2370 		 * previously-queued records are now ready for
2371 		 * encryption.
2372 		 */
2373 		if (m->m_epg_seqno != tls->next_seqno) {
2374 			struct mbuf *n, *p;
2375 
2376 			p = NULL;
2377 			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2378 				if (n->m_epg_seqno > m->m_epg_seqno)
2379 					break;
2380 				p = n;
2381 			}
2382 			if (n == NULL)
2383 				STAILQ_INSERT_TAIL(&tls->pending_records, m,
2384 				    m_epg_stailq);
2385 			else if (p == NULL)
2386 				STAILQ_INSERT_HEAD(&tls->pending_records, m,
2387 				    m_epg_stailq);
2388 			else
2389 				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2390 				    m_epg_stailq);
2391 			mtx_unlock(&wq->mtx);
2392 			counter_u64_add(ktls_cnt_tx_pending, 1);
2393 			return;
2394 		}
2395 
2396 		tls->next_seqno += ktls_batched_records(m);
2397 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2398 
2399 		while (!STAILQ_EMPTY(&tls->pending_records)) {
2400 			struct mbuf *n;
2401 
2402 			n = STAILQ_FIRST(&tls->pending_records);
2403 			if (n->m_epg_seqno != tls->next_seqno)
2404 				break;
2405 
2406 			queued++;
2407 			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2408 			tls->next_seqno += ktls_batched_records(n);
2409 			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2410 		}
2411 		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2412 	} else
2413 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2414 
2415 	running = wq->running;
2416 	mtx_unlock(&wq->mtx);
2417 	if (!running)
2418 		wakeup(wq);
2419 	counter_u64_add(ktls_cnt_tx_queued, queued);
2420 }
2421 
2422 /*
2423  * Once a file-backed mbuf (from sendfile) has been encrypted, free
2424  * the pages from the file and replace them with the anonymous pages
2425  * allocated in ktls_encrypt_record().
2426  */
2427 static void
2428 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
2429 {
2430 	int i;
2431 
2432 	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
2433 
2434 	/* Free the old pages. */
2435 	m->m_ext.ext_free(m);
2436 
2437 	/* Replace them with the new pages. */
2438 	if (state->cbuf != NULL) {
2439 		for (i = 0; i < m->m_epg_npgs; i++)
2440 			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
2441 
2442 		/* Contig pages should go back to the cache. */
2443 		m->m_ext.ext_free = ktls_free_mext_contig;
2444 	} else {
2445 		for (i = 0; i < m->m_epg_npgs; i++)
2446 			m->m_epg_pa[i] = state->parray[i];
2447 
2448 		/* Use the basic free routine. */
2449 		m->m_ext.ext_free = mb_free_mext_pgs;
2450 	}
2451 
2452 	/* Pages are now writable. */
2453 	m->m_epg_flags |= EPG_FLAG_ANON;
2454 }
2455 
2456 static __noinline void
2457 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
2458 {
2459 	struct ktls_ocf_encrypt_state state;
2460 	struct ktls_session *tls;
2461 	struct socket *so;
2462 	struct mbuf *m;
2463 	int error, npages, total_pages;
2464 
2465 	so = top->m_epg_so;
2466 	tls = top->m_epg_tls;
2467 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
2468 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2469 #ifdef INVARIANTS
2470 	top->m_epg_so = NULL;
2471 #endif
2472 	total_pages = top->m_epg_enc_cnt;
2473 	npages = 0;
2474 
2475 	/*
2476 	 * Encrypt the TLS records in the chain of mbufs starting with
2477 	 * 'top'.  'total_pages' gives us a total count of pages and is
2478 	 * used to know when we have finished encrypting the TLS
2479 	 * records originally queued with 'top'.
2480 	 *
2481 	 * NB: These mbufs are queued in the socket buffer and
2482 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
2483 	 * socket buffer lock is not held while traversing this chain.
2484 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
2485 	 * pointers should be stable.  However, the 'm_next' of the
2486 	 * last mbuf encrypted is not necessarily NULL.  It can point
2487 	 * to other mbufs appended while 'top' was on the TLS work
2488 	 * queue.
2489 	 *
2490 	 * Each mbuf holds an entire TLS record.
2491 	 */
2492 	error = 0;
2493 	for (m = top; npages != total_pages; m = m->m_next) {
2494 		KASSERT(m->m_epg_tls == tls,
2495 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
2496 		    tls, m->m_epg_tls));
2497 		KASSERT(npages + m->m_epg_npgs <= total_pages,
2498 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
2499 		    total_pages, m));
2500 
2501 		error = ktls_encrypt_record(wq, m, tls, &state);
2502 		if (error) {
2503 			counter_u64_add(ktls_offload_failed_crypto, 1);
2504 			break;
2505 		}
2506 
2507 		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
2508 			ktls_finish_nonanon(m, &state);
2509 
2510 		npages += m->m_epg_nrdy;
2511 
2512 		/*
2513 		 * Drop a reference to the session now that it is no
2514 		 * longer needed.  Existing code depends on encrypted
2515 		 * records having no associated session vs
2516 		 * yet-to-be-encrypted records having an associated
2517 		 * session.
2518 		 */
2519 		m->m_epg_tls = NULL;
2520 		ktls_free(tls);
2521 	}
2522 
2523 	CURVNET_SET(so->so_vnet);
2524 	if (error == 0) {
2525 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2526 	} else {
2527 		so->so_proto->pr_usrreqs->pru_abort(so);
2528 		so->so_error = EIO;
2529 		mb_free_notready(top, total_pages);
2530 	}
2531 
2532 	sorele(so);
2533 	CURVNET_RESTORE();
2534 }
2535 
2536 void
2537 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
2538 {
2539 	struct ktls_session *tls;
2540 	struct socket *so;
2541 	struct mbuf *m;
2542 	int npages;
2543 
2544 	m = state->m;
2545 
2546 	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
2547 		ktls_finish_nonanon(m, state);
2548 
2549 	so = state->so;
2550 	free(state, M_KTLS);
2551 
2552 	/*
2553 	 * Drop a reference to the session now that it is no longer
2554 	 * needed.  Existing code depends on encrypted records having
2555 	 * no associated session vs yet-to-be-encrypted records having
2556 	 * an associated session.
2557 	 */
2558 	tls = m->m_epg_tls;
2559 	m->m_epg_tls = NULL;
2560 	ktls_free(tls);
2561 
2562 	if (error != 0)
2563 		counter_u64_add(ktls_offload_failed_crypto, 1);
2564 
2565 	CURVNET_SET(so->so_vnet);
2566 	npages = m->m_epg_nrdy;
2567 
2568 	if (error == 0) {
2569 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages);
2570 	} else {
2571 		so->so_proto->pr_usrreqs->pru_abort(so);
2572 		so->so_error = EIO;
2573 		mb_free_notready(m, npages);
2574 	}
2575 
2576 	sorele(so);
2577 	CURVNET_RESTORE();
2578 }
2579 
2580 /*
2581  * Similar to ktls_encrypt, but used with asynchronous OCF backends
2582  * (coprocessors) where encryption does not use host CPU resources and
2583  * it can be beneficial to queue more requests than CPUs.
2584  */
2585 static __noinline void
2586 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
2587 {
2588 	struct ktls_ocf_encrypt_state *state;
2589 	struct ktls_session *tls;
2590 	struct socket *so;
2591 	struct mbuf *m, *n;
2592 	int error, mpages, npages, total_pages;
2593 
2594 	so = top->m_epg_so;
2595 	tls = top->m_epg_tls;
2596 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
2597 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2598 #ifdef INVARIANTS
2599 	top->m_epg_so = NULL;
2600 #endif
2601 	total_pages = top->m_epg_enc_cnt;
2602 	npages = 0;
2603 
2604 	error = 0;
2605 	for (m = top; npages != total_pages; m = n) {
2606 		KASSERT(m->m_epg_tls == tls,
2607 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
2608 		    tls, m->m_epg_tls));
2609 		KASSERT(npages + m->m_epg_npgs <= total_pages,
2610 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
2611 		    total_pages, m));
2612 
2613 		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
2614 		soref(so);
2615 		state->so = so;
2616 		state->m = m;
2617 
2618 		mpages = m->m_epg_nrdy;
2619 		n = m->m_next;
2620 
2621 		error = ktls_encrypt_record(wq, m, tls, state);
2622 		if (error) {
2623 			counter_u64_add(ktls_offload_failed_crypto, 1);
2624 			free(state, M_KTLS);
2625 			CURVNET_SET(so->so_vnet);
2626 			sorele(so);
2627 			CURVNET_RESTORE();
2628 			break;
2629 		}
2630 
2631 		npages += mpages;
2632 	}
2633 
2634 	CURVNET_SET(so->so_vnet);
2635 	if (error != 0) {
2636 		so->so_proto->pr_usrreqs->pru_abort(so);
2637 		so->so_error = EIO;
2638 		mb_free_notready(m, total_pages - npages);
2639 	}
2640 
2641 	sorele(so);
2642 	CURVNET_RESTORE();
2643 }
2644 
2645 static int
2646 ktls_bind_domain(int domain)
2647 {
2648 	int error;
2649 
2650 	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
2651 	if (error != 0)
2652 		return (error);
2653 	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
2654 	return (0);
2655 }
2656 
2657 static void
2658 ktls_alloc_thread(void *ctx)
2659 {
2660 	struct ktls_domain_info *ktls_domain = ctx;
2661 	struct ktls_alloc_thread *sc = &ktls_domain->alloc_td;
2662 	void **buf;
2663 	struct sysctl_oid *oid;
2664 	char name[80];
2665 	int domain, error, i, nbufs;
2666 
2667 	domain = ktls_domain - ktls_domains;
2668 	if (bootverbose)
2669 		printf("Starting KTLS alloc thread for domain %d\n", domain);
2670 	error = ktls_bind_domain(domain);
2671 	if (error)
2672 		printf("Unable to bind KTLS alloc thread for domain %d: error %d\n",
2673 		    domain, error);
2674 	snprintf(name, sizeof(name), "domain%d", domain);
2675 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
2676 	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2677 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs",
2678 	    CTLFLAG_RD,  &sc->allocs, 0, "buffers allocated");
2679 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
2680 	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
2681 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
2682 	    CTLFLAG_RD,  &sc->running, 0, "thread running");
2683 
2684 	buf = NULL;
2685 	nbufs = 0;
2686 	for (;;) {
2687 		atomic_store_int(&sc->running, 0);
2688 		tsleep(sc, PZERO | PNOLOCK, "-",  0);
2689 		atomic_store_int(&sc->running, 1);
2690 		sc->wakeups++;
2691 		if (nbufs != ktls_max_alloc) {
2692 			free(buf, M_KTLS);
2693 			nbufs = atomic_load_int(&ktls_max_alloc);
2694 			buf = malloc(sizeof(void *) * nbufs, M_KTLS,
2695 			    M_WAITOK | M_ZERO);
2696 		}
2697 		/*
2698 		 * Below we allocate nbufs with different allocation
2699 		 * flags than we use when allocating normally during
2700 		 * encryption in the ktls worker thread.  We specify
2701 		 * M_NORECLAIM in the worker thread. However, we omit
2702 		 * that flag here and add M_WAITOK so that the VM
2703 		 * system is permitted to perform expensive work to
2704 		 * defragment memory.  We do this here, as it does not
2705 		 * matter if this thread blocks.  If we block a ktls
2706 		 * worker thread, we risk developing backlogs of
2707 		 * buffers to be encrypted, leading to surges of
2708 		 * traffic and potential NIC output drops.
2709 		 */
2710 		for (i = 0; i < nbufs; i++) {
2711 			buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK);
2712 			sc->allocs++;
2713 		}
2714 		for (i = 0; i < nbufs; i++) {
2715 			uma_zfree(ktls_buffer_zone, buf[i]);
2716 			buf[i] = NULL;
2717 		}
2718 	}
2719 }
2720 
2721 static void
2722 ktls_work_thread(void *ctx)
2723 {
2724 	struct ktls_wq *wq = ctx;
2725 	struct mbuf *m, *n;
2726 	struct socket *so, *son;
2727 	STAILQ_HEAD(, mbuf) local_m_head;
2728 	STAILQ_HEAD(, socket) local_so_head;
2729 	int cpu;
2730 
2731 	cpu = wq - ktls_wq;
2732 	if (bootverbose)
2733 		printf("Starting KTLS worker thread for CPU %d\n", cpu);
2734 
2735 	/*
2736 	 * Bind to a core.  If ktls_bind_threads is > 1, then
2737 	 * we bind to the NUMA domain instead.
2738 	 */
2739 	if (ktls_bind_threads) {
2740 		int error;
2741 
2742 		if (ktls_bind_threads > 1) {
2743 			struct pcpu *pc = pcpu_find(cpu);
2744 
2745 			error = ktls_bind_domain(pc->pc_domain);
2746 		} else {
2747 			cpuset_t mask;
2748 
2749 			CPU_SETOF(cpu, &mask);
2750 			error = cpuset_setthread(curthread->td_tid, &mask);
2751 		}
2752 		if (error)
2753 			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
2754 				cpu, error);
2755 	}
2756 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2757 	fpu_kern_thread(0);
2758 #endif
2759 	for (;;) {
2760 		mtx_lock(&wq->mtx);
2761 		while (STAILQ_EMPTY(&wq->m_head) &&
2762 		    STAILQ_EMPTY(&wq->so_head)) {
2763 			wq->running = false;
2764 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2765 			wq->running = true;
2766 		}
2767 
2768 		STAILQ_INIT(&local_m_head);
2769 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
2770 		STAILQ_INIT(&local_so_head);
2771 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
2772 		mtx_unlock(&wq->mtx);
2773 
2774 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2775 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
2776 				ktls_free(m->m_epg_tls);
2777 				m_free_raw(m);
2778 			} else {
2779 				if (m->m_epg_tls->sync_dispatch)
2780 					ktls_encrypt(wq, m);
2781 				else
2782 					ktls_encrypt_async(wq, m);
2783 				counter_u64_add(ktls_cnt_tx_queued, -1);
2784 			}
2785 		}
2786 
2787 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2788 			ktls_decrypt(so);
2789 			counter_u64_add(ktls_cnt_rx_queued, -1);
2790 		}
2791 	}
2792 }
2793 
2794 #if defined(INET) || defined(INET6)
2795 static void
2796 ktls_disable_ifnet_help(void *context, int pending __unused)
2797 {
2798 	struct ktls_session *tls;
2799 	struct inpcb *inp;
2800 	struct tcpcb *tp;
2801 	struct socket *so;
2802 	int err;
2803 
2804 	tls = context;
2805 	inp = tls->inp;
2806 	if (inp == NULL)
2807 		return;
2808 	INP_WLOCK(inp);
2809 	so = inp->inp_socket;
2810 	MPASS(so != NULL);
2811 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
2812 		goto out;
2813 	}
2814 
2815 	if (so->so_snd.sb_tls_info != NULL)
2816 		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
2817 	else
2818 		err = ENXIO;
2819 	if (err == 0) {
2820 		counter_u64_add(ktls_ifnet_disable_ok, 1);
2821 		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
2822 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 &&
2823 		    (tp = intotcpcb(inp)) != NULL &&
2824 		    tp->t_fb->tfb_hwtls_change != NULL)
2825 			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
2826 	} else {
2827 		counter_u64_add(ktls_ifnet_disable_fail, 1);
2828 	}
2829 
2830 out:
2831 	sorele(so);
2832 	if (!in_pcbrele_wlocked(inp))
2833 		INP_WUNLOCK(inp);
2834 	ktls_free(tls);
2835 }
2836 
2837 /*
2838  * Called when re-transmits are becoming a substantial portion of the
2839  * sends on this connection.  When this happens, we transition the
2840  * connection to software TLS.  This is needed because most inline TLS
2841  * NICs keep crypto state only for in-order transmits.  This means
2842  * that to handle a TCP rexmit (which is out-of-order), the NIC must
2843  * re-DMA the entire TLS record up to and including the current
2844  * segment.  This means that when re-transmitting the last ~1448 byte
2845  * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
2846  * of magnitude more data than we are sending.  This can cause the
2847  * PCIe link to saturate well before the network, which can cause
2848  * output drops, and a general loss of capacity.
2849  */
2850 void
2851 ktls_disable_ifnet(void *arg)
2852 {
2853 	struct tcpcb *tp;
2854 	struct inpcb *inp;
2855 	struct socket *so;
2856 	struct ktls_session *tls;
2857 
2858 	tp = arg;
2859 	inp = tp->t_inpcb;
2860 	INP_WLOCK_ASSERT(inp);
2861 	so = inp->inp_socket;
2862 	SOCK_LOCK(so);
2863 	tls = so->so_snd.sb_tls_info;
2864 	if (tls->disable_ifnet_pending) {
2865 		SOCK_UNLOCK(so);
2866 		return;
2867 	}
2868 
2869 	/*
2870 	 * note that disable_ifnet_pending is never cleared; disabling
2871 	 * ifnet can only be done once per session, so we never want
2872 	 * to do it again
2873 	 */
2874 
2875 	(void)ktls_hold(tls);
2876 	in_pcbref(inp);
2877 	soref(so);
2878 	tls->disable_ifnet_pending = true;
2879 	tls->inp = inp;
2880 	SOCK_UNLOCK(so);
2881 	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
2882 	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
2883 }
2884 #endif
2885