1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reclaim_thread(void *ctx); 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 static void ktls_work_thread(void *ctx); 304 305 int 306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) 307 { 308 struct tls_enable_v0 tls_v0; 309 int error; 310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL; 311 312 if (sopt->sopt_valsize == sizeof(tls_v0)) { 313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); 314 if (error != 0) 315 goto done; 316 memset(tls, 0, sizeof(*tls)); 317 tls->cipher_key = tls_v0.cipher_key; 318 tls->iv = tls_v0.iv; 319 tls->auth_key = tls_v0.auth_key; 320 tls->cipher_algorithm = tls_v0.cipher_algorithm; 321 tls->cipher_key_len = tls_v0.cipher_key_len; 322 tls->iv_len = tls_v0.iv_len; 323 tls->auth_algorithm = tls_v0.auth_algorithm; 324 tls->auth_key_len = tls_v0.auth_key_len; 325 tls->flags = tls_v0.flags; 326 tls->tls_vmajor = tls_v0.tls_vmajor; 327 tls->tls_vminor = tls_v0.tls_vminor; 328 } else 329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)); 330 331 if (error != 0) 332 goto done; 333 334 /* 335 * Now do a deep copy of the variable-length arrays in the struct, so that 336 * subsequent consumers of it can reliably assume kernel memory. This 337 * requires doing our own allocations, which we will free in the 338 * error paths so that our caller need only worry about outstanding 339 * allocations existing on successful return. 340 */ 341 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK); 342 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK); 343 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK); 344 if (sopt->sopt_td != NULL) { 345 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len); 346 if (error != 0) 347 goto done; 348 error = copyin(tls->iv, iv, tls->iv_len); 349 if (error != 0) 350 goto done; 351 error = copyin(tls->auth_key, auth_key, tls->auth_key_len); 352 if (error != 0) 353 goto done; 354 } else { 355 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len); 356 bcopy(tls->iv, iv, tls->iv_len); 357 bcopy(tls->auth_key, auth_key, tls->auth_key_len); 358 } 359 tls->cipher_key = cipher_key; 360 tls->iv = iv; 361 tls->auth_key = auth_key; 362 363 done: 364 if (error != 0) { 365 zfree(cipher_key, M_KTLS); 366 zfree(iv, M_KTLS); 367 zfree(auth_key, M_KTLS); 368 } 369 370 return (error); 371 } 372 373 void 374 ktls_cleanup_tls_enable(struct tls_enable *tls) 375 { 376 zfree(__DECONST(void *, tls->cipher_key), M_KTLS); 377 zfree(__DECONST(void *, tls->iv), M_KTLS); 378 zfree(__DECONST(void *, tls->auth_key), M_KTLS); 379 } 380 381 static u_int 382 ktls_get_cpu(struct socket *so) 383 { 384 struct inpcb *inp; 385 #ifdef NUMA 386 struct ktls_domain_info *di; 387 #endif 388 u_int cpuid; 389 390 inp = sotoinpcb(so); 391 #ifdef RSS 392 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 393 if (cpuid != NETISR_CPUID_NONE) 394 return (cpuid); 395 #endif 396 /* 397 * Just use the flowid to shard connections in a repeatable 398 * fashion. Note that TLS 1.0 sessions rely on the 399 * serialization provided by having the same connection use 400 * the same queue. 401 */ 402 #ifdef NUMA 403 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 404 di = &ktls_domains[inp->inp_numa_domain]; 405 cpuid = di->cpu[inp->inp_flowid % di->count]; 406 } else 407 #endif 408 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 409 return (cpuid); 410 } 411 412 static int 413 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 414 { 415 vm_page_t m; 416 int i, req; 417 418 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 419 ("%s: ktls max length %d is not page size-aligned", 420 __func__, ktls_maxlen)); 421 422 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 423 for (i = 0; i < count; i++) { 424 m = vm_page_alloc_noobj_contig_domain(domain, req, 425 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 426 VM_MEMATTR_DEFAULT); 427 if (m == NULL) 428 break; 429 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 430 } 431 return (i); 432 } 433 434 static void 435 ktls_buffer_release(void *arg __unused, void **store, int count) 436 { 437 vm_page_t m; 438 int i, j; 439 440 for (i = 0; i < count; i++) { 441 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 442 for (j = 0; j < atop(ktls_maxlen); j++) { 443 (void)vm_page_unwire_noq(m + j); 444 vm_page_free(m + j); 445 } 446 } 447 } 448 449 static void 450 ktls_free_mext_contig(struct mbuf *m) 451 { 452 M_ASSERTEXTPG(m); 453 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 454 } 455 456 static int 457 ktls_init(void) 458 { 459 struct thread *td; 460 struct pcpu *pc; 461 int count, domain, error, i; 462 463 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 464 M_WAITOK | M_ZERO); 465 466 ktls_session_zone = uma_zcreate("ktls_session", 467 sizeof(struct ktls_session), 468 NULL, NULL, NULL, NULL, 469 UMA_ALIGN_CACHE, 0); 470 471 if (ktls_sw_buffer_cache) { 472 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 473 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 474 ktls_buffer_import, ktls_buffer_release, NULL, 475 UMA_ZONE_FIRSTTOUCH); 476 } 477 478 /* 479 * Initialize the workqueues to run the TLS work. We create a 480 * work queue for each CPU. 481 */ 482 CPU_FOREACH(i) { 483 STAILQ_INIT(&ktls_wq[i].m_head); 484 STAILQ_INIT(&ktls_wq[i].so_head); 485 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 486 if (ktls_bind_threads > 1) { 487 pc = pcpu_find(i); 488 domain = pc->pc_domain; 489 count = ktls_domains[domain].count; 490 ktls_domains[domain].cpu[count] = i; 491 ktls_domains[domain].count++; 492 } 493 ktls_cpuid_lookup[ktls_number_threads] = i; 494 ktls_number_threads++; 495 } 496 497 /* 498 * If we somehow have an empty domain, fall back to choosing 499 * among all KTLS threads. 500 */ 501 if (ktls_bind_threads > 1) { 502 for (i = 0; i < vm_ndomains; i++) { 503 if (ktls_domains[i].count == 0) { 504 ktls_bind_threads = 1; 505 break; 506 } 507 } 508 } 509 510 /* Start kthreads for each workqueue. */ 511 CPU_FOREACH(i) { 512 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 513 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 514 if (error) { 515 printf("Can't add KTLS thread %d error %d\n", i, error); 516 return (error); 517 } 518 } 519 520 /* 521 * Start an allocation thread per-domain to perform blocking allocations 522 * of 16k physically contiguous TLS crypto destination buffers. 523 */ 524 if (ktls_sw_buffer_cache) { 525 for (domain = 0; domain < vm_ndomains; domain++) { 526 if (VM_DOMAIN_EMPTY(domain)) 527 continue; 528 if (CPU_EMPTY(&cpuset_domain[domain])) 529 continue; 530 error = kproc_kthread_add(ktls_reclaim_thread, 531 &ktls_domains[domain], &ktls_proc, 532 &ktls_domains[domain].reclaim_td.td, 533 0, 0, "KTLS", "reclaim_%d", domain); 534 if (error) { 535 printf("Can't add KTLS reclaim thread %d error %d\n", 536 domain, error); 537 return (error); 538 } 539 } 540 } 541 542 if (bootverbose) 543 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 544 return (0); 545 } 546 547 static int 548 ktls_start_kthreads(void) 549 { 550 int error, state; 551 552 start: 553 state = atomic_load_acq_int(&ktls_init_state); 554 if (__predict_true(state > 0)) 555 return (0); 556 if (state < 0) 557 return (ENXIO); 558 559 sx_xlock(&ktls_init_lock); 560 if (ktls_init_state != 0) { 561 sx_xunlock(&ktls_init_lock); 562 goto start; 563 } 564 565 error = ktls_init(); 566 if (error == 0) 567 state = 1; 568 else 569 state = -1; 570 atomic_store_rel_int(&ktls_init_state, state); 571 sx_xunlock(&ktls_init_lock); 572 return (error); 573 } 574 575 static int 576 ktls_create_session(struct socket *so, struct tls_enable *en, 577 struct ktls_session **tlsp, int direction) 578 { 579 struct ktls_session *tls; 580 int error; 581 582 /* Only TLS 1.0 - 1.3 are supported. */ 583 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 584 return (EINVAL); 585 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 586 en->tls_vminor > TLS_MINOR_VER_THREE) 587 return (EINVAL); 588 589 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 590 return (EINVAL); 591 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 592 return (EINVAL); 593 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 594 return (EINVAL); 595 596 /* All supported algorithms require a cipher key. */ 597 if (en->cipher_key_len == 0) 598 return (EINVAL); 599 600 /* No flags are currently supported. */ 601 if (en->flags != 0) 602 return (EINVAL); 603 604 /* Common checks for supported algorithms. */ 605 switch (en->cipher_algorithm) { 606 case CRYPTO_AES_NIST_GCM_16: 607 /* 608 * auth_algorithm isn't used, but permit GMAC values 609 * for compatibility. 610 */ 611 switch (en->auth_algorithm) { 612 case 0: 613 #ifdef COMPAT_FREEBSD12 614 /* XXX: Really 13.0-current COMPAT. */ 615 case CRYPTO_AES_128_NIST_GMAC: 616 case CRYPTO_AES_192_NIST_GMAC: 617 case CRYPTO_AES_256_NIST_GMAC: 618 #endif 619 break; 620 default: 621 return (EINVAL); 622 } 623 if (en->auth_key_len != 0) 624 return (EINVAL); 625 switch (en->tls_vminor) { 626 case TLS_MINOR_VER_TWO: 627 if (en->iv_len != TLS_AEAD_GCM_LEN) 628 return (EINVAL); 629 break; 630 case TLS_MINOR_VER_THREE: 631 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 632 return (EINVAL); 633 break; 634 default: 635 return (EINVAL); 636 } 637 break; 638 case CRYPTO_AES_CBC: 639 switch (en->auth_algorithm) { 640 case CRYPTO_SHA1_HMAC: 641 break; 642 case CRYPTO_SHA2_256_HMAC: 643 case CRYPTO_SHA2_384_HMAC: 644 if (en->tls_vminor != TLS_MINOR_VER_TWO) 645 return (EINVAL); 646 break; 647 default: 648 return (EINVAL); 649 } 650 if (en->auth_key_len == 0) 651 return (EINVAL); 652 653 /* 654 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 655 * use explicit IVs. 656 */ 657 switch (en->tls_vminor) { 658 case TLS_MINOR_VER_ZERO: 659 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 660 return (EINVAL); 661 break; 662 case TLS_MINOR_VER_ONE: 663 case TLS_MINOR_VER_TWO: 664 /* Ignore any supplied IV. */ 665 en->iv_len = 0; 666 break; 667 default: 668 return (EINVAL); 669 } 670 break; 671 case CRYPTO_CHACHA20_POLY1305: 672 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 673 return (EINVAL); 674 if (en->tls_vminor != TLS_MINOR_VER_TWO && 675 en->tls_vminor != TLS_MINOR_VER_THREE) 676 return (EINVAL); 677 if (en->iv_len != TLS_CHACHA20_IV_LEN) 678 return (EINVAL); 679 break; 680 default: 681 return (EINVAL); 682 } 683 684 error = ktls_start_kthreads(); 685 if (error != 0) 686 return (error); 687 688 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 689 690 counter_u64_add(ktls_offload_active, 1); 691 692 refcount_init(&tls->refcount, 1); 693 if (direction == KTLS_RX) { 694 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 695 } else { 696 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 697 tls->inp = so->so_pcb; 698 in_pcbref(tls->inp); 699 tls->tx = true; 700 } 701 702 tls->wq_index = ktls_get_cpu(so); 703 704 tls->params.cipher_algorithm = en->cipher_algorithm; 705 tls->params.auth_algorithm = en->auth_algorithm; 706 tls->params.tls_vmajor = en->tls_vmajor; 707 tls->params.tls_vminor = en->tls_vminor; 708 tls->params.flags = en->flags; 709 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 710 711 /* Set the header and trailer lengths. */ 712 tls->params.tls_hlen = sizeof(struct tls_record_layer); 713 switch (en->cipher_algorithm) { 714 case CRYPTO_AES_NIST_GCM_16: 715 /* 716 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 717 * nonce. TLS 1.3 uses a 12 byte implicit IV. 718 */ 719 if (en->tls_vminor < TLS_MINOR_VER_THREE) 720 tls->params.tls_hlen += sizeof(uint64_t); 721 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 722 tls->params.tls_bs = 1; 723 break; 724 case CRYPTO_AES_CBC: 725 switch (en->auth_algorithm) { 726 case CRYPTO_SHA1_HMAC: 727 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 728 /* Implicit IV, no nonce. */ 729 tls->sequential_records = true; 730 tls->next_seqno = be64dec(en->rec_seq); 731 STAILQ_INIT(&tls->pending_records); 732 } else { 733 tls->params.tls_hlen += AES_BLOCK_LEN; 734 } 735 tls->params.tls_tlen = AES_BLOCK_LEN + 736 SHA1_HASH_LEN; 737 break; 738 case CRYPTO_SHA2_256_HMAC: 739 tls->params.tls_hlen += AES_BLOCK_LEN; 740 tls->params.tls_tlen = AES_BLOCK_LEN + 741 SHA2_256_HASH_LEN; 742 break; 743 case CRYPTO_SHA2_384_HMAC: 744 tls->params.tls_hlen += AES_BLOCK_LEN; 745 tls->params.tls_tlen = AES_BLOCK_LEN + 746 SHA2_384_HASH_LEN; 747 break; 748 default: 749 panic("invalid hmac"); 750 } 751 tls->params.tls_bs = AES_BLOCK_LEN; 752 break; 753 case CRYPTO_CHACHA20_POLY1305: 754 /* 755 * Chacha20 uses a 12 byte implicit IV. 756 */ 757 tls->params.tls_tlen = POLY1305_HASH_LEN; 758 tls->params.tls_bs = 1; 759 break; 760 default: 761 panic("invalid cipher"); 762 } 763 764 /* 765 * TLS 1.3 includes optional padding which we do not support, 766 * and also puts the "real" record type at the end of the 767 * encrypted data. 768 */ 769 if (en->tls_vminor == TLS_MINOR_VER_THREE) 770 tls->params.tls_tlen += sizeof(uint8_t); 771 772 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 773 ("TLS header length too long: %d", tls->params.tls_hlen)); 774 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 775 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 776 777 if (en->auth_key_len != 0) { 778 tls->params.auth_key_len = en->auth_key_len; 779 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 780 M_WAITOK); 781 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len); 782 } 783 784 tls->params.cipher_key_len = en->cipher_key_len; 785 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 786 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len); 787 788 /* 789 * This holds the implicit portion of the nonce for AEAD 790 * ciphers and the initial implicit IV for TLS 1.0. The 791 * explicit portions of the IV are generated in ktls_frame(). 792 */ 793 if (en->iv_len != 0) { 794 tls->params.iv_len = en->iv_len; 795 bcopy(en->iv, tls->params.iv, en->iv_len); 796 797 /* 798 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 799 * counter to generate unique explicit IVs. 800 * 801 * Store this counter in the last 8 bytes of the IV 802 * array so that it is 8-byte aligned. 803 */ 804 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 805 en->tls_vminor == TLS_MINOR_VER_TWO) 806 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 807 } 808 809 *tlsp = tls; 810 return (0); 811 } 812 813 static struct ktls_session * 814 ktls_clone_session(struct ktls_session *tls, int direction) 815 { 816 struct ktls_session *tls_new; 817 818 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 819 820 counter_u64_add(ktls_offload_active, 1); 821 822 refcount_init(&tls_new->refcount, 1); 823 if (direction == KTLS_RX) { 824 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 825 tls_new); 826 } else { 827 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 828 tls_new); 829 tls_new->inp = tls->inp; 830 tls_new->tx = true; 831 in_pcbref(tls_new->inp); 832 } 833 834 /* Copy fields from existing session. */ 835 tls_new->params = tls->params; 836 tls_new->wq_index = tls->wq_index; 837 838 /* Deep copy keys. */ 839 if (tls_new->params.auth_key != NULL) { 840 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 841 M_KTLS, M_WAITOK); 842 memcpy(tls_new->params.auth_key, tls->params.auth_key, 843 tls->params.auth_key_len); 844 } 845 846 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 847 M_WAITOK); 848 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 849 tls->params.cipher_key_len); 850 851 return (tls_new); 852 } 853 854 #ifdef TCP_OFFLOAD 855 static int 856 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 857 { 858 struct inpcb *inp; 859 struct tcpcb *tp; 860 int error; 861 862 inp = so->so_pcb; 863 INP_WLOCK(inp); 864 if (inp->inp_flags & INP_DROPPED) { 865 INP_WUNLOCK(inp); 866 return (ECONNRESET); 867 } 868 if (inp->inp_socket == NULL) { 869 INP_WUNLOCK(inp); 870 return (ECONNRESET); 871 } 872 tp = intotcpcb(inp); 873 if (!(tp->t_flags & TF_TOE)) { 874 INP_WUNLOCK(inp); 875 return (EOPNOTSUPP); 876 } 877 878 error = tcp_offload_alloc_tls_session(tp, tls, direction); 879 INP_WUNLOCK(inp); 880 if (error == 0) { 881 tls->mode = TCP_TLS_MODE_TOE; 882 switch (tls->params.cipher_algorithm) { 883 case CRYPTO_AES_CBC: 884 counter_u64_add(ktls_toe_cbc, 1); 885 break; 886 case CRYPTO_AES_NIST_GCM_16: 887 counter_u64_add(ktls_toe_gcm, 1); 888 break; 889 case CRYPTO_CHACHA20_POLY1305: 890 counter_u64_add(ktls_toe_chacha20, 1); 891 break; 892 } 893 } 894 return (error); 895 } 896 #endif 897 898 /* 899 * Common code used when first enabling ifnet TLS on a connection or 900 * when allocating a new ifnet TLS session due to a routing change. 901 * This function allocates a new TLS send tag on whatever interface 902 * the connection is currently routed over. 903 */ 904 static int 905 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 906 struct m_snd_tag **mstp) 907 { 908 union if_snd_tag_alloc_params params; 909 struct ifnet *ifp; 910 struct nhop_object *nh; 911 struct tcpcb *tp; 912 int error; 913 914 INP_RLOCK(inp); 915 if (inp->inp_flags & INP_DROPPED) { 916 INP_RUNLOCK(inp); 917 return (ECONNRESET); 918 } 919 if (inp->inp_socket == NULL) { 920 INP_RUNLOCK(inp); 921 return (ECONNRESET); 922 } 923 tp = intotcpcb(inp); 924 925 /* 926 * Check administrative controls on ifnet TLS to determine if 927 * ifnet TLS should be denied. 928 * 929 * - Always permit 'force' requests. 930 * - ktls_ifnet_permitted == 0: always deny. 931 */ 932 if (!force && ktls_ifnet_permitted == 0) { 933 INP_RUNLOCK(inp); 934 return (ENXIO); 935 } 936 937 /* 938 * XXX: Use the cached route in the inpcb to find the 939 * interface. This should perhaps instead use 940 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 941 * enabled after a connection has completed key negotiation in 942 * userland, the cached route will be present in practice. 943 */ 944 nh = inp->inp_route.ro_nh; 945 if (nh == NULL) { 946 INP_RUNLOCK(inp); 947 return (ENXIO); 948 } 949 ifp = nh->nh_ifp; 950 if_ref(ifp); 951 952 /* 953 * Allocate a TLS + ratelimit tag if the connection has an 954 * existing pacing rate. 955 */ 956 if (tp->t_pacing_rate != -1 && 957 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 958 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 959 params.tls_rate_limit.inp = inp; 960 params.tls_rate_limit.tls = tls; 961 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 962 } else { 963 params.hdr.type = IF_SND_TAG_TYPE_TLS; 964 params.tls.inp = inp; 965 params.tls.tls = tls; 966 } 967 params.hdr.flowid = inp->inp_flowid; 968 params.hdr.flowtype = inp->inp_flowtype; 969 params.hdr.numa_domain = inp->inp_numa_domain; 970 INP_RUNLOCK(inp); 971 972 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 973 error = EOPNOTSUPP; 974 goto out; 975 } 976 if (inp->inp_vflag & INP_IPV6) { 977 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 978 error = EOPNOTSUPP; 979 goto out; 980 } 981 } else { 982 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 983 error = EOPNOTSUPP; 984 goto out; 985 } 986 } 987 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 988 out: 989 if_rele(ifp); 990 return (error); 991 } 992 993 /* 994 * Allocate an initial TLS receive tag for doing HW decryption of TLS 995 * data. 996 * 997 * This function allocates a new TLS receive tag on whatever interface 998 * the connection is currently routed over. If the connection ends up 999 * using a different interface for receive this will get fixed up via 1000 * ktls_input_ifp_mismatch as future packets arrive. 1001 */ 1002 static int 1003 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1004 struct m_snd_tag **mstp) 1005 { 1006 union if_snd_tag_alloc_params params; 1007 struct ifnet *ifp; 1008 struct nhop_object *nh; 1009 int error; 1010 1011 if (!ktls_ocf_recrypt_supported(tls)) 1012 return (ENXIO); 1013 1014 INP_RLOCK(inp); 1015 if (inp->inp_flags & INP_DROPPED) { 1016 INP_RUNLOCK(inp); 1017 return (ECONNRESET); 1018 } 1019 if (inp->inp_socket == NULL) { 1020 INP_RUNLOCK(inp); 1021 return (ECONNRESET); 1022 } 1023 1024 /* 1025 * Check administrative controls on ifnet TLS to determine if 1026 * ifnet TLS should be denied. 1027 */ 1028 if (ktls_ifnet_permitted == 0) { 1029 INP_RUNLOCK(inp); 1030 return (ENXIO); 1031 } 1032 1033 /* 1034 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1035 * the inpcb to find the interface. 1036 */ 1037 nh = inp->inp_route.ro_nh; 1038 if (nh == NULL) { 1039 INP_RUNLOCK(inp); 1040 return (ENXIO); 1041 } 1042 ifp = nh->nh_ifp; 1043 if_ref(ifp); 1044 tls->rx_ifp = ifp; 1045 1046 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1047 params.hdr.flowid = inp->inp_flowid; 1048 params.hdr.flowtype = inp->inp_flowtype; 1049 params.hdr.numa_domain = inp->inp_numa_domain; 1050 params.tls_rx.inp = inp; 1051 params.tls_rx.tls = tls; 1052 params.tls_rx.vlan_id = 0; 1053 1054 INP_RUNLOCK(inp); 1055 1056 if (inp->inp_vflag & INP_IPV6) { 1057 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 1058 error = EOPNOTSUPP; 1059 goto out; 1060 } 1061 } else { 1062 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 1063 error = EOPNOTSUPP; 1064 goto out; 1065 } 1066 } 1067 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1068 1069 /* 1070 * If this connection is over a vlan, vlan_snd_tag_alloc 1071 * rewrites vlan_id with the saved interface. Save the VLAN 1072 * ID for use in ktls_reset_receive_tag which allocates new 1073 * receive tags directly from the leaf interface bypassing 1074 * if_vlan. 1075 */ 1076 if (error == 0) 1077 tls->rx_vlan_id = params.tls_rx.vlan_id; 1078 out: 1079 return (error); 1080 } 1081 1082 static int 1083 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1084 bool force) 1085 { 1086 struct m_snd_tag *mst; 1087 int error; 1088 1089 switch (direction) { 1090 case KTLS_TX: 1091 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1092 if (__predict_false(error != 0)) 1093 goto done; 1094 break; 1095 case KTLS_RX: 1096 KASSERT(!force, ("%s: forced receive tag", __func__)); 1097 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1098 if (__predict_false(error != 0)) 1099 goto done; 1100 break; 1101 default: 1102 __assert_unreachable(); 1103 } 1104 1105 tls->mode = TCP_TLS_MODE_IFNET; 1106 tls->snd_tag = mst; 1107 1108 switch (tls->params.cipher_algorithm) { 1109 case CRYPTO_AES_CBC: 1110 counter_u64_add(ktls_ifnet_cbc, 1); 1111 break; 1112 case CRYPTO_AES_NIST_GCM_16: 1113 counter_u64_add(ktls_ifnet_gcm, 1); 1114 break; 1115 case CRYPTO_CHACHA20_POLY1305: 1116 counter_u64_add(ktls_ifnet_chacha20, 1); 1117 break; 1118 default: 1119 break; 1120 } 1121 done: 1122 return (error); 1123 } 1124 1125 static void 1126 ktls_use_sw(struct ktls_session *tls) 1127 { 1128 tls->mode = TCP_TLS_MODE_SW; 1129 switch (tls->params.cipher_algorithm) { 1130 case CRYPTO_AES_CBC: 1131 counter_u64_add(ktls_sw_cbc, 1); 1132 break; 1133 case CRYPTO_AES_NIST_GCM_16: 1134 counter_u64_add(ktls_sw_gcm, 1); 1135 break; 1136 case CRYPTO_CHACHA20_POLY1305: 1137 counter_u64_add(ktls_sw_chacha20, 1); 1138 break; 1139 } 1140 } 1141 1142 static int 1143 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1144 { 1145 int error; 1146 1147 error = ktls_ocf_try(so, tls, direction); 1148 if (error) 1149 return (error); 1150 ktls_use_sw(tls); 1151 return (0); 1152 } 1153 1154 /* 1155 * KTLS RX stores data in the socket buffer as a list of TLS records, 1156 * where each record is stored as a control message containg the TLS 1157 * header followed by data mbufs containing the decrypted data. This 1158 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1159 * both encrypted and decrypted data. TLS records decrypted by a NIC 1160 * should be queued to the socket buffer as records, but encrypted 1161 * data which needs to be decrypted by software arrives as a stream of 1162 * regular mbufs which need to be converted. In addition, there may 1163 * already be pending encrypted data in the socket buffer when KTLS RX 1164 * is enabled. 1165 * 1166 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1167 * is used: 1168 * 1169 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1170 * 1171 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1172 * from the first mbuf. Once all of the data for that TLS record is 1173 * queued, the socket is queued to a worker thread. 1174 * 1175 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1176 * the TLS chain. Each TLS record is detached from the TLS chain, 1177 * decrypted, and inserted into the regular socket buffer chain as 1178 * record starting with a control message holding the TLS header and 1179 * a chain of mbufs holding the encrypted data. 1180 */ 1181 1182 static void 1183 sb_mark_notready(struct sockbuf *sb) 1184 { 1185 struct mbuf *m; 1186 1187 m = sb->sb_mb; 1188 sb->sb_mtls = m; 1189 sb->sb_mb = NULL; 1190 sb->sb_mbtail = NULL; 1191 sb->sb_lastrecord = NULL; 1192 for (; m != NULL; m = m->m_next) { 1193 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1194 __func__)); 1195 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1196 __func__)); 1197 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1198 __func__)); 1199 m->m_flags |= M_NOTREADY; 1200 sb->sb_acc -= m->m_len; 1201 sb->sb_tlscc += m->m_len; 1202 sb->sb_mtlstail = m; 1203 } 1204 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1205 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1206 sb->sb_ccc)); 1207 } 1208 1209 /* 1210 * Return information about the pending TLS data in a socket 1211 * buffer. On return, 'seqno' is set to the sequence number 1212 * of the next TLS record to be received, 'resid' is set to 1213 * the amount of bytes still needed for the last pending 1214 * record. The function returns 'false' if the last pending 1215 * record contains a partial TLS header. In that case, 'resid' 1216 * is the number of bytes needed to complete the TLS header. 1217 */ 1218 bool 1219 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1220 { 1221 struct tls_record_layer hdr; 1222 struct mbuf *m; 1223 uint64_t seqno; 1224 size_t resid; 1225 u_int offset, record_len; 1226 1227 SOCKBUF_LOCK_ASSERT(sb); 1228 MPASS(sb->sb_flags & SB_TLS_RX); 1229 seqno = sb->sb_tls_seqno; 1230 resid = sb->sb_tlscc; 1231 m = sb->sb_mtls; 1232 offset = 0; 1233 1234 if (resid == 0) { 1235 *seqnop = seqno; 1236 *residp = 0; 1237 return (true); 1238 } 1239 1240 for (;;) { 1241 seqno++; 1242 1243 if (resid < sizeof(hdr)) { 1244 *seqnop = seqno; 1245 *residp = sizeof(hdr) - resid; 1246 return (false); 1247 } 1248 1249 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1250 1251 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1252 if (resid <= record_len) { 1253 *seqnop = seqno; 1254 *residp = record_len - resid; 1255 return (true); 1256 } 1257 resid -= record_len; 1258 1259 while (record_len != 0) { 1260 if (m->m_len - offset > record_len) { 1261 offset += record_len; 1262 break; 1263 } 1264 1265 record_len -= (m->m_len - offset); 1266 offset = 0; 1267 m = m->m_next; 1268 } 1269 } 1270 } 1271 1272 int 1273 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1274 { 1275 struct ktls_session *tls; 1276 int error; 1277 1278 if (!ktls_offload_enable) 1279 return (ENOTSUP); 1280 1281 counter_u64_add(ktls_offload_enable_calls, 1); 1282 1283 /* 1284 * This should always be true since only the TCP socket option 1285 * invokes this function. 1286 */ 1287 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1288 return (EINVAL); 1289 1290 /* 1291 * XXX: Don't overwrite existing sessions. We should permit 1292 * this to support rekeying in the future. 1293 */ 1294 if (so->so_rcv.sb_tls_info != NULL) 1295 return (EALREADY); 1296 1297 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1298 return (ENOTSUP); 1299 1300 error = ktls_create_session(so, en, &tls, KTLS_RX); 1301 if (error) 1302 return (error); 1303 1304 error = ktls_ocf_try(so, tls, KTLS_RX); 1305 if (error) { 1306 ktls_free(tls); 1307 return (error); 1308 } 1309 1310 /* Mark the socket as using TLS offload. */ 1311 SOCK_RECVBUF_LOCK(so); 1312 if (SOLISTENING(so)) { 1313 SOCK_RECVBUF_UNLOCK(so); 1314 ktls_free(tls); 1315 return (EINVAL); 1316 } 1317 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1318 so->so_rcv.sb_tls_info = tls; 1319 so->so_rcv.sb_flags |= SB_TLS_RX; 1320 1321 /* Mark existing data as not ready until it can be decrypted. */ 1322 sb_mark_notready(&so->so_rcv); 1323 ktls_check_rx(&so->so_rcv); 1324 SOCK_RECVBUF_UNLOCK(so); 1325 1326 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1327 #ifdef TCP_OFFLOAD 1328 error = ktls_try_toe(so, tls, KTLS_RX); 1329 if (error) 1330 #endif 1331 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1332 if (error) 1333 ktls_use_sw(tls); 1334 1335 counter_u64_add(ktls_offload_total, 1); 1336 1337 return (0); 1338 } 1339 1340 int 1341 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1342 { 1343 struct ktls_session *tls; 1344 struct inpcb *inp; 1345 struct tcpcb *tp; 1346 int error; 1347 1348 if (!ktls_offload_enable) 1349 return (ENOTSUP); 1350 1351 counter_u64_add(ktls_offload_enable_calls, 1); 1352 1353 /* 1354 * This should always be true since only the TCP socket option 1355 * invokes this function. 1356 */ 1357 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1358 return (EINVAL); 1359 1360 /* 1361 * XXX: Don't overwrite existing sessions. We should permit 1362 * this to support rekeying in the future. 1363 */ 1364 if (so->so_snd.sb_tls_info != NULL) 1365 return (EALREADY); 1366 1367 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1368 return (ENOTSUP); 1369 1370 /* TLS requires ext pgs */ 1371 if (mb_use_ext_pgs == 0) 1372 return (ENXIO); 1373 1374 error = ktls_create_session(so, en, &tls, KTLS_TX); 1375 if (error) 1376 return (error); 1377 1378 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1379 #ifdef TCP_OFFLOAD 1380 error = ktls_try_toe(so, tls, KTLS_TX); 1381 if (error) 1382 #endif 1383 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1384 if (error) 1385 error = ktls_try_sw(so, tls, KTLS_TX); 1386 1387 if (error) { 1388 ktls_free(tls); 1389 return (error); 1390 } 1391 1392 /* 1393 * Serialize with sosend_generic() and make sure that we're not 1394 * operating on a listening socket. 1395 */ 1396 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1397 if (error) { 1398 ktls_free(tls); 1399 return (error); 1400 } 1401 1402 /* 1403 * Write lock the INP when setting sb_tls_info so that 1404 * routines in tcp_ratelimit.c can read sb_tls_info while 1405 * holding the INP lock. 1406 */ 1407 inp = so->so_pcb; 1408 INP_WLOCK(inp); 1409 SOCK_SENDBUF_LOCK(so); 1410 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1411 so->so_snd.sb_tls_info = tls; 1412 if (tls->mode != TCP_TLS_MODE_SW) { 1413 tp = intotcpcb(inp); 1414 MPASS(tp->t_nic_ktls_xmit == 0); 1415 tp->t_nic_ktls_xmit = 1; 1416 if (tp->t_fb->tfb_hwtls_change != NULL) 1417 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1418 } 1419 SOCK_SENDBUF_UNLOCK(so); 1420 INP_WUNLOCK(inp); 1421 SOCK_IO_SEND_UNLOCK(so); 1422 1423 counter_u64_add(ktls_offload_total, 1); 1424 1425 return (0); 1426 } 1427 1428 int 1429 ktls_get_rx_mode(struct socket *so, int *modep) 1430 { 1431 struct ktls_session *tls; 1432 struct inpcb *inp __diagused; 1433 1434 if (SOLISTENING(so)) 1435 return (EINVAL); 1436 inp = so->so_pcb; 1437 INP_WLOCK_ASSERT(inp); 1438 SOCK_RECVBUF_LOCK(so); 1439 tls = so->so_rcv.sb_tls_info; 1440 if (tls == NULL) 1441 *modep = TCP_TLS_MODE_NONE; 1442 else 1443 *modep = tls->mode; 1444 SOCK_RECVBUF_UNLOCK(so); 1445 return (0); 1446 } 1447 1448 /* 1449 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1450 * 1451 * This function gets information about the next TCP- and TLS- 1452 * sequence number to be processed by the TLS receive worker 1453 * thread. The information is extracted from the given "inpcb" 1454 * structure. The values are stored in host endian format at the two 1455 * given output pointer locations. The TCP sequence number points to 1456 * the beginning of the TLS header. 1457 * 1458 * This function returns zero on success, else a non-zero error code 1459 * is returned. 1460 */ 1461 int 1462 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1463 { 1464 struct socket *so; 1465 struct tcpcb *tp; 1466 1467 INP_RLOCK(inp); 1468 so = inp->inp_socket; 1469 if (__predict_false(so == NULL)) { 1470 INP_RUNLOCK(inp); 1471 return (EINVAL); 1472 } 1473 if (inp->inp_flags & INP_DROPPED) { 1474 INP_RUNLOCK(inp); 1475 return (ECONNRESET); 1476 } 1477 1478 tp = intotcpcb(inp); 1479 MPASS(tp != NULL); 1480 1481 SOCKBUF_LOCK(&so->so_rcv); 1482 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1483 *tlsseq = so->so_rcv.sb_tls_seqno; 1484 SOCKBUF_UNLOCK(&so->so_rcv); 1485 1486 INP_RUNLOCK(inp); 1487 1488 return (0); 1489 } 1490 1491 int 1492 ktls_get_tx_mode(struct socket *so, int *modep) 1493 { 1494 struct ktls_session *tls; 1495 struct inpcb *inp __diagused; 1496 1497 if (SOLISTENING(so)) 1498 return (EINVAL); 1499 inp = so->so_pcb; 1500 INP_WLOCK_ASSERT(inp); 1501 SOCK_SENDBUF_LOCK(so); 1502 tls = so->so_snd.sb_tls_info; 1503 if (tls == NULL) 1504 *modep = TCP_TLS_MODE_NONE; 1505 else 1506 *modep = tls->mode; 1507 SOCK_SENDBUF_UNLOCK(so); 1508 return (0); 1509 } 1510 1511 /* 1512 * Switch between SW and ifnet TLS sessions as requested. 1513 */ 1514 int 1515 ktls_set_tx_mode(struct socket *so, int mode) 1516 { 1517 struct ktls_session *tls, *tls_new; 1518 struct inpcb *inp; 1519 struct tcpcb *tp; 1520 int error; 1521 1522 if (SOLISTENING(so)) 1523 return (EINVAL); 1524 switch (mode) { 1525 case TCP_TLS_MODE_SW: 1526 case TCP_TLS_MODE_IFNET: 1527 break; 1528 default: 1529 return (EINVAL); 1530 } 1531 1532 inp = so->so_pcb; 1533 INP_WLOCK_ASSERT(inp); 1534 tp = intotcpcb(inp); 1535 1536 if (mode == TCP_TLS_MODE_IFNET) { 1537 /* Don't allow enabling ifnet ktls multiple times */ 1538 if (tp->t_nic_ktls_xmit) 1539 return (EALREADY); 1540 1541 /* 1542 * Don't enable ifnet ktls if we disabled it due to an 1543 * excessive retransmission rate 1544 */ 1545 if (tp->t_nic_ktls_xmit_dis) 1546 return (ENXIO); 1547 } 1548 1549 SOCKBUF_LOCK(&so->so_snd); 1550 tls = so->so_snd.sb_tls_info; 1551 if (tls == NULL) { 1552 SOCKBUF_UNLOCK(&so->so_snd); 1553 return (0); 1554 } 1555 1556 if (tls->mode == mode) { 1557 SOCKBUF_UNLOCK(&so->so_snd); 1558 return (0); 1559 } 1560 1561 tls = ktls_hold(tls); 1562 SOCKBUF_UNLOCK(&so->so_snd); 1563 INP_WUNLOCK(inp); 1564 1565 tls_new = ktls_clone_session(tls, KTLS_TX); 1566 1567 if (mode == TCP_TLS_MODE_IFNET) 1568 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1569 else 1570 error = ktls_try_sw(so, tls_new, KTLS_TX); 1571 if (error) { 1572 counter_u64_add(ktls_switch_failed, 1); 1573 ktls_free(tls_new); 1574 ktls_free(tls); 1575 INP_WLOCK(inp); 1576 return (error); 1577 } 1578 1579 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1580 if (error) { 1581 counter_u64_add(ktls_switch_failed, 1); 1582 ktls_free(tls_new); 1583 ktls_free(tls); 1584 INP_WLOCK(inp); 1585 return (error); 1586 } 1587 1588 /* 1589 * If we raced with another session change, keep the existing 1590 * session. 1591 */ 1592 if (tls != so->so_snd.sb_tls_info) { 1593 counter_u64_add(ktls_switch_failed, 1); 1594 SOCK_IO_SEND_UNLOCK(so); 1595 ktls_free(tls_new); 1596 ktls_free(tls); 1597 INP_WLOCK(inp); 1598 return (EBUSY); 1599 } 1600 1601 INP_WLOCK(inp); 1602 SOCKBUF_LOCK(&so->so_snd); 1603 so->so_snd.sb_tls_info = tls_new; 1604 if (tls_new->mode != TCP_TLS_MODE_SW) { 1605 MPASS(tp->t_nic_ktls_xmit == 0); 1606 tp->t_nic_ktls_xmit = 1; 1607 if (tp->t_fb->tfb_hwtls_change != NULL) 1608 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1609 } 1610 SOCKBUF_UNLOCK(&so->so_snd); 1611 SOCK_IO_SEND_UNLOCK(so); 1612 1613 /* 1614 * Drop two references on 'tls'. The first is for the 1615 * ktls_hold() above. The second drops the reference from the 1616 * socket buffer. 1617 */ 1618 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1619 ktls_free(tls); 1620 ktls_free(tls); 1621 1622 if (mode == TCP_TLS_MODE_IFNET) 1623 counter_u64_add(ktls_switch_to_ifnet, 1); 1624 else 1625 counter_u64_add(ktls_switch_to_sw, 1); 1626 1627 return (0); 1628 } 1629 1630 /* 1631 * Try to allocate a new TLS receive tag. This task is scheduled when 1632 * sbappend_ktls_rx detects an input path change. If a new tag is 1633 * allocated, replace the tag in the TLS session. If a new tag cannot 1634 * be allocated, let the session fall back to software decryption. 1635 */ 1636 static void 1637 ktls_reset_receive_tag(void *context, int pending) 1638 { 1639 union if_snd_tag_alloc_params params; 1640 struct ktls_session *tls; 1641 struct m_snd_tag *mst; 1642 struct inpcb *inp; 1643 struct ifnet *ifp; 1644 struct socket *so; 1645 int error; 1646 1647 MPASS(pending == 1); 1648 1649 tls = context; 1650 so = tls->so; 1651 inp = so->so_pcb; 1652 ifp = NULL; 1653 1654 INP_RLOCK(inp); 1655 if (inp->inp_flags & INP_DROPPED) { 1656 INP_RUNLOCK(inp); 1657 goto out; 1658 } 1659 1660 SOCKBUF_LOCK(&so->so_rcv); 1661 mst = tls->snd_tag; 1662 tls->snd_tag = NULL; 1663 if (mst != NULL) 1664 m_snd_tag_rele(mst); 1665 1666 ifp = tls->rx_ifp; 1667 if_ref(ifp); 1668 SOCKBUF_UNLOCK(&so->so_rcv); 1669 1670 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1671 params.hdr.flowid = inp->inp_flowid; 1672 params.hdr.flowtype = inp->inp_flowtype; 1673 params.hdr.numa_domain = inp->inp_numa_domain; 1674 params.tls_rx.inp = inp; 1675 params.tls_rx.tls = tls; 1676 params.tls_rx.vlan_id = tls->rx_vlan_id; 1677 INP_RUNLOCK(inp); 1678 1679 if (inp->inp_vflag & INP_IPV6) { 1680 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1681 goto out; 1682 } else { 1683 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1684 goto out; 1685 } 1686 1687 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1688 if (error == 0) { 1689 SOCKBUF_LOCK(&so->so_rcv); 1690 tls->snd_tag = mst; 1691 SOCKBUF_UNLOCK(&so->so_rcv); 1692 1693 counter_u64_add(ktls_ifnet_reset, 1); 1694 } else { 1695 /* 1696 * Just fall back to software decryption if a tag 1697 * cannot be allocated leaving the connection intact. 1698 * If a future input path change switches to another 1699 * interface this connection will resume ifnet TLS. 1700 */ 1701 counter_u64_add(ktls_ifnet_reset_failed, 1); 1702 } 1703 1704 out: 1705 mtx_pool_lock(mtxpool_sleep, tls); 1706 tls->reset_pending = false; 1707 mtx_pool_unlock(mtxpool_sleep, tls); 1708 1709 if (ifp != NULL) 1710 if_rele(ifp); 1711 CURVNET_SET(so->so_vnet); 1712 sorele(so); 1713 CURVNET_RESTORE(); 1714 ktls_free(tls); 1715 } 1716 1717 /* 1718 * Try to allocate a new TLS send tag. This task is scheduled when 1719 * ip_output detects a route change while trying to transmit a packet 1720 * holding a TLS record. If a new tag is allocated, replace the tag 1721 * in the TLS session. Subsequent packets on the connection will use 1722 * the new tag. If a new tag cannot be allocated, drop the 1723 * connection. 1724 */ 1725 static void 1726 ktls_reset_send_tag(void *context, int pending) 1727 { 1728 struct epoch_tracker et; 1729 struct ktls_session *tls; 1730 struct m_snd_tag *old, *new; 1731 struct inpcb *inp; 1732 struct tcpcb *tp; 1733 int error; 1734 1735 MPASS(pending == 1); 1736 1737 tls = context; 1738 inp = tls->inp; 1739 1740 /* 1741 * Free the old tag first before allocating a new one. 1742 * ip[6]_output_send() will treat a NULL send tag the same as 1743 * an ifp mismatch and drop packets until a new tag is 1744 * allocated. 1745 * 1746 * Write-lock the INP when changing tls->snd_tag since 1747 * ip[6]_output_send() holds a read-lock when reading the 1748 * pointer. 1749 */ 1750 INP_WLOCK(inp); 1751 old = tls->snd_tag; 1752 tls->snd_tag = NULL; 1753 INP_WUNLOCK(inp); 1754 if (old != NULL) 1755 m_snd_tag_rele(old); 1756 1757 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1758 1759 if (error == 0) { 1760 INP_WLOCK(inp); 1761 tls->snd_tag = new; 1762 mtx_pool_lock(mtxpool_sleep, tls); 1763 tls->reset_pending = false; 1764 mtx_pool_unlock(mtxpool_sleep, tls); 1765 INP_WUNLOCK(inp); 1766 1767 counter_u64_add(ktls_ifnet_reset, 1); 1768 1769 /* 1770 * XXX: Should we kick tcp_output explicitly now that 1771 * the send tag is fixed or just rely on timers? 1772 */ 1773 } else { 1774 NET_EPOCH_ENTER(et); 1775 INP_WLOCK(inp); 1776 if (!(inp->inp_flags & INP_DROPPED)) { 1777 tp = intotcpcb(inp); 1778 CURVNET_SET(inp->inp_vnet); 1779 tp = tcp_drop(tp, ECONNABORTED); 1780 CURVNET_RESTORE(); 1781 if (tp != NULL) { 1782 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1783 INP_WUNLOCK(inp); 1784 } 1785 } else 1786 INP_WUNLOCK(inp); 1787 NET_EPOCH_EXIT(et); 1788 1789 counter_u64_add(ktls_ifnet_reset_failed, 1); 1790 1791 /* 1792 * Leave reset_pending true to avoid future tasks while 1793 * the socket goes away. 1794 */ 1795 } 1796 1797 ktls_free(tls); 1798 } 1799 1800 void 1801 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1802 { 1803 struct ktls_session *tls; 1804 struct socket *so; 1805 1806 SOCKBUF_LOCK_ASSERT(sb); 1807 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1808 __func__, sb)); 1809 so = __containerof(sb, struct socket, so_rcv); 1810 1811 tls = sb->sb_tls_info; 1812 if_rele(tls->rx_ifp); 1813 if_ref(ifp); 1814 tls->rx_ifp = ifp; 1815 1816 /* 1817 * See if we should schedule a task to update the receive tag for 1818 * this session. 1819 */ 1820 mtx_pool_lock(mtxpool_sleep, tls); 1821 if (!tls->reset_pending) { 1822 (void) ktls_hold(tls); 1823 soref(so); 1824 tls->so = so; 1825 tls->reset_pending = true; 1826 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1827 } 1828 mtx_pool_unlock(mtxpool_sleep, tls); 1829 } 1830 1831 int 1832 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1833 { 1834 1835 if (inp == NULL) 1836 return (ENOBUFS); 1837 1838 INP_LOCK_ASSERT(inp); 1839 1840 /* 1841 * See if we should schedule a task to update the send tag for 1842 * this session. 1843 */ 1844 mtx_pool_lock(mtxpool_sleep, tls); 1845 if (!tls->reset_pending) { 1846 (void) ktls_hold(tls); 1847 tls->reset_pending = true; 1848 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1849 } 1850 mtx_pool_unlock(mtxpool_sleep, tls); 1851 return (ENOBUFS); 1852 } 1853 1854 #ifdef RATELIMIT 1855 int 1856 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1857 { 1858 union if_snd_tag_modify_params params = { 1859 .rate_limit.max_rate = max_pacing_rate, 1860 .rate_limit.flags = M_NOWAIT, 1861 }; 1862 struct m_snd_tag *mst; 1863 1864 /* Can't get to the inp, but it should be locked. */ 1865 /* INP_LOCK_ASSERT(inp); */ 1866 1867 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1868 1869 if (tls->snd_tag == NULL) { 1870 /* 1871 * Resetting send tag, ignore this change. The 1872 * pending reset may or may not see this updated rate 1873 * in the tcpcb. If it doesn't, we will just lose 1874 * this rate change. 1875 */ 1876 return (0); 1877 } 1878 1879 mst = tls->snd_tag; 1880 1881 MPASS(mst != NULL); 1882 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1883 1884 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1885 } 1886 #endif 1887 1888 static void 1889 ktls_destroy_help(void *context, int pending __unused) 1890 { 1891 ktls_destroy(context); 1892 } 1893 1894 void 1895 ktls_destroy(struct ktls_session *tls) 1896 { 1897 struct inpcb *inp; 1898 struct tcpcb *tp; 1899 bool wlocked; 1900 1901 MPASS(tls->refcount == 0); 1902 1903 inp = tls->inp; 1904 if (tls->tx) { 1905 wlocked = INP_WLOCKED(inp); 1906 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1907 /* 1908 * rwlocks read locks are anonymous, and there 1909 * is no way to know if our current thread 1910 * holds an rlock on the inp. As a rough 1911 * estimate, check to see if the thread holds 1912 * *any* rlocks at all. If it does not, then we 1913 * know that we don't hold the inp rlock, and 1914 * can safely take the wlock 1915 */ 1916 if (curthread->td_rw_rlocks == 0) { 1917 INP_WLOCK(inp); 1918 } else { 1919 /* 1920 * We might hold the rlock, so let's 1921 * do the destroy in a taskqueue 1922 * context to avoid a potential 1923 * deadlock. This should be very 1924 * rare. 1925 */ 1926 counter_u64_add(ktls_destroy_task, 1); 1927 TASK_INIT(&tls->destroy_task, 0, 1928 ktls_destroy_help, tls); 1929 (void)taskqueue_enqueue(taskqueue_thread, 1930 &tls->destroy_task); 1931 return; 1932 } 1933 } 1934 } 1935 1936 if (tls->sequential_records) { 1937 struct mbuf *m, *n; 1938 int page_count; 1939 1940 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1941 page_count = m->m_epg_enc_cnt; 1942 while (page_count > 0) { 1943 KASSERT(page_count >= m->m_epg_nrdy, 1944 ("%s: too few pages", __func__)); 1945 page_count -= m->m_epg_nrdy; 1946 m = m_free(m); 1947 } 1948 } 1949 } 1950 1951 counter_u64_add(ktls_offload_active, -1); 1952 switch (tls->mode) { 1953 case TCP_TLS_MODE_SW: 1954 switch (tls->params.cipher_algorithm) { 1955 case CRYPTO_AES_CBC: 1956 counter_u64_add(ktls_sw_cbc, -1); 1957 break; 1958 case CRYPTO_AES_NIST_GCM_16: 1959 counter_u64_add(ktls_sw_gcm, -1); 1960 break; 1961 case CRYPTO_CHACHA20_POLY1305: 1962 counter_u64_add(ktls_sw_chacha20, -1); 1963 break; 1964 } 1965 break; 1966 case TCP_TLS_MODE_IFNET: 1967 switch (tls->params.cipher_algorithm) { 1968 case CRYPTO_AES_CBC: 1969 counter_u64_add(ktls_ifnet_cbc, -1); 1970 break; 1971 case CRYPTO_AES_NIST_GCM_16: 1972 counter_u64_add(ktls_ifnet_gcm, -1); 1973 break; 1974 case CRYPTO_CHACHA20_POLY1305: 1975 counter_u64_add(ktls_ifnet_chacha20, -1); 1976 break; 1977 } 1978 if (tls->snd_tag != NULL) 1979 m_snd_tag_rele(tls->snd_tag); 1980 if (tls->rx_ifp != NULL) 1981 if_rele(tls->rx_ifp); 1982 if (tls->tx) { 1983 INP_WLOCK_ASSERT(inp); 1984 tp = intotcpcb(inp); 1985 MPASS(tp->t_nic_ktls_xmit == 1); 1986 tp->t_nic_ktls_xmit = 0; 1987 } 1988 break; 1989 #ifdef TCP_OFFLOAD 1990 case TCP_TLS_MODE_TOE: 1991 switch (tls->params.cipher_algorithm) { 1992 case CRYPTO_AES_CBC: 1993 counter_u64_add(ktls_toe_cbc, -1); 1994 break; 1995 case CRYPTO_AES_NIST_GCM_16: 1996 counter_u64_add(ktls_toe_gcm, -1); 1997 break; 1998 case CRYPTO_CHACHA20_POLY1305: 1999 counter_u64_add(ktls_toe_chacha20, -1); 2000 break; 2001 } 2002 break; 2003 #endif 2004 } 2005 if (tls->ocf_session != NULL) 2006 ktls_ocf_free(tls); 2007 if (tls->params.auth_key != NULL) { 2008 zfree(tls->params.auth_key, M_KTLS); 2009 tls->params.auth_key = NULL; 2010 tls->params.auth_key_len = 0; 2011 } 2012 if (tls->params.cipher_key != NULL) { 2013 zfree(tls->params.cipher_key, M_KTLS); 2014 tls->params.cipher_key = NULL; 2015 tls->params.cipher_key_len = 0; 2016 } 2017 if (tls->tx) { 2018 INP_WLOCK_ASSERT(inp); 2019 if (!in_pcbrele_wlocked(inp) && !wlocked) 2020 INP_WUNLOCK(inp); 2021 } 2022 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 2023 2024 uma_zfree(ktls_session_zone, tls); 2025 } 2026 2027 void 2028 ktls_seq(struct sockbuf *sb, struct mbuf *m) 2029 { 2030 2031 for (; m != NULL; m = m->m_next) { 2032 KASSERT((m->m_flags & M_EXTPG) != 0, 2033 ("ktls_seq: mapped mbuf %p", m)); 2034 2035 m->m_epg_seqno = sb->sb_tls_seqno; 2036 sb->sb_tls_seqno++; 2037 } 2038 } 2039 2040 /* 2041 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 2042 * mbuf in the chain must be an unmapped mbuf. The payload of the 2043 * mbuf must be populated with the payload of each TLS record. 2044 * 2045 * The record_type argument specifies the TLS record type used when 2046 * populating the TLS header. 2047 * 2048 * The enq_count argument on return is set to the number of pages of 2049 * payload data for this entire chain that need to be encrypted via SW 2050 * encryption. The returned value should be passed to ktls_enqueue 2051 * when scheduling encryption of this chain of mbufs. To handle the 2052 * special case of empty fragments for TLS 1.0 sessions, an empty 2053 * fragment counts as one page. 2054 */ 2055 void 2056 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2057 uint8_t record_type) 2058 { 2059 struct tls_record_layer *tlshdr; 2060 struct mbuf *m; 2061 uint64_t *noncep; 2062 uint16_t tls_len; 2063 int maxlen __diagused; 2064 2065 maxlen = tls->params.max_frame_len; 2066 *enq_cnt = 0; 2067 for (m = top; m != NULL; m = m->m_next) { 2068 /* 2069 * All mbufs in the chain should be TLS records whose 2070 * payload does not exceed the maximum frame length. 2071 * 2072 * Empty TLS 1.0 records are permitted when using CBC. 2073 */ 2074 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2075 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2076 ("ktls_frame: m %p len %d", m, m->m_len)); 2077 2078 /* 2079 * TLS frames require unmapped mbufs to store session 2080 * info. 2081 */ 2082 KASSERT((m->m_flags & M_EXTPG) != 0, 2083 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2084 2085 tls_len = m->m_len; 2086 2087 /* Save a reference to the session. */ 2088 m->m_epg_tls = ktls_hold(tls); 2089 2090 m->m_epg_hdrlen = tls->params.tls_hlen; 2091 m->m_epg_trllen = tls->params.tls_tlen; 2092 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2093 int bs, delta; 2094 2095 /* 2096 * AES-CBC pads messages to a multiple of the 2097 * block size. Note that the padding is 2098 * applied after the digest and the encryption 2099 * is done on the "plaintext || mac || padding". 2100 * At least one byte of padding is always 2101 * present. 2102 * 2103 * Compute the final trailer length assuming 2104 * at most one block of padding. 2105 * tls->params.tls_tlen is the maximum 2106 * possible trailer length (padding + digest). 2107 * delta holds the number of excess padding 2108 * bytes if the maximum were used. Those 2109 * extra bytes are removed. 2110 */ 2111 bs = tls->params.tls_bs; 2112 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2113 m->m_epg_trllen -= delta; 2114 } 2115 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2116 2117 /* Populate the TLS header. */ 2118 tlshdr = (void *)m->m_epg_hdr; 2119 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2120 2121 /* 2122 * TLS 1.3 masquarades as TLS 1.2 with a record type 2123 * of TLS_RLTYPE_APP. 2124 */ 2125 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2126 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2127 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2128 tlshdr->tls_type = TLS_RLTYPE_APP; 2129 /* save the real record type for later */ 2130 m->m_epg_record_type = record_type; 2131 m->m_epg_trail[0] = record_type; 2132 } else { 2133 tlshdr->tls_vminor = tls->params.tls_vminor; 2134 tlshdr->tls_type = record_type; 2135 } 2136 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2137 2138 /* 2139 * Store nonces / explicit IVs after the end of the 2140 * TLS header. 2141 * 2142 * For GCM with TLS 1.2, an 8 byte nonce is copied 2143 * from the end of the IV. The nonce is then 2144 * incremented for use by the next record. 2145 * 2146 * For CBC, a random nonce is inserted for TLS 1.1+. 2147 */ 2148 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2149 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2150 noncep = (uint64_t *)(tls->params.iv + 8); 2151 be64enc(tlshdr + 1, *noncep); 2152 (*noncep)++; 2153 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2154 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2155 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2156 2157 /* 2158 * When using SW encryption, mark the mbuf not ready. 2159 * It will be marked ready via sbready() after the 2160 * record has been encrypted. 2161 * 2162 * When using ifnet TLS, unencrypted TLS records are 2163 * sent down the stack to the NIC. 2164 */ 2165 if (tls->mode == TCP_TLS_MODE_SW) { 2166 m->m_flags |= M_NOTREADY; 2167 if (__predict_false(tls_len == 0)) { 2168 /* TLS 1.0 empty fragment. */ 2169 m->m_epg_nrdy = 1; 2170 } else 2171 m->m_epg_nrdy = m->m_epg_npgs; 2172 *enq_cnt += m->m_epg_nrdy; 2173 } 2174 } 2175 } 2176 2177 bool 2178 ktls_permit_empty_frames(struct ktls_session *tls) 2179 { 2180 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2181 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2182 } 2183 2184 void 2185 ktls_check_rx(struct sockbuf *sb) 2186 { 2187 struct tls_record_layer hdr; 2188 struct ktls_wq *wq; 2189 struct socket *so; 2190 bool running; 2191 2192 SOCKBUF_LOCK_ASSERT(sb); 2193 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2194 __func__, sb)); 2195 so = __containerof(sb, struct socket, so_rcv); 2196 2197 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2198 return; 2199 2200 /* Is there enough queued for a TLS header? */ 2201 if (sb->sb_tlscc < sizeof(hdr)) { 2202 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2203 so->so_error = EMSGSIZE; 2204 return; 2205 } 2206 2207 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2208 2209 /* Is the entire record queued? */ 2210 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2211 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2212 so->so_error = EMSGSIZE; 2213 return; 2214 } 2215 2216 sb->sb_flags |= SB_TLS_RX_RUNNING; 2217 2218 soref(so); 2219 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2220 mtx_lock(&wq->mtx); 2221 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2222 running = wq->running; 2223 mtx_unlock(&wq->mtx); 2224 if (!running) 2225 wakeup(wq); 2226 counter_u64_add(ktls_cnt_rx_queued, 1); 2227 } 2228 2229 static struct mbuf * 2230 ktls_detach_record(struct sockbuf *sb, int len) 2231 { 2232 struct mbuf *m, *n, *top; 2233 int remain; 2234 2235 SOCKBUF_LOCK_ASSERT(sb); 2236 MPASS(len <= sb->sb_tlscc); 2237 2238 /* 2239 * If TLS chain is the exact size of the record, 2240 * just grab the whole record. 2241 */ 2242 top = sb->sb_mtls; 2243 if (sb->sb_tlscc == len) { 2244 sb->sb_mtls = NULL; 2245 sb->sb_mtlstail = NULL; 2246 goto out; 2247 } 2248 2249 /* 2250 * While it would be nice to use m_split() here, we need 2251 * to know exactly what m_split() allocates to update the 2252 * accounting, so do it inline instead. 2253 */ 2254 remain = len; 2255 for (m = top; remain > m->m_len; m = m->m_next) 2256 remain -= m->m_len; 2257 2258 /* Easy case: don't have to split 'm'. */ 2259 if (remain == m->m_len) { 2260 sb->sb_mtls = m->m_next; 2261 if (sb->sb_mtls == NULL) 2262 sb->sb_mtlstail = NULL; 2263 m->m_next = NULL; 2264 goto out; 2265 } 2266 2267 /* 2268 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2269 * with M_NOWAIT first. 2270 */ 2271 n = m_get(M_NOWAIT, MT_DATA); 2272 if (n == NULL) { 2273 /* 2274 * Use M_WAITOK with socket buffer unlocked. If 2275 * 'sb_mtls' changes while the lock is dropped, return 2276 * NULL to force the caller to retry. 2277 */ 2278 SOCKBUF_UNLOCK(sb); 2279 2280 n = m_get(M_WAITOK, MT_DATA); 2281 2282 SOCKBUF_LOCK(sb); 2283 if (sb->sb_mtls != top) { 2284 m_free(n); 2285 return (NULL); 2286 } 2287 } 2288 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2289 2290 /* Store remainder in 'n'. */ 2291 n->m_len = m->m_len - remain; 2292 if (m->m_flags & M_EXT) { 2293 n->m_data = m->m_data + remain; 2294 mb_dupcl(n, m); 2295 } else { 2296 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2297 } 2298 2299 /* Trim 'm' and update accounting. */ 2300 m->m_len -= n->m_len; 2301 sb->sb_tlscc -= n->m_len; 2302 sb->sb_ccc -= n->m_len; 2303 2304 /* Account for 'n'. */ 2305 sballoc_ktls_rx(sb, n); 2306 2307 /* Insert 'n' into the TLS chain. */ 2308 sb->sb_mtls = n; 2309 n->m_next = m->m_next; 2310 if (sb->sb_mtlstail == m) 2311 sb->sb_mtlstail = n; 2312 2313 /* Detach the record from the TLS chain. */ 2314 m->m_next = NULL; 2315 2316 out: 2317 MPASS(m_length(top, NULL) == len); 2318 for (m = top; m != NULL; m = m->m_next) 2319 sbfree_ktls_rx(sb, m); 2320 sb->sb_tlsdcc = len; 2321 sb->sb_ccc += len; 2322 SBCHECK(sb); 2323 return (top); 2324 } 2325 2326 /* 2327 * Determine the length of the trailing zero padding and find the real 2328 * record type in the byte before the padding. 2329 * 2330 * Walking the mbuf chain backwards is clumsy, so another option would 2331 * be to scan forwards remembering the last non-zero byte before the 2332 * trailer. However, it would be expensive to scan the entire record. 2333 * Instead, find the last non-zero byte of each mbuf in the chain 2334 * keeping track of the relative offset of that nonzero byte. 2335 * 2336 * trail_len is the size of the MAC/tag on input and is set to the 2337 * size of the full trailer including padding and the record type on 2338 * return. 2339 */ 2340 static int 2341 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2342 int *trailer_len, uint8_t *record_typep) 2343 { 2344 char *cp; 2345 u_int digest_start, last_offset, m_len, offset; 2346 uint8_t record_type; 2347 2348 digest_start = tls_len - *trailer_len; 2349 last_offset = 0; 2350 offset = 0; 2351 for (; m != NULL && offset < digest_start; 2352 offset += m->m_len, m = m->m_next) { 2353 /* Don't look for padding in the tag. */ 2354 m_len = min(digest_start - offset, m->m_len); 2355 cp = mtod(m, char *); 2356 2357 /* Find last non-zero byte in this mbuf. */ 2358 while (m_len > 0 && cp[m_len - 1] == 0) 2359 m_len--; 2360 if (m_len > 0) { 2361 record_type = cp[m_len - 1]; 2362 last_offset = offset + m_len; 2363 } 2364 } 2365 if (last_offset < tls->params.tls_hlen) 2366 return (EBADMSG); 2367 2368 *record_typep = record_type; 2369 *trailer_len = tls_len - last_offset + 1; 2370 return (0); 2371 } 2372 2373 /* 2374 * Check if a mbuf chain is fully decrypted at the given offset and 2375 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2376 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2377 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2378 * is encrypted. 2379 */ 2380 ktls_mbuf_crypto_st_t 2381 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2382 { 2383 int m_flags_ored = 0; 2384 int m_flags_anded = -1; 2385 2386 for (; mb != NULL; mb = mb->m_next) { 2387 if (offset < mb->m_len) 2388 break; 2389 offset -= mb->m_len; 2390 } 2391 offset += len; 2392 2393 for (; mb != NULL; mb = mb->m_next) { 2394 m_flags_ored |= mb->m_flags; 2395 m_flags_anded &= mb->m_flags; 2396 2397 if (offset <= mb->m_len) 2398 break; 2399 offset -= mb->m_len; 2400 } 2401 MPASS(mb != NULL || offset == 0); 2402 2403 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2404 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2405 else 2406 return ((m_flags_ored & M_DECRYPTED) ? 2407 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2408 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2409 } 2410 2411 /* 2412 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2413 */ 2414 static int 2415 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2416 { 2417 union if_snd_tag_modify_params params; 2418 struct m_snd_tag *mst; 2419 struct inpcb *inp; 2420 struct tcpcb *tp; 2421 2422 mst = so->so_rcv.sb_tls_info->snd_tag; 2423 if (__predict_false(mst == NULL)) 2424 return (EINVAL); 2425 2426 inp = sotoinpcb(so); 2427 if (__predict_false(inp == NULL)) 2428 return (EINVAL); 2429 2430 INP_RLOCK(inp); 2431 if (inp->inp_flags & INP_DROPPED) { 2432 INP_RUNLOCK(inp); 2433 return (ECONNRESET); 2434 } 2435 2436 tp = intotcpcb(inp); 2437 MPASS(tp != NULL); 2438 2439 /* Get the TCP sequence number of the next valid TLS header. */ 2440 SOCKBUF_LOCK(&so->so_rcv); 2441 params.tls_rx.tls_hdr_tcp_sn = 2442 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2443 params.tls_rx.tls_rec_length = tls_len; 2444 params.tls_rx.tls_seq_number = tls_rcd_num; 2445 SOCKBUF_UNLOCK(&so->so_rcv); 2446 2447 INP_RUNLOCK(inp); 2448 2449 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2450 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2451 } 2452 2453 static void 2454 ktls_drop(struct socket *so, int error) 2455 { 2456 struct epoch_tracker et; 2457 struct inpcb *inp = sotoinpcb(so); 2458 struct tcpcb *tp; 2459 2460 NET_EPOCH_ENTER(et); 2461 INP_WLOCK(inp); 2462 if (!(inp->inp_flags & INP_DROPPED)) { 2463 tp = intotcpcb(inp); 2464 CURVNET_SET(inp->inp_vnet); 2465 tp = tcp_drop(tp, error); 2466 CURVNET_RESTORE(); 2467 if (tp != NULL) 2468 INP_WUNLOCK(inp); 2469 } else { 2470 so->so_error = error; 2471 SOCK_RECVBUF_LOCK(so); 2472 sorwakeup_locked(so); 2473 INP_WUNLOCK(inp); 2474 } 2475 NET_EPOCH_EXIT(et); 2476 } 2477 2478 static void 2479 ktls_decrypt(struct socket *so) 2480 { 2481 char tls_header[MBUF_PEXT_HDR_LEN]; 2482 struct ktls_session *tls; 2483 struct sockbuf *sb; 2484 struct tls_record_layer *hdr; 2485 struct tls_get_record tgr; 2486 struct mbuf *control, *data, *m; 2487 ktls_mbuf_crypto_st_t state; 2488 uint64_t seqno; 2489 int error, remain, tls_len, trail_len; 2490 bool tls13; 2491 uint8_t vminor, record_type; 2492 2493 hdr = (struct tls_record_layer *)tls_header; 2494 sb = &so->so_rcv; 2495 SOCKBUF_LOCK(sb); 2496 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2497 ("%s: socket %p not running", __func__, so)); 2498 2499 tls = sb->sb_tls_info; 2500 MPASS(tls != NULL); 2501 2502 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2503 if (tls13) 2504 vminor = TLS_MINOR_VER_TWO; 2505 else 2506 vminor = tls->params.tls_vminor; 2507 for (;;) { 2508 /* Is there enough queued for a TLS header? */ 2509 if (sb->sb_tlscc < tls->params.tls_hlen) 2510 break; 2511 2512 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2513 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2514 2515 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2516 hdr->tls_vminor != vminor) 2517 error = EINVAL; 2518 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2519 error = EINVAL; 2520 else if (tls_len < tls->params.tls_hlen || tls_len > 2521 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2522 tls->params.tls_tlen) 2523 error = EMSGSIZE; 2524 else 2525 error = 0; 2526 if (__predict_false(error != 0)) { 2527 /* 2528 * We have a corrupted record and are likely 2529 * out of sync. The connection isn't 2530 * recoverable at this point, so abort it. 2531 */ 2532 SOCKBUF_UNLOCK(sb); 2533 counter_u64_add(ktls_offload_corrupted_records, 1); 2534 2535 ktls_drop(so, error); 2536 goto deref; 2537 } 2538 2539 /* Is the entire record queued? */ 2540 if (sb->sb_tlscc < tls_len) 2541 break; 2542 2543 /* 2544 * Split out the portion of the mbuf chain containing 2545 * this TLS record. 2546 */ 2547 data = ktls_detach_record(sb, tls_len); 2548 if (data == NULL) 2549 continue; 2550 MPASS(sb->sb_tlsdcc == tls_len); 2551 2552 seqno = sb->sb_tls_seqno; 2553 sb->sb_tls_seqno++; 2554 SBCHECK(sb); 2555 SOCKBUF_UNLOCK(sb); 2556 2557 /* get crypto state for this TLS record */ 2558 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2559 2560 switch (state) { 2561 case KTLS_MBUF_CRYPTO_ST_MIXED: 2562 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2563 if (error) 2564 break; 2565 /* FALLTHROUGH */ 2566 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2567 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2568 &trail_len); 2569 if (__predict_true(error == 0)) { 2570 if (tls13) { 2571 error = tls13_find_record_type(tls, data, 2572 tls_len, &trail_len, &record_type); 2573 } else { 2574 record_type = hdr->tls_type; 2575 } 2576 } 2577 break; 2578 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2579 /* 2580 * NIC TLS is only supported for AEAD 2581 * ciphersuites which used a fixed sized 2582 * trailer. 2583 */ 2584 if (tls13) { 2585 trail_len = tls->params.tls_tlen - 1; 2586 error = tls13_find_record_type(tls, data, 2587 tls_len, &trail_len, &record_type); 2588 } else { 2589 trail_len = tls->params.tls_tlen; 2590 error = 0; 2591 record_type = hdr->tls_type; 2592 } 2593 break; 2594 default: 2595 error = EINVAL; 2596 break; 2597 } 2598 if (error) { 2599 counter_u64_add(ktls_offload_failed_crypto, 1); 2600 2601 SOCKBUF_LOCK(sb); 2602 if (sb->sb_tlsdcc == 0) { 2603 /* 2604 * sbcut/drop/flush discarded these 2605 * mbufs. 2606 */ 2607 m_freem(data); 2608 break; 2609 } 2610 2611 /* 2612 * Drop this TLS record's data, but keep 2613 * decrypting subsequent records. 2614 */ 2615 sb->sb_ccc -= tls_len; 2616 sb->sb_tlsdcc = 0; 2617 2618 if (error != EMSGSIZE) 2619 error = EBADMSG; 2620 CURVNET_SET(so->so_vnet); 2621 so->so_error = error; 2622 sorwakeup_locked(so); 2623 CURVNET_RESTORE(); 2624 2625 m_freem(data); 2626 2627 SOCKBUF_LOCK(sb); 2628 continue; 2629 } 2630 2631 /* Allocate the control mbuf. */ 2632 memset(&tgr, 0, sizeof(tgr)); 2633 tgr.tls_type = record_type; 2634 tgr.tls_vmajor = hdr->tls_vmajor; 2635 tgr.tls_vminor = hdr->tls_vminor; 2636 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2637 trail_len); 2638 control = sbcreatecontrol(&tgr, sizeof(tgr), 2639 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2640 2641 SOCKBUF_LOCK(sb); 2642 if (sb->sb_tlsdcc == 0) { 2643 /* sbcut/drop/flush discarded these mbufs. */ 2644 MPASS(sb->sb_tlscc == 0); 2645 m_freem(data); 2646 m_freem(control); 2647 break; 2648 } 2649 2650 /* 2651 * Clear the 'dcc' accounting in preparation for 2652 * adding the decrypted record. 2653 */ 2654 sb->sb_ccc -= tls_len; 2655 sb->sb_tlsdcc = 0; 2656 SBCHECK(sb); 2657 2658 /* If there is no payload, drop all of the data. */ 2659 if (tgr.tls_length == htobe16(0)) { 2660 m_freem(data); 2661 data = NULL; 2662 } else { 2663 /* Trim header. */ 2664 remain = tls->params.tls_hlen; 2665 while (remain > 0) { 2666 if (data->m_len > remain) { 2667 data->m_data += remain; 2668 data->m_len -= remain; 2669 break; 2670 } 2671 remain -= data->m_len; 2672 data = m_free(data); 2673 } 2674 2675 /* Trim trailer and clear M_NOTREADY. */ 2676 remain = be16toh(tgr.tls_length); 2677 m = data; 2678 for (m = data; remain > m->m_len; m = m->m_next) { 2679 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2680 remain -= m->m_len; 2681 } 2682 m->m_len = remain; 2683 m_freem(m->m_next); 2684 m->m_next = NULL; 2685 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2686 2687 /* Set EOR on the final mbuf. */ 2688 m->m_flags |= M_EOR; 2689 } 2690 2691 sbappendcontrol_locked(sb, data, control, 0); 2692 2693 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2694 sb->sb_flags |= SB_TLS_RX_RESYNC; 2695 SOCKBUF_UNLOCK(sb); 2696 ktls_resync_ifnet(so, tls_len, seqno); 2697 SOCKBUF_LOCK(sb); 2698 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2699 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2700 SOCKBUF_UNLOCK(sb); 2701 ktls_resync_ifnet(so, 0, seqno); 2702 SOCKBUF_LOCK(sb); 2703 } 2704 } 2705 2706 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2707 2708 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2709 so->so_error = EMSGSIZE; 2710 2711 sorwakeup_locked(so); 2712 2713 deref: 2714 SOCKBUF_UNLOCK_ASSERT(sb); 2715 2716 CURVNET_SET(so->so_vnet); 2717 sorele(so); 2718 CURVNET_RESTORE(); 2719 } 2720 2721 void 2722 ktls_enqueue_to_free(struct mbuf *m) 2723 { 2724 struct ktls_wq *wq; 2725 bool running; 2726 2727 /* Mark it for freeing. */ 2728 m->m_epg_flags |= EPG_FLAG_2FREE; 2729 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2730 mtx_lock(&wq->mtx); 2731 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2732 running = wq->running; 2733 mtx_unlock(&wq->mtx); 2734 if (!running) 2735 wakeup(wq); 2736 } 2737 2738 static void * 2739 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2740 { 2741 void *buf; 2742 int domain, running; 2743 2744 if (m->m_epg_npgs <= 2) 2745 return (NULL); 2746 if (ktls_buffer_zone == NULL) 2747 return (NULL); 2748 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2749 /* 2750 * Rate-limit allocation attempts after a failure. 2751 * ktls_buffer_import() will acquire a per-domain mutex to check 2752 * the free page queues and may fail consistently if memory is 2753 * fragmented. 2754 */ 2755 return (NULL); 2756 } 2757 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2758 if (buf == NULL) { 2759 domain = PCPU_GET(domain); 2760 wq->lastallocfail = ticks; 2761 2762 /* 2763 * Note that this check is "racy", but the races are 2764 * harmless, and are either a spurious wakeup if 2765 * multiple threads fail allocations before the alloc 2766 * thread wakes, or waiting an extra second in case we 2767 * see an old value of running == true. 2768 */ 2769 if (!VM_DOMAIN_EMPTY(domain)) { 2770 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2771 if (!running) 2772 wakeup(&ktls_domains[domain].reclaim_td); 2773 } 2774 } 2775 return (buf); 2776 } 2777 2778 static int 2779 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2780 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2781 { 2782 vm_page_t pg; 2783 int error, i, len, off; 2784 2785 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2786 ("%p not unready & nomap mbuf\n", m)); 2787 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2788 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2789 ktls_maxlen)); 2790 2791 /* Anonymous mbufs are encrypted in place. */ 2792 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2793 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2794 2795 /* 2796 * For file-backed mbufs (from sendfile), anonymous wired 2797 * pages are allocated and used as the encryption destination. 2798 */ 2799 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2800 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2801 m->m_epg_1st_off; 2802 state->dst_iov[0].iov_base = (char *)state->cbuf + 2803 m->m_epg_1st_off; 2804 state->dst_iov[0].iov_len = len; 2805 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2806 i = 1; 2807 } else { 2808 off = m->m_epg_1st_off; 2809 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2810 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2811 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2812 len = m_epg_pagelen(m, i, off); 2813 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2814 state->dst_iov[i].iov_base = 2815 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2816 state->dst_iov[i].iov_len = len; 2817 } 2818 } 2819 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2820 state->dst_iov[i].iov_base = m->m_epg_trail; 2821 state->dst_iov[i].iov_len = m->m_epg_trllen; 2822 2823 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2824 2825 if (__predict_false(error != 0)) { 2826 /* Free the anonymous pages. */ 2827 if (state->cbuf != NULL) 2828 uma_zfree(ktls_buffer_zone, state->cbuf); 2829 else { 2830 for (i = 0; i < m->m_epg_npgs; i++) { 2831 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2832 (void)vm_page_unwire_noq(pg); 2833 vm_page_free(pg); 2834 } 2835 } 2836 } 2837 return (error); 2838 } 2839 2840 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2841 static u_int 2842 ktls_batched_records(struct mbuf *m) 2843 { 2844 int page_count, records; 2845 2846 records = 0; 2847 page_count = m->m_epg_enc_cnt; 2848 while (page_count > 0) { 2849 records++; 2850 page_count -= m->m_epg_nrdy; 2851 m = m->m_next; 2852 } 2853 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2854 return (records); 2855 } 2856 2857 void 2858 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2859 { 2860 struct ktls_session *tls; 2861 struct ktls_wq *wq; 2862 int queued; 2863 bool running; 2864 2865 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2866 (M_EXTPG | M_NOTREADY)), 2867 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2868 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2869 2870 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2871 2872 m->m_epg_enc_cnt = page_count; 2873 2874 /* 2875 * Save a pointer to the socket. The caller is responsible 2876 * for taking an additional reference via soref(). 2877 */ 2878 m->m_epg_so = so; 2879 2880 queued = 1; 2881 tls = m->m_epg_tls; 2882 wq = &ktls_wq[tls->wq_index]; 2883 mtx_lock(&wq->mtx); 2884 if (__predict_false(tls->sequential_records)) { 2885 /* 2886 * For TLS 1.0, records must be encrypted 2887 * sequentially. For a given connection, all records 2888 * queued to the associated work queue are processed 2889 * sequentially. However, sendfile(2) might complete 2890 * I/O requests spanning multiple TLS records out of 2891 * order. Here we ensure TLS records are enqueued to 2892 * the work queue in FIFO order. 2893 * 2894 * tls->next_seqno holds the sequence number of the 2895 * next TLS record that should be enqueued to the work 2896 * queue. If this next record is not tls->next_seqno, 2897 * it must be a future record, so insert it, sorted by 2898 * TLS sequence number, into tls->pending_records and 2899 * return. 2900 * 2901 * If this TLS record matches tls->next_seqno, place 2902 * it in the work queue and then check 2903 * tls->pending_records to see if any 2904 * previously-queued records are now ready for 2905 * encryption. 2906 */ 2907 if (m->m_epg_seqno != tls->next_seqno) { 2908 struct mbuf *n, *p; 2909 2910 p = NULL; 2911 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2912 if (n->m_epg_seqno > m->m_epg_seqno) 2913 break; 2914 p = n; 2915 } 2916 if (n == NULL) 2917 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2918 m_epg_stailq); 2919 else if (p == NULL) 2920 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2921 m_epg_stailq); 2922 else 2923 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2924 m_epg_stailq); 2925 mtx_unlock(&wq->mtx); 2926 counter_u64_add(ktls_cnt_tx_pending, 1); 2927 return; 2928 } 2929 2930 tls->next_seqno += ktls_batched_records(m); 2931 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2932 2933 while (!STAILQ_EMPTY(&tls->pending_records)) { 2934 struct mbuf *n; 2935 2936 n = STAILQ_FIRST(&tls->pending_records); 2937 if (n->m_epg_seqno != tls->next_seqno) 2938 break; 2939 2940 queued++; 2941 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2942 tls->next_seqno += ktls_batched_records(n); 2943 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2944 } 2945 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2946 } else 2947 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2948 2949 running = wq->running; 2950 mtx_unlock(&wq->mtx); 2951 if (!running) 2952 wakeup(wq); 2953 counter_u64_add(ktls_cnt_tx_queued, queued); 2954 } 2955 2956 /* 2957 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2958 * the pages from the file and replace them with the anonymous pages 2959 * allocated in ktls_encrypt_record(). 2960 */ 2961 static void 2962 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2963 { 2964 int i; 2965 2966 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2967 2968 /* Free the old pages. */ 2969 m->m_ext.ext_free(m); 2970 2971 /* Replace them with the new pages. */ 2972 if (state->cbuf != NULL) { 2973 for (i = 0; i < m->m_epg_npgs; i++) 2974 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2975 2976 /* Contig pages should go back to the cache. */ 2977 m->m_ext.ext_free = ktls_free_mext_contig; 2978 } else { 2979 for (i = 0; i < m->m_epg_npgs; i++) 2980 m->m_epg_pa[i] = state->parray[i]; 2981 2982 /* Use the basic free routine. */ 2983 m->m_ext.ext_free = mb_free_mext_pgs; 2984 } 2985 2986 /* Pages are now writable. */ 2987 m->m_epg_flags |= EPG_FLAG_ANON; 2988 } 2989 2990 static __noinline void 2991 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2992 { 2993 struct ktls_ocf_encrypt_state state; 2994 struct ktls_session *tls; 2995 struct socket *so; 2996 struct mbuf *m; 2997 int error, npages, total_pages; 2998 2999 so = top->m_epg_so; 3000 tls = top->m_epg_tls; 3001 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3002 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3003 #ifdef INVARIANTS 3004 top->m_epg_so = NULL; 3005 #endif 3006 total_pages = top->m_epg_enc_cnt; 3007 npages = 0; 3008 3009 /* 3010 * Encrypt the TLS records in the chain of mbufs starting with 3011 * 'top'. 'total_pages' gives us a total count of pages and is 3012 * used to know when we have finished encrypting the TLS 3013 * records originally queued with 'top'. 3014 * 3015 * NB: These mbufs are queued in the socket buffer and 3016 * 'm_next' is traversing the mbufs in the socket buffer. The 3017 * socket buffer lock is not held while traversing this chain. 3018 * Since the mbufs are all marked M_NOTREADY their 'm_next' 3019 * pointers should be stable. However, the 'm_next' of the 3020 * last mbuf encrypted is not necessarily NULL. It can point 3021 * to other mbufs appended while 'top' was on the TLS work 3022 * queue. 3023 * 3024 * Each mbuf holds an entire TLS record. 3025 */ 3026 error = 0; 3027 for (m = top; npages != total_pages; m = m->m_next) { 3028 KASSERT(m->m_epg_tls == tls, 3029 ("different TLS sessions in a single mbuf chain: %p vs %p", 3030 tls, m->m_epg_tls)); 3031 KASSERT(npages + m->m_epg_npgs <= total_pages, 3032 ("page count mismatch: top %p, total_pages %d, m %p", top, 3033 total_pages, m)); 3034 3035 error = ktls_encrypt_record(wq, m, tls, &state); 3036 if (error) { 3037 counter_u64_add(ktls_offload_failed_crypto, 1); 3038 break; 3039 } 3040 3041 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3042 ktls_finish_nonanon(m, &state); 3043 3044 npages += m->m_epg_nrdy; 3045 3046 /* 3047 * Drop a reference to the session now that it is no 3048 * longer needed. Existing code depends on encrypted 3049 * records having no associated session vs 3050 * yet-to-be-encrypted records having an associated 3051 * session. 3052 */ 3053 m->m_epg_tls = NULL; 3054 ktls_free(tls); 3055 } 3056 3057 CURVNET_SET(so->so_vnet); 3058 if (error == 0) { 3059 (void)so->so_proto->pr_ready(so, top, npages); 3060 } else { 3061 ktls_drop(so, EIO); 3062 mb_free_notready(top, total_pages); 3063 } 3064 3065 sorele(so); 3066 CURVNET_RESTORE(); 3067 } 3068 3069 void 3070 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3071 { 3072 struct ktls_session *tls; 3073 struct socket *so; 3074 struct mbuf *m; 3075 int npages; 3076 3077 m = state->m; 3078 3079 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3080 ktls_finish_nonanon(m, state); 3081 3082 so = state->so; 3083 free(state, M_KTLS); 3084 3085 /* 3086 * Drop a reference to the session now that it is no longer 3087 * needed. Existing code depends on encrypted records having 3088 * no associated session vs yet-to-be-encrypted records having 3089 * an associated session. 3090 */ 3091 tls = m->m_epg_tls; 3092 m->m_epg_tls = NULL; 3093 ktls_free(tls); 3094 3095 if (error != 0) 3096 counter_u64_add(ktls_offload_failed_crypto, 1); 3097 3098 CURVNET_SET(so->so_vnet); 3099 npages = m->m_epg_nrdy; 3100 3101 if (error == 0) { 3102 (void)so->so_proto->pr_ready(so, m, npages); 3103 } else { 3104 ktls_drop(so, EIO); 3105 mb_free_notready(m, npages); 3106 } 3107 3108 sorele(so); 3109 CURVNET_RESTORE(); 3110 } 3111 3112 /* 3113 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3114 * (coprocessors) where encryption does not use host CPU resources and 3115 * it can be beneficial to queue more requests than CPUs. 3116 */ 3117 static __noinline void 3118 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3119 { 3120 struct ktls_ocf_encrypt_state *state; 3121 struct ktls_session *tls; 3122 struct socket *so; 3123 struct mbuf *m, *n; 3124 int error, mpages, npages, total_pages; 3125 3126 so = top->m_epg_so; 3127 tls = top->m_epg_tls; 3128 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3129 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3130 #ifdef INVARIANTS 3131 top->m_epg_so = NULL; 3132 #endif 3133 total_pages = top->m_epg_enc_cnt; 3134 npages = 0; 3135 3136 error = 0; 3137 for (m = top; npages != total_pages; m = n) { 3138 KASSERT(m->m_epg_tls == tls, 3139 ("different TLS sessions in a single mbuf chain: %p vs %p", 3140 tls, m->m_epg_tls)); 3141 KASSERT(npages + m->m_epg_npgs <= total_pages, 3142 ("page count mismatch: top %p, total_pages %d, m %p", top, 3143 total_pages, m)); 3144 3145 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3146 soref(so); 3147 state->so = so; 3148 state->m = m; 3149 3150 mpages = m->m_epg_nrdy; 3151 n = m->m_next; 3152 3153 error = ktls_encrypt_record(wq, m, tls, state); 3154 if (error) { 3155 counter_u64_add(ktls_offload_failed_crypto, 1); 3156 free(state, M_KTLS); 3157 CURVNET_SET(so->so_vnet); 3158 sorele(so); 3159 CURVNET_RESTORE(); 3160 break; 3161 } 3162 3163 npages += mpages; 3164 } 3165 3166 CURVNET_SET(so->so_vnet); 3167 if (error != 0) { 3168 ktls_drop(so, EIO); 3169 mb_free_notready(m, total_pages - npages); 3170 } 3171 3172 sorele(so); 3173 CURVNET_RESTORE(); 3174 } 3175 3176 static int 3177 ktls_bind_domain(int domain) 3178 { 3179 int error; 3180 3181 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3182 if (error != 0) 3183 return (error); 3184 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3185 return (0); 3186 } 3187 3188 static void 3189 ktls_reclaim_thread(void *ctx) 3190 { 3191 struct ktls_domain_info *ktls_domain = ctx; 3192 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3193 struct sysctl_oid *oid; 3194 char name[80]; 3195 int error, domain; 3196 3197 domain = ktls_domain - ktls_domains; 3198 if (bootverbose) 3199 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3200 error = ktls_bind_domain(domain); 3201 if (error) 3202 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3203 domain, error); 3204 snprintf(name, sizeof(name), "domain%d", domain); 3205 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3206 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3207 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3208 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3209 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3210 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3211 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3212 CTLFLAG_RD, &sc->running, 0, "thread running"); 3213 3214 for (;;) { 3215 atomic_store_int(&sc->running, 0); 3216 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3217 atomic_store_int(&sc->running, 1); 3218 sc->wakeups++; 3219 /* 3220 * Below we attempt to reclaim ktls_max_reclaim 3221 * buffers using vm_page_reclaim_contig_domain_ext(). 3222 * We do this here, as this function can take several 3223 * seconds to scan all of memory and it does not 3224 * matter if this thread pauses for a while. If we 3225 * block a ktls worker thread, we risk developing 3226 * backlogs of buffers to be encrypted, leading to 3227 * surges of traffic and potential NIC output drops. 3228 */ 3229 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3230 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 3231 ktls_max_reclaim) != 0) { 3232 vm_wait_domain(domain); 3233 } else { 3234 sc->reclaims += ktls_max_reclaim; 3235 } 3236 } 3237 } 3238 3239 static void 3240 ktls_work_thread(void *ctx) 3241 { 3242 struct ktls_wq *wq = ctx; 3243 struct mbuf *m, *n; 3244 struct socket *so, *son; 3245 STAILQ_HEAD(, mbuf) local_m_head; 3246 STAILQ_HEAD(, socket) local_so_head; 3247 int cpu; 3248 3249 cpu = wq - ktls_wq; 3250 if (bootverbose) 3251 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3252 3253 /* 3254 * Bind to a core. If ktls_bind_threads is > 1, then 3255 * we bind to the NUMA domain instead. 3256 */ 3257 if (ktls_bind_threads) { 3258 int error; 3259 3260 if (ktls_bind_threads > 1) { 3261 struct pcpu *pc = pcpu_find(cpu); 3262 3263 error = ktls_bind_domain(pc->pc_domain); 3264 } else { 3265 cpuset_t mask; 3266 3267 CPU_SETOF(cpu, &mask); 3268 error = cpuset_setthread(curthread->td_tid, &mask); 3269 } 3270 if (error) 3271 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3272 cpu, error); 3273 } 3274 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3275 fpu_kern_thread(0); 3276 #endif 3277 for (;;) { 3278 mtx_lock(&wq->mtx); 3279 while (STAILQ_EMPTY(&wq->m_head) && 3280 STAILQ_EMPTY(&wq->so_head)) { 3281 wq->running = false; 3282 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3283 wq->running = true; 3284 } 3285 3286 STAILQ_INIT(&local_m_head); 3287 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3288 STAILQ_INIT(&local_so_head); 3289 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3290 mtx_unlock(&wq->mtx); 3291 3292 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3293 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3294 ktls_free(m->m_epg_tls); 3295 m_free_raw(m); 3296 } else { 3297 if (m->m_epg_tls->sync_dispatch) 3298 ktls_encrypt(wq, m); 3299 else 3300 ktls_encrypt_async(wq, m); 3301 counter_u64_add(ktls_cnt_tx_queued, -1); 3302 } 3303 } 3304 3305 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3306 ktls_decrypt(so); 3307 counter_u64_add(ktls_cnt_rx_queued, -1); 3308 } 3309 } 3310 } 3311 3312 static void 3313 ktls_disable_ifnet_help(void *context, int pending __unused) 3314 { 3315 struct ktls_session *tls; 3316 struct inpcb *inp; 3317 struct tcpcb *tp; 3318 struct socket *so; 3319 int err; 3320 3321 tls = context; 3322 inp = tls->inp; 3323 if (inp == NULL) 3324 return; 3325 INP_WLOCK(inp); 3326 so = inp->inp_socket; 3327 MPASS(so != NULL); 3328 if (inp->inp_flags & INP_DROPPED) { 3329 goto out; 3330 } 3331 3332 if (so->so_snd.sb_tls_info != NULL) 3333 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3334 else 3335 err = ENXIO; 3336 if (err == 0) { 3337 counter_u64_add(ktls_ifnet_disable_ok, 1); 3338 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3339 if ((inp->inp_flags & INP_DROPPED) == 0 && 3340 (tp = intotcpcb(inp)) != NULL && 3341 tp->t_fb->tfb_hwtls_change != NULL) 3342 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3343 } else { 3344 counter_u64_add(ktls_ifnet_disable_fail, 1); 3345 } 3346 3347 out: 3348 CURVNET_SET(so->so_vnet); 3349 sorele(so); 3350 CURVNET_RESTORE(); 3351 INP_WUNLOCK(inp); 3352 ktls_free(tls); 3353 } 3354 3355 /* 3356 * Called when re-transmits are becoming a substantial portion of the 3357 * sends on this connection. When this happens, we transition the 3358 * connection to software TLS. This is needed because most inline TLS 3359 * NICs keep crypto state only for in-order transmits. This means 3360 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3361 * re-DMA the entire TLS record up to and including the current 3362 * segment. This means that when re-transmitting the last ~1448 byte 3363 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3364 * of magnitude more data than we are sending. This can cause the 3365 * PCIe link to saturate well before the network, which can cause 3366 * output drops, and a general loss of capacity. 3367 */ 3368 void 3369 ktls_disable_ifnet(void *arg) 3370 { 3371 struct tcpcb *tp; 3372 struct inpcb *inp; 3373 struct socket *so; 3374 struct ktls_session *tls; 3375 3376 tp = arg; 3377 inp = tptoinpcb(tp); 3378 INP_WLOCK_ASSERT(inp); 3379 so = inp->inp_socket; 3380 SOCK_LOCK(so); 3381 tls = so->so_snd.sb_tls_info; 3382 if (tp->t_nic_ktls_xmit_dis == 1) { 3383 SOCK_UNLOCK(so); 3384 return; 3385 } 3386 3387 /* 3388 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3389 * ifnet can only be done once per connection, so we never want 3390 * to do it again 3391 */ 3392 3393 (void)ktls_hold(tls); 3394 soref(so); 3395 tp->t_nic_ktls_xmit_dis = 1; 3396 SOCK_UNLOCK(so); 3397 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3398 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3399 } 3400