1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 #if defined(INET) || defined(INET6) 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp, int direction) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 switch (en->tls_vminor) { 555 case TLS_MINOR_VER_TWO: 556 if (en->iv_len != TLS_AEAD_GCM_LEN) 557 return (EINVAL); 558 break; 559 case TLS_MINOR_VER_THREE: 560 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 561 return (EINVAL); 562 break; 563 default: 564 return (EINVAL); 565 } 566 break; 567 case CRYPTO_AES_CBC: 568 switch (en->auth_algorithm) { 569 case CRYPTO_SHA1_HMAC: 570 break; 571 case CRYPTO_SHA2_256_HMAC: 572 case CRYPTO_SHA2_384_HMAC: 573 if (en->tls_vminor != TLS_MINOR_VER_TWO) 574 return (EINVAL); 575 break; 576 default: 577 return (EINVAL); 578 } 579 if (en->auth_key_len == 0) 580 return (EINVAL); 581 582 /* 583 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 584 * use explicit IVs. 585 */ 586 switch (en->tls_vminor) { 587 case TLS_MINOR_VER_ZERO: 588 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 589 return (EINVAL); 590 break; 591 case TLS_MINOR_VER_ONE: 592 case TLS_MINOR_VER_TWO: 593 /* Ignore any supplied IV. */ 594 en->iv_len = 0; 595 break; 596 default: 597 return (EINVAL); 598 } 599 break; 600 case CRYPTO_CHACHA20_POLY1305: 601 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 602 return (EINVAL); 603 if (en->tls_vminor != TLS_MINOR_VER_TWO && 604 en->tls_vminor != TLS_MINOR_VER_THREE) 605 return (EINVAL); 606 if (en->iv_len != TLS_CHACHA20_IV_LEN) 607 return (EINVAL); 608 break; 609 default: 610 return (EINVAL); 611 } 612 613 error = ktls_start_kthreads(); 614 if (error != 0) 615 return (error); 616 617 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 618 619 counter_u64_add(ktls_offload_active, 1); 620 621 refcount_init(&tls->refcount, 1); 622 if (direction == KTLS_RX) 623 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 624 else 625 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 626 627 tls->wq_index = ktls_get_cpu(so); 628 629 tls->params.cipher_algorithm = en->cipher_algorithm; 630 tls->params.auth_algorithm = en->auth_algorithm; 631 tls->params.tls_vmajor = en->tls_vmajor; 632 tls->params.tls_vminor = en->tls_vminor; 633 tls->params.flags = en->flags; 634 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 635 636 /* Set the header and trailer lengths. */ 637 tls->params.tls_hlen = sizeof(struct tls_record_layer); 638 switch (en->cipher_algorithm) { 639 case CRYPTO_AES_NIST_GCM_16: 640 /* 641 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 642 * nonce. TLS 1.3 uses a 12 byte implicit IV. 643 */ 644 if (en->tls_vminor < TLS_MINOR_VER_THREE) 645 tls->params.tls_hlen += sizeof(uint64_t); 646 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 647 tls->params.tls_bs = 1; 648 break; 649 case CRYPTO_AES_CBC: 650 switch (en->auth_algorithm) { 651 case CRYPTO_SHA1_HMAC: 652 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 653 /* Implicit IV, no nonce. */ 654 tls->sequential_records = true; 655 tls->next_seqno = be64dec(en->rec_seq); 656 STAILQ_INIT(&tls->pending_records); 657 } else { 658 tls->params.tls_hlen += AES_BLOCK_LEN; 659 } 660 tls->params.tls_tlen = AES_BLOCK_LEN + 661 SHA1_HASH_LEN; 662 break; 663 case CRYPTO_SHA2_256_HMAC: 664 tls->params.tls_hlen += AES_BLOCK_LEN; 665 tls->params.tls_tlen = AES_BLOCK_LEN + 666 SHA2_256_HASH_LEN; 667 break; 668 case CRYPTO_SHA2_384_HMAC: 669 tls->params.tls_hlen += AES_BLOCK_LEN; 670 tls->params.tls_tlen = AES_BLOCK_LEN + 671 SHA2_384_HASH_LEN; 672 break; 673 default: 674 panic("invalid hmac"); 675 } 676 tls->params.tls_bs = AES_BLOCK_LEN; 677 break; 678 case CRYPTO_CHACHA20_POLY1305: 679 /* 680 * Chacha20 uses a 12 byte implicit IV. 681 */ 682 tls->params.tls_tlen = POLY1305_HASH_LEN; 683 tls->params.tls_bs = 1; 684 break; 685 default: 686 panic("invalid cipher"); 687 } 688 689 /* 690 * TLS 1.3 includes optional padding which we do not support, 691 * and also puts the "real" record type at the end of the 692 * encrypted data. 693 */ 694 if (en->tls_vminor == TLS_MINOR_VER_THREE) 695 tls->params.tls_tlen += sizeof(uint8_t); 696 697 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 698 ("TLS header length too long: %d", tls->params.tls_hlen)); 699 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 700 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 701 702 if (en->auth_key_len != 0) { 703 tls->params.auth_key_len = en->auth_key_len; 704 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 705 M_WAITOK); 706 error = copyin(en->auth_key, tls->params.auth_key, 707 en->auth_key_len); 708 if (error) 709 goto out; 710 } 711 712 tls->params.cipher_key_len = en->cipher_key_len; 713 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 714 error = copyin(en->cipher_key, tls->params.cipher_key, 715 en->cipher_key_len); 716 if (error) 717 goto out; 718 719 /* 720 * This holds the implicit portion of the nonce for AEAD 721 * ciphers and the initial implicit IV for TLS 1.0. The 722 * explicit portions of the IV are generated in ktls_frame(). 723 */ 724 if (en->iv_len != 0) { 725 tls->params.iv_len = en->iv_len; 726 error = copyin(en->iv, tls->params.iv, en->iv_len); 727 if (error) 728 goto out; 729 730 /* 731 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 732 * counter to generate unique explicit IVs. 733 * 734 * Store this counter in the last 8 bytes of the IV 735 * array so that it is 8-byte aligned. 736 */ 737 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 738 en->tls_vminor == TLS_MINOR_VER_TWO) 739 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 740 } 741 742 *tlsp = tls; 743 return (0); 744 745 out: 746 ktls_free(tls); 747 return (error); 748 } 749 750 static struct ktls_session * 751 ktls_clone_session(struct ktls_session *tls, int direction) 752 { 753 struct ktls_session *tls_new; 754 755 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 756 757 counter_u64_add(ktls_offload_active, 1); 758 759 refcount_init(&tls_new->refcount, 1); 760 if (direction == KTLS_RX) 761 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 762 tls_new); 763 else 764 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 765 tls_new); 766 767 /* Copy fields from existing session. */ 768 tls_new->params = tls->params; 769 tls_new->wq_index = tls->wq_index; 770 771 /* Deep copy keys. */ 772 if (tls_new->params.auth_key != NULL) { 773 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 774 M_KTLS, M_WAITOK); 775 memcpy(tls_new->params.auth_key, tls->params.auth_key, 776 tls->params.auth_key_len); 777 } 778 779 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 780 M_WAITOK); 781 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 782 tls->params.cipher_key_len); 783 784 return (tls_new); 785 } 786 787 #ifdef TCP_OFFLOAD 788 static int 789 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 790 { 791 struct inpcb *inp; 792 struct tcpcb *tp; 793 int error; 794 795 inp = so->so_pcb; 796 INP_WLOCK(inp); 797 if (inp->inp_flags & INP_DROPPED) { 798 INP_WUNLOCK(inp); 799 return (ECONNRESET); 800 } 801 if (inp->inp_socket == NULL) { 802 INP_WUNLOCK(inp); 803 return (ECONNRESET); 804 } 805 tp = intotcpcb(inp); 806 if (!(tp->t_flags & TF_TOE)) { 807 INP_WUNLOCK(inp); 808 return (EOPNOTSUPP); 809 } 810 811 error = tcp_offload_alloc_tls_session(tp, tls, direction); 812 INP_WUNLOCK(inp); 813 if (error == 0) { 814 tls->mode = TCP_TLS_MODE_TOE; 815 switch (tls->params.cipher_algorithm) { 816 case CRYPTO_AES_CBC: 817 counter_u64_add(ktls_toe_cbc, 1); 818 break; 819 case CRYPTO_AES_NIST_GCM_16: 820 counter_u64_add(ktls_toe_gcm, 1); 821 break; 822 case CRYPTO_CHACHA20_POLY1305: 823 counter_u64_add(ktls_toe_chacha20, 1); 824 break; 825 } 826 } 827 return (error); 828 } 829 #endif 830 831 /* 832 * Common code used when first enabling ifnet TLS on a connection or 833 * when allocating a new ifnet TLS session due to a routing change. 834 * This function allocates a new TLS send tag on whatever interface 835 * the connection is currently routed over. 836 */ 837 static int 838 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 839 struct m_snd_tag **mstp) 840 { 841 union if_snd_tag_alloc_params params; 842 struct ifnet *ifp; 843 struct nhop_object *nh; 844 struct tcpcb *tp; 845 int error; 846 847 INP_RLOCK(inp); 848 if (inp->inp_flags & INP_DROPPED) { 849 INP_RUNLOCK(inp); 850 return (ECONNRESET); 851 } 852 if (inp->inp_socket == NULL) { 853 INP_RUNLOCK(inp); 854 return (ECONNRESET); 855 } 856 tp = intotcpcb(inp); 857 858 /* 859 * Check administrative controls on ifnet TLS to determine if 860 * ifnet TLS should be denied. 861 * 862 * - Always permit 'force' requests. 863 * - ktls_ifnet_permitted == 0: always deny. 864 */ 865 if (!force && ktls_ifnet_permitted == 0) { 866 INP_RUNLOCK(inp); 867 return (ENXIO); 868 } 869 870 /* 871 * XXX: Use the cached route in the inpcb to find the 872 * interface. This should perhaps instead use 873 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 874 * enabled after a connection has completed key negotiation in 875 * userland, the cached route will be present in practice. 876 */ 877 nh = inp->inp_route.ro_nh; 878 if (nh == NULL) { 879 INP_RUNLOCK(inp); 880 return (ENXIO); 881 } 882 ifp = nh->nh_ifp; 883 if_ref(ifp); 884 885 /* 886 * Allocate a TLS + ratelimit tag if the connection has an 887 * existing pacing rate. 888 */ 889 if (tp->t_pacing_rate != -1 && 890 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 891 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 892 params.tls_rate_limit.inp = inp; 893 params.tls_rate_limit.tls = tls; 894 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 895 } else { 896 params.hdr.type = IF_SND_TAG_TYPE_TLS; 897 params.tls.inp = inp; 898 params.tls.tls = tls; 899 } 900 params.hdr.flowid = inp->inp_flowid; 901 params.hdr.flowtype = inp->inp_flowtype; 902 params.hdr.numa_domain = inp->inp_numa_domain; 903 INP_RUNLOCK(inp); 904 905 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 906 error = EOPNOTSUPP; 907 goto out; 908 } 909 if (inp->inp_vflag & INP_IPV6) { 910 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 911 error = EOPNOTSUPP; 912 goto out; 913 } 914 } else { 915 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 916 error = EOPNOTSUPP; 917 goto out; 918 } 919 } 920 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 921 out: 922 if_rele(ifp); 923 return (error); 924 } 925 926 /* 927 * Allocate an initial TLS receive tag for doing HW decryption of TLS 928 * data. 929 * 930 * This function allocates a new TLS receive tag on whatever interface 931 * the connection is currently routed over. If the connection ends up 932 * using a different interface for receive this will get fixed up via 933 * ktls_input_ifp_mismatch as future packets arrive. 934 */ 935 static int 936 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 937 struct m_snd_tag **mstp) 938 { 939 union if_snd_tag_alloc_params params; 940 struct ifnet *ifp; 941 struct nhop_object *nh; 942 int error; 943 944 if (!ktls_ocf_recrypt_supported(tls)) 945 return (ENXIO); 946 947 INP_RLOCK(inp); 948 if (inp->inp_flags & INP_DROPPED) { 949 INP_RUNLOCK(inp); 950 return (ECONNRESET); 951 } 952 if (inp->inp_socket == NULL) { 953 INP_RUNLOCK(inp); 954 return (ECONNRESET); 955 } 956 957 /* 958 * Check administrative controls on ifnet TLS to determine if 959 * ifnet TLS should be denied. 960 */ 961 if (ktls_ifnet_permitted == 0) { 962 INP_RUNLOCK(inp); 963 return (ENXIO); 964 } 965 966 /* 967 * XXX: As with ktls_alloc_snd_tag, use the cached route in 968 * the inpcb to find the interface. 969 */ 970 nh = inp->inp_route.ro_nh; 971 if (nh == NULL) { 972 INP_RUNLOCK(inp); 973 return (ENXIO); 974 } 975 ifp = nh->nh_ifp; 976 if_ref(ifp); 977 tls->rx_ifp = ifp; 978 979 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 980 params.hdr.flowid = inp->inp_flowid; 981 params.hdr.flowtype = inp->inp_flowtype; 982 params.hdr.numa_domain = inp->inp_numa_domain; 983 params.tls_rx.inp = inp; 984 params.tls_rx.tls = tls; 985 params.tls_rx.vlan_id = 0; 986 987 INP_RUNLOCK(inp); 988 989 if (inp->inp_vflag & INP_IPV6) { 990 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) { 991 error = EOPNOTSUPP; 992 goto out; 993 } 994 } else { 995 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) { 996 error = EOPNOTSUPP; 997 goto out; 998 } 999 } 1000 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1001 1002 /* 1003 * If this connection is over a vlan, vlan_snd_tag_alloc 1004 * rewrites vlan_id with the saved interface. Save the VLAN 1005 * ID for use in ktls_reset_receive_tag which allocates new 1006 * receive tags directly from the leaf interface bypassing 1007 * if_vlan. 1008 */ 1009 if (error == 0) 1010 tls->rx_vlan_id = params.tls_rx.vlan_id; 1011 out: 1012 return (error); 1013 } 1014 1015 static int 1016 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1017 bool force) 1018 { 1019 struct m_snd_tag *mst; 1020 int error; 1021 1022 switch (direction) { 1023 case KTLS_TX: 1024 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1025 if (__predict_false(error != 0)) 1026 goto done; 1027 break; 1028 case KTLS_RX: 1029 KASSERT(!force, ("%s: forced receive tag", __func__)); 1030 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1031 if (__predict_false(error != 0)) 1032 goto done; 1033 break; 1034 default: 1035 __assert_unreachable(); 1036 } 1037 1038 tls->mode = TCP_TLS_MODE_IFNET; 1039 tls->snd_tag = mst; 1040 1041 switch (tls->params.cipher_algorithm) { 1042 case CRYPTO_AES_CBC: 1043 counter_u64_add(ktls_ifnet_cbc, 1); 1044 break; 1045 case CRYPTO_AES_NIST_GCM_16: 1046 counter_u64_add(ktls_ifnet_gcm, 1); 1047 break; 1048 case CRYPTO_CHACHA20_POLY1305: 1049 counter_u64_add(ktls_ifnet_chacha20, 1); 1050 break; 1051 default: 1052 break; 1053 } 1054 done: 1055 return (error); 1056 } 1057 1058 static void 1059 ktls_use_sw(struct ktls_session *tls) 1060 { 1061 tls->mode = TCP_TLS_MODE_SW; 1062 switch (tls->params.cipher_algorithm) { 1063 case CRYPTO_AES_CBC: 1064 counter_u64_add(ktls_sw_cbc, 1); 1065 break; 1066 case CRYPTO_AES_NIST_GCM_16: 1067 counter_u64_add(ktls_sw_gcm, 1); 1068 break; 1069 case CRYPTO_CHACHA20_POLY1305: 1070 counter_u64_add(ktls_sw_chacha20, 1); 1071 break; 1072 } 1073 } 1074 1075 static int 1076 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1077 { 1078 int error; 1079 1080 error = ktls_ocf_try(so, tls, direction); 1081 if (error) 1082 return (error); 1083 ktls_use_sw(tls); 1084 return (0); 1085 } 1086 1087 /* 1088 * KTLS RX stores data in the socket buffer as a list of TLS records, 1089 * where each record is stored as a control message containg the TLS 1090 * header followed by data mbufs containing the decrypted data. This 1091 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1092 * both encrypted and decrypted data. TLS records decrypted by a NIC 1093 * should be queued to the socket buffer as records, but encrypted 1094 * data which needs to be decrypted by software arrives as a stream of 1095 * regular mbufs which need to be converted. In addition, there may 1096 * already be pending encrypted data in the socket buffer when KTLS RX 1097 * is enabled. 1098 * 1099 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1100 * is used: 1101 * 1102 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1103 * 1104 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1105 * from the first mbuf. Once all of the data for that TLS record is 1106 * queued, the socket is queued to a worker thread. 1107 * 1108 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1109 * the TLS chain. Each TLS record is detached from the TLS chain, 1110 * decrypted, and inserted into the regular socket buffer chain as 1111 * record starting with a control message holding the TLS header and 1112 * a chain of mbufs holding the encrypted data. 1113 */ 1114 1115 static void 1116 sb_mark_notready(struct sockbuf *sb) 1117 { 1118 struct mbuf *m; 1119 1120 m = sb->sb_mb; 1121 sb->sb_mtls = m; 1122 sb->sb_mb = NULL; 1123 sb->sb_mbtail = NULL; 1124 sb->sb_lastrecord = NULL; 1125 for (; m != NULL; m = m->m_next) { 1126 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1127 __func__)); 1128 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1129 __func__)); 1130 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1131 __func__)); 1132 m->m_flags |= M_NOTREADY; 1133 sb->sb_acc -= m->m_len; 1134 sb->sb_tlscc += m->m_len; 1135 sb->sb_mtlstail = m; 1136 } 1137 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1138 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1139 sb->sb_ccc)); 1140 } 1141 1142 /* 1143 * Return information about the pending TLS data in a socket 1144 * buffer. On return, 'seqno' is set to the sequence number 1145 * of the next TLS record to be received, 'resid' is set to 1146 * the amount of bytes still needed for the last pending 1147 * record. The function returns 'false' if the last pending 1148 * record contains a partial TLS header. In that case, 'resid' 1149 * is the number of bytes needed to complete the TLS header. 1150 */ 1151 bool 1152 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1153 { 1154 struct tls_record_layer hdr; 1155 struct mbuf *m; 1156 uint64_t seqno; 1157 size_t resid; 1158 u_int offset, record_len; 1159 1160 SOCKBUF_LOCK_ASSERT(sb); 1161 MPASS(sb->sb_flags & SB_TLS_RX); 1162 seqno = sb->sb_tls_seqno; 1163 resid = sb->sb_tlscc; 1164 m = sb->sb_mtls; 1165 offset = 0; 1166 1167 if (resid == 0) { 1168 *seqnop = seqno; 1169 *residp = 0; 1170 return (true); 1171 } 1172 1173 for (;;) { 1174 seqno++; 1175 1176 if (resid < sizeof(hdr)) { 1177 *seqnop = seqno; 1178 *residp = sizeof(hdr) - resid; 1179 return (false); 1180 } 1181 1182 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1183 1184 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1185 if (resid <= record_len) { 1186 *seqnop = seqno; 1187 *residp = record_len - resid; 1188 return (true); 1189 } 1190 resid -= record_len; 1191 1192 while (record_len != 0) { 1193 if (m->m_len - offset > record_len) { 1194 offset += record_len; 1195 break; 1196 } 1197 1198 record_len -= (m->m_len - offset); 1199 offset = 0; 1200 m = m->m_next; 1201 } 1202 } 1203 } 1204 1205 int 1206 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1207 { 1208 struct ktls_session *tls; 1209 int error; 1210 1211 if (!ktls_offload_enable) 1212 return (ENOTSUP); 1213 if (SOLISTENING(so)) 1214 return (EINVAL); 1215 1216 counter_u64_add(ktls_offload_enable_calls, 1); 1217 1218 /* 1219 * This should always be true since only the TCP socket option 1220 * invokes this function. 1221 */ 1222 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1223 return (EINVAL); 1224 1225 /* 1226 * XXX: Don't overwrite existing sessions. We should permit 1227 * this to support rekeying in the future. 1228 */ 1229 if (so->so_rcv.sb_tls_info != NULL) 1230 return (EALREADY); 1231 1232 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1233 return (ENOTSUP); 1234 1235 error = ktls_create_session(so, en, &tls, KTLS_RX); 1236 if (error) 1237 return (error); 1238 1239 error = ktls_ocf_try(so, tls, KTLS_RX); 1240 if (error) { 1241 ktls_free(tls); 1242 return (error); 1243 } 1244 1245 /* Mark the socket as using TLS offload. */ 1246 SOCKBUF_LOCK(&so->so_rcv); 1247 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1248 so->so_rcv.sb_tls_info = tls; 1249 so->so_rcv.sb_flags |= SB_TLS_RX; 1250 1251 /* Mark existing data as not ready until it can be decrypted. */ 1252 sb_mark_notready(&so->so_rcv); 1253 ktls_check_rx(&so->so_rcv); 1254 SOCKBUF_UNLOCK(&so->so_rcv); 1255 1256 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1257 #ifdef TCP_OFFLOAD 1258 error = ktls_try_toe(so, tls, KTLS_RX); 1259 if (error) 1260 #endif 1261 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1262 if (error) 1263 ktls_use_sw(tls); 1264 1265 counter_u64_add(ktls_offload_total, 1); 1266 1267 return (0); 1268 } 1269 1270 int 1271 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1272 { 1273 struct ktls_session *tls; 1274 struct inpcb *inp; 1275 int error; 1276 1277 if (!ktls_offload_enable) 1278 return (ENOTSUP); 1279 if (SOLISTENING(so)) 1280 return (EINVAL); 1281 1282 counter_u64_add(ktls_offload_enable_calls, 1); 1283 1284 /* 1285 * This should always be true since only the TCP socket option 1286 * invokes this function. 1287 */ 1288 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1289 return (EINVAL); 1290 1291 /* 1292 * XXX: Don't overwrite existing sessions. We should permit 1293 * this to support rekeying in the future. 1294 */ 1295 if (so->so_snd.sb_tls_info != NULL) 1296 return (EALREADY); 1297 1298 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1299 return (ENOTSUP); 1300 1301 /* TLS requires ext pgs */ 1302 if (mb_use_ext_pgs == 0) 1303 return (ENXIO); 1304 1305 error = ktls_create_session(so, en, &tls, KTLS_TX); 1306 if (error) 1307 return (error); 1308 1309 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1310 #ifdef TCP_OFFLOAD 1311 error = ktls_try_toe(so, tls, KTLS_TX); 1312 if (error) 1313 #endif 1314 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1315 if (error) 1316 error = ktls_try_sw(so, tls, KTLS_TX); 1317 1318 if (error) { 1319 ktls_free(tls); 1320 return (error); 1321 } 1322 1323 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1324 if (error) { 1325 ktls_free(tls); 1326 return (error); 1327 } 1328 1329 /* 1330 * Write lock the INP when setting sb_tls_info so that 1331 * routines in tcp_ratelimit.c can read sb_tls_info while 1332 * holding the INP lock. 1333 */ 1334 inp = so->so_pcb; 1335 INP_WLOCK(inp); 1336 SOCKBUF_LOCK(&so->so_snd); 1337 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1338 so->so_snd.sb_tls_info = tls; 1339 if (tls->mode != TCP_TLS_MODE_SW) 1340 so->so_snd.sb_flags |= SB_TLS_IFNET; 1341 SOCKBUF_UNLOCK(&so->so_snd); 1342 INP_WUNLOCK(inp); 1343 SOCK_IO_SEND_UNLOCK(so); 1344 1345 counter_u64_add(ktls_offload_total, 1); 1346 1347 return (0); 1348 } 1349 1350 int 1351 ktls_get_rx_mode(struct socket *so, int *modep) 1352 { 1353 struct ktls_session *tls; 1354 struct inpcb *inp __diagused; 1355 1356 if (SOLISTENING(so)) 1357 return (EINVAL); 1358 inp = so->so_pcb; 1359 INP_WLOCK_ASSERT(inp); 1360 SOCK_RECVBUF_LOCK(so); 1361 tls = so->so_rcv.sb_tls_info; 1362 if (tls == NULL) 1363 *modep = TCP_TLS_MODE_NONE; 1364 else 1365 *modep = tls->mode; 1366 SOCK_RECVBUF_UNLOCK(so); 1367 return (0); 1368 } 1369 1370 /* 1371 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1372 * 1373 * This function gets information about the next TCP- and TLS- 1374 * sequence number to be processed by the TLS receive worker 1375 * thread. The information is extracted from the given "inpcb" 1376 * structure. The values are stored in host endian format at the two 1377 * given output pointer locations. The TCP sequence number points to 1378 * the beginning of the TLS header. 1379 * 1380 * This function returns zero on success, else a non-zero error code 1381 * is returned. 1382 */ 1383 int 1384 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1385 { 1386 struct socket *so; 1387 struct tcpcb *tp; 1388 1389 INP_RLOCK(inp); 1390 so = inp->inp_socket; 1391 if (__predict_false(so == NULL)) { 1392 INP_RUNLOCK(inp); 1393 return (EINVAL); 1394 } 1395 if (inp->inp_flags & INP_DROPPED) { 1396 INP_RUNLOCK(inp); 1397 return (ECONNRESET); 1398 } 1399 1400 tp = intotcpcb(inp); 1401 MPASS(tp != NULL); 1402 1403 SOCKBUF_LOCK(&so->so_rcv); 1404 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1405 *tlsseq = so->so_rcv.sb_tls_seqno; 1406 SOCKBUF_UNLOCK(&so->so_rcv); 1407 1408 INP_RUNLOCK(inp); 1409 1410 return (0); 1411 } 1412 1413 int 1414 ktls_get_tx_mode(struct socket *so, int *modep) 1415 { 1416 struct ktls_session *tls; 1417 struct inpcb *inp __diagused; 1418 1419 if (SOLISTENING(so)) 1420 return (EINVAL); 1421 inp = so->so_pcb; 1422 INP_WLOCK_ASSERT(inp); 1423 SOCK_SENDBUF_LOCK(so); 1424 tls = so->so_snd.sb_tls_info; 1425 if (tls == NULL) 1426 *modep = TCP_TLS_MODE_NONE; 1427 else 1428 *modep = tls->mode; 1429 SOCK_SENDBUF_UNLOCK(so); 1430 return (0); 1431 } 1432 1433 /* 1434 * Switch between SW and ifnet TLS sessions as requested. 1435 */ 1436 int 1437 ktls_set_tx_mode(struct socket *so, int mode) 1438 { 1439 struct ktls_session *tls, *tls_new; 1440 struct inpcb *inp; 1441 int error; 1442 1443 if (SOLISTENING(so)) 1444 return (EINVAL); 1445 switch (mode) { 1446 case TCP_TLS_MODE_SW: 1447 case TCP_TLS_MODE_IFNET: 1448 break; 1449 default: 1450 return (EINVAL); 1451 } 1452 1453 inp = so->so_pcb; 1454 INP_WLOCK_ASSERT(inp); 1455 SOCKBUF_LOCK(&so->so_snd); 1456 tls = so->so_snd.sb_tls_info; 1457 if (tls == NULL) { 1458 SOCKBUF_UNLOCK(&so->so_snd); 1459 return (0); 1460 } 1461 1462 if (tls->mode == mode) { 1463 SOCKBUF_UNLOCK(&so->so_snd); 1464 return (0); 1465 } 1466 1467 tls = ktls_hold(tls); 1468 SOCKBUF_UNLOCK(&so->so_snd); 1469 INP_WUNLOCK(inp); 1470 1471 tls_new = ktls_clone_session(tls, KTLS_TX); 1472 1473 if (mode == TCP_TLS_MODE_IFNET) 1474 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1475 else 1476 error = ktls_try_sw(so, tls_new, KTLS_TX); 1477 if (error) { 1478 counter_u64_add(ktls_switch_failed, 1); 1479 ktls_free(tls_new); 1480 ktls_free(tls); 1481 INP_WLOCK(inp); 1482 return (error); 1483 } 1484 1485 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1486 if (error) { 1487 counter_u64_add(ktls_switch_failed, 1); 1488 ktls_free(tls_new); 1489 ktls_free(tls); 1490 INP_WLOCK(inp); 1491 return (error); 1492 } 1493 1494 /* 1495 * If we raced with another session change, keep the existing 1496 * session. 1497 */ 1498 if (tls != so->so_snd.sb_tls_info) { 1499 counter_u64_add(ktls_switch_failed, 1); 1500 SOCK_IO_SEND_UNLOCK(so); 1501 ktls_free(tls_new); 1502 ktls_free(tls); 1503 INP_WLOCK(inp); 1504 return (EBUSY); 1505 } 1506 1507 INP_WLOCK(inp); 1508 SOCKBUF_LOCK(&so->so_snd); 1509 so->so_snd.sb_tls_info = tls_new; 1510 if (tls_new->mode != TCP_TLS_MODE_SW) 1511 so->so_snd.sb_flags |= SB_TLS_IFNET; 1512 SOCKBUF_UNLOCK(&so->so_snd); 1513 SOCK_IO_SEND_UNLOCK(so); 1514 1515 /* 1516 * Drop two references on 'tls'. The first is for the 1517 * ktls_hold() above. The second drops the reference from the 1518 * socket buffer. 1519 */ 1520 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1521 ktls_free(tls); 1522 ktls_free(tls); 1523 1524 if (mode == TCP_TLS_MODE_IFNET) 1525 counter_u64_add(ktls_switch_to_ifnet, 1); 1526 else 1527 counter_u64_add(ktls_switch_to_sw, 1); 1528 1529 return (0); 1530 } 1531 1532 /* 1533 * Try to allocate a new TLS receive tag. This task is scheduled when 1534 * sbappend_ktls_rx detects an input path change. If a new tag is 1535 * allocated, replace the tag in the TLS session. If a new tag cannot 1536 * be allocated, let the session fall back to software decryption. 1537 */ 1538 static void 1539 ktls_reset_receive_tag(void *context, int pending) 1540 { 1541 union if_snd_tag_alloc_params params; 1542 struct ktls_session *tls; 1543 struct m_snd_tag *mst; 1544 struct inpcb *inp; 1545 struct ifnet *ifp; 1546 struct socket *so; 1547 int error; 1548 1549 MPASS(pending == 1); 1550 1551 tls = context; 1552 so = tls->so; 1553 inp = so->so_pcb; 1554 ifp = NULL; 1555 1556 INP_RLOCK(inp); 1557 if (inp->inp_flags & INP_DROPPED) { 1558 INP_RUNLOCK(inp); 1559 goto out; 1560 } 1561 1562 SOCKBUF_LOCK(&so->so_rcv); 1563 mst = tls->snd_tag; 1564 tls->snd_tag = NULL; 1565 if (mst != NULL) 1566 m_snd_tag_rele(mst); 1567 1568 ifp = tls->rx_ifp; 1569 if_ref(ifp); 1570 SOCKBUF_UNLOCK(&so->so_rcv); 1571 1572 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1573 params.hdr.flowid = inp->inp_flowid; 1574 params.hdr.flowtype = inp->inp_flowtype; 1575 params.hdr.numa_domain = inp->inp_numa_domain; 1576 params.tls_rx.inp = inp; 1577 params.tls_rx.tls = tls; 1578 params.tls_rx.vlan_id = tls->rx_vlan_id; 1579 INP_RUNLOCK(inp); 1580 1581 if (inp->inp_vflag & INP_IPV6) { 1582 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) 1583 goto out; 1584 } else { 1585 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) 1586 goto out; 1587 } 1588 1589 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1590 if (error == 0) { 1591 SOCKBUF_LOCK(&so->so_rcv); 1592 tls->snd_tag = mst; 1593 SOCKBUF_UNLOCK(&so->so_rcv); 1594 1595 counter_u64_add(ktls_ifnet_reset, 1); 1596 } else { 1597 /* 1598 * Just fall back to software decryption if a tag 1599 * cannot be allocated leaving the connection intact. 1600 * If a future input path change switches to another 1601 * interface this connection will resume ifnet TLS. 1602 */ 1603 counter_u64_add(ktls_ifnet_reset_failed, 1); 1604 } 1605 1606 out: 1607 mtx_pool_lock(mtxpool_sleep, tls); 1608 tls->reset_pending = false; 1609 mtx_pool_unlock(mtxpool_sleep, tls); 1610 1611 if (ifp != NULL) 1612 if_rele(ifp); 1613 sorele(so); 1614 ktls_free(tls); 1615 } 1616 1617 /* 1618 * Try to allocate a new TLS send tag. This task is scheduled when 1619 * ip_output detects a route change while trying to transmit a packet 1620 * holding a TLS record. If a new tag is allocated, replace the tag 1621 * in the TLS session. Subsequent packets on the connection will use 1622 * the new tag. If a new tag cannot be allocated, drop the 1623 * connection. 1624 */ 1625 static void 1626 ktls_reset_send_tag(void *context, int pending) 1627 { 1628 struct epoch_tracker et; 1629 struct ktls_session *tls; 1630 struct m_snd_tag *old, *new; 1631 struct inpcb *inp; 1632 struct tcpcb *tp; 1633 int error; 1634 1635 MPASS(pending == 1); 1636 1637 tls = context; 1638 inp = tls->inp; 1639 1640 /* 1641 * Free the old tag first before allocating a new one. 1642 * ip[6]_output_send() will treat a NULL send tag the same as 1643 * an ifp mismatch and drop packets until a new tag is 1644 * allocated. 1645 * 1646 * Write-lock the INP when changing tls->snd_tag since 1647 * ip[6]_output_send() holds a read-lock when reading the 1648 * pointer. 1649 */ 1650 INP_WLOCK(inp); 1651 old = tls->snd_tag; 1652 tls->snd_tag = NULL; 1653 INP_WUNLOCK(inp); 1654 if (old != NULL) 1655 m_snd_tag_rele(old); 1656 1657 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1658 1659 if (error == 0) { 1660 INP_WLOCK(inp); 1661 tls->snd_tag = new; 1662 mtx_pool_lock(mtxpool_sleep, tls); 1663 tls->reset_pending = false; 1664 mtx_pool_unlock(mtxpool_sleep, tls); 1665 if (!in_pcbrele_wlocked(inp)) 1666 INP_WUNLOCK(inp); 1667 1668 counter_u64_add(ktls_ifnet_reset, 1); 1669 1670 /* 1671 * XXX: Should we kick tcp_output explicitly now that 1672 * the send tag is fixed or just rely on timers? 1673 */ 1674 } else { 1675 NET_EPOCH_ENTER(et); 1676 INP_WLOCK(inp); 1677 if (!in_pcbrele_wlocked(inp)) { 1678 if (!(inp->inp_flags & INP_DROPPED)) { 1679 tp = intotcpcb(inp); 1680 CURVNET_SET(inp->inp_vnet); 1681 tp = tcp_drop(tp, ECONNABORTED); 1682 CURVNET_RESTORE(); 1683 if (tp != NULL) 1684 INP_WUNLOCK(inp); 1685 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1686 } else 1687 INP_WUNLOCK(inp); 1688 } 1689 NET_EPOCH_EXIT(et); 1690 1691 counter_u64_add(ktls_ifnet_reset_failed, 1); 1692 1693 /* 1694 * Leave reset_pending true to avoid future tasks while 1695 * the socket goes away. 1696 */ 1697 } 1698 1699 ktls_free(tls); 1700 } 1701 1702 void 1703 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1704 { 1705 struct ktls_session *tls; 1706 struct socket *so; 1707 1708 SOCKBUF_LOCK_ASSERT(sb); 1709 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1710 __func__, sb)); 1711 so = __containerof(sb, struct socket, so_rcv); 1712 1713 tls = sb->sb_tls_info; 1714 if_rele(tls->rx_ifp); 1715 if_ref(ifp); 1716 tls->rx_ifp = ifp; 1717 1718 /* 1719 * See if we should schedule a task to update the receive tag for 1720 * this session. 1721 */ 1722 mtx_pool_lock(mtxpool_sleep, tls); 1723 if (!tls->reset_pending) { 1724 (void) ktls_hold(tls); 1725 soref(so); 1726 tls->so = so; 1727 tls->reset_pending = true; 1728 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1729 } 1730 mtx_pool_unlock(mtxpool_sleep, tls); 1731 } 1732 1733 int 1734 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1735 { 1736 1737 if (inp == NULL) 1738 return (ENOBUFS); 1739 1740 INP_LOCK_ASSERT(inp); 1741 1742 /* 1743 * See if we should schedule a task to update the send tag for 1744 * this session. 1745 */ 1746 mtx_pool_lock(mtxpool_sleep, tls); 1747 if (!tls->reset_pending) { 1748 (void) ktls_hold(tls); 1749 in_pcbref(inp); 1750 tls->inp = inp; 1751 tls->reset_pending = true; 1752 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1753 } 1754 mtx_pool_unlock(mtxpool_sleep, tls); 1755 return (ENOBUFS); 1756 } 1757 1758 #ifdef RATELIMIT 1759 int 1760 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1761 { 1762 union if_snd_tag_modify_params params = { 1763 .rate_limit.max_rate = max_pacing_rate, 1764 .rate_limit.flags = M_NOWAIT, 1765 }; 1766 struct m_snd_tag *mst; 1767 1768 /* Can't get to the inp, but it should be locked. */ 1769 /* INP_LOCK_ASSERT(inp); */ 1770 1771 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1772 1773 if (tls->snd_tag == NULL) { 1774 /* 1775 * Resetting send tag, ignore this change. The 1776 * pending reset may or may not see this updated rate 1777 * in the tcpcb. If it doesn't, we will just lose 1778 * this rate change. 1779 */ 1780 return (0); 1781 } 1782 1783 mst = tls->snd_tag; 1784 1785 MPASS(mst != NULL); 1786 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1787 1788 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1789 } 1790 #endif 1791 #endif 1792 1793 void 1794 ktls_destroy(struct ktls_session *tls) 1795 { 1796 MPASS(tls->refcount == 0); 1797 1798 if (tls->sequential_records) { 1799 struct mbuf *m, *n; 1800 int page_count; 1801 1802 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1803 page_count = m->m_epg_enc_cnt; 1804 while (page_count > 0) { 1805 KASSERT(page_count >= m->m_epg_nrdy, 1806 ("%s: too few pages", __func__)); 1807 page_count -= m->m_epg_nrdy; 1808 m = m_free(m); 1809 } 1810 } 1811 } 1812 1813 counter_u64_add(ktls_offload_active, -1); 1814 switch (tls->mode) { 1815 case TCP_TLS_MODE_SW: 1816 switch (tls->params.cipher_algorithm) { 1817 case CRYPTO_AES_CBC: 1818 counter_u64_add(ktls_sw_cbc, -1); 1819 break; 1820 case CRYPTO_AES_NIST_GCM_16: 1821 counter_u64_add(ktls_sw_gcm, -1); 1822 break; 1823 case CRYPTO_CHACHA20_POLY1305: 1824 counter_u64_add(ktls_sw_chacha20, -1); 1825 break; 1826 } 1827 break; 1828 case TCP_TLS_MODE_IFNET: 1829 switch (tls->params.cipher_algorithm) { 1830 case CRYPTO_AES_CBC: 1831 counter_u64_add(ktls_ifnet_cbc, -1); 1832 break; 1833 case CRYPTO_AES_NIST_GCM_16: 1834 counter_u64_add(ktls_ifnet_gcm, -1); 1835 break; 1836 case CRYPTO_CHACHA20_POLY1305: 1837 counter_u64_add(ktls_ifnet_chacha20, -1); 1838 break; 1839 } 1840 if (tls->snd_tag != NULL) 1841 m_snd_tag_rele(tls->snd_tag); 1842 if (tls->rx_ifp != NULL) 1843 if_rele(tls->rx_ifp); 1844 break; 1845 #ifdef TCP_OFFLOAD 1846 case TCP_TLS_MODE_TOE: 1847 switch (tls->params.cipher_algorithm) { 1848 case CRYPTO_AES_CBC: 1849 counter_u64_add(ktls_toe_cbc, -1); 1850 break; 1851 case CRYPTO_AES_NIST_GCM_16: 1852 counter_u64_add(ktls_toe_gcm, -1); 1853 break; 1854 case CRYPTO_CHACHA20_POLY1305: 1855 counter_u64_add(ktls_toe_chacha20, -1); 1856 break; 1857 } 1858 break; 1859 #endif 1860 } 1861 if (tls->ocf_session != NULL) 1862 ktls_ocf_free(tls); 1863 if (tls->params.auth_key != NULL) { 1864 zfree(tls->params.auth_key, M_KTLS); 1865 tls->params.auth_key = NULL; 1866 tls->params.auth_key_len = 0; 1867 } 1868 if (tls->params.cipher_key != NULL) { 1869 zfree(tls->params.cipher_key, M_KTLS); 1870 tls->params.cipher_key = NULL; 1871 tls->params.cipher_key_len = 0; 1872 } 1873 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 1874 1875 uma_zfree(ktls_session_zone, tls); 1876 } 1877 1878 void 1879 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1880 { 1881 1882 for (; m != NULL; m = m->m_next) { 1883 KASSERT((m->m_flags & M_EXTPG) != 0, 1884 ("ktls_seq: mapped mbuf %p", m)); 1885 1886 m->m_epg_seqno = sb->sb_tls_seqno; 1887 sb->sb_tls_seqno++; 1888 } 1889 } 1890 1891 /* 1892 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1893 * mbuf in the chain must be an unmapped mbuf. The payload of the 1894 * mbuf must be populated with the payload of each TLS record. 1895 * 1896 * The record_type argument specifies the TLS record type used when 1897 * populating the TLS header. 1898 * 1899 * The enq_count argument on return is set to the number of pages of 1900 * payload data for this entire chain that need to be encrypted via SW 1901 * encryption. The returned value should be passed to ktls_enqueue 1902 * when scheduling encryption of this chain of mbufs. To handle the 1903 * special case of empty fragments for TLS 1.0 sessions, an empty 1904 * fragment counts as one page. 1905 */ 1906 void 1907 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1908 uint8_t record_type) 1909 { 1910 struct tls_record_layer *tlshdr; 1911 struct mbuf *m; 1912 uint64_t *noncep; 1913 uint16_t tls_len; 1914 int maxlen __diagused; 1915 1916 maxlen = tls->params.max_frame_len; 1917 *enq_cnt = 0; 1918 for (m = top; m != NULL; m = m->m_next) { 1919 /* 1920 * All mbufs in the chain should be TLS records whose 1921 * payload does not exceed the maximum frame length. 1922 * 1923 * Empty TLS 1.0 records are permitted when using CBC. 1924 */ 1925 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 1926 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 1927 ("ktls_frame: m %p len %d", m, m->m_len)); 1928 1929 /* 1930 * TLS frames require unmapped mbufs to store session 1931 * info. 1932 */ 1933 KASSERT((m->m_flags & M_EXTPG) != 0, 1934 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 1935 1936 tls_len = m->m_len; 1937 1938 /* Save a reference to the session. */ 1939 m->m_epg_tls = ktls_hold(tls); 1940 1941 m->m_epg_hdrlen = tls->params.tls_hlen; 1942 m->m_epg_trllen = tls->params.tls_tlen; 1943 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1944 int bs, delta; 1945 1946 /* 1947 * AES-CBC pads messages to a multiple of the 1948 * block size. Note that the padding is 1949 * applied after the digest and the encryption 1950 * is done on the "plaintext || mac || padding". 1951 * At least one byte of padding is always 1952 * present. 1953 * 1954 * Compute the final trailer length assuming 1955 * at most one block of padding. 1956 * tls->params.tls_tlen is the maximum 1957 * possible trailer length (padding + digest). 1958 * delta holds the number of excess padding 1959 * bytes if the maximum were used. Those 1960 * extra bytes are removed. 1961 */ 1962 bs = tls->params.tls_bs; 1963 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1964 m->m_epg_trllen -= delta; 1965 } 1966 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1967 1968 /* Populate the TLS header. */ 1969 tlshdr = (void *)m->m_epg_hdr; 1970 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1971 1972 /* 1973 * TLS 1.3 masquarades as TLS 1.2 with a record type 1974 * of TLS_RLTYPE_APP. 1975 */ 1976 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1977 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1978 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1979 tlshdr->tls_type = TLS_RLTYPE_APP; 1980 /* save the real record type for later */ 1981 m->m_epg_record_type = record_type; 1982 m->m_epg_trail[0] = record_type; 1983 } else { 1984 tlshdr->tls_vminor = tls->params.tls_vminor; 1985 tlshdr->tls_type = record_type; 1986 } 1987 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1988 1989 /* 1990 * Store nonces / explicit IVs after the end of the 1991 * TLS header. 1992 * 1993 * For GCM with TLS 1.2, an 8 byte nonce is copied 1994 * from the end of the IV. The nonce is then 1995 * incremented for use by the next record. 1996 * 1997 * For CBC, a random nonce is inserted for TLS 1.1+. 1998 */ 1999 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2000 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2001 noncep = (uint64_t *)(tls->params.iv + 8); 2002 be64enc(tlshdr + 1, *noncep); 2003 (*noncep)++; 2004 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2005 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2006 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2007 2008 /* 2009 * When using SW encryption, mark the mbuf not ready. 2010 * It will be marked ready via sbready() after the 2011 * record has been encrypted. 2012 * 2013 * When using ifnet TLS, unencrypted TLS records are 2014 * sent down the stack to the NIC. 2015 */ 2016 if (tls->mode == TCP_TLS_MODE_SW) { 2017 m->m_flags |= M_NOTREADY; 2018 if (__predict_false(tls_len == 0)) { 2019 /* TLS 1.0 empty fragment. */ 2020 m->m_epg_nrdy = 1; 2021 } else 2022 m->m_epg_nrdy = m->m_epg_npgs; 2023 *enq_cnt += m->m_epg_nrdy; 2024 } 2025 } 2026 } 2027 2028 bool 2029 ktls_permit_empty_frames(struct ktls_session *tls) 2030 { 2031 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2032 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2033 } 2034 2035 void 2036 ktls_check_rx(struct sockbuf *sb) 2037 { 2038 struct tls_record_layer hdr; 2039 struct ktls_wq *wq; 2040 struct socket *so; 2041 bool running; 2042 2043 SOCKBUF_LOCK_ASSERT(sb); 2044 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2045 __func__, sb)); 2046 so = __containerof(sb, struct socket, so_rcv); 2047 2048 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2049 return; 2050 2051 /* Is there enough queued for a TLS header? */ 2052 if (sb->sb_tlscc < sizeof(hdr)) { 2053 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2054 so->so_error = EMSGSIZE; 2055 return; 2056 } 2057 2058 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2059 2060 /* Is the entire record queued? */ 2061 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2062 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2063 so->so_error = EMSGSIZE; 2064 return; 2065 } 2066 2067 sb->sb_flags |= SB_TLS_RX_RUNNING; 2068 2069 soref(so); 2070 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2071 mtx_lock(&wq->mtx); 2072 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2073 running = wq->running; 2074 mtx_unlock(&wq->mtx); 2075 if (!running) 2076 wakeup(wq); 2077 counter_u64_add(ktls_cnt_rx_queued, 1); 2078 } 2079 2080 static struct mbuf * 2081 ktls_detach_record(struct sockbuf *sb, int len) 2082 { 2083 struct mbuf *m, *n, *top; 2084 int remain; 2085 2086 SOCKBUF_LOCK_ASSERT(sb); 2087 MPASS(len <= sb->sb_tlscc); 2088 2089 /* 2090 * If TLS chain is the exact size of the record, 2091 * just grab the whole record. 2092 */ 2093 top = sb->sb_mtls; 2094 if (sb->sb_tlscc == len) { 2095 sb->sb_mtls = NULL; 2096 sb->sb_mtlstail = NULL; 2097 goto out; 2098 } 2099 2100 /* 2101 * While it would be nice to use m_split() here, we need 2102 * to know exactly what m_split() allocates to update the 2103 * accounting, so do it inline instead. 2104 */ 2105 remain = len; 2106 for (m = top; remain > m->m_len; m = m->m_next) 2107 remain -= m->m_len; 2108 2109 /* Easy case: don't have to split 'm'. */ 2110 if (remain == m->m_len) { 2111 sb->sb_mtls = m->m_next; 2112 if (sb->sb_mtls == NULL) 2113 sb->sb_mtlstail = NULL; 2114 m->m_next = NULL; 2115 goto out; 2116 } 2117 2118 /* 2119 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2120 * with M_NOWAIT first. 2121 */ 2122 n = m_get(M_NOWAIT, MT_DATA); 2123 if (n == NULL) { 2124 /* 2125 * Use M_WAITOK with socket buffer unlocked. If 2126 * 'sb_mtls' changes while the lock is dropped, return 2127 * NULL to force the caller to retry. 2128 */ 2129 SOCKBUF_UNLOCK(sb); 2130 2131 n = m_get(M_WAITOK, MT_DATA); 2132 2133 SOCKBUF_LOCK(sb); 2134 if (sb->sb_mtls != top) { 2135 m_free(n); 2136 return (NULL); 2137 } 2138 } 2139 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2140 2141 /* Store remainder in 'n'. */ 2142 n->m_len = m->m_len - remain; 2143 if (m->m_flags & M_EXT) { 2144 n->m_data = m->m_data + remain; 2145 mb_dupcl(n, m); 2146 } else { 2147 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2148 } 2149 2150 /* Trim 'm' and update accounting. */ 2151 m->m_len -= n->m_len; 2152 sb->sb_tlscc -= n->m_len; 2153 sb->sb_ccc -= n->m_len; 2154 2155 /* Account for 'n'. */ 2156 sballoc_ktls_rx(sb, n); 2157 2158 /* Insert 'n' into the TLS chain. */ 2159 sb->sb_mtls = n; 2160 n->m_next = m->m_next; 2161 if (sb->sb_mtlstail == m) 2162 sb->sb_mtlstail = n; 2163 2164 /* Detach the record from the TLS chain. */ 2165 m->m_next = NULL; 2166 2167 out: 2168 MPASS(m_length(top, NULL) == len); 2169 for (m = top; m != NULL; m = m->m_next) 2170 sbfree_ktls_rx(sb, m); 2171 sb->sb_tlsdcc = len; 2172 sb->sb_ccc += len; 2173 SBCHECK(sb); 2174 return (top); 2175 } 2176 2177 /* 2178 * Determine the length of the trailing zero padding and find the real 2179 * record type in the byte before the padding. 2180 * 2181 * Walking the mbuf chain backwards is clumsy, so another option would 2182 * be to scan forwards remembering the last non-zero byte before the 2183 * trailer. However, it would be expensive to scan the entire record. 2184 * Instead, find the last non-zero byte of each mbuf in the chain 2185 * keeping track of the relative offset of that nonzero byte. 2186 * 2187 * trail_len is the size of the MAC/tag on input and is set to the 2188 * size of the full trailer including padding and the record type on 2189 * return. 2190 */ 2191 static int 2192 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2193 int *trailer_len, uint8_t *record_typep) 2194 { 2195 char *cp; 2196 u_int digest_start, last_offset, m_len, offset; 2197 uint8_t record_type; 2198 2199 digest_start = tls_len - *trailer_len; 2200 last_offset = 0; 2201 offset = 0; 2202 for (; m != NULL && offset < digest_start; 2203 offset += m->m_len, m = m->m_next) { 2204 /* Don't look for padding in the tag. */ 2205 m_len = min(digest_start - offset, m->m_len); 2206 cp = mtod(m, char *); 2207 2208 /* Find last non-zero byte in this mbuf. */ 2209 while (m_len > 0 && cp[m_len - 1] == 0) 2210 m_len--; 2211 if (m_len > 0) { 2212 record_type = cp[m_len - 1]; 2213 last_offset = offset + m_len; 2214 } 2215 } 2216 if (last_offset < tls->params.tls_hlen) 2217 return (EBADMSG); 2218 2219 *record_typep = record_type; 2220 *trailer_len = tls_len - last_offset + 1; 2221 return (0); 2222 } 2223 2224 /* 2225 * Check if a mbuf chain is fully decrypted at the given offset and 2226 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2227 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2228 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2229 * is encrypted. 2230 */ 2231 ktls_mbuf_crypto_st_t 2232 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2233 { 2234 int m_flags_ored = 0; 2235 int m_flags_anded = -1; 2236 2237 for (; mb != NULL; mb = mb->m_next) { 2238 if (offset < mb->m_len) 2239 break; 2240 offset -= mb->m_len; 2241 } 2242 offset += len; 2243 2244 for (; mb != NULL; mb = mb->m_next) { 2245 m_flags_ored |= mb->m_flags; 2246 m_flags_anded &= mb->m_flags; 2247 2248 if (offset <= mb->m_len) 2249 break; 2250 offset -= mb->m_len; 2251 } 2252 MPASS(mb != NULL || offset == 0); 2253 2254 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2255 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2256 else 2257 return ((m_flags_ored & M_DECRYPTED) ? 2258 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2259 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2260 } 2261 2262 /* 2263 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2264 */ 2265 static int 2266 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2267 { 2268 union if_snd_tag_modify_params params; 2269 struct m_snd_tag *mst; 2270 struct inpcb *inp; 2271 struct tcpcb *tp; 2272 2273 mst = so->so_rcv.sb_tls_info->snd_tag; 2274 if (__predict_false(mst == NULL)) 2275 return (EINVAL); 2276 2277 inp = sotoinpcb(so); 2278 if (__predict_false(inp == NULL)) 2279 return (EINVAL); 2280 2281 INP_RLOCK(inp); 2282 if (inp->inp_flags & INP_DROPPED) { 2283 INP_RUNLOCK(inp); 2284 return (ECONNRESET); 2285 } 2286 2287 tp = intotcpcb(inp); 2288 MPASS(tp != NULL); 2289 2290 /* Get the TCP sequence number of the next valid TLS header. */ 2291 SOCKBUF_LOCK(&so->so_rcv); 2292 params.tls_rx.tls_hdr_tcp_sn = 2293 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2294 params.tls_rx.tls_rec_length = tls_len; 2295 params.tls_rx.tls_seq_number = tls_rcd_num; 2296 SOCKBUF_UNLOCK(&so->so_rcv); 2297 2298 INP_RUNLOCK(inp); 2299 2300 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2301 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2302 } 2303 2304 static void 2305 ktls_drop(struct socket *so, int error) 2306 { 2307 struct epoch_tracker et; 2308 struct inpcb *inp = sotoinpcb(so); 2309 struct tcpcb *tp; 2310 2311 NET_EPOCH_ENTER(et); 2312 INP_WLOCK(inp); 2313 if (!(inp->inp_flags & INP_DROPPED)) { 2314 tp = intotcpcb(inp); 2315 CURVNET_SET(inp->inp_vnet); 2316 tp = tcp_drop(tp, error); 2317 CURVNET_RESTORE(); 2318 if (tp != NULL) 2319 INP_WUNLOCK(inp); 2320 } else 2321 INP_WUNLOCK(inp); 2322 NET_EPOCH_EXIT(et); 2323 } 2324 2325 static void 2326 ktls_decrypt(struct socket *so) 2327 { 2328 char tls_header[MBUF_PEXT_HDR_LEN]; 2329 struct ktls_session *tls; 2330 struct sockbuf *sb; 2331 struct tls_record_layer *hdr; 2332 struct tls_get_record tgr; 2333 struct mbuf *control, *data, *m; 2334 ktls_mbuf_crypto_st_t state; 2335 uint64_t seqno; 2336 int error, remain, tls_len, trail_len; 2337 bool tls13; 2338 uint8_t vminor, record_type; 2339 2340 hdr = (struct tls_record_layer *)tls_header; 2341 sb = &so->so_rcv; 2342 SOCKBUF_LOCK(sb); 2343 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2344 ("%s: socket %p not running", __func__, so)); 2345 2346 tls = sb->sb_tls_info; 2347 MPASS(tls != NULL); 2348 2349 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2350 if (tls13) 2351 vminor = TLS_MINOR_VER_TWO; 2352 else 2353 vminor = tls->params.tls_vminor; 2354 for (;;) { 2355 /* Is there enough queued for a TLS header? */ 2356 if (sb->sb_tlscc < tls->params.tls_hlen) 2357 break; 2358 2359 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2360 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2361 2362 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2363 hdr->tls_vminor != vminor) 2364 error = EINVAL; 2365 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2366 error = EINVAL; 2367 else if (tls_len < tls->params.tls_hlen || tls_len > 2368 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2369 tls->params.tls_tlen) 2370 error = EMSGSIZE; 2371 else 2372 error = 0; 2373 if (__predict_false(error != 0)) { 2374 /* 2375 * We have a corrupted record and are likely 2376 * out of sync. The connection isn't 2377 * recoverable at this point, so abort it. 2378 */ 2379 SOCKBUF_UNLOCK(sb); 2380 counter_u64_add(ktls_offload_corrupted_records, 1); 2381 2382 ktls_drop(so, error); 2383 goto deref; 2384 } 2385 2386 /* Is the entire record queued? */ 2387 if (sb->sb_tlscc < tls_len) 2388 break; 2389 2390 /* 2391 * Split out the portion of the mbuf chain containing 2392 * this TLS record. 2393 */ 2394 data = ktls_detach_record(sb, tls_len); 2395 if (data == NULL) 2396 continue; 2397 MPASS(sb->sb_tlsdcc == tls_len); 2398 2399 seqno = sb->sb_tls_seqno; 2400 sb->sb_tls_seqno++; 2401 SBCHECK(sb); 2402 SOCKBUF_UNLOCK(sb); 2403 2404 /* get crypto state for this TLS record */ 2405 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2406 2407 switch (state) { 2408 case KTLS_MBUF_CRYPTO_ST_MIXED: 2409 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2410 if (error) 2411 break; 2412 /* FALLTHROUGH */ 2413 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2414 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2415 &trail_len); 2416 if (__predict_true(error == 0)) { 2417 if (tls13) { 2418 error = tls13_find_record_type(tls, data, 2419 tls_len, &trail_len, &record_type); 2420 } else { 2421 record_type = hdr->tls_type; 2422 } 2423 } 2424 break; 2425 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2426 /* 2427 * NIC TLS is only supported for AEAD 2428 * ciphersuites which used a fixed sized 2429 * trailer. 2430 */ 2431 if (tls13) { 2432 trail_len = tls->params.tls_tlen - 1; 2433 error = tls13_find_record_type(tls, data, 2434 tls_len, &trail_len, &record_type); 2435 } else { 2436 trail_len = tls->params.tls_tlen; 2437 error = 0; 2438 record_type = hdr->tls_type; 2439 } 2440 break; 2441 default: 2442 error = EINVAL; 2443 break; 2444 } 2445 if (error) { 2446 counter_u64_add(ktls_offload_failed_crypto, 1); 2447 2448 SOCKBUF_LOCK(sb); 2449 if (sb->sb_tlsdcc == 0) { 2450 /* 2451 * sbcut/drop/flush discarded these 2452 * mbufs. 2453 */ 2454 m_freem(data); 2455 break; 2456 } 2457 2458 /* 2459 * Drop this TLS record's data, but keep 2460 * decrypting subsequent records. 2461 */ 2462 sb->sb_ccc -= tls_len; 2463 sb->sb_tlsdcc = 0; 2464 2465 if (error != EMSGSIZE) 2466 error = EBADMSG; 2467 CURVNET_SET(so->so_vnet); 2468 so->so_error = error; 2469 sorwakeup_locked(so); 2470 CURVNET_RESTORE(); 2471 2472 m_freem(data); 2473 2474 SOCKBUF_LOCK(sb); 2475 continue; 2476 } 2477 2478 /* Allocate the control mbuf. */ 2479 memset(&tgr, 0, sizeof(tgr)); 2480 tgr.tls_type = record_type; 2481 tgr.tls_vmajor = hdr->tls_vmajor; 2482 tgr.tls_vminor = hdr->tls_vminor; 2483 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2484 trail_len); 2485 control = sbcreatecontrol(&tgr, sizeof(tgr), 2486 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2487 2488 SOCKBUF_LOCK(sb); 2489 if (sb->sb_tlsdcc == 0) { 2490 /* sbcut/drop/flush discarded these mbufs. */ 2491 MPASS(sb->sb_tlscc == 0); 2492 m_freem(data); 2493 m_freem(control); 2494 break; 2495 } 2496 2497 /* 2498 * Clear the 'dcc' accounting in preparation for 2499 * adding the decrypted record. 2500 */ 2501 sb->sb_ccc -= tls_len; 2502 sb->sb_tlsdcc = 0; 2503 SBCHECK(sb); 2504 2505 /* If there is no payload, drop all of the data. */ 2506 if (tgr.tls_length == htobe16(0)) { 2507 m_freem(data); 2508 data = NULL; 2509 } else { 2510 /* Trim header. */ 2511 remain = tls->params.tls_hlen; 2512 while (remain > 0) { 2513 if (data->m_len > remain) { 2514 data->m_data += remain; 2515 data->m_len -= remain; 2516 break; 2517 } 2518 remain -= data->m_len; 2519 data = m_free(data); 2520 } 2521 2522 /* Trim trailer and clear M_NOTREADY. */ 2523 remain = be16toh(tgr.tls_length); 2524 m = data; 2525 for (m = data; remain > m->m_len; m = m->m_next) { 2526 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2527 remain -= m->m_len; 2528 } 2529 m->m_len = remain; 2530 m_freem(m->m_next); 2531 m->m_next = NULL; 2532 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2533 2534 /* Set EOR on the final mbuf. */ 2535 m->m_flags |= M_EOR; 2536 } 2537 2538 sbappendcontrol_locked(sb, data, control, 0); 2539 2540 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2541 sb->sb_flags |= SB_TLS_RX_RESYNC; 2542 SOCKBUF_UNLOCK(sb); 2543 ktls_resync_ifnet(so, tls_len, seqno); 2544 SOCKBUF_LOCK(sb); 2545 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2546 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2547 SOCKBUF_UNLOCK(sb); 2548 ktls_resync_ifnet(so, 0, seqno); 2549 SOCKBUF_LOCK(sb); 2550 } 2551 } 2552 2553 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2554 2555 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2556 so->so_error = EMSGSIZE; 2557 2558 sorwakeup_locked(so); 2559 2560 deref: 2561 SOCKBUF_UNLOCK_ASSERT(sb); 2562 2563 CURVNET_SET(so->so_vnet); 2564 sorele(so); 2565 CURVNET_RESTORE(); 2566 } 2567 2568 void 2569 ktls_enqueue_to_free(struct mbuf *m) 2570 { 2571 struct ktls_wq *wq; 2572 bool running; 2573 2574 /* Mark it for freeing. */ 2575 m->m_epg_flags |= EPG_FLAG_2FREE; 2576 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2577 mtx_lock(&wq->mtx); 2578 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2579 running = wq->running; 2580 mtx_unlock(&wq->mtx); 2581 if (!running) 2582 wakeup(wq); 2583 } 2584 2585 static void * 2586 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2587 { 2588 void *buf; 2589 int domain, running; 2590 2591 if (m->m_epg_npgs <= 2) 2592 return (NULL); 2593 if (ktls_buffer_zone == NULL) 2594 return (NULL); 2595 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2596 /* 2597 * Rate-limit allocation attempts after a failure. 2598 * ktls_buffer_import() will acquire a per-domain mutex to check 2599 * the free page queues and may fail consistently if memory is 2600 * fragmented. 2601 */ 2602 return (NULL); 2603 } 2604 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2605 if (buf == NULL) { 2606 domain = PCPU_GET(domain); 2607 wq->lastallocfail = ticks; 2608 2609 /* 2610 * Note that this check is "racy", but the races are 2611 * harmless, and are either a spurious wakeup if 2612 * multiple threads fail allocations before the alloc 2613 * thread wakes, or waiting an extra second in case we 2614 * see an old value of running == true. 2615 */ 2616 if (!VM_DOMAIN_EMPTY(domain)) { 2617 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2618 if (!running) 2619 wakeup(&ktls_domains[domain].alloc_td); 2620 } 2621 } 2622 return (buf); 2623 } 2624 2625 static int 2626 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2627 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2628 { 2629 vm_page_t pg; 2630 int error, i, len, off; 2631 2632 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2633 ("%p not unready & nomap mbuf\n", m)); 2634 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2635 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2636 ktls_maxlen)); 2637 2638 /* Anonymous mbufs are encrypted in place. */ 2639 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2640 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2641 2642 /* 2643 * For file-backed mbufs (from sendfile), anonymous wired 2644 * pages are allocated and used as the encryption destination. 2645 */ 2646 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2647 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2648 m->m_epg_1st_off; 2649 state->dst_iov[0].iov_base = (char *)state->cbuf + 2650 m->m_epg_1st_off; 2651 state->dst_iov[0].iov_len = len; 2652 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2653 i = 1; 2654 } else { 2655 off = m->m_epg_1st_off; 2656 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2657 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2658 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2659 len = m_epg_pagelen(m, i, off); 2660 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2661 state->dst_iov[i].iov_base = 2662 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2663 state->dst_iov[i].iov_len = len; 2664 } 2665 } 2666 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2667 state->dst_iov[i].iov_base = m->m_epg_trail; 2668 state->dst_iov[i].iov_len = m->m_epg_trllen; 2669 2670 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2671 2672 if (__predict_false(error != 0)) { 2673 /* Free the anonymous pages. */ 2674 if (state->cbuf != NULL) 2675 uma_zfree(ktls_buffer_zone, state->cbuf); 2676 else { 2677 for (i = 0; i < m->m_epg_npgs; i++) { 2678 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2679 (void)vm_page_unwire_noq(pg); 2680 vm_page_free(pg); 2681 } 2682 } 2683 } 2684 return (error); 2685 } 2686 2687 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2688 static u_int 2689 ktls_batched_records(struct mbuf *m) 2690 { 2691 int page_count, records; 2692 2693 records = 0; 2694 page_count = m->m_epg_enc_cnt; 2695 while (page_count > 0) { 2696 records++; 2697 page_count -= m->m_epg_nrdy; 2698 m = m->m_next; 2699 } 2700 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2701 return (records); 2702 } 2703 2704 void 2705 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2706 { 2707 struct ktls_session *tls; 2708 struct ktls_wq *wq; 2709 int queued; 2710 bool running; 2711 2712 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2713 (M_EXTPG | M_NOTREADY)), 2714 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2715 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2716 2717 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2718 2719 m->m_epg_enc_cnt = page_count; 2720 2721 /* 2722 * Save a pointer to the socket. The caller is responsible 2723 * for taking an additional reference via soref(). 2724 */ 2725 m->m_epg_so = so; 2726 2727 queued = 1; 2728 tls = m->m_epg_tls; 2729 wq = &ktls_wq[tls->wq_index]; 2730 mtx_lock(&wq->mtx); 2731 if (__predict_false(tls->sequential_records)) { 2732 /* 2733 * For TLS 1.0, records must be encrypted 2734 * sequentially. For a given connection, all records 2735 * queued to the associated work queue are processed 2736 * sequentially. However, sendfile(2) might complete 2737 * I/O requests spanning multiple TLS records out of 2738 * order. Here we ensure TLS records are enqueued to 2739 * the work queue in FIFO order. 2740 * 2741 * tls->next_seqno holds the sequence number of the 2742 * next TLS record that should be enqueued to the work 2743 * queue. If this next record is not tls->next_seqno, 2744 * it must be a future record, so insert it, sorted by 2745 * TLS sequence number, into tls->pending_records and 2746 * return. 2747 * 2748 * If this TLS record matches tls->next_seqno, place 2749 * it in the work queue and then check 2750 * tls->pending_records to see if any 2751 * previously-queued records are now ready for 2752 * encryption. 2753 */ 2754 if (m->m_epg_seqno != tls->next_seqno) { 2755 struct mbuf *n, *p; 2756 2757 p = NULL; 2758 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2759 if (n->m_epg_seqno > m->m_epg_seqno) 2760 break; 2761 p = n; 2762 } 2763 if (n == NULL) 2764 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2765 m_epg_stailq); 2766 else if (p == NULL) 2767 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2768 m_epg_stailq); 2769 else 2770 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2771 m_epg_stailq); 2772 mtx_unlock(&wq->mtx); 2773 counter_u64_add(ktls_cnt_tx_pending, 1); 2774 return; 2775 } 2776 2777 tls->next_seqno += ktls_batched_records(m); 2778 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2779 2780 while (!STAILQ_EMPTY(&tls->pending_records)) { 2781 struct mbuf *n; 2782 2783 n = STAILQ_FIRST(&tls->pending_records); 2784 if (n->m_epg_seqno != tls->next_seqno) 2785 break; 2786 2787 queued++; 2788 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2789 tls->next_seqno += ktls_batched_records(n); 2790 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2791 } 2792 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2793 } else 2794 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2795 2796 running = wq->running; 2797 mtx_unlock(&wq->mtx); 2798 if (!running) 2799 wakeup(wq); 2800 counter_u64_add(ktls_cnt_tx_queued, queued); 2801 } 2802 2803 /* 2804 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2805 * the pages from the file and replace them with the anonymous pages 2806 * allocated in ktls_encrypt_record(). 2807 */ 2808 static void 2809 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2810 { 2811 int i; 2812 2813 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2814 2815 /* Free the old pages. */ 2816 m->m_ext.ext_free(m); 2817 2818 /* Replace them with the new pages. */ 2819 if (state->cbuf != NULL) { 2820 for (i = 0; i < m->m_epg_npgs; i++) 2821 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2822 2823 /* Contig pages should go back to the cache. */ 2824 m->m_ext.ext_free = ktls_free_mext_contig; 2825 } else { 2826 for (i = 0; i < m->m_epg_npgs; i++) 2827 m->m_epg_pa[i] = state->parray[i]; 2828 2829 /* Use the basic free routine. */ 2830 m->m_ext.ext_free = mb_free_mext_pgs; 2831 } 2832 2833 /* Pages are now writable. */ 2834 m->m_epg_flags |= EPG_FLAG_ANON; 2835 } 2836 2837 static __noinline void 2838 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2839 { 2840 struct ktls_ocf_encrypt_state state; 2841 struct ktls_session *tls; 2842 struct socket *so; 2843 struct mbuf *m; 2844 int error, npages, total_pages; 2845 2846 so = top->m_epg_so; 2847 tls = top->m_epg_tls; 2848 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2849 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2850 #ifdef INVARIANTS 2851 top->m_epg_so = NULL; 2852 #endif 2853 total_pages = top->m_epg_enc_cnt; 2854 npages = 0; 2855 2856 /* 2857 * Encrypt the TLS records in the chain of mbufs starting with 2858 * 'top'. 'total_pages' gives us a total count of pages and is 2859 * used to know when we have finished encrypting the TLS 2860 * records originally queued with 'top'. 2861 * 2862 * NB: These mbufs are queued in the socket buffer and 2863 * 'm_next' is traversing the mbufs in the socket buffer. The 2864 * socket buffer lock is not held while traversing this chain. 2865 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2866 * pointers should be stable. However, the 'm_next' of the 2867 * last mbuf encrypted is not necessarily NULL. It can point 2868 * to other mbufs appended while 'top' was on the TLS work 2869 * queue. 2870 * 2871 * Each mbuf holds an entire TLS record. 2872 */ 2873 error = 0; 2874 for (m = top; npages != total_pages; m = m->m_next) { 2875 KASSERT(m->m_epg_tls == tls, 2876 ("different TLS sessions in a single mbuf chain: %p vs %p", 2877 tls, m->m_epg_tls)); 2878 KASSERT(npages + m->m_epg_npgs <= total_pages, 2879 ("page count mismatch: top %p, total_pages %d, m %p", top, 2880 total_pages, m)); 2881 2882 error = ktls_encrypt_record(wq, m, tls, &state); 2883 if (error) { 2884 counter_u64_add(ktls_offload_failed_crypto, 1); 2885 break; 2886 } 2887 2888 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2889 ktls_finish_nonanon(m, &state); 2890 2891 npages += m->m_epg_nrdy; 2892 2893 /* 2894 * Drop a reference to the session now that it is no 2895 * longer needed. Existing code depends on encrypted 2896 * records having no associated session vs 2897 * yet-to-be-encrypted records having an associated 2898 * session. 2899 */ 2900 m->m_epg_tls = NULL; 2901 ktls_free(tls); 2902 } 2903 2904 CURVNET_SET(so->so_vnet); 2905 if (error == 0) { 2906 (void)so->so_proto->pr_ready(so, top, npages); 2907 } else { 2908 ktls_drop(so, EIO); 2909 mb_free_notready(top, total_pages); 2910 } 2911 2912 sorele(so); 2913 CURVNET_RESTORE(); 2914 } 2915 2916 void 2917 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2918 { 2919 struct ktls_session *tls; 2920 struct socket *so; 2921 struct mbuf *m; 2922 int npages; 2923 2924 m = state->m; 2925 2926 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2927 ktls_finish_nonanon(m, state); 2928 2929 so = state->so; 2930 free(state, M_KTLS); 2931 2932 /* 2933 * Drop a reference to the session now that it is no longer 2934 * needed. Existing code depends on encrypted records having 2935 * no associated session vs yet-to-be-encrypted records having 2936 * an associated session. 2937 */ 2938 tls = m->m_epg_tls; 2939 m->m_epg_tls = NULL; 2940 ktls_free(tls); 2941 2942 if (error != 0) 2943 counter_u64_add(ktls_offload_failed_crypto, 1); 2944 2945 CURVNET_SET(so->so_vnet); 2946 npages = m->m_epg_nrdy; 2947 2948 if (error == 0) { 2949 (void)so->so_proto->pr_ready(so, m, npages); 2950 } else { 2951 ktls_drop(so, EIO); 2952 mb_free_notready(m, npages); 2953 } 2954 2955 sorele(so); 2956 CURVNET_RESTORE(); 2957 } 2958 2959 /* 2960 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2961 * (coprocessors) where encryption does not use host CPU resources and 2962 * it can be beneficial to queue more requests than CPUs. 2963 */ 2964 static __noinline void 2965 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2966 { 2967 struct ktls_ocf_encrypt_state *state; 2968 struct ktls_session *tls; 2969 struct socket *so; 2970 struct mbuf *m, *n; 2971 int error, mpages, npages, total_pages; 2972 2973 so = top->m_epg_so; 2974 tls = top->m_epg_tls; 2975 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2976 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2977 #ifdef INVARIANTS 2978 top->m_epg_so = NULL; 2979 #endif 2980 total_pages = top->m_epg_enc_cnt; 2981 npages = 0; 2982 2983 error = 0; 2984 for (m = top; npages != total_pages; m = n) { 2985 KASSERT(m->m_epg_tls == tls, 2986 ("different TLS sessions in a single mbuf chain: %p vs %p", 2987 tls, m->m_epg_tls)); 2988 KASSERT(npages + m->m_epg_npgs <= total_pages, 2989 ("page count mismatch: top %p, total_pages %d, m %p", top, 2990 total_pages, m)); 2991 2992 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2993 soref(so); 2994 state->so = so; 2995 state->m = m; 2996 2997 mpages = m->m_epg_nrdy; 2998 n = m->m_next; 2999 3000 error = ktls_encrypt_record(wq, m, tls, state); 3001 if (error) { 3002 counter_u64_add(ktls_offload_failed_crypto, 1); 3003 free(state, M_KTLS); 3004 CURVNET_SET(so->so_vnet); 3005 sorele(so); 3006 CURVNET_RESTORE(); 3007 break; 3008 } 3009 3010 npages += mpages; 3011 } 3012 3013 CURVNET_SET(so->so_vnet); 3014 if (error != 0) { 3015 ktls_drop(so, EIO); 3016 mb_free_notready(m, total_pages - npages); 3017 } 3018 3019 sorele(so); 3020 CURVNET_RESTORE(); 3021 } 3022 3023 static int 3024 ktls_bind_domain(int domain) 3025 { 3026 int error; 3027 3028 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3029 if (error != 0) 3030 return (error); 3031 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3032 return (0); 3033 } 3034 3035 static void 3036 ktls_alloc_thread(void *ctx) 3037 { 3038 struct ktls_domain_info *ktls_domain = ctx; 3039 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 3040 void **buf; 3041 struct sysctl_oid *oid; 3042 char name[80]; 3043 int domain, error, i, nbufs; 3044 3045 domain = ktls_domain - ktls_domains; 3046 if (bootverbose) 3047 printf("Starting KTLS alloc thread for domain %d\n", domain); 3048 error = ktls_bind_domain(domain); 3049 if (error) 3050 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 3051 domain, error); 3052 snprintf(name, sizeof(name), "domain%d", domain); 3053 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3054 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3055 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 3056 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 3057 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3058 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3059 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3060 CTLFLAG_RD, &sc->running, 0, "thread running"); 3061 3062 buf = NULL; 3063 nbufs = 0; 3064 for (;;) { 3065 atomic_store_int(&sc->running, 0); 3066 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3067 atomic_store_int(&sc->running, 1); 3068 sc->wakeups++; 3069 if (nbufs != ktls_max_alloc) { 3070 free(buf, M_KTLS); 3071 nbufs = atomic_load_int(&ktls_max_alloc); 3072 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 3073 M_WAITOK | M_ZERO); 3074 } 3075 /* 3076 * Below we allocate nbufs with different allocation 3077 * flags than we use when allocating normally during 3078 * encryption in the ktls worker thread. We specify 3079 * M_NORECLAIM in the worker thread. However, we omit 3080 * that flag here and add M_WAITOK so that the VM 3081 * system is permitted to perform expensive work to 3082 * defragment memory. We do this here, as it does not 3083 * matter if this thread blocks. If we block a ktls 3084 * worker thread, we risk developing backlogs of 3085 * buffers to be encrypted, leading to surges of 3086 * traffic and potential NIC output drops. 3087 */ 3088 for (i = 0; i < nbufs; i++) { 3089 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 3090 sc->allocs++; 3091 } 3092 for (i = 0; i < nbufs; i++) { 3093 uma_zfree(ktls_buffer_zone, buf[i]); 3094 buf[i] = NULL; 3095 } 3096 } 3097 } 3098 3099 static void 3100 ktls_work_thread(void *ctx) 3101 { 3102 struct ktls_wq *wq = ctx; 3103 struct mbuf *m, *n; 3104 struct socket *so, *son; 3105 STAILQ_HEAD(, mbuf) local_m_head; 3106 STAILQ_HEAD(, socket) local_so_head; 3107 int cpu; 3108 3109 cpu = wq - ktls_wq; 3110 if (bootverbose) 3111 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3112 3113 /* 3114 * Bind to a core. If ktls_bind_threads is > 1, then 3115 * we bind to the NUMA domain instead. 3116 */ 3117 if (ktls_bind_threads) { 3118 int error; 3119 3120 if (ktls_bind_threads > 1) { 3121 struct pcpu *pc = pcpu_find(cpu); 3122 3123 error = ktls_bind_domain(pc->pc_domain); 3124 } else { 3125 cpuset_t mask; 3126 3127 CPU_SETOF(cpu, &mask); 3128 error = cpuset_setthread(curthread->td_tid, &mask); 3129 } 3130 if (error) 3131 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3132 cpu, error); 3133 } 3134 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3135 fpu_kern_thread(0); 3136 #endif 3137 for (;;) { 3138 mtx_lock(&wq->mtx); 3139 while (STAILQ_EMPTY(&wq->m_head) && 3140 STAILQ_EMPTY(&wq->so_head)) { 3141 wq->running = false; 3142 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3143 wq->running = true; 3144 } 3145 3146 STAILQ_INIT(&local_m_head); 3147 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3148 STAILQ_INIT(&local_so_head); 3149 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3150 mtx_unlock(&wq->mtx); 3151 3152 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3153 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3154 ktls_free(m->m_epg_tls); 3155 m_free_raw(m); 3156 } else { 3157 if (m->m_epg_tls->sync_dispatch) 3158 ktls_encrypt(wq, m); 3159 else 3160 ktls_encrypt_async(wq, m); 3161 counter_u64_add(ktls_cnt_tx_queued, -1); 3162 } 3163 } 3164 3165 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3166 ktls_decrypt(so); 3167 counter_u64_add(ktls_cnt_rx_queued, -1); 3168 } 3169 } 3170 } 3171 3172 #if defined(INET) || defined(INET6) 3173 static void 3174 ktls_disable_ifnet_help(void *context, int pending __unused) 3175 { 3176 struct ktls_session *tls; 3177 struct inpcb *inp; 3178 struct tcpcb *tp; 3179 struct socket *so; 3180 int err; 3181 3182 tls = context; 3183 inp = tls->inp; 3184 if (inp == NULL) 3185 return; 3186 INP_WLOCK(inp); 3187 so = inp->inp_socket; 3188 MPASS(so != NULL); 3189 if (inp->inp_flags & INP_DROPPED) { 3190 goto out; 3191 } 3192 3193 if (so->so_snd.sb_tls_info != NULL) 3194 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3195 else 3196 err = ENXIO; 3197 if (err == 0) { 3198 counter_u64_add(ktls_ifnet_disable_ok, 1); 3199 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3200 if ((inp->inp_flags & INP_DROPPED) == 0 && 3201 (tp = intotcpcb(inp)) != NULL && 3202 tp->t_fb->tfb_hwtls_change != NULL) 3203 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3204 } else { 3205 counter_u64_add(ktls_ifnet_disable_fail, 1); 3206 } 3207 3208 out: 3209 sorele(so); 3210 if (!in_pcbrele_wlocked(inp)) 3211 INP_WUNLOCK(inp); 3212 ktls_free(tls); 3213 } 3214 3215 /* 3216 * Called when re-transmits are becoming a substantial portion of the 3217 * sends on this connection. When this happens, we transition the 3218 * connection to software TLS. This is needed because most inline TLS 3219 * NICs keep crypto state only for in-order transmits. This means 3220 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3221 * re-DMA the entire TLS record up to and including the current 3222 * segment. This means that when re-transmitting the last ~1448 byte 3223 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3224 * of magnitude more data than we are sending. This can cause the 3225 * PCIe link to saturate well before the network, which can cause 3226 * output drops, and a general loss of capacity. 3227 */ 3228 void 3229 ktls_disable_ifnet(void *arg) 3230 { 3231 struct tcpcb *tp; 3232 struct inpcb *inp; 3233 struct socket *so; 3234 struct ktls_session *tls; 3235 3236 tp = arg; 3237 inp = tptoinpcb(tp); 3238 INP_WLOCK_ASSERT(inp); 3239 so = inp->inp_socket; 3240 SOCK_LOCK(so); 3241 tls = so->so_snd.sb_tls_info; 3242 if (tls->disable_ifnet_pending) { 3243 SOCK_UNLOCK(so); 3244 return; 3245 } 3246 3247 /* 3248 * note that disable_ifnet_pending is never cleared; disabling 3249 * ifnet can only be done once per session, so we never want 3250 * to do it again 3251 */ 3252 3253 (void)ktls_hold(tls); 3254 in_pcbref(inp); 3255 soref(so); 3256 tls->disable_ifnet_pending = true; 3257 tls->inp = inp; 3258 SOCK_UNLOCK(so); 3259 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3260 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3261 } 3262 #endif 3263