1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #ifdef RSS 58 #include <net/netisr.h> 59 #include <net/rss_config.h> 60 #endif 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #include <netinet/in_pcb.h> 64 #endif 65 #include <netinet/tcp_var.h> 66 #ifdef TCP_OFFLOAD 67 #include <netinet/tcp_offload.h> 68 #endif 69 #include <opencrypto/xform.h> 70 #include <vm/uma_dbg.h> 71 #include <vm/vm.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_page.h> 74 75 struct ktls_wq { 76 struct mtx mtx; 77 STAILQ_HEAD(, mbuf_ext_pgs) head; 78 bool running; 79 } __aligned(CACHE_LINE_SIZE); 80 81 static struct ktls_wq *ktls_wq; 82 static struct proc *ktls_proc; 83 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 84 static struct rmlock ktls_backends_lock; 85 static uma_zone_t ktls_session_zone; 86 static uint16_t ktls_cpuid_lookup[MAXCPU]; 87 88 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW, 0, 89 "Kernel TLS offload"); 90 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW, 0, 91 "Kernel TLS offload stats"); 92 93 static int ktls_allow_unload; 94 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 95 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 96 97 #ifdef RSS 98 static int ktls_bind_threads = 1; 99 #else 100 static int ktls_bind_threads; 101 #endif 102 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 103 &ktls_bind_threads, 0, 104 "Bind crypto threads to cores or domains at boot"); 105 106 static u_int ktls_maxlen = 16384; 107 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 108 &ktls_maxlen, 0, "Maximum TLS record size"); 109 110 static int ktls_number_threads; 111 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 112 &ktls_number_threads, 0, 113 "Number of TLS threads in thread-pool"); 114 115 static bool ktls_offload_enable; 116 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 117 &ktls_offload_enable, 0, 118 "Enable support for kernel TLS offload"); 119 120 static bool ktls_cbc_enable = true; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 122 &ktls_cbc_enable, 1, 123 "Enable Support of AES-CBC crypto for kernel TLS"); 124 125 static counter_u64_t ktls_tasks_active; 126 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 127 &ktls_tasks_active, "Number of active tasks"); 128 129 static counter_u64_t ktls_cnt_on; 130 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD, 131 &ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto"); 132 133 static counter_u64_t ktls_offload_total; 134 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 135 CTLFLAG_RD, &ktls_offload_total, 136 "Total successful TLS setups (parameters set)"); 137 138 static counter_u64_t ktls_offload_enable_calls; 139 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 140 CTLFLAG_RD, &ktls_offload_enable_calls, 141 "Total number of TLS enable calls made"); 142 143 static counter_u64_t ktls_offload_active; 144 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 145 &ktls_offload_active, "Total Active TLS sessions"); 146 147 static counter_u64_t ktls_offload_failed_crypto; 148 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 149 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 150 151 static counter_u64_t ktls_switch_to_ifnet; 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 153 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 154 155 static counter_u64_t ktls_switch_to_sw; 156 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 157 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 158 159 static counter_u64_t ktls_switch_failed; 160 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 161 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 162 163 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD, 0, 164 "Software TLS session stats"); 165 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD, 0, 166 "Hardware (ifnet) TLS session stats"); 167 #ifdef TCP_OFFLOAD 168 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD, 0, 169 "TOE TLS session stats"); 170 #endif 171 172 static counter_u64_t ktls_sw_cbc; 173 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 174 "Active number of software TLS sessions using AES-CBC"); 175 176 static counter_u64_t ktls_sw_gcm; 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 178 "Active number of software TLS sessions using AES-GCM"); 179 180 static counter_u64_t ktls_ifnet_cbc; 181 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 182 &ktls_ifnet_cbc, 183 "Active number of ifnet TLS sessions using AES-CBC"); 184 185 static counter_u64_t ktls_ifnet_gcm; 186 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 187 &ktls_ifnet_gcm, 188 "Active number of ifnet TLS sessions using AES-GCM"); 189 190 static counter_u64_t ktls_ifnet_reset; 191 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 192 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 193 194 static counter_u64_t ktls_ifnet_reset_dropped; 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 196 &ktls_ifnet_reset_dropped, 197 "TLS sessions dropped after failing to update ifnet send tag"); 198 199 static counter_u64_t ktls_ifnet_reset_failed; 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 201 &ktls_ifnet_reset_failed, 202 "TLS sessions that failed to allocate a new ifnet send tag"); 203 204 static int ktls_ifnet_permitted; 205 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 206 &ktls_ifnet_permitted, 1, 207 "Whether to permit hardware (ifnet) TLS sessions"); 208 209 #ifdef TCP_OFFLOAD 210 static counter_u64_t ktls_toe_cbc; 211 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 212 &ktls_toe_cbc, 213 "Active number of TOE TLS sessions using AES-CBC"); 214 215 static counter_u64_t ktls_toe_gcm; 216 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 217 &ktls_toe_gcm, 218 "Active number of TOE TLS sessions using AES-GCM"); 219 #endif 220 221 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 222 223 static void ktls_cleanup(struct ktls_session *tls); 224 #if defined(INET) || defined(INET6) 225 static void ktls_reset_send_tag(void *context, int pending); 226 #endif 227 static void ktls_work_thread(void *ctx); 228 229 int 230 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 231 { 232 struct ktls_crypto_backend *curr_be, *tmp; 233 234 if (be->api_version != KTLS_API_VERSION) { 235 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 236 be->api_version, KTLS_API_VERSION, 237 be->name); 238 return (EINVAL); 239 } 240 241 rm_wlock(&ktls_backends_lock); 242 printf("KTLS: Registering crypto method %s with prio %d\n", 243 be->name, be->prio); 244 if (LIST_EMPTY(&ktls_backends)) { 245 LIST_INSERT_HEAD(&ktls_backends, be, next); 246 } else { 247 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 248 if (curr_be->prio < be->prio) { 249 LIST_INSERT_BEFORE(curr_be, be, next); 250 break; 251 } 252 if (LIST_NEXT(curr_be, next) == NULL) { 253 LIST_INSERT_AFTER(curr_be, be, next); 254 break; 255 } 256 } 257 } 258 rm_wunlock(&ktls_backends_lock); 259 return (0); 260 } 261 262 int 263 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 264 { 265 struct ktls_crypto_backend *tmp; 266 267 /* 268 * Don't error if the backend isn't registered. This permits 269 * MOD_UNLOAD handlers to use this function unconditionally. 270 */ 271 rm_wlock(&ktls_backends_lock); 272 LIST_FOREACH(tmp, &ktls_backends, next) { 273 if (tmp == be) 274 break; 275 } 276 if (tmp == NULL) { 277 rm_wunlock(&ktls_backends_lock); 278 return (0); 279 } 280 281 if (!ktls_allow_unload) { 282 rm_wunlock(&ktls_backends_lock); 283 printf( 284 "KTLS: Deregistering crypto method %s is not supported\n", 285 be->name); 286 return (EBUSY); 287 } 288 289 if (be->use_count) { 290 rm_wunlock(&ktls_backends_lock); 291 return (EBUSY); 292 } 293 294 LIST_REMOVE(be, next); 295 rm_wunlock(&ktls_backends_lock); 296 return (0); 297 } 298 299 #if defined(INET) || defined(INET6) 300 static uint16_t 301 ktls_get_cpu(struct socket *so) 302 { 303 struct inpcb *inp; 304 uint16_t cpuid; 305 306 inp = sotoinpcb(so); 307 #ifdef RSS 308 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 309 if (cpuid != NETISR_CPUID_NONE) 310 return (cpuid); 311 #endif 312 /* 313 * Just use the flowid to shard connections in a repeatable 314 * fashion. Note that some crypto backends rely on the 315 * serialization provided by having the same connection use 316 * the same queue. 317 */ 318 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 319 return (cpuid); 320 } 321 #endif 322 323 static void 324 ktls_init(void *dummy __unused) 325 { 326 struct thread *td; 327 struct pcpu *pc; 328 cpuset_t mask; 329 int error, i; 330 331 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 332 ktls_cnt_on = counter_u64_alloc(M_WAITOK); 333 ktls_offload_total = counter_u64_alloc(M_WAITOK); 334 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 335 ktls_offload_active = counter_u64_alloc(M_WAITOK); 336 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 337 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 338 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 339 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 340 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 341 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 342 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 343 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 344 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 345 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 346 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 347 #ifdef TCP_OFFLOAD 348 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 349 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 350 #endif 351 352 rm_init(&ktls_backends_lock, "ktls backends"); 353 LIST_INIT(&ktls_backends); 354 355 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 356 M_WAITOK | M_ZERO); 357 358 ktls_session_zone = uma_zcreate("ktls_session", 359 sizeof(struct ktls_session), 360 #ifdef INVARIANTS 361 trash_ctor, trash_dtor, trash_init, trash_fini, 362 #else 363 NULL, NULL, NULL, NULL, 364 #endif 365 UMA_ALIGN_CACHE, 0); 366 367 /* 368 * Initialize the workqueues to run the TLS work. We create a 369 * work queue for each CPU. 370 */ 371 CPU_FOREACH(i) { 372 STAILQ_INIT(&ktls_wq[i].head); 373 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 374 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 375 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 376 if (error) 377 panic("Can't add KTLS thread %d error %d", i, error); 378 379 /* 380 * Bind threads to cores. If ktls_bind_threads is > 381 * 1, then we bind to the NUMA domain. 382 */ 383 if (ktls_bind_threads) { 384 if (ktls_bind_threads > 1) { 385 pc = pcpu_find(i); 386 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 387 } else { 388 CPU_SETOF(i, &mask); 389 } 390 error = cpuset_setthread(td->td_tid, &mask); 391 if (error) 392 panic( 393 "Unable to bind KTLS thread for CPU %d error %d", 394 i, error); 395 } 396 ktls_cpuid_lookup[ktls_number_threads] = i; 397 ktls_number_threads++; 398 } 399 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 400 } 401 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 402 403 #if defined(INET) || defined(INET6) 404 static int 405 ktls_create_session(struct socket *so, struct tls_enable *en, 406 struct ktls_session **tlsp) 407 { 408 struct ktls_session *tls; 409 int error; 410 411 /* Only TLS 1.0 - 1.2 are supported. */ 412 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 413 return (EINVAL); 414 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 415 en->tls_vminor > TLS_MINOR_VER_THREE) 416 return (EINVAL); 417 418 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 419 return (EINVAL); 420 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 421 return (EINVAL); 422 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 423 return (EINVAL); 424 425 /* All supported algorithms require a cipher key. */ 426 if (en->cipher_key_len == 0) 427 return (EINVAL); 428 429 /* No flags are currently supported. */ 430 if (en->flags != 0) 431 return (EINVAL); 432 433 /* Common checks for supported algorithms. */ 434 switch (en->cipher_algorithm) { 435 case CRYPTO_AES_NIST_GCM_16: 436 /* 437 * auth_algorithm isn't used, but permit GMAC values 438 * for compatibility. 439 */ 440 switch (en->auth_algorithm) { 441 case 0: 442 case CRYPTO_AES_128_NIST_GMAC: 443 case CRYPTO_AES_192_NIST_GMAC: 444 case CRYPTO_AES_256_NIST_GMAC: 445 break; 446 default: 447 return (EINVAL); 448 } 449 if (en->auth_key_len != 0) 450 return (EINVAL); 451 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 452 en->iv_len != TLS_AEAD_GCM_LEN) || 453 (en->tls_vminor == TLS_MINOR_VER_THREE && 454 en->iv_len != TLS_1_3_GCM_IV_LEN)) 455 return (EINVAL); 456 break; 457 case CRYPTO_AES_CBC: 458 switch (en->auth_algorithm) { 459 case CRYPTO_SHA1_HMAC: 460 /* 461 * TLS 1.0 requires an implicit IV. TLS 1.1+ 462 * all use explicit IVs. 463 */ 464 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 465 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 466 return (EINVAL); 467 break; 468 } 469 470 /* FALLTHROUGH */ 471 case CRYPTO_SHA2_256_HMAC: 472 case CRYPTO_SHA2_384_HMAC: 473 /* Ignore any supplied IV. */ 474 en->iv_len = 0; 475 break; 476 default: 477 return (EINVAL); 478 } 479 if (en->auth_key_len == 0) 480 return (EINVAL); 481 break; 482 default: 483 return (EINVAL); 484 } 485 486 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 487 488 counter_u64_add(ktls_offload_active, 1); 489 490 refcount_init(&tls->refcount, 1); 491 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 492 493 tls->wq_index = ktls_get_cpu(so); 494 495 tls->params.cipher_algorithm = en->cipher_algorithm; 496 tls->params.auth_algorithm = en->auth_algorithm; 497 tls->params.tls_vmajor = en->tls_vmajor; 498 tls->params.tls_vminor = en->tls_vminor; 499 tls->params.flags = en->flags; 500 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 501 502 /* Set the header and trailer lengths. */ 503 tls->params.tls_hlen = sizeof(struct tls_record_layer); 504 switch (en->cipher_algorithm) { 505 case CRYPTO_AES_NIST_GCM_16: 506 /* 507 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 508 * nonce. TLS 1.3 uses a 12 byte implicit IV. 509 */ 510 if (en->tls_vminor < TLS_MINOR_VER_THREE) 511 tls->params.tls_hlen += sizeof(uint64_t); 512 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 513 514 /* 515 * TLS 1.3 includes optional padding which we 516 * do not support, and also puts the "real" record 517 * type at the end of the encrypted data. 518 */ 519 if (en->tls_vminor == TLS_MINOR_VER_THREE) 520 tls->params.tls_tlen += sizeof(uint8_t); 521 522 tls->params.tls_bs = 1; 523 break; 524 case CRYPTO_AES_CBC: 525 switch (en->auth_algorithm) { 526 case CRYPTO_SHA1_HMAC: 527 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 528 /* Implicit IV, no nonce. */ 529 } else { 530 tls->params.tls_hlen += AES_BLOCK_LEN; 531 } 532 tls->params.tls_tlen = AES_BLOCK_LEN + 533 SHA1_HASH_LEN; 534 break; 535 case CRYPTO_SHA2_256_HMAC: 536 tls->params.tls_hlen += AES_BLOCK_LEN; 537 tls->params.tls_tlen = AES_BLOCK_LEN + 538 SHA2_256_HASH_LEN; 539 break; 540 case CRYPTO_SHA2_384_HMAC: 541 tls->params.tls_hlen += AES_BLOCK_LEN; 542 tls->params.tls_tlen = AES_BLOCK_LEN + 543 SHA2_384_HASH_LEN; 544 break; 545 default: 546 panic("invalid hmac"); 547 } 548 tls->params.tls_bs = AES_BLOCK_LEN; 549 break; 550 default: 551 panic("invalid cipher"); 552 } 553 554 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 555 ("TLS header length too long: %d", tls->params.tls_hlen)); 556 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 557 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 558 559 if (en->auth_key_len != 0) { 560 tls->params.auth_key_len = en->auth_key_len; 561 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 562 M_WAITOK); 563 error = copyin(en->auth_key, tls->params.auth_key, 564 en->auth_key_len); 565 if (error) 566 goto out; 567 } 568 569 tls->params.cipher_key_len = en->cipher_key_len; 570 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 571 error = copyin(en->cipher_key, tls->params.cipher_key, 572 en->cipher_key_len); 573 if (error) 574 goto out; 575 576 /* 577 * This holds the implicit portion of the nonce for GCM and 578 * the initial implicit IV for TLS 1.0. The explicit portions 579 * of the IV are generated in ktls_frame() and ktls_seq(). 580 */ 581 if (en->iv_len != 0) { 582 tls->params.iv_len = en->iv_len; 583 error = copyin(en->iv, tls->params.iv, en->iv_len); 584 if (error) 585 goto out; 586 } 587 588 *tlsp = tls; 589 return (0); 590 591 out: 592 ktls_cleanup(tls); 593 return (error); 594 } 595 596 static struct ktls_session * 597 ktls_clone_session(struct ktls_session *tls) 598 { 599 struct ktls_session *tls_new; 600 601 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 602 603 counter_u64_add(ktls_offload_active, 1); 604 605 refcount_init(&tls_new->refcount, 1); 606 607 /* Copy fields from existing session. */ 608 tls_new->params = tls->params; 609 tls_new->wq_index = tls->wq_index; 610 611 /* Deep copy keys. */ 612 if (tls_new->params.auth_key != NULL) { 613 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 614 M_KTLS, M_WAITOK); 615 memcpy(tls_new->params.auth_key, tls->params.auth_key, 616 tls->params.auth_key_len); 617 } 618 619 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 620 M_WAITOK); 621 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 622 tls->params.cipher_key_len); 623 624 return (tls_new); 625 } 626 #endif 627 628 static void 629 ktls_cleanup(struct ktls_session *tls) 630 { 631 632 counter_u64_add(ktls_offload_active, -1); 633 switch (tls->mode) { 634 case TCP_TLS_MODE_SW: 635 MPASS(tls->be != NULL); 636 switch (tls->params.cipher_algorithm) { 637 case CRYPTO_AES_CBC: 638 counter_u64_add(ktls_sw_cbc, -1); 639 break; 640 case CRYPTO_AES_NIST_GCM_16: 641 counter_u64_add(ktls_sw_gcm, -1); 642 break; 643 } 644 tls->free(tls); 645 break; 646 case TCP_TLS_MODE_IFNET: 647 switch (tls->params.cipher_algorithm) { 648 case CRYPTO_AES_CBC: 649 counter_u64_add(ktls_ifnet_cbc, -1); 650 break; 651 case CRYPTO_AES_NIST_GCM_16: 652 counter_u64_add(ktls_ifnet_gcm, -1); 653 break; 654 } 655 m_snd_tag_rele(tls->snd_tag); 656 break; 657 #ifdef TCP_OFFLOAD 658 case TCP_TLS_MODE_TOE: 659 switch (tls->params.cipher_algorithm) { 660 case CRYPTO_AES_CBC: 661 counter_u64_add(ktls_toe_cbc, -1); 662 break; 663 case CRYPTO_AES_NIST_GCM_16: 664 counter_u64_add(ktls_toe_gcm, -1); 665 break; 666 } 667 break; 668 #endif 669 } 670 if (tls->params.auth_key != NULL) { 671 explicit_bzero(tls->params.auth_key, tls->params.auth_key_len); 672 free(tls->params.auth_key, M_KTLS); 673 tls->params.auth_key = NULL; 674 tls->params.auth_key_len = 0; 675 } 676 if (tls->params.cipher_key != NULL) { 677 explicit_bzero(tls->params.cipher_key, 678 tls->params.cipher_key_len); 679 free(tls->params.cipher_key, M_KTLS); 680 tls->params.cipher_key = NULL; 681 tls->params.cipher_key_len = 0; 682 } 683 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 684 } 685 686 #if defined(INET) || defined(INET6) 687 688 #ifdef TCP_OFFLOAD 689 static int 690 ktls_try_toe(struct socket *so, struct ktls_session *tls) 691 { 692 struct inpcb *inp; 693 struct tcpcb *tp; 694 int error; 695 696 inp = so->so_pcb; 697 INP_WLOCK(inp); 698 if (inp->inp_flags2 & INP_FREED) { 699 INP_WUNLOCK(inp); 700 return (ECONNRESET); 701 } 702 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 703 INP_WUNLOCK(inp); 704 return (ECONNRESET); 705 } 706 if (inp->inp_socket == NULL) { 707 INP_WUNLOCK(inp); 708 return (ECONNRESET); 709 } 710 tp = intotcpcb(inp); 711 if (tp->tod == NULL) { 712 INP_WUNLOCK(inp); 713 return (EOPNOTSUPP); 714 } 715 716 error = tcp_offload_alloc_tls_session(tp, tls); 717 INP_WUNLOCK(inp); 718 if (error == 0) { 719 tls->mode = TCP_TLS_MODE_TOE; 720 switch (tls->params.cipher_algorithm) { 721 case CRYPTO_AES_CBC: 722 counter_u64_add(ktls_toe_cbc, 1); 723 break; 724 case CRYPTO_AES_NIST_GCM_16: 725 counter_u64_add(ktls_toe_gcm, 1); 726 break; 727 } 728 } 729 return (error); 730 } 731 #endif 732 733 /* 734 * Common code used when first enabling ifnet TLS on a connection or 735 * when allocating a new ifnet TLS session due to a routing change. 736 * This function allocates a new TLS send tag on whatever interface 737 * the connection is currently routed over. 738 */ 739 static int 740 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 741 struct m_snd_tag **mstp) 742 { 743 union if_snd_tag_alloc_params params; 744 struct ifnet *ifp; 745 struct rtentry *rt; 746 struct tcpcb *tp; 747 int error; 748 749 INP_RLOCK(inp); 750 if (inp->inp_flags2 & INP_FREED) { 751 INP_RUNLOCK(inp); 752 return (ECONNRESET); 753 } 754 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 755 INP_RUNLOCK(inp); 756 return (ECONNRESET); 757 } 758 if (inp->inp_socket == NULL) { 759 INP_RUNLOCK(inp); 760 return (ECONNRESET); 761 } 762 tp = intotcpcb(inp); 763 764 /* 765 * Check administrative controls on ifnet TLS to determine if 766 * ifnet TLS should be denied. 767 * 768 * - Always permit 'force' requests. 769 * - ktls_ifnet_permitted == 0: always deny. 770 */ 771 if (!force && ktls_ifnet_permitted == 0) { 772 INP_RUNLOCK(inp); 773 return (ENXIO); 774 } 775 776 /* 777 * XXX: Use the cached route in the inpcb to find the 778 * interface. This should perhaps instead use 779 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 780 * enabled after a connection has completed key negotiation in 781 * userland, the cached route will be present in practice. 782 */ 783 rt = inp->inp_route.ro_rt; 784 if (rt == NULL || rt->rt_ifp == NULL) { 785 INP_RUNLOCK(inp); 786 return (ENXIO); 787 } 788 ifp = rt->rt_ifp; 789 if_ref(ifp); 790 791 params.hdr.type = IF_SND_TAG_TYPE_TLS; 792 params.hdr.flowid = inp->inp_flowid; 793 params.hdr.flowtype = inp->inp_flowtype; 794 params.tls.inp = inp; 795 params.tls.tls = tls; 796 INP_RUNLOCK(inp); 797 798 if (ifp->if_snd_tag_alloc == NULL) { 799 error = EOPNOTSUPP; 800 goto out; 801 } 802 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 803 error = EOPNOTSUPP; 804 goto out; 805 } 806 if (inp->inp_vflag & INP_IPV6) { 807 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 808 error = EOPNOTSUPP; 809 goto out; 810 } 811 } else { 812 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 813 error = EOPNOTSUPP; 814 goto out; 815 } 816 } 817 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 818 out: 819 if_rele(ifp); 820 return (error); 821 } 822 823 static int 824 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 825 { 826 struct m_snd_tag *mst; 827 int error; 828 829 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 830 if (error == 0) { 831 tls->mode = TCP_TLS_MODE_IFNET; 832 tls->snd_tag = mst; 833 switch (tls->params.cipher_algorithm) { 834 case CRYPTO_AES_CBC: 835 counter_u64_add(ktls_ifnet_cbc, 1); 836 break; 837 case CRYPTO_AES_NIST_GCM_16: 838 counter_u64_add(ktls_ifnet_gcm, 1); 839 break; 840 } 841 } 842 return (error); 843 } 844 845 static int 846 ktls_try_sw(struct socket *so, struct ktls_session *tls) 847 { 848 struct rm_priotracker prio; 849 struct ktls_crypto_backend *be; 850 851 /* 852 * Choose the best software crypto backend. Backends are 853 * stored in sorted priority order (larget value == most 854 * important at the head of the list), so this just stops on 855 * the first backend that claims the session by returning 856 * success. 857 */ 858 if (ktls_allow_unload) 859 rm_rlock(&ktls_backends_lock, &prio); 860 LIST_FOREACH(be, &ktls_backends, next) { 861 if (be->try(so, tls) == 0) 862 break; 863 KASSERT(tls->cipher == NULL, 864 ("ktls backend leaked a cipher pointer")); 865 } 866 if (be != NULL) { 867 if (ktls_allow_unload) 868 be->use_count++; 869 tls->be = be; 870 } 871 if (ktls_allow_unload) 872 rm_runlock(&ktls_backends_lock, &prio); 873 if (be == NULL) 874 return (EOPNOTSUPP); 875 tls->mode = TCP_TLS_MODE_SW; 876 switch (tls->params.cipher_algorithm) { 877 case CRYPTO_AES_CBC: 878 counter_u64_add(ktls_sw_cbc, 1); 879 break; 880 case CRYPTO_AES_NIST_GCM_16: 881 counter_u64_add(ktls_sw_gcm, 1); 882 break; 883 } 884 return (0); 885 } 886 887 int 888 ktls_enable_tx(struct socket *so, struct tls_enable *en) 889 { 890 struct ktls_session *tls; 891 int error; 892 893 if (!ktls_offload_enable) 894 return (ENOTSUP); 895 896 counter_u64_add(ktls_offload_enable_calls, 1); 897 898 /* 899 * This should always be true since only the TCP socket option 900 * invokes this function. 901 */ 902 if (so->so_proto->pr_protocol != IPPROTO_TCP) 903 return (EINVAL); 904 905 /* 906 * XXX: Don't overwrite existing sessions. We should permit 907 * this to support rekeying in the future. 908 */ 909 if (so->so_snd.sb_tls_info != NULL) 910 return (EALREADY); 911 912 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 913 return (ENOTSUP); 914 915 /* TLS requires ext pgs */ 916 if (mb_use_ext_pgs == 0) 917 return (ENXIO); 918 919 error = ktls_create_session(so, en, &tls); 920 if (error) 921 return (error); 922 923 /* Prefer TOE -> ifnet TLS -> software TLS. */ 924 #ifdef TCP_OFFLOAD 925 error = ktls_try_toe(so, tls); 926 if (error) 927 #endif 928 error = ktls_try_ifnet(so, tls, false); 929 if (error) 930 error = ktls_try_sw(so, tls); 931 932 if (error) { 933 ktls_cleanup(tls); 934 return (error); 935 } 936 937 error = sblock(&so->so_snd, SBL_WAIT); 938 if (error) { 939 ktls_cleanup(tls); 940 return (error); 941 } 942 943 SOCKBUF_LOCK(&so->so_snd); 944 so->so_snd.sb_tls_info = tls; 945 if (tls->mode != TCP_TLS_MODE_SW) 946 so->so_snd.sb_flags |= SB_TLS_IFNET; 947 SOCKBUF_UNLOCK(&so->so_snd); 948 sbunlock(&so->so_snd); 949 950 counter_u64_add(ktls_offload_total, 1); 951 952 return (0); 953 } 954 955 int 956 ktls_get_tx_mode(struct socket *so) 957 { 958 struct ktls_session *tls; 959 struct inpcb *inp; 960 int mode; 961 962 inp = so->so_pcb; 963 INP_WLOCK_ASSERT(inp); 964 SOCKBUF_LOCK(&so->so_snd); 965 tls = so->so_snd.sb_tls_info; 966 if (tls == NULL) 967 mode = TCP_TLS_MODE_NONE; 968 else 969 mode = tls->mode; 970 SOCKBUF_UNLOCK(&so->so_snd); 971 return (mode); 972 } 973 974 /* 975 * Switch between SW and ifnet TLS sessions as requested. 976 */ 977 int 978 ktls_set_tx_mode(struct socket *so, int mode) 979 { 980 struct ktls_session *tls, *tls_new; 981 struct inpcb *inp; 982 int error; 983 984 switch (mode) { 985 case TCP_TLS_MODE_SW: 986 case TCP_TLS_MODE_IFNET: 987 break; 988 default: 989 return (EINVAL); 990 } 991 992 inp = so->so_pcb; 993 INP_WLOCK_ASSERT(inp); 994 SOCKBUF_LOCK(&so->so_snd); 995 tls = so->so_snd.sb_tls_info; 996 if (tls == NULL) { 997 SOCKBUF_UNLOCK(&so->so_snd); 998 return (0); 999 } 1000 1001 if (tls->mode == mode) { 1002 SOCKBUF_UNLOCK(&so->so_snd); 1003 return (0); 1004 } 1005 1006 tls = ktls_hold(tls); 1007 SOCKBUF_UNLOCK(&so->so_snd); 1008 INP_WUNLOCK(inp); 1009 1010 tls_new = ktls_clone_session(tls); 1011 1012 if (mode == TCP_TLS_MODE_IFNET) 1013 error = ktls_try_ifnet(so, tls_new, true); 1014 else 1015 error = ktls_try_sw(so, tls_new); 1016 if (error) { 1017 counter_u64_add(ktls_switch_failed, 1); 1018 ktls_free(tls_new); 1019 ktls_free(tls); 1020 INP_WLOCK(inp); 1021 return (error); 1022 } 1023 1024 error = sblock(&so->so_snd, SBL_WAIT); 1025 if (error) { 1026 counter_u64_add(ktls_switch_failed, 1); 1027 ktls_free(tls_new); 1028 ktls_free(tls); 1029 INP_WLOCK(inp); 1030 return (error); 1031 } 1032 1033 /* 1034 * If we raced with another session change, keep the existing 1035 * session. 1036 */ 1037 if (tls != so->so_snd.sb_tls_info) { 1038 counter_u64_add(ktls_switch_failed, 1); 1039 sbunlock(&so->so_snd); 1040 ktls_free(tls_new); 1041 ktls_free(tls); 1042 INP_WLOCK(inp); 1043 return (EBUSY); 1044 } 1045 1046 SOCKBUF_LOCK(&so->so_snd); 1047 so->so_snd.sb_tls_info = tls_new; 1048 if (tls_new->mode != TCP_TLS_MODE_SW) 1049 so->so_snd.sb_flags |= SB_TLS_IFNET; 1050 SOCKBUF_UNLOCK(&so->so_snd); 1051 sbunlock(&so->so_snd); 1052 1053 /* 1054 * Drop two references on 'tls'. The first is for the 1055 * ktls_hold() above. The second drops the reference from the 1056 * socket buffer. 1057 */ 1058 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1059 ktls_free(tls); 1060 ktls_free(tls); 1061 1062 if (mode == TCP_TLS_MODE_IFNET) 1063 counter_u64_add(ktls_switch_to_ifnet, 1); 1064 else 1065 counter_u64_add(ktls_switch_to_sw, 1); 1066 1067 INP_WLOCK(inp); 1068 return (0); 1069 } 1070 1071 /* 1072 * Try to allocate a new TLS send tag. This task is scheduled when 1073 * ip_output detects a route change while trying to transmit a packet 1074 * holding a TLS record. If a new tag is allocated, replace the tag 1075 * in the TLS session. Subsequent packets on the connection will use 1076 * the new tag. If a new tag cannot be allocated, drop the 1077 * connection. 1078 */ 1079 static void 1080 ktls_reset_send_tag(void *context, int pending) 1081 { 1082 struct epoch_tracker et; 1083 struct ktls_session *tls; 1084 struct m_snd_tag *old, *new; 1085 struct inpcb *inp; 1086 struct tcpcb *tp; 1087 int error; 1088 1089 MPASS(pending == 1); 1090 1091 tls = context; 1092 inp = tls->inp; 1093 1094 /* 1095 * Free the old tag first before allocating a new one. 1096 * ip[6]_output_send() will treat a NULL send tag the same as 1097 * an ifp mismatch and drop packets until a new tag is 1098 * allocated. 1099 * 1100 * Write-lock the INP when changing tls->snd_tag since 1101 * ip[6]_output_send() holds a read-lock when reading the 1102 * pointer. 1103 */ 1104 INP_WLOCK(inp); 1105 old = tls->snd_tag; 1106 tls->snd_tag = NULL; 1107 INP_WUNLOCK(inp); 1108 if (old != NULL) 1109 m_snd_tag_rele(old); 1110 1111 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1112 1113 if (error == 0) { 1114 INP_WLOCK(inp); 1115 tls->snd_tag = new; 1116 mtx_pool_lock(mtxpool_sleep, tls); 1117 tls->reset_pending = false; 1118 mtx_pool_unlock(mtxpool_sleep, tls); 1119 if (!in_pcbrele_wlocked(inp)) 1120 INP_WUNLOCK(inp); 1121 1122 counter_u64_add(ktls_ifnet_reset, 1); 1123 1124 /* 1125 * XXX: Should we kick tcp_output explicitly now that 1126 * the send tag is fixed or just rely on timers? 1127 */ 1128 } else { 1129 INP_INFO_RLOCK_ET(&V_tcbinfo, et); 1130 INP_WLOCK(inp); 1131 if (!in_pcbrele_wlocked(inp)) { 1132 if (!(inp->inp_flags & INP_TIMEWAIT) && 1133 !(inp->inp_flags & INP_DROPPED)) { 1134 tp = intotcpcb(inp); 1135 tp = tcp_drop(tp, ECONNABORTED); 1136 if (tp != NULL) 1137 INP_WUNLOCK(inp); 1138 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1139 } else 1140 INP_WUNLOCK(inp); 1141 } 1142 INP_INFO_RUNLOCK_ET(&V_tcbinfo, et); 1143 1144 counter_u64_add(ktls_ifnet_reset_failed, 1); 1145 1146 /* 1147 * Leave reset_pending true to avoid future tasks while 1148 * the socket goes away. 1149 */ 1150 } 1151 1152 ktls_free(tls); 1153 } 1154 1155 int 1156 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1157 { 1158 1159 if (inp == NULL) 1160 return (ENOBUFS); 1161 1162 INP_LOCK_ASSERT(inp); 1163 1164 /* 1165 * See if we should schedule a task to update the send tag for 1166 * this session. 1167 */ 1168 mtx_pool_lock(mtxpool_sleep, tls); 1169 if (!tls->reset_pending) { 1170 (void) ktls_hold(tls); 1171 in_pcbref(inp); 1172 tls->inp = inp; 1173 tls->reset_pending = true; 1174 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1175 } 1176 mtx_pool_unlock(mtxpool_sleep, tls); 1177 return (ENOBUFS); 1178 } 1179 #endif 1180 1181 void 1182 ktls_destroy(struct ktls_session *tls) 1183 { 1184 struct rm_priotracker prio; 1185 1186 ktls_cleanup(tls); 1187 if (tls->be != NULL && ktls_allow_unload) { 1188 rm_rlock(&ktls_backends_lock, &prio); 1189 tls->be->use_count--; 1190 rm_runlock(&ktls_backends_lock, &prio); 1191 } 1192 uma_zfree(ktls_session_zone, tls); 1193 } 1194 1195 void 1196 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1197 { 1198 struct mbuf_ext_pgs *pgs; 1199 struct tls_record_layer *tlshdr; 1200 uint64_t seqno; 1201 1202 for (; m != NULL; m = m->m_next) { 1203 KASSERT((m->m_flags & M_NOMAP) != 0, 1204 ("ktls_seq: mapped mbuf %p", m)); 1205 1206 pgs = m->m_ext.ext_pgs; 1207 pgs->seqno = sb->sb_tls_seqno; 1208 1209 /* 1210 * Store the sequence number in the TLS header as the 1211 * explicit part of the IV for GCM. 1212 */ 1213 if (pgs->tls->params.cipher_algorithm == 1214 CRYPTO_AES_NIST_GCM_16) { 1215 tlshdr = (void *)pgs->hdr; 1216 seqno = htobe64(pgs->seqno); 1217 memcpy(tlshdr + 1, &seqno, sizeof(seqno)); 1218 } 1219 sb->sb_tls_seqno++; 1220 } 1221 } 1222 1223 /* 1224 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1225 * mbuf in the chain must be an unmapped mbuf. The payload of the 1226 * mbuf must be populated with the payload of each TLS record. 1227 * 1228 * The record_type argument specifies the TLS record type used when 1229 * populating the TLS header. 1230 * 1231 * The enq_count argument on return is set to the number of pages of 1232 * payload data for this entire chain that need to be encrypted via SW 1233 * encryption. The returned value should be passed to ktls_enqueue 1234 * when scheduling encryption of this chain of mbufs. 1235 */ 1236 int 1237 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1238 uint8_t record_type) 1239 { 1240 struct tls_record_layer *tlshdr; 1241 struct mbuf *m; 1242 struct mbuf_ext_pgs *pgs; 1243 uint16_t tls_len; 1244 int maxlen; 1245 1246 maxlen = tls->params.max_frame_len; 1247 *enq_cnt = 0; 1248 for (m = top; m != NULL; m = m->m_next) { 1249 /* 1250 * All mbufs in the chain should be non-empty TLS 1251 * records whose payload does not exceed the maximum 1252 * frame length. 1253 */ 1254 if (m->m_len > maxlen || m->m_len == 0) 1255 return (EINVAL); 1256 tls_len = m->m_len; 1257 1258 /* 1259 * TLS frames require unmapped mbufs to store session 1260 * info. 1261 */ 1262 KASSERT((m->m_flags & M_NOMAP) != 0, 1263 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1264 1265 pgs = m->m_ext.ext_pgs; 1266 1267 /* Save a reference to the session. */ 1268 pgs->tls = ktls_hold(tls); 1269 1270 pgs->hdr_len = tls->params.tls_hlen; 1271 pgs->trail_len = tls->params.tls_tlen; 1272 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1273 int bs, delta; 1274 1275 /* 1276 * AES-CBC pads messages to a multiple of the 1277 * block size. Note that the padding is 1278 * applied after the digest and the encryption 1279 * is done on the "plaintext || mac || padding". 1280 * At least one byte of padding is always 1281 * present. 1282 * 1283 * Compute the final trailer length assuming 1284 * at most one block of padding. 1285 * tls->params.sb_tls_tlen is the maximum 1286 * possible trailer length (padding + digest). 1287 * delta holds the number of excess padding 1288 * bytes if the maximum were used. Those 1289 * extra bytes are removed. 1290 */ 1291 bs = tls->params.tls_bs; 1292 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1293 pgs->trail_len -= delta; 1294 } 1295 m->m_len += pgs->hdr_len + pgs->trail_len; 1296 1297 /* Populate the TLS header. */ 1298 tlshdr = (void *)pgs->hdr; 1299 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1300 1301 /* 1302 * TLS 1.3 masquarades as TLS 1.2 with a record type 1303 * of TLS_RLTYPE_APP. 1304 */ 1305 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1306 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1307 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1308 tlshdr->tls_type = TLS_RLTYPE_APP; 1309 /* save the real record type for later */ 1310 pgs->record_type = record_type; 1311 } else { 1312 tlshdr->tls_vminor = tls->params.tls_vminor; 1313 tlshdr->tls_type = record_type; 1314 } 1315 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1316 1317 /* 1318 * For GCM, the sequence number is stored in the 1319 * header by ktls_seq(). For CBC, a random nonce is 1320 * inserted for TLS 1.1+. 1321 */ 1322 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1323 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1324 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1325 1326 /* 1327 * When using SW encryption, mark the mbuf not ready. 1328 * It will be marked ready via sbready() after the 1329 * record has been encrypted. 1330 * 1331 * When using ifnet TLS, unencrypted TLS records are 1332 * sent down the stack to the NIC. 1333 */ 1334 if (tls->mode == TCP_TLS_MODE_SW) { 1335 m->m_flags |= M_NOTREADY; 1336 pgs->nrdy = pgs->npgs; 1337 *enq_cnt += pgs->npgs; 1338 } 1339 } 1340 return (0); 1341 } 1342 1343 void 1344 ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs) 1345 { 1346 struct ktls_wq *wq; 1347 bool running; 1348 1349 /* Mark it for freeing. */ 1350 pgs->mbuf = NULL; 1351 wq = &ktls_wq[pgs->tls->wq_index]; 1352 mtx_lock(&wq->mtx); 1353 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1354 running = wq->running; 1355 mtx_unlock(&wq->mtx); 1356 if (!running) 1357 wakeup(wq); 1358 } 1359 1360 void 1361 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1362 { 1363 struct mbuf_ext_pgs *pgs; 1364 struct ktls_wq *wq; 1365 bool running; 1366 1367 KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1368 (M_NOMAP | M_NOTREADY)), 1369 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1370 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1371 1372 pgs = m->m_ext.ext_pgs; 1373 1374 KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1375 1376 pgs->enc_cnt = page_count; 1377 pgs->mbuf = m; 1378 1379 /* 1380 * Save a pointer to the socket. The caller is responsible 1381 * for taking an additional reference via soref(). 1382 */ 1383 pgs->so = so; 1384 1385 wq = &ktls_wq[pgs->tls->wq_index]; 1386 mtx_lock(&wq->mtx); 1387 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1388 running = wq->running; 1389 mtx_unlock(&wq->mtx); 1390 if (!running) 1391 wakeup(wq); 1392 counter_u64_add(ktls_cnt_on, 1); 1393 } 1394 1395 static __noinline void 1396 ktls_encrypt(struct mbuf_ext_pgs *pgs) 1397 { 1398 struct ktls_session *tls; 1399 struct socket *so; 1400 struct mbuf *m, *top; 1401 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1402 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1403 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1404 vm_page_t pg; 1405 int error, i, len, npages, off, total_pages; 1406 bool is_anon; 1407 1408 so = pgs->so; 1409 tls = pgs->tls; 1410 top = pgs->mbuf; 1411 KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs)); 1412 KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs)); 1413 #ifdef INVARIANTS 1414 pgs->so = NULL; 1415 pgs->mbuf = NULL; 1416 #endif 1417 total_pages = pgs->enc_cnt; 1418 npages = 0; 1419 1420 /* 1421 * Encrypt the TLS records in the chain of mbufs starting with 1422 * 'top'. 'total_pages' gives us a total count of pages and is 1423 * used to know when we have finished encrypting the TLS 1424 * records originally queued with 'top'. 1425 * 1426 * NB: These mbufs are queued in the socket buffer and 1427 * 'm_next' is traversing the mbufs in the socket buffer. The 1428 * socket buffer lock is not held while traversing this chain. 1429 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1430 * pointers should be stable. However, the 'm_next' of the 1431 * last mbuf encrypted is not necessarily NULL. It can point 1432 * to other mbufs appended while 'top' was on the TLS work 1433 * queue. 1434 * 1435 * Each mbuf holds an entire TLS record. 1436 */ 1437 error = 0; 1438 for (m = top; npages != total_pages; m = m->m_next) { 1439 pgs = m->m_ext.ext_pgs; 1440 1441 KASSERT(pgs->tls == tls, 1442 ("different TLS sessions in a single mbuf chain: %p vs %p", 1443 tls, pgs->tls)); 1444 KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1445 (M_NOMAP | M_NOTREADY), 1446 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1447 KASSERT(npages + pgs->npgs <= total_pages, 1448 ("page count mismatch: top %p, total_pages %d, m %p", top, 1449 total_pages, m)); 1450 1451 /* 1452 * Generate source and destination ivoecs to pass to 1453 * the SW encryption backend. For writable mbufs, the 1454 * destination iovec is a copy of the source and 1455 * encryption is done in place. For file-backed mbufs 1456 * (from sendfile), anonymous wired pages are 1457 * allocated and assigned to the destination iovec. 1458 */ 1459 is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0; 1460 1461 off = pgs->first_pg_off; 1462 for (i = 0; i < pgs->npgs; i++, off = 0) { 1463 len = mbuf_ext_pg_len(pgs, i, off); 1464 src_iov[i].iov_len = len; 1465 src_iov[i].iov_base = 1466 (char *)(void *)PHYS_TO_DMAP(pgs->pa[i]) + off; 1467 1468 if (is_anon) { 1469 dst_iov[i].iov_base = src_iov[i].iov_base; 1470 dst_iov[i].iov_len = src_iov[i].iov_len; 1471 continue; 1472 } 1473 retry_page: 1474 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1475 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1476 if (pg == NULL) { 1477 vm_wait(NULL); 1478 goto retry_page; 1479 } 1480 parray[i] = VM_PAGE_TO_PHYS(pg); 1481 dst_iov[i].iov_base = 1482 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1483 dst_iov[i].iov_len = len; 1484 } 1485 1486 npages += i; 1487 1488 error = (*tls->sw_encrypt)(tls, 1489 (const struct tls_record_layer *)pgs->hdr, 1490 pgs->trail, src_iov, dst_iov, i, pgs->seqno, 1491 pgs->record_type); 1492 if (error) { 1493 counter_u64_add(ktls_offload_failed_crypto, 1); 1494 break; 1495 } 1496 1497 /* 1498 * For file-backed mbufs, release the file-backed 1499 * pages and replace them in the ext_pgs array with 1500 * the anonymous wired pages allocated above. 1501 */ 1502 if (!is_anon) { 1503 /* Free the old pages. */ 1504 m->m_ext.ext_free(m); 1505 1506 /* Replace them with the new pages. */ 1507 for (i = 0; i < pgs->npgs; i++) 1508 pgs->pa[i] = parray[i]; 1509 1510 /* Use the basic free routine. */ 1511 m->m_ext.ext_free = mb_free_mext_pgs; 1512 1513 /* Pages are now writable. */ 1514 pgs->flags |= MBUF_PEXT_FLAG_ANON; 1515 } 1516 1517 /* 1518 * Drop a reference to the session now that it is no 1519 * longer needed. Existing code depends on encrypted 1520 * records having no associated session vs 1521 * yet-to-be-encrypted records having an associated 1522 * session. 1523 */ 1524 pgs->tls = NULL; 1525 ktls_free(tls); 1526 } 1527 1528 CURVNET_SET(so->so_vnet); 1529 if (error == 0) { 1530 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 1531 } else { 1532 so->so_proto->pr_usrreqs->pru_abort(so); 1533 so->so_error = EIO; 1534 mb_free_notready(top, total_pages); 1535 } 1536 1537 SOCK_LOCK(so); 1538 sorele(so); 1539 CURVNET_RESTORE(); 1540 } 1541 1542 static void 1543 ktls_work_thread(void *ctx) 1544 { 1545 struct ktls_wq *wq = ctx; 1546 struct mbuf_ext_pgs *p, *n; 1547 struct ktls_session *tls; 1548 STAILQ_HEAD(, mbuf_ext_pgs) local_head; 1549 1550 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 1551 fpu_kern_thread(0); 1552 #endif 1553 for (;;) { 1554 mtx_lock(&wq->mtx); 1555 while (STAILQ_EMPTY(&wq->head)) { 1556 wq->running = false; 1557 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 1558 wq->running = true; 1559 } 1560 1561 STAILQ_INIT(&local_head); 1562 STAILQ_CONCAT(&local_head, &wq->head); 1563 mtx_unlock(&wq->mtx); 1564 1565 STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) { 1566 if (p->mbuf != NULL) { 1567 ktls_encrypt(p); 1568 counter_u64_add(ktls_cnt_on, -1); 1569 } else { 1570 tls = p->tls; 1571 ktls_free(tls); 1572 uma_zfree(zone_extpgs, p); 1573 } 1574 } 1575 } 1576 } 1577