1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 } __aligned(CACHE_LINE_SIZE); 86 87 struct ktls_domain_info { 88 int count; 89 int cpu[MAXCPU]; 90 }; 91 92 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 93 static struct ktls_wq *ktls_wq; 94 static struct proc *ktls_proc; 95 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 96 static struct rmlock ktls_backends_lock; 97 static uma_zone_t ktls_session_zone; 98 static uint16_t ktls_cpuid_lookup[MAXCPU]; 99 100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "Kernel TLS offload"); 102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload stats"); 104 105 static int ktls_allow_unload; 106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 107 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 108 109 #ifdef RSS 110 static int ktls_bind_threads = 1; 111 #else 112 static int ktls_bind_threads; 113 #endif 114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 115 &ktls_bind_threads, 0, 116 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 117 118 static u_int ktls_maxlen = 16384; 119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 120 &ktls_maxlen, 0, "Maximum TLS record size"); 121 122 static int ktls_number_threads; 123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 124 &ktls_number_threads, 0, 125 "Number of TLS threads in thread-pool"); 126 127 static bool ktls_offload_enable; 128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 129 &ktls_offload_enable, 0, 130 "Enable support for kernel TLS offload"); 131 132 static bool ktls_cbc_enable = true; 133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 134 &ktls_cbc_enable, 1, 135 "Enable Support of AES-CBC crypto for kernel TLS"); 136 137 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 139 &ktls_tasks_active, "Number of active tasks"); 140 141 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 143 &ktls_cnt_tx_queued, 144 "Number of TLS records in queue to tasks for SW encryption"); 145 146 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 148 &ktls_cnt_rx_queued, 149 "Number of TLS sockets in queue to tasks for SW decryption"); 150 151 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 153 CTLFLAG_RD, &ktls_offload_total, 154 "Total successful TLS setups (parameters set)"); 155 156 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 158 CTLFLAG_RD, &ktls_offload_enable_calls, 159 "Total number of TLS enable calls made"); 160 161 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 163 &ktls_offload_active, "Total Active TLS sessions"); 164 165 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 167 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 168 169 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 171 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 175 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 176 177 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 179 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 180 181 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 183 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 184 185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 186 "Software TLS session stats"); 187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 188 "Hardware (ifnet) TLS session stats"); 189 #ifdef TCP_OFFLOAD 190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 191 "TOE TLS session stats"); 192 #endif 193 194 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 196 "Active number of software TLS sessions using AES-CBC"); 197 198 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 200 "Active number of software TLS sessions using AES-GCM"); 201 202 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 203 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 204 &ktls_sw_chacha20, 205 "Active number of software TLS sessions using Chacha20-Poly1305"); 206 207 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 209 &ktls_ifnet_cbc, 210 "Active number of ifnet TLS sessions using AES-CBC"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 214 &ktls_ifnet_gcm, 215 "Active number of ifnet TLS sessions using AES-GCM"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 219 &ktls_ifnet_chacha20, 220 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 221 222 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 223 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 224 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 225 226 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 227 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 228 &ktls_ifnet_reset_dropped, 229 "TLS sessions dropped after failing to update ifnet send tag"); 230 231 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 232 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 233 &ktls_ifnet_reset_failed, 234 "TLS sessions that failed to allocate a new ifnet send tag"); 235 236 static int ktls_ifnet_permitted; 237 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 238 &ktls_ifnet_permitted, 1, 239 "Whether to permit hardware (ifnet) TLS sessions"); 240 241 #ifdef TCP_OFFLOAD 242 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 244 &ktls_toe_cbc, 245 "Active number of TOE TLS sessions using AES-CBC"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 249 &ktls_toe_gcm, 250 "Active number of TOE TLS sessions using AES-GCM"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 254 &ktls_toe_chacha20, 255 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 256 #endif 257 258 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 259 260 static void ktls_cleanup(struct ktls_session *tls); 261 #if defined(INET) || defined(INET6) 262 static void ktls_reset_send_tag(void *context, int pending); 263 #endif 264 static void ktls_work_thread(void *ctx); 265 266 int 267 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 268 { 269 struct ktls_crypto_backend *curr_be, *tmp; 270 271 if (be->api_version != KTLS_API_VERSION) { 272 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 273 be->api_version, KTLS_API_VERSION, 274 be->name); 275 return (EINVAL); 276 } 277 278 rm_wlock(&ktls_backends_lock); 279 printf("KTLS: Registering crypto method %s with prio %d\n", 280 be->name, be->prio); 281 if (LIST_EMPTY(&ktls_backends)) { 282 LIST_INSERT_HEAD(&ktls_backends, be, next); 283 } else { 284 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 285 if (curr_be->prio < be->prio) { 286 LIST_INSERT_BEFORE(curr_be, be, next); 287 break; 288 } 289 if (LIST_NEXT(curr_be, next) == NULL) { 290 LIST_INSERT_AFTER(curr_be, be, next); 291 break; 292 } 293 } 294 } 295 rm_wunlock(&ktls_backends_lock); 296 return (0); 297 } 298 299 int 300 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 301 { 302 struct ktls_crypto_backend *tmp; 303 304 /* 305 * Don't error if the backend isn't registered. This permits 306 * MOD_UNLOAD handlers to use this function unconditionally. 307 */ 308 rm_wlock(&ktls_backends_lock); 309 LIST_FOREACH(tmp, &ktls_backends, next) { 310 if (tmp == be) 311 break; 312 } 313 if (tmp == NULL) { 314 rm_wunlock(&ktls_backends_lock); 315 return (0); 316 } 317 318 if (!ktls_allow_unload) { 319 rm_wunlock(&ktls_backends_lock); 320 printf( 321 "KTLS: Deregistering crypto method %s is not supported\n", 322 be->name); 323 return (EBUSY); 324 } 325 326 if (be->use_count) { 327 rm_wunlock(&ktls_backends_lock); 328 return (EBUSY); 329 } 330 331 LIST_REMOVE(be, next); 332 rm_wunlock(&ktls_backends_lock); 333 return (0); 334 } 335 336 #if defined(INET) || defined(INET6) 337 static u_int 338 ktls_get_cpu(struct socket *so) 339 { 340 struct inpcb *inp; 341 #ifdef NUMA 342 struct ktls_domain_info *di; 343 #endif 344 u_int cpuid; 345 346 inp = sotoinpcb(so); 347 #ifdef RSS 348 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 349 if (cpuid != NETISR_CPUID_NONE) 350 return (cpuid); 351 #endif 352 /* 353 * Just use the flowid to shard connections in a repeatable 354 * fashion. Note that some crypto backends rely on the 355 * serialization provided by having the same connection use 356 * the same queue. 357 */ 358 #ifdef NUMA 359 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 360 di = &ktls_domains[inp->inp_numa_domain]; 361 cpuid = di->cpu[inp->inp_flowid % di->count]; 362 } else 363 #endif 364 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 365 return (cpuid); 366 } 367 #endif 368 369 static void 370 ktls_init(void *dummy __unused) 371 { 372 struct thread *td; 373 struct pcpu *pc; 374 cpuset_t mask; 375 int count, domain, error, i; 376 377 rm_init(&ktls_backends_lock, "ktls backends"); 378 LIST_INIT(&ktls_backends); 379 380 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 381 M_WAITOK | M_ZERO); 382 383 ktls_session_zone = uma_zcreate("ktls_session", 384 sizeof(struct ktls_session), 385 NULL, NULL, NULL, NULL, 386 UMA_ALIGN_CACHE, 0); 387 388 /* 389 * Initialize the workqueues to run the TLS work. We create a 390 * work queue for each CPU. 391 */ 392 CPU_FOREACH(i) { 393 STAILQ_INIT(&ktls_wq[i].m_head); 394 STAILQ_INIT(&ktls_wq[i].so_head); 395 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 396 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 397 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 398 if (error) 399 panic("Can't add KTLS thread %d error %d", i, error); 400 401 /* 402 * Bind threads to cores. If ktls_bind_threads is > 403 * 1, then we bind to the NUMA domain. 404 */ 405 if (ktls_bind_threads) { 406 if (ktls_bind_threads > 1) { 407 pc = pcpu_find(i); 408 domain = pc->pc_domain; 409 CPU_COPY(&cpuset_domain[domain], &mask); 410 count = ktls_domains[domain].count; 411 ktls_domains[domain].cpu[count] = i; 412 ktls_domains[domain].count++; 413 } else { 414 CPU_SETOF(i, &mask); 415 } 416 error = cpuset_setthread(td->td_tid, &mask); 417 if (error) 418 panic( 419 "Unable to bind KTLS thread for CPU %d error %d", 420 i, error); 421 } 422 ktls_cpuid_lookup[ktls_number_threads] = i; 423 ktls_number_threads++; 424 } 425 426 /* 427 * If we somehow have an empty domain, fall back to choosing 428 * among all KTLS threads. 429 */ 430 if (ktls_bind_threads > 1) { 431 for (i = 0; i < vm_ndomains; i++) { 432 if (ktls_domains[i].count == 0) { 433 ktls_bind_threads = 1; 434 break; 435 } 436 } 437 } 438 439 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 440 } 441 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 442 443 #if defined(INET) || defined(INET6) 444 static int 445 ktls_create_session(struct socket *so, struct tls_enable *en, 446 struct ktls_session **tlsp) 447 { 448 struct ktls_session *tls; 449 int error; 450 451 /* Only TLS 1.0 - 1.3 are supported. */ 452 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 453 return (EINVAL); 454 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 455 en->tls_vminor > TLS_MINOR_VER_THREE) 456 return (EINVAL); 457 458 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 459 return (EINVAL); 460 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 461 return (EINVAL); 462 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 463 return (EINVAL); 464 465 /* All supported algorithms require a cipher key. */ 466 if (en->cipher_key_len == 0) 467 return (EINVAL); 468 469 /* No flags are currently supported. */ 470 if (en->flags != 0) 471 return (EINVAL); 472 473 /* Common checks for supported algorithms. */ 474 switch (en->cipher_algorithm) { 475 case CRYPTO_AES_NIST_GCM_16: 476 /* 477 * auth_algorithm isn't used, but permit GMAC values 478 * for compatibility. 479 */ 480 switch (en->auth_algorithm) { 481 case 0: 482 #ifdef COMPAT_FREEBSD12 483 /* XXX: Really 13.0-current COMPAT. */ 484 case CRYPTO_AES_128_NIST_GMAC: 485 case CRYPTO_AES_192_NIST_GMAC: 486 case CRYPTO_AES_256_NIST_GMAC: 487 #endif 488 break; 489 default: 490 return (EINVAL); 491 } 492 if (en->auth_key_len != 0) 493 return (EINVAL); 494 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 495 en->iv_len != TLS_AEAD_GCM_LEN) || 496 (en->tls_vminor == TLS_MINOR_VER_THREE && 497 en->iv_len != TLS_1_3_GCM_IV_LEN)) 498 return (EINVAL); 499 break; 500 case CRYPTO_AES_CBC: 501 switch (en->auth_algorithm) { 502 case CRYPTO_SHA1_HMAC: 503 /* 504 * TLS 1.0 requires an implicit IV. TLS 1.1+ 505 * all use explicit IVs. 506 */ 507 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 508 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 509 return (EINVAL); 510 break; 511 } 512 513 /* FALLTHROUGH */ 514 case CRYPTO_SHA2_256_HMAC: 515 case CRYPTO_SHA2_384_HMAC: 516 /* Ignore any supplied IV. */ 517 en->iv_len = 0; 518 break; 519 default: 520 return (EINVAL); 521 } 522 if (en->auth_key_len == 0) 523 return (EINVAL); 524 break; 525 case CRYPTO_CHACHA20_POLY1305: 526 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 527 return (EINVAL); 528 if (en->tls_vminor != TLS_MINOR_VER_TWO && 529 en->tls_vminor != TLS_MINOR_VER_THREE) 530 return (EINVAL); 531 if (en->iv_len != TLS_CHACHA20_IV_LEN) 532 return (EINVAL); 533 break; 534 default: 535 return (EINVAL); 536 } 537 538 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 539 540 counter_u64_add(ktls_offload_active, 1); 541 542 refcount_init(&tls->refcount, 1); 543 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 544 545 tls->wq_index = ktls_get_cpu(so); 546 547 tls->params.cipher_algorithm = en->cipher_algorithm; 548 tls->params.auth_algorithm = en->auth_algorithm; 549 tls->params.tls_vmajor = en->tls_vmajor; 550 tls->params.tls_vminor = en->tls_vminor; 551 tls->params.flags = en->flags; 552 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 553 554 /* Set the header and trailer lengths. */ 555 tls->params.tls_hlen = sizeof(struct tls_record_layer); 556 switch (en->cipher_algorithm) { 557 case CRYPTO_AES_NIST_GCM_16: 558 /* 559 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 560 * nonce. TLS 1.3 uses a 12 byte implicit IV. 561 */ 562 if (en->tls_vminor < TLS_MINOR_VER_THREE) 563 tls->params.tls_hlen += sizeof(uint64_t); 564 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 565 tls->params.tls_bs = 1; 566 break; 567 case CRYPTO_AES_CBC: 568 switch (en->auth_algorithm) { 569 case CRYPTO_SHA1_HMAC: 570 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 571 /* Implicit IV, no nonce. */ 572 } else { 573 tls->params.tls_hlen += AES_BLOCK_LEN; 574 } 575 tls->params.tls_tlen = AES_BLOCK_LEN + 576 SHA1_HASH_LEN; 577 break; 578 case CRYPTO_SHA2_256_HMAC: 579 tls->params.tls_hlen += AES_BLOCK_LEN; 580 tls->params.tls_tlen = AES_BLOCK_LEN + 581 SHA2_256_HASH_LEN; 582 break; 583 case CRYPTO_SHA2_384_HMAC: 584 tls->params.tls_hlen += AES_BLOCK_LEN; 585 tls->params.tls_tlen = AES_BLOCK_LEN + 586 SHA2_384_HASH_LEN; 587 break; 588 default: 589 panic("invalid hmac"); 590 } 591 tls->params.tls_bs = AES_BLOCK_LEN; 592 break; 593 case CRYPTO_CHACHA20_POLY1305: 594 /* 595 * Chacha20 uses a 12 byte implicit IV. 596 */ 597 tls->params.tls_tlen = POLY1305_HASH_LEN; 598 tls->params.tls_bs = 1; 599 break; 600 default: 601 panic("invalid cipher"); 602 } 603 604 /* 605 * TLS 1.3 includes optional padding which we do not support, 606 * and also puts the "real" record type at the end of the 607 * encrypted data. 608 */ 609 if (en->tls_vminor == TLS_MINOR_VER_THREE) 610 tls->params.tls_tlen += sizeof(uint8_t); 611 612 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 613 ("TLS header length too long: %d", tls->params.tls_hlen)); 614 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 615 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 616 617 if (en->auth_key_len != 0) { 618 tls->params.auth_key_len = en->auth_key_len; 619 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 620 M_WAITOK); 621 error = copyin(en->auth_key, tls->params.auth_key, 622 en->auth_key_len); 623 if (error) 624 goto out; 625 } 626 627 tls->params.cipher_key_len = en->cipher_key_len; 628 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 629 error = copyin(en->cipher_key, tls->params.cipher_key, 630 en->cipher_key_len); 631 if (error) 632 goto out; 633 634 /* 635 * This holds the implicit portion of the nonce for AEAD 636 * ciphers and the initial implicit IV for TLS 1.0. The 637 * explicit portions of the IV are generated in ktls_frame(). 638 */ 639 if (en->iv_len != 0) { 640 tls->params.iv_len = en->iv_len; 641 error = copyin(en->iv, tls->params.iv, en->iv_len); 642 if (error) 643 goto out; 644 645 /* 646 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 647 * counter to generate unique explicit IVs. 648 * 649 * Store this counter in the last 8 bytes of the IV 650 * array so that it is 8-byte aligned. 651 */ 652 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 653 en->tls_vminor == TLS_MINOR_VER_TWO) 654 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 655 } 656 657 *tlsp = tls; 658 return (0); 659 660 out: 661 ktls_cleanup(tls); 662 return (error); 663 } 664 665 static struct ktls_session * 666 ktls_clone_session(struct ktls_session *tls) 667 { 668 struct ktls_session *tls_new; 669 670 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 671 672 counter_u64_add(ktls_offload_active, 1); 673 674 refcount_init(&tls_new->refcount, 1); 675 676 /* Copy fields from existing session. */ 677 tls_new->params = tls->params; 678 tls_new->wq_index = tls->wq_index; 679 680 /* Deep copy keys. */ 681 if (tls_new->params.auth_key != NULL) { 682 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 683 M_KTLS, M_WAITOK); 684 memcpy(tls_new->params.auth_key, tls->params.auth_key, 685 tls->params.auth_key_len); 686 } 687 688 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 689 M_WAITOK); 690 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 691 tls->params.cipher_key_len); 692 693 return (tls_new); 694 } 695 #endif 696 697 static void 698 ktls_cleanup(struct ktls_session *tls) 699 { 700 701 counter_u64_add(ktls_offload_active, -1); 702 switch (tls->mode) { 703 case TCP_TLS_MODE_SW: 704 MPASS(tls->be != NULL); 705 switch (tls->params.cipher_algorithm) { 706 case CRYPTO_AES_CBC: 707 counter_u64_add(ktls_sw_cbc, -1); 708 break; 709 case CRYPTO_AES_NIST_GCM_16: 710 counter_u64_add(ktls_sw_gcm, -1); 711 break; 712 case CRYPTO_CHACHA20_POLY1305: 713 counter_u64_add(ktls_sw_chacha20, -1); 714 break; 715 } 716 tls->free(tls); 717 break; 718 case TCP_TLS_MODE_IFNET: 719 switch (tls->params.cipher_algorithm) { 720 case CRYPTO_AES_CBC: 721 counter_u64_add(ktls_ifnet_cbc, -1); 722 break; 723 case CRYPTO_AES_NIST_GCM_16: 724 counter_u64_add(ktls_ifnet_gcm, -1); 725 break; 726 case CRYPTO_CHACHA20_POLY1305: 727 counter_u64_add(ktls_ifnet_chacha20, -1); 728 break; 729 } 730 if (tls->snd_tag != NULL) 731 m_snd_tag_rele(tls->snd_tag); 732 break; 733 #ifdef TCP_OFFLOAD 734 case TCP_TLS_MODE_TOE: 735 switch (tls->params.cipher_algorithm) { 736 case CRYPTO_AES_CBC: 737 counter_u64_add(ktls_toe_cbc, -1); 738 break; 739 case CRYPTO_AES_NIST_GCM_16: 740 counter_u64_add(ktls_toe_gcm, -1); 741 break; 742 case CRYPTO_CHACHA20_POLY1305: 743 counter_u64_add(ktls_toe_chacha20, -1); 744 break; 745 } 746 break; 747 #endif 748 } 749 if (tls->params.auth_key != NULL) { 750 zfree(tls->params.auth_key, M_KTLS); 751 tls->params.auth_key = NULL; 752 tls->params.auth_key_len = 0; 753 } 754 if (tls->params.cipher_key != NULL) { 755 zfree(tls->params.cipher_key, M_KTLS); 756 tls->params.cipher_key = NULL; 757 tls->params.cipher_key_len = 0; 758 } 759 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 760 } 761 762 #if defined(INET) || defined(INET6) 763 764 #ifdef TCP_OFFLOAD 765 static int 766 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 767 { 768 struct inpcb *inp; 769 struct tcpcb *tp; 770 int error; 771 772 inp = so->so_pcb; 773 INP_WLOCK(inp); 774 if (inp->inp_flags2 & INP_FREED) { 775 INP_WUNLOCK(inp); 776 return (ECONNRESET); 777 } 778 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 779 INP_WUNLOCK(inp); 780 return (ECONNRESET); 781 } 782 if (inp->inp_socket == NULL) { 783 INP_WUNLOCK(inp); 784 return (ECONNRESET); 785 } 786 tp = intotcpcb(inp); 787 if (!(tp->t_flags & TF_TOE)) { 788 INP_WUNLOCK(inp); 789 return (EOPNOTSUPP); 790 } 791 792 error = tcp_offload_alloc_tls_session(tp, tls, direction); 793 INP_WUNLOCK(inp); 794 if (error == 0) { 795 tls->mode = TCP_TLS_MODE_TOE; 796 switch (tls->params.cipher_algorithm) { 797 case CRYPTO_AES_CBC: 798 counter_u64_add(ktls_toe_cbc, 1); 799 break; 800 case CRYPTO_AES_NIST_GCM_16: 801 counter_u64_add(ktls_toe_gcm, 1); 802 break; 803 case CRYPTO_CHACHA20_POLY1305: 804 counter_u64_add(ktls_toe_chacha20, 1); 805 break; 806 } 807 } 808 return (error); 809 } 810 #endif 811 812 /* 813 * Common code used when first enabling ifnet TLS on a connection or 814 * when allocating a new ifnet TLS session due to a routing change. 815 * This function allocates a new TLS send tag on whatever interface 816 * the connection is currently routed over. 817 */ 818 static int 819 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 820 struct m_snd_tag **mstp) 821 { 822 union if_snd_tag_alloc_params params; 823 struct ifnet *ifp; 824 struct nhop_object *nh; 825 struct tcpcb *tp; 826 int error; 827 828 INP_RLOCK(inp); 829 if (inp->inp_flags2 & INP_FREED) { 830 INP_RUNLOCK(inp); 831 return (ECONNRESET); 832 } 833 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 834 INP_RUNLOCK(inp); 835 return (ECONNRESET); 836 } 837 if (inp->inp_socket == NULL) { 838 INP_RUNLOCK(inp); 839 return (ECONNRESET); 840 } 841 tp = intotcpcb(inp); 842 843 /* 844 * Check administrative controls on ifnet TLS to determine if 845 * ifnet TLS should be denied. 846 * 847 * - Always permit 'force' requests. 848 * - ktls_ifnet_permitted == 0: always deny. 849 */ 850 if (!force && ktls_ifnet_permitted == 0) { 851 INP_RUNLOCK(inp); 852 return (ENXIO); 853 } 854 855 /* 856 * XXX: Use the cached route in the inpcb to find the 857 * interface. This should perhaps instead use 858 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 859 * enabled after a connection has completed key negotiation in 860 * userland, the cached route will be present in practice. 861 */ 862 nh = inp->inp_route.ro_nh; 863 if (nh == NULL) { 864 INP_RUNLOCK(inp); 865 return (ENXIO); 866 } 867 ifp = nh->nh_ifp; 868 if_ref(ifp); 869 870 /* 871 * Allocate a TLS + ratelimit tag if the connection has an 872 * existing pacing rate. 873 */ 874 if (tp->t_pacing_rate != -1 && 875 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 876 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 877 params.tls_rate_limit.inp = inp; 878 params.tls_rate_limit.tls = tls; 879 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 880 } else { 881 params.hdr.type = IF_SND_TAG_TYPE_TLS; 882 params.tls.inp = inp; 883 params.tls.tls = tls; 884 } 885 params.hdr.flowid = inp->inp_flowid; 886 params.hdr.flowtype = inp->inp_flowtype; 887 params.hdr.numa_domain = inp->inp_numa_domain; 888 INP_RUNLOCK(inp); 889 890 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 891 error = EOPNOTSUPP; 892 goto out; 893 } 894 if (inp->inp_vflag & INP_IPV6) { 895 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 896 error = EOPNOTSUPP; 897 goto out; 898 } 899 } else { 900 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 901 error = EOPNOTSUPP; 902 goto out; 903 } 904 } 905 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 906 out: 907 if_rele(ifp); 908 return (error); 909 } 910 911 static int 912 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 913 { 914 struct m_snd_tag *mst; 915 int error; 916 917 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 918 if (error == 0) { 919 tls->mode = TCP_TLS_MODE_IFNET; 920 tls->snd_tag = mst; 921 switch (tls->params.cipher_algorithm) { 922 case CRYPTO_AES_CBC: 923 counter_u64_add(ktls_ifnet_cbc, 1); 924 break; 925 case CRYPTO_AES_NIST_GCM_16: 926 counter_u64_add(ktls_ifnet_gcm, 1); 927 break; 928 case CRYPTO_CHACHA20_POLY1305: 929 counter_u64_add(ktls_ifnet_chacha20, 1); 930 break; 931 } 932 } 933 return (error); 934 } 935 936 static int 937 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 938 { 939 struct rm_priotracker prio; 940 struct ktls_crypto_backend *be; 941 942 /* 943 * Choose the best software crypto backend. Backends are 944 * stored in sorted priority order (larget value == most 945 * important at the head of the list), so this just stops on 946 * the first backend that claims the session by returning 947 * success. 948 */ 949 if (ktls_allow_unload) 950 rm_rlock(&ktls_backends_lock, &prio); 951 LIST_FOREACH(be, &ktls_backends, next) { 952 if (be->try(so, tls, direction) == 0) 953 break; 954 KASSERT(tls->cipher == NULL, 955 ("ktls backend leaked a cipher pointer")); 956 } 957 if (be != NULL) { 958 if (ktls_allow_unload) 959 be->use_count++; 960 tls->be = be; 961 } 962 if (ktls_allow_unload) 963 rm_runlock(&ktls_backends_lock, &prio); 964 if (be == NULL) 965 return (EOPNOTSUPP); 966 tls->mode = TCP_TLS_MODE_SW; 967 switch (tls->params.cipher_algorithm) { 968 case CRYPTO_AES_CBC: 969 counter_u64_add(ktls_sw_cbc, 1); 970 break; 971 case CRYPTO_AES_NIST_GCM_16: 972 counter_u64_add(ktls_sw_gcm, 1); 973 break; 974 case CRYPTO_CHACHA20_POLY1305: 975 counter_u64_add(ktls_sw_chacha20, 1); 976 break; 977 } 978 return (0); 979 } 980 981 /* 982 * KTLS RX stores data in the socket buffer as a list of TLS records, 983 * where each record is stored as a control message containg the TLS 984 * header followed by data mbufs containing the decrypted data. This 985 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 986 * both encrypted and decrypted data. TLS records decrypted by a NIC 987 * should be queued to the socket buffer as records, but encrypted 988 * data which needs to be decrypted by software arrives as a stream of 989 * regular mbufs which need to be converted. In addition, there may 990 * already be pending encrypted data in the socket buffer when KTLS RX 991 * is enabled. 992 * 993 * To manage not-yet-decrypted data for KTLS RX, the following scheme 994 * is used: 995 * 996 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 997 * 998 * - ktls_check_rx checks this chain of mbufs reading the TLS header 999 * from the first mbuf. Once all of the data for that TLS record is 1000 * queued, the socket is queued to a worker thread. 1001 * 1002 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1003 * the TLS chain. Each TLS record is detached from the TLS chain, 1004 * decrypted, and inserted into the regular socket buffer chain as 1005 * record starting with a control message holding the TLS header and 1006 * a chain of mbufs holding the encrypted data. 1007 */ 1008 1009 static void 1010 sb_mark_notready(struct sockbuf *sb) 1011 { 1012 struct mbuf *m; 1013 1014 m = sb->sb_mb; 1015 sb->sb_mtls = m; 1016 sb->sb_mb = NULL; 1017 sb->sb_mbtail = NULL; 1018 sb->sb_lastrecord = NULL; 1019 for (; m != NULL; m = m->m_next) { 1020 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1021 __func__)); 1022 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1023 __func__)); 1024 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1025 __func__)); 1026 m->m_flags |= M_NOTREADY; 1027 sb->sb_acc -= m->m_len; 1028 sb->sb_tlscc += m->m_len; 1029 sb->sb_mtlstail = m; 1030 } 1031 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1032 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1033 sb->sb_ccc)); 1034 } 1035 1036 int 1037 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1038 { 1039 struct ktls_session *tls; 1040 int error; 1041 1042 if (!ktls_offload_enable) 1043 return (ENOTSUP); 1044 if (SOLISTENING(so)) 1045 return (EINVAL); 1046 1047 counter_u64_add(ktls_offload_enable_calls, 1); 1048 1049 /* 1050 * This should always be true since only the TCP socket option 1051 * invokes this function. 1052 */ 1053 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1054 return (EINVAL); 1055 1056 /* 1057 * XXX: Don't overwrite existing sessions. We should permit 1058 * this to support rekeying in the future. 1059 */ 1060 if (so->so_rcv.sb_tls_info != NULL) 1061 return (EALREADY); 1062 1063 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1064 return (ENOTSUP); 1065 1066 /* TLS 1.3 is not yet supported. */ 1067 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1068 en->tls_vminor == TLS_MINOR_VER_THREE) 1069 return (ENOTSUP); 1070 1071 error = ktls_create_session(so, en, &tls); 1072 if (error) 1073 return (error); 1074 1075 #ifdef TCP_OFFLOAD 1076 error = ktls_try_toe(so, tls, KTLS_RX); 1077 if (error) 1078 #endif 1079 error = ktls_try_sw(so, tls, KTLS_RX); 1080 1081 if (error) { 1082 ktls_cleanup(tls); 1083 return (error); 1084 } 1085 1086 /* Mark the socket as using TLS offload. */ 1087 SOCKBUF_LOCK(&so->so_rcv); 1088 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1089 so->so_rcv.sb_tls_info = tls; 1090 so->so_rcv.sb_flags |= SB_TLS_RX; 1091 1092 /* Mark existing data as not ready until it can be decrypted. */ 1093 sb_mark_notready(&so->so_rcv); 1094 ktls_check_rx(&so->so_rcv); 1095 SOCKBUF_UNLOCK(&so->so_rcv); 1096 1097 counter_u64_add(ktls_offload_total, 1); 1098 1099 return (0); 1100 } 1101 1102 int 1103 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1104 { 1105 struct ktls_session *tls; 1106 struct inpcb *inp; 1107 int error; 1108 1109 if (!ktls_offload_enable) 1110 return (ENOTSUP); 1111 if (SOLISTENING(so)) 1112 return (EINVAL); 1113 1114 counter_u64_add(ktls_offload_enable_calls, 1); 1115 1116 /* 1117 * This should always be true since only the TCP socket option 1118 * invokes this function. 1119 */ 1120 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1121 return (EINVAL); 1122 1123 /* 1124 * XXX: Don't overwrite existing sessions. We should permit 1125 * this to support rekeying in the future. 1126 */ 1127 if (so->so_snd.sb_tls_info != NULL) 1128 return (EALREADY); 1129 1130 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1131 return (ENOTSUP); 1132 1133 /* TLS requires ext pgs */ 1134 if (mb_use_ext_pgs == 0) 1135 return (ENXIO); 1136 1137 error = ktls_create_session(so, en, &tls); 1138 if (error) 1139 return (error); 1140 1141 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1142 #ifdef TCP_OFFLOAD 1143 error = ktls_try_toe(so, tls, KTLS_TX); 1144 if (error) 1145 #endif 1146 error = ktls_try_ifnet(so, tls, false); 1147 if (error) 1148 error = ktls_try_sw(so, tls, KTLS_TX); 1149 1150 if (error) { 1151 ktls_cleanup(tls); 1152 return (error); 1153 } 1154 1155 error = sblock(&so->so_snd, SBL_WAIT); 1156 if (error) { 1157 ktls_cleanup(tls); 1158 return (error); 1159 } 1160 1161 /* 1162 * Write lock the INP when setting sb_tls_info so that 1163 * routines in tcp_ratelimit.c can read sb_tls_info while 1164 * holding the INP lock. 1165 */ 1166 inp = so->so_pcb; 1167 INP_WLOCK(inp); 1168 SOCKBUF_LOCK(&so->so_snd); 1169 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1170 so->so_snd.sb_tls_info = tls; 1171 if (tls->mode != TCP_TLS_MODE_SW) 1172 so->so_snd.sb_flags |= SB_TLS_IFNET; 1173 SOCKBUF_UNLOCK(&so->so_snd); 1174 INP_WUNLOCK(inp); 1175 sbunlock(&so->so_snd); 1176 1177 counter_u64_add(ktls_offload_total, 1); 1178 1179 return (0); 1180 } 1181 1182 int 1183 ktls_get_rx_mode(struct socket *so) 1184 { 1185 struct ktls_session *tls; 1186 struct inpcb *inp; 1187 int mode; 1188 1189 if (SOLISTENING(so)) 1190 return (EINVAL); 1191 inp = so->so_pcb; 1192 INP_WLOCK_ASSERT(inp); 1193 SOCKBUF_LOCK(&so->so_rcv); 1194 tls = so->so_rcv.sb_tls_info; 1195 if (tls == NULL) 1196 mode = TCP_TLS_MODE_NONE; 1197 else 1198 mode = tls->mode; 1199 SOCKBUF_UNLOCK(&so->so_rcv); 1200 return (mode); 1201 } 1202 1203 int 1204 ktls_get_tx_mode(struct socket *so) 1205 { 1206 struct ktls_session *tls; 1207 struct inpcb *inp; 1208 int mode; 1209 1210 if (SOLISTENING(so)) 1211 return (EINVAL); 1212 inp = so->so_pcb; 1213 INP_WLOCK_ASSERT(inp); 1214 SOCKBUF_LOCK(&so->so_snd); 1215 tls = so->so_snd.sb_tls_info; 1216 if (tls == NULL) 1217 mode = TCP_TLS_MODE_NONE; 1218 else 1219 mode = tls->mode; 1220 SOCKBUF_UNLOCK(&so->so_snd); 1221 return (mode); 1222 } 1223 1224 /* 1225 * Switch between SW and ifnet TLS sessions as requested. 1226 */ 1227 int 1228 ktls_set_tx_mode(struct socket *so, int mode) 1229 { 1230 struct ktls_session *tls, *tls_new; 1231 struct inpcb *inp; 1232 int error; 1233 1234 if (SOLISTENING(so)) 1235 return (EINVAL); 1236 switch (mode) { 1237 case TCP_TLS_MODE_SW: 1238 case TCP_TLS_MODE_IFNET: 1239 break; 1240 default: 1241 return (EINVAL); 1242 } 1243 1244 inp = so->so_pcb; 1245 INP_WLOCK_ASSERT(inp); 1246 SOCKBUF_LOCK(&so->so_snd); 1247 tls = so->so_snd.sb_tls_info; 1248 if (tls == NULL) { 1249 SOCKBUF_UNLOCK(&so->so_snd); 1250 return (0); 1251 } 1252 1253 if (tls->mode == mode) { 1254 SOCKBUF_UNLOCK(&so->so_snd); 1255 return (0); 1256 } 1257 1258 tls = ktls_hold(tls); 1259 SOCKBUF_UNLOCK(&so->so_snd); 1260 INP_WUNLOCK(inp); 1261 1262 tls_new = ktls_clone_session(tls); 1263 1264 if (mode == TCP_TLS_MODE_IFNET) 1265 error = ktls_try_ifnet(so, tls_new, true); 1266 else 1267 error = ktls_try_sw(so, tls_new, KTLS_TX); 1268 if (error) { 1269 counter_u64_add(ktls_switch_failed, 1); 1270 ktls_free(tls_new); 1271 ktls_free(tls); 1272 INP_WLOCK(inp); 1273 return (error); 1274 } 1275 1276 error = sblock(&so->so_snd, SBL_WAIT); 1277 if (error) { 1278 counter_u64_add(ktls_switch_failed, 1); 1279 ktls_free(tls_new); 1280 ktls_free(tls); 1281 INP_WLOCK(inp); 1282 return (error); 1283 } 1284 1285 /* 1286 * If we raced with another session change, keep the existing 1287 * session. 1288 */ 1289 if (tls != so->so_snd.sb_tls_info) { 1290 counter_u64_add(ktls_switch_failed, 1); 1291 sbunlock(&so->so_snd); 1292 ktls_free(tls_new); 1293 ktls_free(tls); 1294 INP_WLOCK(inp); 1295 return (EBUSY); 1296 } 1297 1298 SOCKBUF_LOCK(&so->so_snd); 1299 so->so_snd.sb_tls_info = tls_new; 1300 if (tls_new->mode != TCP_TLS_MODE_SW) 1301 so->so_snd.sb_flags |= SB_TLS_IFNET; 1302 SOCKBUF_UNLOCK(&so->so_snd); 1303 sbunlock(&so->so_snd); 1304 1305 /* 1306 * Drop two references on 'tls'. The first is for the 1307 * ktls_hold() above. The second drops the reference from the 1308 * socket buffer. 1309 */ 1310 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1311 ktls_free(tls); 1312 ktls_free(tls); 1313 1314 if (mode == TCP_TLS_MODE_IFNET) 1315 counter_u64_add(ktls_switch_to_ifnet, 1); 1316 else 1317 counter_u64_add(ktls_switch_to_sw, 1); 1318 1319 INP_WLOCK(inp); 1320 return (0); 1321 } 1322 1323 /* 1324 * Try to allocate a new TLS send tag. This task is scheduled when 1325 * ip_output detects a route change while trying to transmit a packet 1326 * holding a TLS record. If a new tag is allocated, replace the tag 1327 * in the TLS session. Subsequent packets on the connection will use 1328 * the new tag. If a new tag cannot be allocated, drop the 1329 * connection. 1330 */ 1331 static void 1332 ktls_reset_send_tag(void *context, int pending) 1333 { 1334 struct epoch_tracker et; 1335 struct ktls_session *tls; 1336 struct m_snd_tag *old, *new; 1337 struct inpcb *inp; 1338 struct tcpcb *tp; 1339 int error; 1340 1341 MPASS(pending == 1); 1342 1343 tls = context; 1344 inp = tls->inp; 1345 1346 /* 1347 * Free the old tag first before allocating a new one. 1348 * ip[6]_output_send() will treat a NULL send tag the same as 1349 * an ifp mismatch and drop packets until a new tag is 1350 * allocated. 1351 * 1352 * Write-lock the INP when changing tls->snd_tag since 1353 * ip[6]_output_send() holds a read-lock when reading the 1354 * pointer. 1355 */ 1356 INP_WLOCK(inp); 1357 old = tls->snd_tag; 1358 tls->snd_tag = NULL; 1359 INP_WUNLOCK(inp); 1360 if (old != NULL) 1361 m_snd_tag_rele(old); 1362 1363 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1364 1365 if (error == 0) { 1366 INP_WLOCK(inp); 1367 tls->snd_tag = new; 1368 mtx_pool_lock(mtxpool_sleep, tls); 1369 tls->reset_pending = false; 1370 mtx_pool_unlock(mtxpool_sleep, tls); 1371 if (!in_pcbrele_wlocked(inp)) 1372 INP_WUNLOCK(inp); 1373 1374 counter_u64_add(ktls_ifnet_reset, 1); 1375 1376 /* 1377 * XXX: Should we kick tcp_output explicitly now that 1378 * the send tag is fixed or just rely on timers? 1379 */ 1380 } else { 1381 NET_EPOCH_ENTER(et); 1382 INP_WLOCK(inp); 1383 if (!in_pcbrele_wlocked(inp)) { 1384 if (!(inp->inp_flags & INP_TIMEWAIT) && 1385 !(inp->inp_flags & INP_DROPPED)) { 1386 tp = intotcpcb(inp); 1387 CURVNET_SET(tp->t_vnet); 1388 tp = tcp_drop(tp, ECONNABORTED); 1389 CURVNET_RESTORE(); 1390 if (tp != NULL) 1391 INP_WUNLOCK(inp); 1392 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1393 } else 1394 INP_WUNLOCK(inp); 1395 } 1396 NET_EPOCH_EXIT(et); 1397 1398 counter_u64_add(ktls_ifnet_reset_failed, 1); 1399 1400 /* 1401 * Leave reset_pending true to avoid future tasks while 1402 * the socket goes away. 1403 */ 1404 } 1405 1406 ktls_free(tls); 1407 } 1408 1409 int 1410 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1411 { 1412 1413 if (inp == NULL) 1414 return (ENOBUFS); 1415 1416 INP_LOCK_ASSERT(inp); 1417 1418 /* 1419 * See if we should schedule a task to update the send tag for 1420 * this session. 1421 */ 1422 mtx_pool_lock(mtxpool_sleep, tls); 1423 if (!tls->reset_pending) { 1424 (void) ktls_hold(tls); 1425 in_pcbref(inp); 1426 tls->inp = inp; 1427 tls->reset_pending = true; 1428 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1429 } 1430 mtx_pool_unlock(mtxpool_sleep, tls); 1431 return (ENOBUFS); 1432 } 1433 1434 #ifdef RATELIMIT 1435 int 1436 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1437 { 1438 union if_snd_tag_modify_params params = { 1439 .rate_limit.max_rate = max_pacing_rate, 1440 .rate_limit.flags = M_NOWAIT, 1441 }; 1442 struct m_snd_tag *mst; 1443 struct ifnet *ifp; 1444 int error; 1445 1446 /* Can't get to the inp, but it should be locked. */ 1447 /* INP_LOCK_ASSERT(inp); */ 1448 1449 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1450 1451 if (tls->snd_tag == NULL) { 1452 /* 1453 * Resetting send tag, ignore this change. The 1454 * pending reset may or may not see this updated rate 1455 * in the tcpcb. If it doesn't, we will just lose 1456 * this rate change. 1457 */ 1458 return (0); 1459 } 1460 1461 MPASS(tls->snd_tag != NULL); 1462 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1463 1464 mst = tls->snd_tag; 1465 ifp = mst->ifp; 1466 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1467 } 1468 #endif 1469 #endif 1470 1471 void 1472 ktls_destroy(struct ktls_session *tls) 1473 { 1474 struct rm_priotracker prio; 1475 1476 ktls_cleanup(tls); 1477 if (tls->be != NULL && ktls_allow_unload) { 1478 rm_rlock(&ktls_backends_lock, &prio); 1479 tls->be->use_count--; 1480 rm_runlock(&ktls_backends_lock, &prio); 1481 } 1482 uma_zfree(ktls_session_zone, tls); 1483 } 1484 1485 void 1486 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1487 { 1488 1489 for (; m != NULL; m = m->m_next) { 1490 KASSERT((m->m_flags & M_EXTPG) != 0, 1491 ("ktls_seq: mapped mbuf %p", m)); 1492 1493 m->m_epg_seqno = sb->sb_tls_seqno; 1494 sb->sb_tls_seqno++; 1495 } 1496 } 1497 1498 /* 1499 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1500 * mbuf in the chain must be an unmapped mbuf. The payload of the 1501 * mbuf must be populated with the payload of each TLS record. 1502 * 1503 * The record_type argument specifies the TLS record type used when 1504 * populating the TLS header. 1505 * 1506 * The enq_count argument on return is set to the number of pages of 1507 * payload data for this entire chain that need to be encrypted via SW 1508 * encryption. The returned value should be passed to ktls_enqueue 1509 * when scheduling encryption of this chain of mbufs. To handle the 1510 * special case of empty fragments for TLS 1.0 sessions, an empty 1511 * fragment counts as one page. 1512 */ 1513 void 1514 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1515 uint8_t record_type) 1516 { 1517 struct tls_record_layer *tlshdr; 1518 struct mbuf *m; 1519 uint64_t *noncep; 1520 uint16_t tls_len; 1521 int maxlen; 1522 1523 maxlen = tls->params.max_frame_len; 1524 *enq_cnt = 0; 1525 for (m = top; m != NULL; m = m->m_next) { 1526 /* 1527 * All mbufs in the chain should be TLS records whose 1528 * payload does not exceed the maximum frame length. 1529 * 1530 * Empty TLS records are permitted when using CBC. 1531 */ 1532 KASSERT(m->m_len <= maxlen && 1533 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1534 m->m_len >= 0 : m->m_len > 0), 1535 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1536 1537 /* 1538 * TLS frames require unmapped mbufs to store session 1539 * info. 1540 */ 1541 KASSERT((m->m_flags & M_EXTPG) != 0, 1542 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1543 1544 tls_len = m->m_len; 1545 1546 /* Save a reference to the session. */ 1547 m->m_epg_tls = ktls_hold(tls); 1548 1549 m->m_epg_hdrlen = tls->params.tls_hlen; 1550 m->m_epg_trllen = tls->params.tls_tlen; 1551 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1552 int bs, delta; 1553 1554 /* 1555 * AES-CBC pads messages to a multiple of the 1556 * block size. Note that the padding is 1557 * applied after the digest and the encryption 1558 * is done on the "plaintext || mac || padding". 1559 * At least one byte of padding is always 1560 * present. 1561 * 1562 * Compute the final trailer length assuming 1563 * at most one block of padding. 1564 * tls->params.sb_tls_tlen is the maximum 1565 * possible trailer length (padding + digest). 1566 * delta holds the number of excess padding 1567 * bytes if the maximum were used. Those 1568 * extra bytes are removed. 1569 */ 1570 bs = tls->params.tls_bs; 1571 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1572 m->m_epg_trllen -= delta; 1573 } 1574 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1575 1576 /* Populate the TLS header. */ 1577 tlshdr = (void *)m->m_epg_hdr; 1578 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1579 1580 /* 1581 * TLS 1.3 masquarades as TLS 1.2 with a record type 1582 * of TLS_RLTYPE_APP. 1583 */ 1584 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1585 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1586 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1587 tlshdr->tls_type = TLS_RLTYPE_APP; 1588 /* save the real record type for later */ 1589 m->m_epg_record_type = record_type; 1590 m->m_epg_trail[0] = record_type; 1591 } else { 1592 tlshdr->tls_vminor = tls->params.tls_vminor; 1593 tlshdr->tls_type = record_type; 1594 } 1595 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1596 1597 /* 1598 * Store nonces / explicit IVs after the end of the 1599 * TLS header. 1600 * 1601 * For GCM with TLS 1.2, an 8 byte nonce is copied 1602 * from the end of the IV. The nonce is then 1603 * incremented for use by the next record. 1604 * 1605 * For CBC, a random nonce is inserted for TLS 1.1+. 1606 */ 1607 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1608 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1609 noncep = (uint64_t *)(tls->params.iv + 8); 1610 be64enc(tlshdr + 1, *noncep); 1611 (*noncep)++; 1612 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1613 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1614 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1615 1616 /* 1617 * When using SW encryption, mark the mbuf not ready. 1618 * It will be marked ready via sbready() after the 1619 * record has been encrypted. 1620 * 1621 * When using ifnet TLS, unencrypted TLS records are 1622 * sent down the stack to the NIC. 1623 */ 1624 if (tls->mode == TCP_TLS_MODE_SW) { 1625 m->m_flags |= M_NOTREADY; 1626 m->m_epg_nrdy = m->m_epg_npgs; 1627 if (__predict_false(tls_len == 0)) { 1628 /* TLS 1.0 empty fragment. */ 1629 *enq_cnt += 1; 1630 } else 1631 *enq_cnt += m->m_epg_npgs; 1632 } 1633 } 1634 } 1635 1636 void 1637 ktls_check_rx(struct sockbuf *sb) 1638 { 1639 struct tls_record_layer hdr; 1640 struct ktls_wq *wq; 1641 struct socket *so; 1642 bool running; 1643 1644 SOCKBUF_LOCK_ASSERT(sb); 1645 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1646 __func__, sb)); 1647 so = __containerof(sb, struct socket, so_rcv); 1648 1649 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1650 return; 1651 1652 /* Is there enough queued for a TLS header? */ 1653 if (sb->sb_tlscc < sizeof(hdr)) { 1654 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1655 so->so_error = EMSGSIZE; 1656 return; 1657 } 1658 1659 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1660 1661 /* Is the entire record queued? */ 1662 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1663 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1664 so->so_error = EMSGSIZE; 1665 return; 1666 } 1667 1668 sb->sb_flags |= SB_TLS_RX_RUNNING; 1669 1670 soref(so); 1671 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1672 mtx_lock(&wq->mtx); 1673 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1674 running = wq->running; 1675 mtx_unlock(&wq->mtx); 1676 if (!running) 1677 wakeup(wq); 1678 counter_u64_add(ktls_cnt_rx_queued, 1); 1679 } 1680 1681 static struct mbuf * 1682 ktls_detach_record(struct sockbuf *sb, int len) 1683 { 1684 struct mbuf *m, *n, *top; 1685 int remain; 1686 1687 SOCKBUF_LOCK_ASSERT(sb); 1688 MPASS(len <= sb->sb_tlscc); 1689 1690 /* 1691 * If TLS chain is the exact size of the record, 1692 * just grab the whole record. 1693 */ 1694 top = sb->sb_mtls; 1695 if (sb->sb_tlscc == len) { 1696 sb->sb_mtls = NULL; 1697 sb->sb_mtlstail = NULL; 1698 goto out; 1699 } 1700 1701 /* 1702 * While it would be nice to use m_split() here, we need 1703 * to know exactly what m_split() allocates to update the 1704 * accounting, so do it inline instead. 1705 */ 1706 remain = len; 1707 for (m = top; remain > m->m_len; m = m->m_next) 1708 remain -= m->m_len; 1709 1710 /* Easy case: don't have to split 'm'. */ 1711 if (remain == m->m_len) { 1712 sb->sb_mtls = m->m_next; 1713 if (sb->sb_mtls == NULL) 1714 sb->sb_mtlstail = NULL; 1715 m->m_next = NULL; 1716 goto out; 1717 } 1718 1719 /* 1720 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1721 * with M_NOWAIT first. 1722 */ 1723 n = m_get(M_NOWAIT, MT_DATA); 1724 if (n == NULL) { 1725 /* 1726 * Use M_WAITOK with socket buffer unlocked. If 1727 * 'sb_mtls' changes while the lock is dropped, return 1728 * NULL to force the caller to retry. 1729 */ 1730 SOCKBUF_UNLOCK(sb); 1731 1732 n = m_get(M_WAITOK, MT_DATA); 1733 1734 SOCKBUF_LOCK(sb); 1735 if (sb->sb_mtls != top) { 1736 m_free(n); 1737 return (NULL); 1738 } 1739 } 1740 n->m_flags |= M_NOTREADY; 1741 1742 /* Store remainder in 'n'. */ 1743 n->m_len = m->m_len - remain; 1744 if (m->m_flags & M_EXT) { 1745 n->m_data = m->m_data + remain; 1746 mb_dupcl(n, m); 1747 } else { 1748 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1749 } 1750 1751 /* Trim 'm' and update accounting. */ 1752 m->m_len -= n->m_len; 1753 sb->sb_tlscc -= n->m_len; 1754 sb->sb_ccc -= n->m_len; 1755 1756 /* Account for 'n'. */ 1757 sballoc_ktls_rx(sb, n); 1758 1759 /* Insert 'n' into the TLS chain. */ 1760 sb->sb_mtls = n; 1761 n->m_next = m->m_next; 1762 if (sb->sb_mtlstail == m) 1763 sb->sb_mtlstail = n; 1764 1765 /* Detach the record from the TLS chain. */ 1766 m->m_next = NULL; 1767 1768 out: 1769 MPASS(m_length(top, NULL) == len); 1770 for (m = top; m != NULL; m = m->m_next) 1771 sbfree_ktls_rx(sb, m); 1772 sb->sb_tlsdcc = len; 1773 sb->sb_ccc += len; 1774 SBCHECK(sb); 1775 return (top); 1776 } 1777 1778 static void 1779 ktls_decrypt(struct socket *so) 1780 { 1781 char tls_header[MBUF_PEXT_HDR_LEN]; 1782 struct ktls_session *tls; 1783 struct sockbuf *sb; 1784 struct tls_record_layer *hdr; 1785 struct tls_get_record tgr; 1786 struct mbuf *control, *data, *m; 1787 uint64_t seqno; 1788 int error, remain, tls_len, trail_len; 1789 1790 hdr = (struct tls_record_layer *)tls_header; 1791 sb = &so->so_rcv; 1792 SOCKBUF_LOCK(sb); 1793 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1794 ("%s: socket %p not running", __func__, so)); 1795 1796 tls = sb->sb_tls_info; 1797 MPASS(tls != NULL); 1798 1799 for (;;) { 1800 /* Is there enough queued for a TLS header? */ 1801 if (sb->sb_tlscc < tls->params.tls_hlen) 1802 break; 1803 1804 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1805 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1806 1807 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1808 hdr->tls_vminor != tls->params.tls_vminor) 1809 error = EINVAL; 1810 else if (tls_len < tls->params.tls_hlen || tls_len > 1811 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1812 tls->params.tls_tlen) 1813 error = EMSGSIZE; 1814 else 1815 error = 0; 1816 if (__predict_false(error != 0)) { 1817 /* 1818 * We have a corrupted record and are likely 1819 * out of sync. The connection isn't 1820 * recoverable at this point, so abort it. 1821 */ 1822 SOCKBUF_UNLOCK(sb); 1823 counter_u64_add(ktls_offload_corrupted_records, 1); 1824 1825 CURVNET_SET(so->so_vnet); 1826 so->so_proto->pr_usrreqs->pru_abort(so); 1827 so->so_error = error; 1828 CURVNET_RESTORE(); 1829 goto deref; 1830 } 1831 1832 /* Is the entire record queued? */ 1833 if (sb->sb_tlscc < tls_len) 1834 break; 1835 1836 /* 1837 * Split out the portion of the mbuf chain containing 1838 * this TLS record. 1839 */ 1840 data = ktls_detach_record(sb, tls_len); 1841 if (data == NULL) 1842 continue; 1843 MPASS(sb->sb_tlsdcc == tls_len); 1844 1845 seqno = sb->sb_tls_seqno; 1846 sb->sb_tls_seqno++; 1847 SBCHECK(sb); 1848 SOCKBUF_UNLOCK(sb); 1849 1850 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1851 if (error) { 1852 counter_u64_add(ktls_offload_failed_crypto, 1); 1853 1854 SOCKBUF_LOCK(sb); 1855 if (sb->sb_tlsdcc == 0) { 1856 /* 1857 * sbcut/drop/flush discarded these 1858 * mbufs. 1859 */ 1860 m_freem(data); 1861 break; 1862 } 1863 1864 /* 1865 * Drop this TLS record's data, but keep 1866 * decrypting subsequent records. 1867 */ 1868 sb->sb_ccc -= tls_len; 1869 sb->sb_tlsdcc = 0; 1870 1871 CURVNET_SET(so->so_vnet); 1872 so->so_error = EBADMSG; 1873 sorwakeup_locked(so); 1874 CURVNET_RESTORE(); 1875 1876 m_freem(data); 1877 1878 SOCKBUF_LOCK(sb); 1879 continue; 1880 } 1881 1882 /* Allocate the control mbuf. */ 1883 tgr.tls_type = hdr->tls_type; 1884 tgr.tls_vmajor = hdr->tls_vmajor; 1885 tgr.tls_vminor = hdr->tls_vminor; 1886 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1887 trail_len); 1888 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1889 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1890 1891 SOCKBUF_LOCK(sb); 1892 if (sb->sb_tlsdcc == 0) { 1893 /* sbcut/drop/flush discarded these mbufs. */ 1894 MPASS(sb->sb_tlscc == 0); 1895 m_freem(data); 1896 m_freem(control); 1897 break; 1898 } 1899 1900 /* 1901 * Clear the 'dcc' accounting in preparation for 1902 * adding the decrypted record. 1903 */ 1904 sb->sb_ccc -= tls_len; 1905 sb->sb_tlsdcc = 0; 1906 SBCHECK(sb); 1907 1908 /* If there is no payload, drop all of the data. */ 1909 if (tgr.tls_length == htobe16(0)) { 1910 m_freem(data); 1911 data = NULL; 1912 } else { 1913 /* Trim header. */ 1914 remain = tls->params.tls_hlen; 1915 while (remain > 0) { 1916 if (data->m_len > remain) { 1917 data->m_data += remain; 1918 data->m_len -= remain; 1919 break; 1920 } 1921 remain -= data->m_len; 1922 data = m_free(data); 1923 } 1924 1925 /* Trim trailer and clear M_NOTREADY. */ 1926 remain = be16toh(tgr.tls_length); 1927 m = data; 1928 for (m = data; remain > m->m_len; m = m->m_next) { 1929 m->m_flags &= ~M_NOTREADY; 1930 remain -= m->m_len; 1931 } 1932 m->m_len = remain; 1933 m_freem(m->m_next); 1934 m->m_next = NULL; 1935 m->m_flags &= ~M_NOTREADY; 1936 1937 /* Set EOR on the final mbuf. */ 1938 m->m_flags |= M_EOR; 1939 } 1940 1941 sbappendcontrol_locked(sb, data, control, 0); 1942 } 1943 1944 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1945 1946 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1947 so->so_error = EMSGSIZE; 1948 1949 sorwakeup_locked(so); 1950 1951 deref: 1952 SOCKBUF_UNLOCK_ASSERT(sb); 1953 1954 CURVNET_SET(so->so_vnet); 1955 SOCK_LOCK(so); 1956 sorele(so); 1957 CURVNET_RESTORE(); 1958 } 1959 1960 void 1961 ktls_enqueue_to_free(struct mbuf *m) 1962 { 1963 struct ktls_wq *wq; 1964 bool running; 1965 1966 /* Mark it for freeing. */ 1967 m->m_epg_flags |= EPG_FLAG_2FREE; 1968 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1969 mtx_lock(&wq->mtx); 1970 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1971 running = wq->running; 1972 mtx_unlock(&wq->mtx); 1973 if (!running) 1974 wakeup(wq); 1975 } 1976 1977 void 1978 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1979 { 1980 struct ktls_wq *wq; 1981 bool running; 1982 1983 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1984 (M_EXTPG | M_NOTREADY)), 1985 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1986 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1987 1988 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1989 1990 m->m_epg_enc_cnt = page_count; 1991 1992 /* 1993 * Save a pointer to the socket. The caller is responsible 1994 * for taking an additional reference via soref(). 1995 */ 1996 m->m_epg_so = so; 1997 1998 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1999 mtx_lock(&wq->mtx); 2000 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2001 running = wq->running; 2002 mtx_unlock(&wq->mtx); 2003 if (!running) 2004 wakeup(wq); 2005 counter_u64_add(ktls_cnt_tx_queued, 1); 2006 } 2007 2008 static __noinline void 2009 ktls_encrypt(struct mbuf *top) 2010 { 2011 struct ktls_session *tls; 2012 struct socket *so; 2013 struct mbuf *m; 2014 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2015 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2016 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2017 vm_page_t pg; 2018 int error, i, len, npages, off, total_pages; 2019 bool is_anon; 2020 2021 so = top->m_epg_so; 2022 tls = top->m_epg_tls; 2023 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2024 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2025 #ifdef INVARIANTS 2026 top->m_epg_so = NULL; 2027 #endif 2028 total_pages = top->m_epg_enc_cnt; 2029 npages = 0; 2030 2031 /* 2032 * Encrypt the TLS records in the chain of mbufs starting with 2033 * 'top'. 'total_pages' gives us a total count of pages and is 2034 * used to know when we have finished encrypting the TLS 2035 * records originally queued with 'top'. 2036 * 2037 * NB: These mbufs are queued in the socket buffer and 2038 * 'm_next' is traversing the mbufs in the socket buffer. The 2039 * socket buffer lock is not held while traversing this chain. 2040 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2041 * pointers should be stable. However, the 'm_next' of the 2042 * last mbuf encrypted is not necessarily NULL. It can point 2043 * to other mbufs appended while 'top' was on the TLS work 2044 * queue. 2045 * 2046 * Each mbuf holds an entire TLS record. 2047 */ 2048 error = 0; 2049 for (m = top; npages != total_pages; m = m->m_next) { 2050 KASSERT(m->m_epg_tls == tls, 2051 ("different TLS sessions in a single mbuf chain: %p vs %p", 2052 tls, m->m_epg_tls)); 2053 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2054 (M_EXTPG | M_NOTREADY), 2055 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2056 KASSERT(npages + m->m_epg_npgs <= total_pages, 2057 ("page count mismatch: top %p, total_pages %d, m %p", top, 2058 total_pages, m)); 2059 2060 /* 2061 * Generate source and destination ivoecs to pass to 2062 * the SW encryption backend. For writable mbufs, the 2063 * destination iovec is a copy of the source and 2064 * encryption is done in place. For file-backed mbufs 2065 * (from sendfile), anonymous wired pages are 2066 * allocated and assigned to the destination iovec. 2067 */ 2068 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2069 2070 off = m->m_epg_1st_off; 2071 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2072 len = m_epg_pagelen(m, i, off); 2073 src_iov[i].iov_len = len; 2074 src_iov[i].iov_base = 2075 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 2076 off; 2077 2078 if (is_anon) { 2079 dst_iov[i].iov_base = src_iov[i].iov_base; 2080 dst_iov[i].iov_len = src_iov[i].iov_len; 2081 continue; 2082 } 2083 retry_page: 2084 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2085 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 2086 if (pg == NULL) { 2087 vm_wait(NULL); 2088 goto retry_page; 2089 } 2090 parray[i] = VM_PAGE_TO_PHYS(pg); 2091 dst_iov[i].iov_base = 2092 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 2093 dst_iov[i].iov_len = len; 2094 } 2095 2096 if (__predict_false(m->m_epg_npgs == 0)) { 2097 /* TLS 1.0 empty fragment. */ 2098 npages++; 2099 } else 2100 npages += i; 2101 2102 error = (*tls->sw_encrypt)(tls, 2103 (const struct tls_record_layer *)m->m_epg_hdr, 2104 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 2105 m->m_epg_record_type); 2106 if (error) { 2107 counter_u64_add(ktls_offload_failed_crypto, 1); 2108 break; 2109 } 2110 2111 /* 2112 * For file-backed mbufs, release the file-backed 2113 * pages and replace them in the ext_pgs array with 2114 * the anonymous wired pages allocated above. 2115 */ 2116 if (!is_anon) { 2117 /* Free the old pages. */ 2118 m->m_ext.ext_free(m); 2119 2120 /* Replace them with the new pages. */ 2121 for (i = 0; i < m->m_epg_npgs; i++) 2122 m->m_epg_pa[i] = parray[i]; 2123 2124 /* Use the basic free routine. */ 2125 m->m_ext.ext_free = mb_free_mext_pgs; 2126 2127 /* Pages are now writable. */ 2128 m->m_epg_flags |= EPG_FLAG_ANON; 2129 } 2130 2131 /* 2132 * Drop a reference to the session now that it is no 2133 * longer needed. Existing code depends on encrypted 2134 * records having no associated session vs 2135 * yet-to-be-encrypted records having an associated 2136 * session. 2137 */ 2138 m->m_epg_tls = NULL; 2139 ktls_free(tls); 2140 } 2141 2142 CURVNET_SET(so->so_vnet); 2143 if (error == 0) { 2144 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2145 } else { 2146 so->so_proto->pr_usrreqs->pru_abort(so); 2147 so->so_error = EIO; 2148 mb_free_notready(top, total_pages); 2149 } 2150 2151 SOCK_LOCK(so); 2152 sorele(so); 2153 CURVNET_RESTORE(); 2154 } 2155 2156 static void 2157 ktls_work_thread(void *ctx) 2158 { 2159 struct ktls_wq *wq = ctx; 2160 struct mbuf *m, *n; 2161 struct socket *so, *son; 2162 STAILQ_HEAD(, mbuf) local_m_head; 2163 STAILQ_HEAD(, socket) local_so_head; 2164 2165 if (ktls_bind_threads > 1) { 2166 curthread->td_domain.dr_policy = 2167 DOMAINSET_PREF(PCPU_GET(domain)); 2168 } 2169 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2170 fpu_kern_thread(0); 2171 #endif 2172 for (;;) { 2173 mtx_lock(&wq->mtx); 2174 while (STAILQ_EMPTY(&wq->m_head) && 2175 STAILQ_EMPTY(&wq->so_head)) { 2176 wq->running = false; 2177 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2178 wq->running = true; 2179 } 2180 2181 STAILQ_INIT(&local_m_head); 2182 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2183 STAILQ_INIT(&local_so_head); 2184 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2185 mtx_unlock(&wq->mtx); 2186 2187 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2188 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2189 ktls_free(m->m_epg_tls); 2190 uma_zfree(zone_mbuf, m); 2191 } else { 2192 ktls_encrypt(m); 2193 counter_u64_add(ktls_cnt_tx_queued, -1); 2194 } 2195 } 2196 2197 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2198 ktls_decrypt(so); 2199 counter_u64_add(ktls_cnt_rx_queued, -1); 2200 } 2201 } 2202 } 2203