xref: /freebsd/sys/kern/uipc_ktls.c (revision 7be9a3b45356747f9fcb6d69a722c1c95f8060bf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_kern_tls.h"
34 #include "opt_ratelimit.h"
35 #include "opt_rss.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/domainset.h>
40 #include <sys/endian.h>
41 #include <sys/ktls.h>
42 #include <sys/lock.h>
43 #include <sys/mbuf.h>
44 #include <sys/mutex.h>
45 #include <sys/rmlock.h>
46 #include <sys/proc.h>
47 #include <sys/protosw.h>
48 #include <sys/refcount.h>
49 #include <sys/smp.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
52 #include <sys/sysctl.h>
53 #include <sys/taskqueue.h>
54 #include <sys/kthread.h>
55 #include <sys/uio.h>
56 #include <sys/vmmeter.h>
57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
58 #include <machine/pcb.h>
59 #endif
60 #include <machine/vmparam.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #ifdef RSS
64 #include <net/netisr.h>
65 #include <net/rss_config.h>
66 #endif
67 #include <net/route.h>
68 #include <net/route/nhop.h>
69 #if defined(INET) || defined(INET6)
70 #include <netinet/in.h>
71 #include <netinet/in_pcb.h>
72 #endif
73 #include <netinet/tcp_var.h>
74 #ifdef TCP_OFFLOAD
75 #include <netinet/tcp_offload.h>
76 #endif
77 #include <opencrypto/cryptodev.h>
78 #include <opencrypto/ktls.h>
79 #include <vm/uma_dbg.h>
80 #include <vm/vm.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_pagequeue.h>
84 
85 struct ktls_wq {
86 	struct mtx	mtx;
87 	STAILQ_HEAD(, mbuf) m_head;
88 	STAILQ_HEAD(, socket) so_head;
89 	bool		running;
90 	int		lastallocfail;
91 } __aligned(CACHE_LINE_SIZE);
92 
93 struct ktls_alloc_thread {
94 	uint64_t wakeups;
95 	uint64_t allocs;
96 	struct thread *td;
97 	int running;
98 };
99 
100 struct ktls_domain_info {
101 	int count;
102 	int cpu[MAXCPU];
103 	struct ktls_alloc_thread alloc_td;
104 };
105 
106 struct ktls_domain_info ktls_domains[MAXMEMDOM];
107 static struct ktls_wq *ktls_wq;
108 static struct proc *ktls_proc;
109 static uma_zone_t ktls_session_zone;
110 static uma_zone_t ktls_buffer_zone;
111 static uint16_t ktls_cpuid_lookup[MAXCPU];
112 static int ktls_init_state;
113 static struct sx ktls_init_lock;
114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
115 
116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
117     "Kernel TLS offload");
118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
119     "Kernel TLS offload stats");
120 
121 #ifdef RSS
122 static int ktls_bind_threads = 1;
123 #else
124 static int ktls_bind_threads;
125 #endif
126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
127     &ktls_bind_threads, 0,
128     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
129 
130 static u_int ktls_maxlen = 16384;
131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
132     &ktls_maxlen, 0, "Maximum TLS record size");
133 
134 static int ktls_number_threads;
135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
136     &ktls_number_threads, 0,
137     "Number of TLS threads in thread-pool");
138 
139 unsigned int ktls_ifnet_max_rexmit_pct = 2;
140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
141     &ktls_ifnet_max_rexmit_pct, 2,
142     "Max percent bytes retransmitted before ifnet TLS is disabled");
143 
144 static bool ktls_offload_enable;
145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
146     &ktls_offload_enable, 0,
147     "Enable support for kernel TLS offload");
148 
149 static bool ktls_cbc_enable = true;
150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
151     &ktls_cbc_enable, 1,
152     "Enable Support of AES-CBC crypto for kernel TLS");
153 
154 static bool ktls_sw_buffer_cache = true;
155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
156     &ktls_sw_buffer_cache, 1,
157     "Enable caching of output buffers for SW encryption");
158 
159 static int ktls_max_alloc = 128;
160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN,
161     &ktls_max_alloc, 128,
162     "Max number of 16k buffers to allocate in thread context");
163 
164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
166     &ktls_tasks_active, "Number of active tasks");
167 
168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
170     &ktls_cnt_tx_pending,
171     "Number of TLS 1.0 records waiting for earlier TLS records");
172 
173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
175     &ktls_cnt_tx_queued,
176     "Number of TLS records in queue to tasks for SW encryption");
177 
178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
180     &ktls_cnt_rx_queued,
181     "Number of TLS sockets in queue to tasks for SW decryption");
182 
183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
185     CTLFLAG_RD, &ktls_offload_total,
186     "Total successful TLS setups (parameters set)");
187 
188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
190     CTLFLAG_RD, &ktls_offload_enable_calls,
191     "Total number of TLS enable calls made");
192 
193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
195     &ktls_offload_active, "Total Active TLS sessions");
196 
197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
199     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
200 
201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
203     &ktls_offload_failed_crypto, "Total TLS crypto failures");
204 
205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
207     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
208 
209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
211     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
212 
213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
215     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
216 
217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
219     &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
220 
221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
223     &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
224 
225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
226     "Software TLS session stats");
227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
228     "Hardware (ifnet) TLS session stats");
229 #ifdef TCP_OFFLOAD
230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
231     "TOE TLS session stats");
232 #endif
233 
234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
236     "Active number of software TLS sessions using AES-CBC");
237 
238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
240     "Active number of software TLS sessions using AES-GCM");
241 
242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
244     &ktls_sw_chacha20,
245     "Active number of software TLS sessions using Chacha20-Poly1305");
246 
247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
249     &ktls_ifnet_cbc,
250     "Active number of ifnet TLS sessions using AES-CBC");
251 
252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
254     &ktls_ifnet_gcm,
255     "Active number of ifnet TLS sessions using AES-GCM");
256 
257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
259     &ktls_ifnet_chacha20,
260     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
261 
262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
264     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
265 
266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
268     &ktls_ifnet_reset_dropped,
269     "TLS sessions dropped after failing to update ifnet send tag");
270 
271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
273     &ktls_ifnet_reset_failed,
274     "TLS sessions that failed to allocate a new ifnet send tag");
275 
276 static int ktls_ifnet_permitted;
277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
278     &ktls_ifnet_permitted, 1,
279     "Whether to permit hardware (ifnet) TLS sessions");
280 
281 #ifdef TCP_OFFLOAD
282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
284     &ktls_toe_cbc,
285     "Active number of TOE TLS sessions using AES-CBC");
286 
287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
289     &ktls_toe_gcm,
290     "Active number of TOE TLS sessions using AES-GCM");
291 
292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
294     &ktls_toe_chacha20,
295     "Active number of TOE TLS sessions using Chacha20-Poly1305");
296 #endif
297 
298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
299 
300 static void ktls_cleanup(struct ktls_session *tls);
301 #if defined(INET) || defined(INET6)
302 static void ktls_reset_send_tag(void *context, int pending);
303 #endif
304 static void ktls_work_thread(void *ctx);
305 static void ktls_alloc_thread(void *ctx);
306 
307 #if defined(INET) || defined(INET6)
308 static u_int
309 ktls_get_cpu(struct socket *so)
310 {
311 	struct inpcb *inp;
312 #ifdef NUMA
313 	struct ktls_domain_info *di;
314 #endif
315 	u_int cpuid;
316 
317 	inp = sotoinpcb(so);
318 #ifdef RSS
319 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
320 	if (cpuid != NETISR_CPUID_NONE)
321 		return (cpuid);
322 #endif
323 	/*
324 	 * Just use the flowid to shard connections in a repeatable
325 	 * fashion.  Note that TLS 1.0 sessions rely on the
326 	 * serialization provided by having the same connection use
327 	 * the same queue.
328 	 */
329 #ifdef NUMA
330 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
331 		di = &ktls_domains[inp->inp_numa_domain];
332 		cpuid = di->cpu[inp->inp_flowid % di->count];
333 	} else
334 #endif
335 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
336 	return (cpuid);
337 }
338 #endif
339 
340 static int
341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
342 {
343 	vm_page_t m;
344 	int i, req;
345 
346 	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
347 	    ("%s: ktls max length %d is not page size-aligned",
348 	    __func__, ktls_maxlen));
349 
350 	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
351 	for (i = 0; i < count; i++) {
352 		m = vm_page_alloc_noobj_contig_domain(domain, req,
353 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
354 		    VM_MEMATTR_DEFAULT);
355 		if (m == NULL)
356 			break;
357 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
358 	}
359 	return (i);
360 }
361 
362 static void
363 ktls_buffer_release(void *arg __unused, void **store, int count)
364 {
365 	vm_page_t m;
366 	int i, j;
367 
368 	for (i = 0; i < count; i++) {
369 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
370 		for (j = 0; j < atop(ktls_maxlen); j++) {
371 			(void)vm_page_unwire_noq(m + j);
372 			vm_page_free(m + j);
373 		}
374 	}
375 }
376 
377 static void
378 ktls_free_mext_contig(struct mbuf *m)
379 {
380 	M_ASSERTEXTPG(m);
381 	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
382 }
383 
384 static int
385 ktls_init(void)
386 {
387 	struct thread *td;
388 	struct pcpu *pc;
389 	int count, domain, error, i;
390 
391 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
392 	    M_WAITOK | M_ZERO);
393 
394 	ktls_session_zone = uma_zcreate("ktls_session",
395 	    sizeof(struct ktls_session),
396 	    NULL, NULL, NULL, NULL,
397 	    UMA_ALIGN_CACHE, 0);
398 
399 	if (ktls_sw_buffer_cache) {
400 		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
401 		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
402 		    ktls_buffer_import, ktls_buffer_release, NULL,
403 		    UMA_ZONE_FIRSTTOUCH);
404 	}
405 
406 	/*
407 	 * Initialize the workqueues to run the TLS work.  We create a
408 	 * work queue for each CPU.
409 	 */
410 	CPU_FOREACH(i) {
411 		STAILQ_INIT(&ktls_wq[i].m_head);
412 		STAILQ_INIT(&ktls_wq[i].so_head);
413 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
414 		if (ktls_bind_threads > 1) {
415 			pc = pcpu_find(i);
416 			domain = pc->pc_domain;
417 			count = ktls_domains[domain].count;
418 			ktls_domains[domain].cpu[count] = i;
419 			ktls_domains[domain].count++;
420 		}
421 		ktls_cpuid_lookup[ktls_number_threads] = i;
422 		ktls_number_threads++;
423 	}
424 
425 	/*
426 	 * If we somehow have an empty domain, fall back to choosing
427 	 * among all KTLS threads.
428 	 */
429 	if (ktls_bind_threads > 1) {
430 		for (i = 0; i < vm_ndomains; i++) {
431 			if (ktls_domains[i].count == 0) {
432 				ktls_bind_threads = 1;
433 				break;
434 			}
435 		}
436 	}
437 
438 	/* Start kthreads for each workqueue. */
439 	CPU_FOREACH(i) {
440 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
441 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
442 		if (error) {
443 			printf("Can't add KTLS thread %d error %d\n", i, error);
444 			return (error);
445 		}
446 	}
447 
448 	/*
449 	 * Start an allocation thread per-domain to perform blocking allocations
450 	 * of 16k physically contiguous TLS crypto destination buffers.
451 	 */
452 	if (ktls_sw_buffer_cache) {
453 		for (domain = 0; domain < vm_ndomains; domain++) {
454 			if (VM_DOMAIN_EMPTY(domain))
455 				continue;
456 			if (CPU_EMPTY(&cpuset_domain[domain]))
457 				continue;
458 			error = kproc_kthread_add(ktls_alloc_thread,
459 			    &ktls_domains[domain], &ktls_proc,
460 			    &ktls_domains[domain].alloc_td.td,
461 			    0, 0, "KTLS", "alloc_%d", domain);
462 			if (error) {
463 				printf("Can't add KTLS alloc thread %d error %d\n",
464 				    domain, error);
465 				return (error);
466 			}
467 		}
468 	}
469 
470 	if (bootverbose)
471 		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
472 	return (0);
473 }
474 
475 static int
476 ktls_start_kthreads(void)
477 {
478 	int error, state;
479 
480 start:
481 	state = atomic_load_acq_int(&ktls_init_state);
482 	if (__predict_true(state > 0))
483 		return (0);
484 	if (state < 0)
485 		return (ENXIO);
486 
487 	sx_xlock(&ktls_init_lock);
488 	if (ktls_init_state != 0) {
489 		sx_xunlock(&ktls_init_lock);
490 		goto start;
491 	}
492 
493 	error = ktls_init();
494 	if (error == 0)
495 		state = 1;
496 	else
497 		state = -1;
498 	atomic_store_rel_int(&ktls_init_state, state);
499 	sx_xunlock(&ktls_init_lock);
500 	return (error);
501 }
502 
503 #if defined(INET) || defined(INET6)
504 static int
505 ktls_create_session(struct socket *so, struct tls_enable *en,
506     struct ktls_session **tlsp)
507 {
508 	struct ktls_session *tls;
509 	int error;
510 
511 	/* Only TLS 1.0 - 1.3 are supported. */
512 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
513 		return (EINVAL);
514 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
515 	    en->tls_vminor > TLS_MINOR_VER_THREE)
516 		return (EINVAL);
517 
518 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
519 		return (EINVAL);
520 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
521 		return (EINVAL);
522 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
523 		return (EINVAL);
524 
525 	/* All supported algorithms require a cipher key. */
526 	if (en->cipher_key_len == 0)
527 		return (EINVAL);
528 
529 	/* No flags are currently supported. */
530 	if (en->flags != 0)
531 		return (EINVAL);
532 
533 	/* Common checks for supported algorithms. */
534 	switch (en->cipher_algorithm) {
535 	case CRYPTO_AES_NIST_GCM_16:
536 		/*
537 		 * auth_algorithm isn't used, but permit GMAC values
538 		 * for compatibility.
539 		 */
540 		switch (en->auth_algorithm) {
541 		case 0:
542 #ifdef COMPAT_FREEBSD12
543 		/* XXX: Really 13.0-current COMPAT. */
544 		case CRYPTO_AES_128_NIST_GMAC:
545 		case CRYPTO_AES_192_NIST_GMAC:
546 		case CRYPTO_AES_256_NIST_GMAC:
547 #endif
548 			break;
549 		default:
550 			return (EINVAL);
551 		}
552 		if (en->auth_key_len != 0)
553 			return (EINVAL);
554 		switch (en->tls_vminor) {
555 		case TLS_MINOR_VER_TWO:
556 			if (en->iv_len != TLS_AEAD_GCM_LEN)
557 				return (EINVAL);
558 			break;
559 		case TLS_MINOR_VER_THREE:
560 			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
561 				return (EINVAL);
562 			break;
563 		default:
564 			return (EINVAL);
565 		}
566 		break;
567 	case CRYPTO_AES_CBC:
568 		switch (en->auth_algorithm) {
569 		case CRYPTO_SHA1_HMAC:
570 			break;
571 		case CRYPTO_SHA2_256_HMAC:
572 		case CRYPTO_SHA2_384_HMAC:
573 			if (en->tls_vminor != TLS_MINOR_VER_TWO)
574 				return (EINVAL);
575 			break;
576 		default:
577 			return (EINVAL);
578 		}
579 		if (en->auth_key_len == 0)
580 			return (EINVAL);
581 
582 		/*
583 		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
584 		 * use explicit IVs.
585 		 */
586 		switch (en->tls_vminor) {
587 		case TLS_MINOR_VER_ZERO:
588 			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
589 				return (EINVAL);
590 			break;
591 		case TLS_MINOR_VER_ONE:
592 		case TLS_MINOR_VER_TWO:
593 			/* Ignore any supplied IV. */
594 			en->iv_len = 0;
595 			break;
596 		default:
597 			return (EINVAL);
598 		}
599 		break;
600 	case CRYPTO_CHACHA20_POLY1305:
601 		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
602 			return (EINVAL);
603 		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
604 		    en->tls_vminor != TLS_MINOR_VER_THREE)
605 			return (EINVAL);
606 		if (en->iv_len != TLS_CHACHA20_IV_LEN)
607 			return (EINVAL);
608 		break;
609 	default:
610 		return (EINVAL);
611 	}
612 
613 	error = ktls_start_kthreads();
614 	if (error != 0)
615 		return (error);
616 
617 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
618 
619 	counter_u64_add(ktls_offload_active, 1);
620 
621 	refcount_init(&tls->refcount, 1);
622 	TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
623 
624 	tls->wq_index = ktls_get_cpu(so);
625 
626 	tls->params.cipher_algorithm = en->cipher_algorithm;
627 	tls->params.auth_algorithm = en->auth_algorithm;
628 	tls->params.tls_vmajor = en->tls_vmajor;
629 	tls->params.tls_vminor = en->tls_vminor;
630 	tls->params.flags = en->flags;
631 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
632 
633 	/* Set the header and trailer lengths. */
634 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
635 	switch (en->cipher_algorithm) {
636 	case CRYPTO_AES_NIST_GCM_16:
637 		/*
638 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
639 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
640 		 */
641 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
642 			tls->params.tls_hlen += sizeof(uint64_t);
643 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
644 		tls->params.tls_bs = 1;
645 		break;
646 	case CRYPTO_AES_CBC:
647 		switch (en->auth_algorithm) {
648 		case CRYPTO_SHA1_HMAC:
649 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
650 				/* Implicit IV, no nonce. */
651 				tls->sequential_records = true;
652 				tls->next_seqno = be64dec(en->rec_seq);
653 				STAILQ_INIT(&tls->pending_records);
654 			} else {
655 				tls->params.tls_hlen += AES_BLOCK_LEN;
656 			}
657 			tls->params.tls_tlen = AES_BLOCK_LEN +
658 			    SHA1_HASH_LEN;
659 			break;
660 		case CRYPTO_SHA2_256_HMAC:
661 			tls->params.tls_hlen += AES_BLOCK_LEN;
662 			tls->params.tls_tlen = AES_BLOCK_LEN +
663 			    SHA2_256_HASH_LEN;
664 			break;
665 		case CRYPTO_SHA2_384_HMAC:
666 			tls->params.tls_hlen += AES_BLOCK_LEN;
667 			tls->params.tls_tlen = AES_BLOCK_LEN +
668 			    SHA2_384_HASH_LEN;
669 			break;
670 		default:
671 			panic("invalid hmac");
672 		}
673 		tls->params.tls_bs = AES_BLOCK_LEN;
674 		break;
675 	case CRYPTO_CHACHA20_POLY1305:
676 		/*
677 		 * Chacha20 uses a 12 byte implicit IV.
678 		 */
679 		tls->params.tls_tlen = POLY1305_HASH_LEN;
680 		tls->params.tls_bs = 1;
681 		break;
682 	default:
683 		panic("invalid cipher");
684 	}
685 
686 	/*
687 	 * TLS 1.3 includes optional padding which we do not support,
688 	 * and also puts the "real" record type at the end of the
689 	 * encrypted data.
690 	 */
691 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
692 		tls->params.tls_tlen += sizeof(uint8_t);
693 
694 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
695 	    ("TLS header length too long: %d", tls->params.tls_hlen));
696 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
697 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
698 
699 	if (en->auth_key_len != 0) {
700 		tls->params.auth_key_len = en->auth_key_len;
701 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
702 		    M_WAITOK);
703 		error = copyin(en->auth_key, tls->params.auth_key,
704 		    en->auth_key_len);
705 		if (error)
706 			goto out;
707 	}
708 
709 	tls->params.cipher_key_len = en->cipher_key_len;
710 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
711 	error = copyin(en->cipher_key, tls->params.cipher_key,
712 	    en->cipher_key_len);
713 	if (error)
714 		goto out;
715 
716 	/*
717 	 * This holds the implicit portion of the nonce for AEAD
718 	 * ciphers and the initial implicit IV for TLS 1.0.  The
719 	 * explicit portions of the IV are generated in ktls_frame().
720 	 */
721 	if (en->iv_len != 0) {
722 		tls->params.iv_len = en->iv_len;
723 		error = copyin(en->iv, tls->params.iv, en->iv_len);
724 		if (error)
725 			goto out;
726 
727 		/*
728 		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
729 		 * counter to generate unique explicit IVs.
730 		 *
731 		 * Store this counter in the last 8 bytes of the IV
732 		 * array so that it is 8-byte aligned.
733 		 */
734 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
735 		    en->tls_vminor == TLS_MINOR_VER_TWO)
736 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
737 	}
738 
739 	*tlsp = tls;
740 	return (0);
741 
742 out:
743 	ktls_cleanup(tls);
744 	return (error);
745 }
746 
747 static struct ktls_session *
748 ktls_clone_session(struct ktls_session *tls)
749 {
750 	struct ktls_session *tls_new;
751 
752 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
753 
754 	counter_u64_add(ktls_offload_active, 1);
755 
756 	refcount_init(&tls_new->refcount, 1);
757 	TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new);
758 
759 	/* Copy fields from existing session. */
760 	tls_new->params = tls->params;
761 	tls_new->wq_index = tls->wq_index;
762 
763 	/* Deep copy keys. */
764 	if (tls_new->params.auth_key != NULL) {
765 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
766 		    M_KTLS, M_WAITOK);
767 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
768 		    tls->params.auth_key_len);
769 	}
770 
771 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
772 	    M_WAITOK);
773 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
774 	    tls->params.cipher_key_len);
775 
776 	return (tls_new);
777 }
778 #endif
779 
780 static void
781 ktls_cleanup(struct ktls_session *tls)
782 {
783 
784 	counter_u64_add(ktls_offload_active, -1);
785 	switch (tls->mode) {
786 	case TCP_TLS_MODE_SW:
787 		switch (tls->params.cipher_algorithm) {
788 		case CRYPTO_AES_CBC:
789 			counter_u64_add(ktls_sw_cbc, -1);
790 			break;
791 		case CRYPTO_AES_NIST_GCM_16:
792 			counter_u64_add(ktls_sw_gcm, -1);
793 			break;
794 		case CRYPTO_CHACHA20_POLY1305:
795 			counter_u64_add(ktls_sw_chacha20, -1);
796 			break;
797 		}
798 		break;
799 	case TCP_TLS_MODE_IFNET:
800 		switch (tls->params.cipher_algorithm) {
801 		case CRYPTO_AES_CBC:
802 			counter_u64_add(ktls_ifnet_cbc, -1);
803 			break;
804 		case CRYPTO_AES_NIST_GCM_16:
805 			counter_u64_add(ktls_ifnet_gcm, -1);
806 			break;
807 		case CRYPTO_CHACHA20_POLY1305:
808 			counter_u64_add(ktls_ifnet_chacha20, -1);
809 			break;
810 		}
811 		if (tls->snd_tag != NULL)
812 			m_snd_tag_rele(tls->snd_tag);
813 		break;
814 #ifdef TCP_OFFLOAD
815 	case TCP_TLS_MODE_TOE:
816 		switch (tls->params.cipher_algorithm) {
817 		case CRYPTO_AES_CBC:
818 			counter_u64_add(ktls_toe_cbc, -1);
819 			break;
820 		case CRYPTO_AES_NIST_GCM_16:
821 			counter_u64_add(ktls_toe_gcm, -1);
822 			break;
823 		case CRYPTO_CHACHA20_POLY1305:
824 			counter_u64_add(ktls_toe_chacha20, -1);
825 			break;
826 		}
827 		break;
828 #endif
829 	}
830 	if (tls->ocf_session != NULL)
831 		ktls_ocf_free(tls);
832 	if (tls->params.auth_key != NULL) {
833 		zfree(tls->params.auth_key, M_KTLS);
834 		tls->params.auth_key = NULL;
835 		tls->params.auth_key_len = 0;
836 	}
837 	if (tls->params.cipher_key != NULL) {
838 		zfree(tls->params.cipher_key, M_KTLS);
839 		tls->params.cipher_key = NULL;
840 		tls->params.cipher_key_len = 0;
841 	}
842 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
843 }
844 
845 #if defined(INET) || defined(INET6)
846 
847 #ifdef TCP_OFFLOAD
848 static int
849 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
850 {
851 	struct inpcb *inp;
852 	struct tcpcb *tp;
853 	int error;
854 
855 	inp = so->so_pcb;
856 	INP_WLOCK(inp);
857 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
858 		INP_WUNLOCK(inp);
859 		return (ECONNRESET);
860 	}
861 	if (inp->inp_socket == NULL) {
862 		INP_WUNLOCK(inp);
863 		return (ECONNRESET);
864 	}
865 	tp = intotcpcb(inp);
866 	if (!(tp->t_flags & TF_TOE)) {
867 		INP_WUNLOCK(inp);
868 		return (EOPNOTSUPP);
869 	}
870 
871 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
872 	INP_WUNLOCK(inp);
873 	if (error == 0) {
874 		tls->mode = TCP_TLS_MODE_TOE;
875 		switch (tls->params.cipher_algorithm) {
876 		case CRYPTO_AES_CBC:
877 			counter_u64_add(ktls_toe_cbc, 1);
878 			break;
879 		case CRYPTO_AES_NIST_GCM_16:
880 			counter_u64_add(ktls_toe_gcm, 1);
881 			break;
882 		case CRYPTO_CHACHA20_POLY1305:
883 			counter_u64_add(ktls_toe_chacha20, 1);
884 			break;
885 		}
886 	}
887 	return (error);
888 }
889 #endif
890 
891 /*
892  * Common code used when first enabling ifnet TLS on a connection or
893  * when allocating a new ifnet TLS session due to a routing change.
894  * This function allocates a new TLS send tag on whatever interface
895  * the connection is currently routed over.
896  */
897 static int
898 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
899     struct m_snd_tag **mstp)
900 {
901 	union if_snd_tag_alloc_params params;
902 	struct ifnet *ifp;
903 	struct nhop_object *nh;
904 	struct tcpcb *tp;
905 	int error;
906 
907 	INP_RLOCK(inp);
908 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
909 		INP_RUNLOCK(inp);
910 		return (ECONNRESET);
911 	}
912 	if (inp->inp_socket == NULL) {
913 		INP_RUNLOCK(inp);
914 		return (ECONNRESET);
915 	}
916 	tp = intotcpcb(inp);
917 
918 	/*
919 	 * Check administrative controls on ifnet TLS to determine if
920 	 * ifnet TLS should be denied.
921 	 *
922 	 * - Always permit 'force' requests.
923 	 * - ktls_ifnet_permitted == 0: always deny.
924 	 */
925 	if (!force && ktls_ifnet_permitted == 0) {
926 		INP_RUNLOCK(inp);
927 		return (ENXIO);
928 	}
929 
930 	/*
931 	 * XXX: Use the cached route in the inpcb to find the
932 	 * interface.  This should perhaps instead use
933 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
934 	 * enabled after a connection has completed key negotiation in
935 	 * userland, the cached route will be present in practice.
936 	 */
937 	nh = inp->inp_route.ro_nh;
938 	if (nh == NULL) {
939 		INP_RUNLOCK(inp);
940 		return (ENXIO);
941 	}
942 	ifp = nh->nh_ifp;
943 	if_ref(ifp);
944 
945 	/*
946 	 * Allocate a TLS + ratelimit tag if the connection has an
947 	 * existing pacing rate.
948 	 */
949 	if (tp->t_pacing_rate != -1 &&
950 	    (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) {
951 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
952 		params.tls_rate_limit.inp = inp;
953 		params.tls_rate_limit.tls = tls;
954 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
955 	} else {
956 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
957 		params.tls.inp = inp;
958 		params.tls.tls = tls;
959 	}
960 	params.hdr.flowid = inp->inp_flowid;
961 	params.hdr.flowtype = inp->inp_flowtype;
962 	params.hdr.numa_domain = inp->inp_numa_domain;
963 	INP_RUNLOCK(inp);
964 
965 	if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
966 		error = EOPNOTSUPP;
967 		goto out;
968 	}
969 	if (inp->inp_vflag & INP_IPV6) {
970 		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
971 			error = EOPNOTSUPP;
972 			goto out;
973 		}
974 	} else {
975 		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
976 			error = EOPNOTSUPP;
977 			goto out;
978 		}
979 	}
980 	error = m_snd_tag_alloc(ifp, &params, mstp);
981 out:
982 	if_rele(ifp);
983 	return (error);
984 }
985 
986 static int
987 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
988 {
989 	struct m_snd_tag *mst;
990 	int error;
991 
992 	error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
993 	if (error == 0) {
994 		tls->mode = TCP_TLS_MODE_IFNET;
995 		tls->snd_tag = mst;
996 		switch (tls->params.cipher_algorithm) {
997 		case CRYPTO_AES_CBC:
998 			counter_u64_add(ktls_ifnet_cbc, 1);
999 			break;
1000 		case CRYPTO_AES_NIST_GCM_16:
1001 			counter_u64_add(ktls_ifnet_gcm, 1);
1002 			break;
1003 		case CRYPTO_CHACHA20_POLY1305:
1004 			counter_u64_add(ktls_ifnet_chacha20, 1);
1005 			break;
1006 		}
1007 	}
1008 	return (error);
1009 }
1010 
1011 static void
1012 ktls_use_sw(struct ktls_session *tls)
1013 {
1014 	tls->mode = TCP_TLS_MODE_SW;
1015 	switch (tls->params.cipher_algorithm) {
1016 	case CRYPTO_AES_CBC:
1017 		counter_u64_add(ktls_sw_cbc, 1);
1018 		break;
1019 	case CRYPTO_AES_NIST_GCM_16:
1020 		counter_u64_add(ktls_sw_gcm, 1);
1021 		break;
1022 	case CRYPTO_CHACHA20_POLY1305:
1023 		counter_u64_add(ktls_sw_chacha20, 1);
1024 		break;
1025 	}
1026 }
1027 
1028 static int
1029 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
1030 {
1031 	int error;
1032 
1033 	error = ktls_ocf_try(so, tls, direction);
1034 	if (error)
1035 		return (error);
1036 	ktls_use_sw(tls);
1037 	return (0);
1038 }
1039 
1040 /*
1041  * KTLS RX stores data in the socket buffer as a list of TLS records,
1042  * where each record is stored as a control message containg the TLS
1043  * header followed by data mbufs containing the decrypted data.  This
1044  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
1045  * both encrypted and decrypted data.  TLS records decrypted by a NIC
1046  * should be queued to the socket buffer as records, but encrypted
1047  * data which needs to be decrypted by software arrives as a stream of
1048  * regular mbufs which need to be converted.  In addition, there may
1049  * already be pending encrypted data in the socket buffer when KTLS RX
1050  * is enabled.
1051  *
1052  * To manage not-yet-decrypted data for KTLS RX, the following scheme
1053  * is used:
1054  *
1055  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
1056  *
1057  * - ktls_check_rx checks this chain of mbufs reading the TLS header
1058  *   from the first mbuf.  Once all of the data for that TLS record is
1059  *   queued, the socket is queued to a worker thread.
1060  *
1061  * - The worker thread calls ktls_decrypt to decrypt TLS records in
1062  *   the TLS chain.  Each TLS record is detached from the TLS chain,
1063  *   decrypted, and inserted into the regular socket buffer chain as
1064  *   record starting with a control message holding the TLS header and
1065  *   a chain of mbufs holding the encrypted data.
1066  */
1067 
1068 static void
1069 sb_mark_notready(struct sockbuf *sb)
1070 {
1071 	struct mbuf *m;
1072 
1073 	m = sb->sb_mb;
1074 	sb->sb_mtls = m;
1075 	sb->sb_mb = NULL;
1076 	sb->sb_mbtail = NULL;
1077 	sb->sb_lastrecord = NULL;
1078 	for (; m != NULL; m = m->m_next) {
1079 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
1080 		    __func__));
1081 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
1082 		    __func__));
1083 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
1084 		    __func__));
1085 		m->m_flags |= M_NOTREADY;
1086 		sb->sb_acc -= m->m_len;
1087 		sb->sb_tlscc += m->m_len;
1088 		sb->sb_mtlstail = m;
1089 	}
1090 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
1091 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
1092 	    sb->sb_ccc));
1093 }
1094 
1095 /*
1096  * Return information about the pending TLS data in a socket
1097  * buffer.  On return, 'seqno' is set to the sequence number
1098  * of the next TLS record to be received, 'resid' is set to
1099  * the amount of bytes still needed for the last pending
1100  * record.  The function returns 'false' if the last pending
1101  * record contains a partial TLS header.  In that case, 'resid'
1102  * is the number of bytes needed to complete the TLS header.
1103  */
1104 bool
1105 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
1106 {
1107 	struct tls_record_layer hdr;
1108 	struct mbuf *m;
1109 	uint64_t seqno;
1110 	size_t resid;
1111 	u_int offset, record_len;
1112 
1113 	SOCKBUF_LOCK_ASSERT(sb);
1114 	MPASS(sb->sb_flags & SB_TLS_RX);
1115 	seqno = sb->sb_tls_seqno;
1116 	resid = sb->sb_tlscc;
1117 	m = sb->sb_mtls;
1118 	offset = 0;
1119 
1120 	if (resid == 0) {
1121 		*seqnop = seqno;
1122 		*residp = 0;
1123 		return (true);
1124 	}
1125 
1126 	for (;;) {
1127 		seqno++;
1128 
1129 		if (resid < sizeof(hdr)) {
1130 			*seqnop = seqno;
1131 			*residp = sizeof(hdr) - resid;
1132 			return (false);
1133 		}
1134 
1135 		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
1136 
1137 		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
1138 		if (resid <= record_len) {
1139 			*seqnop = seqno;
1140 			*residp = record_len - resid;
1141 			return (true);
1142 		}
1143 		resid -= record_len;
1144 
1145 		while (record_len != 0) {
1146 			if (m->m_len - offset > record_len) {
1147 				offset += record_len;
1148 				break;
1149 			}
1150 
1151 			record_len -= (m->m_len - offset);
1152 			offset = 0;
1153 			m = m->m_next;
1154 		}
1155 	}
1156 }
1157 
1158 int
1159 ktls_enable_rx(struct socket *so, struct tls_enable *en)
1160 {
1161 	struct ktls_session *tls;
1162 	int error;
1163 
1164 	if (!ktls_offload_enable)
1165 		return (ENOTSUP);
1166 	if (SOLISTENING(so))
1167 		return (EINVAL);
1168 
1169 	counter_u64_add(ktls_offload_enable_calls, 1);
1170 
1171 	/*
1172 	 * This should always be true since only the TCP socket option
1173 	 * invokes this function.
1174 	 */
1175 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1176 		return (EINVAL);
1177 
1178 	/*
1179 	 * XXX: Don't overwrite existing sessions.  We should permit
1180 	 * this to support rekeying in the future.
1181 	 */
1182 	if (so->so_rcv.sb_tls_info != NULL)
1183 		return (EALREADY);
1184 
1185 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1186 		return (ENOTSUP);
1187 
1188 	error = ktls_create_session(so, en, &tls);
1189 	if (error)
1190 		return (error);
1191 
1192 	error = ktls_ocf_try(so, tls, KTLS_RX);
1193 	if (error) {
1194 		ktls_cleanup(tls);
1195 		return (error);
1196 	}
1197 
1198 	/* Mark the socket as using TLS offload. */
1199 	SOCKBUF_LOCK(&so->so_rcv);
1200 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1201 	so->so_rcv.sb_tls_info = tls;
1202 	so->so_rcv.sb_flags |= SB_TLS_RX;
1203 
1204 	/* Mark existing data as not ready until it can be decrypted. */
1205 	sb_mark_notready(&so->so_rcv);
1206 	ktls_check_rx(&so->so_rcv);
1207 	SOCKBUF_UNLOCK(&so->so_rcv);
1208 
1209 #ifdef TCP_OFFLOAD
1210 	error = ktls_try_toe(so, tls, KTLS_RX);
1211 	if (error)
1212 #endif
1213 		ktls_use_sw(tls);
1214 
1215 	counter_u64_add(ktls_offload_total, 1);
1216 
1217 	return (0);
1218 }
1219 
1220 int
1221 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1222 {
1223 	struct ktls_session *tls;
1224 	struct inpcb *inp;
1225 	int error;
1226 
1227 	if (!ktls_offload_enable)
1228 		return (ENOTSUP);
1229 	if (SOLISTENING(so))
1230 		return (EINVAL);
1231 
1232 	counter_u64_add(ktls_offload_enable_calls, 1);
1233 
1234 	/*
1235 	 * This should always be true since only the TCP socket option
1236 	 * invokes this function.
1237 	 */
1238 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1239 		return (EINVAL);
1240 
1241 	/*
1242 	 * XXX: Don't overwrite existing sessions.  We should permit
1243 	 * this to support rekeying in the future.
1244 	 */
1245 	if (so->so_snd.sb_tls_info != NULL)
1246 		return (EALREADY);
1247 
1248 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1249 		return (ENOTSUP);
1250 
1251 	/* TLS requires ext pgs */
1252 	if (mb_use_ext_pgs == 0)
1253 		return (ENXIO);
1254 
1255 	error = ktls_create_session(so, en, &tls);
1256 	if (error)
1257 		return (error);
1258 
1259 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1260 #ifdef TCP_OFFLOAD
1261 	error = ktls_try_toe(so, tls, KTLS_TX);
1262 	if (error)
1263 #endif
1264 		error = ktls_try_ifnet(so, tls, false);
1265 	if (error)
1266 		error = ktls_try_sw(so, tls, KTLS_TX);
1267 
1268 	if (error) {
1269 		ktls_cleanup(tls);
1270 		return (error);
1271 	}
1272 
1273 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1274 	if (error) {
1275 		ktls_cleanup(tls);
1276 		return (error);
1277 	}
1278 
1279 	/*
1280 	 * Write lock the INP when setting sb_tls_info so that
1281 	 * routines in tcp_ratelimit.c can read sb_tls_info while
1282 	 * holding the INP lock.
1283 	 */
1284 	inp = so->so_pcb;
1285 	INP_WLOCK(inp);
1286 	SOCKBUF_LOCK(&so->so_snd);
1287 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1288 	so->so_snd.sb_tls_info = tls;
1289 	if (tls->mode != TCP_TLS_MODE_SW)
1290 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1291 	SOCKBUF_UNLOCK(&so->so_snd);
1292 	INP_WUNLOCK(inp);
1293 	SOCK_IO_SEND_UNLOCK(so);
1294 
1295 	counter_u64_add(ktls_offload_total, 1);
1296 
1297 	return (0);
1298 }
1299 
1300 int
1301 ktls_get_rx_mode(struct socket *so, int *modep)
1302 {
1303 	struct ktls_session *tls;
1304 	struct inpcb *inp __diagused;
1305 
1306 	if (SOLISTENING(so))
1307 		return (EINVAL);
1308 	inp = so->so_pcb;
1309 	INP_WLOCK_ASSERT(inp);
1310 	SOCK_RECVBUF_LOCK(so);
1311 	tls = so->so_rcv.sb_tls_info;
1312 	if (tls == NULL)
1313 		*modep = TCP_TLS_MODE_NONE;
1314 	else
1315 		*modep = tls->mode;
1316 	SOCK_RECVBUF_UNLOCK(so);
1317 	return (0);
1318 }
1319 
1320 /*
1321  * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
1322  *
1323  * This function gets information about the next TCP- and TLS-
1324  * sequence number to be processed by the TLS receive worker
1325  * thread. The information is extracted from the given "inpcb"
1326  * structure. The values are stored in host endian format at the two
1327  * given output pointer locations. The TCP sequence number points to
1328  * the beginning of the TLS header.
1329  *
1330  * This function returns zero on success, else a non-zero error code
1331  * is returned.
1332  */
1333 int
1334 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
1335 {
1336 	struct socket *so;
1337 	struct tcpcb *tp;
1338 
1339 	INP_RLOCK(inp);
1340 	so = inp->inp_socket;
1341 	if (__predict_false(so == NULL)) {
1342 		INP_RUNLOCK(inp);
1343 		return (EINVAL);
1344 	}
1345 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
1346 		INP_RUNLOCK(inp);
1347 		return (ECONNRESET);
1348 	}
1349 
1350 	tp = intotcpcb(inp);
1351 	MPASS(tp != NULL);
1352 
1353 	SOCKBUF_LOCK(&so->so_rcv);
1354 	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
1355 	*tlsseq = so->so_rcv.sb_tls_seqno;
1356 	SOCKBUF_UNLOCK(&so->so_rcv);
1357 
1358 	INP_RUNLOCK(inp);
1359 
1360 	return (0);
1361 }
1362 
1363 int
1364 ktls_get_tx_mode(struct socket *so, int *modep)
1365 {
1366 	struct ktls_session *tls;
1367 	struct inpcb *inp __diagused;
1368 
1369 	if (SOLISTENING(so))
1370 		return (EINVAL);
1371 	inp = so->so_pcb;
1372 	INP_WLOCK_ASSERT(inp);
1373 	SOCK_SENDBUF_LOCK(so);
1374 	tls = so->so_snd.sb_tls_info;
1375 	if (tls == NULL)
1376 		*modep = TCP_TLS_MODE_NONE;
1377 	else
1378 		*modep = tls->mode;
1379 	SOCK_SENDBUF_UNLOCK(so);
1380 	return (0);
1381 }
1382 
1383 /*
1384  * Switch between SW and ifnet TLS sessions as requested.
1385  */
1386 int
1387 ktls_set_tx_mode(struct socket *so, int mode)
1388 {
1389 	struct ktls_session *tls, *tls_new;
1390 	struct inpcb *inp;
1391 	int error;
1392 
1393 	if (SOLISTENING(so))
1394 		return (EINVAL);
1395 	switch (mode) {
1396 	case TCP_TLS_MODE_SW:
1397 	case TCP_TLS_MODE_IFNET:
1398 		break;
1399 	default:
1400 		return (EINVAL);
1401 	}
1402 
1403 	inp = so->so_pcb;
1404 	INP_WLOCK_ASSERT(inp);
1405 	SOCKBUF_LOCK(&so->so_snd);
1406 	tls = so->so_snd.sb_tls_info;
1407 	if (tls == NULL) {
1408 		SOCKBUF_UNLOCK(&so->so_snd);
1409 		return (0);
1410 	}
1411 
1412 	if (tls->mode == mode) {
1413 		SOCKBUF_UNLOCK(&so->so_snd);
1414 		return (0);
1415 	}
1416 
1417 	tls = ktls_hold(tls);
1418 	SOCKBUF_UNLOCK(&so->so_snd);
1419 	INP_WUNLOCK(inp);
1420 
1421 	tls_new = ktls_clone_session(tls);
1422 
1423 	if (mode == TCP_TLS_MODE_IFNET)
1424 		error = ktls_try_ifnet(so, tls_new, true);
1425 	else
1426 		error = ktls_try_sw(so, tls_new, KTLS_TX);
1427 	if (error) {
1428 		counter_u64_add(ktls_switch_failed, 1);
1429 		ktls_free(tls_new);
1430 		ktls_free(tls);
1431 		INP_WLOCK(inp);
1432 		return (error);
1433 	}
1434 
1435 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
1436 	if (error) {
1437 		counter_u64_add(ktls_switch_failed, 1);
1438 		ktls_free(tls_new);
1439 		ktls_free(tls);
1440 		INP_WLOCK(inp);
1441 		return (error);
1442 	}
1443 
1444 	/*
1445 	 * If we raced with another session change, keep the existing
1446 	 * session.
1447 	 */
1448 	if (tls != so->so_snd.sb_tls_info) {
1449 		counter_u64_add(ktls_switch_failed, 1);
1450 		SOCK_IO_SEND_UNLOCK(so);
1451 		ktls_free(tls_new);
1452 		ktls_free(tls);
1453 		INP_WLOCK(inp);
1454 		return (EBUSY);
1455 	}
1456 
1457 	SOCKBUF_LOCK(&so->so_snd);
1458 	so->so_snd.sb_tls_info = tls_new;
1459 	if (tls_new->mode != TCP_TLS_MODE_SW)
1460 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1461 	SOCKBUF_UNLOCK(&so->so_snd);
1462 	SOCK_IO_SEND_UNLOCK(so);
1463 
1464 	/*
1465 	 * Drop two references on 'tls'.  The first is for the
1466 	 * ktls_hold() above.  The second drops the reference from the
1467 	 * socket buffer.
1468 	 */
1469 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1470 	ktls_free(tls);
1471 	ktls_free(tls);
1472 
1473 	if (mode == TCP_TLS_MODE_IFNET)
1474 		counter_u64_add(ktls_switch_to_ifnet, 1);
1475 	else
1476 		counter_u64_add(ktls_switch_to_sw, 1);
1477 
1478 	INP_WLOCK(inp);
1479 	return (0);
1480 }
1481 
1482 /*
1483  * Try to allocate a new TLS send tag.  This task is scheduled when
1484  * ip_output detects a route change while trying to transmit a packet
1485  * holding a TLS record.  If a new tag is allocated, replace the tag
1486  * in the TLS session.  Subsequent packets on the connection will use
1487  * the new tag.  If a new tag cannot be allocated, drop the
1488  * connection.
1489  */
1490 static void
1491 ktls_reset_send_tag(void *context, int pending)
1492 {
1493 	struct epoch_tracker et;
1494 	struct ktls_session *tls;
1495 	struct m_snd_tag *old, *new;
1496 	struct inpcb *inp;
1497 	struct tcpcb *tp;
1498 	int error;
1499 
1500 	MPASS(pending == 1);
1501 
1502 	tls = context;
1503 	inp = tls->inp;
1504 
1505 	/*
1506 	 * Free the old tag first before allocating a new one.
1507 	 * ip[6]_output_send() will treat a NULL send tag the same as
1508 	 * an ifp mismatch and drop packets until a new tag is
1509 	 * allocated.
1510 	 *
1511 	 * Write-lock the INP when changing tls->snd_tag since
1512 	 * ip[6]_output_send() holds a read-lock when reading the
1513 	 * pointer.
1514 	 */
1515 	INP_WLOCK(inp);
1516 	old = tls->snd_tag;
1517 	tls->snd_tag = NULL;
1518 	INP_WUNLOCK(inp);
1519 	if (old != NULL)
1520 		m_snd_tag_rele(old);
1521 
1522 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1523 
1524 	if (error == 0) {
1525 		INP_WLOCK(inp);
1526 		tls->snd_tag = new;
1527 		mtx_pool_lock(mtxpool_sleep, tls);
1528 		tls->reset_pending = false;
1529 		mtx_pool_unlock(mtxpool_sleep, tls);
1530 		if (!in_pcbrele_wlocked(inp))
1531 			INP_WUNLOCK(inp);
1532 
1533 		counter_u64_add(ktls_ifnet_reset, 1);
1534 
1535 		/*
1536 		 * XXX: Should we kick tcp_output explicitly now that
1537 		 * the send tag is fixed or just rely on timers?
1538 		 */
1539 	} else {
1540 		NET_EPOCH_ENTER(et);
1541 		INP_WLOCK(inp);
1542 		if (!in_pcbrele_wlocked(inp)) {
1543 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1544 			    !(inp->inp_flags & INP_DROPPED)) {
1545 				tp = intotcpcb(inp);
1546 				CURVNET_SET(tp->t_vnet);
1547 				tp = tcp_drop(tp, ECONNABORTED);
1548 				CURVNET_RESTORE();
1549 				if (tp != NULL)
1550 					INP_WUNLOCK(inp);
1551 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1552 			} else
1553 				INP_WUNLOCK(inp);
1554 		}
1555 		NET_EPOCH_EXIT(et);
1556 
1557 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1558 
1559 		/*
1560 		 * Leave reset_pending true to avoid future tasks while
1561 		 * the socket goes away.
1562 		 */
1563 	}
1564 
1565 	ktls_free(tls);
1566 }
1567 
1568 int
1569 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1570 {
1571 
1572 	if (inp == NULL)
1573 		return (ENOBUFS);
1574 
1575 	INP_LOCK_ASSERT(inp);
1576 
1577 	/*
1578 	 * See if we should schedule a task to update the send tag for
1579 	 * this session.
1580 	 */
1581 	mtx_pool_lock(mtxpool_sleep, tls);
1582 	if (!tls->reset_pending) {
1583 		(void) ktls_hold(tls);
1584 		in_pcbref(inp);
1585 		tls->inp = inp;
1586 		tls->reset_pending = true;
1587 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1588 	}
1589 	mtx_pool_unlock(mtxpool_sleep, tls);
1590 	return (ENOBUFS);
1591 }
1592 
1593 #ifdef RATELIMIT
1594 int
1595 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
1596 {
1597 	union if_snd_tag_modify_params params = {
1598 		.rate_limit.max_rate = max_pacing_rate,
1599 		.rate_limit.flags = M_NOWAIT,
1600 	};
1601 	struct m_snd_tag *mst;
1602 
1603 	/* Can't get to the inp, but it should be locked. */
1604 	/* INP_LOCK_ASSERT(inp); */
1605 
1606 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
1607 
1608 	if (tls->snd_tag == NULL) {
1609 		/*
1610 		 * Resetting send tag, ignore this change.  The
1611 		 * pending reset may or may not see this updated rate
1612 		 * in the tcpcb.  If it doesn't, we will just lose
1613 		 * this rate change.
1614 		 */
1615 		return (0);
1616 	}
1617 
1618 	MPASS(tls->snd_tag != NULL);
1619 	MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
1620 
1621 	mst = tls->snd_tag;
1622 	return (mst->sw->snd_tag_modify(mst, &params));
1623 }
1624 #endif
1625 #endif
1626 
1627 void
1628 ktls_destroy(struct ktls_session *tls)
1629 {
1630 
1631 	if (tls->sequential_records) {
1632 		struct mbuf *m, *n;
1633 		int page_count;
1634 
1635 		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
1636 			page_count = m->m_epg_enc_cnt;
1637 			while (page_count > 0) {
1638 				KASSERT(page_count >= m->m_epg_nrdy,
1639 				    ("%s: too few pages", __func__));
1640 				page_count -= m->m_epg_nrdy;
1641 				m = m_free(m);
1642 			}
1643 		}
1644 	}
1645 	ktls_cleanup(tls);
1646 	uma_zfree(ktls_session_zone, tls);
1647 }
1648 
1649 void
1650 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1651 {
1652 
1653 	for (; m != NULL; m = m->m_next) {
1654 		KASSERT((m->m_flags & M_EXTPG) != 0,
1655 		    ("ktls_seq: mapped mbuf %p", m));
1656 
1657 		m->m_epg_seqno = sb->sb_tls_seqno;
1658 		sb->sb_tls_seqno++;
1659 	}
1660 }
1661 
1662 /*
1663  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1664  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1665  * mbuf must be populated with the payload of each TLS record.
1666  *
1667  * The record_type argument specifies the TLS record type used when
1668  * populating the TLS header.
1669  *
1670  * The enq_count argument on return is set to the number of pages of
1671  * payload data for this entire chain that need to be encrypted via SW
1672  * encryption.  The returned value should be passed to ktls_enqueue
1673  * when scheduling encryption of this chain of mbufs.  To handle the
1674  * special case of empty fragments for TLS 1.0 sessions, an empty
1675  * fragment counts as one page.
1676  */
1677 void
1678 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1679     uint8_t record_type)
1680 {
1681 	struct tls_record_layer *tlshdr;
1682 	struct mbuf *m;
1683 	uint64_t *noncep;
1684 	uint16_t tls_len;
1685 	int maxlen __diagused;
1686 
1687 	maxlen = tls->params.max_frame_len;
1688 	*enq_cnt = 0;
1689 	for (m = top; m != NULL; m = m->m_next) {
1690 		/*
1691 		 * All mbufs in the chain should be TLS records whose
1692 		 * payload does not exceed the maximum frame length.
1693 		 *
1694 		 * Empty TLS 1.0 records are permitted when using CBC.
1695 		 */
1696 		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
1697 		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
1698 		    ("ktls_frame: m %p len %d", m, m->m_len));
1699 
1700 		/*
1701 		 * TLS frames require unmapped mbufs to store session
1702 		 * info.
1703 		 */
1704 		KASSERT((m->m_flags & M_EXTPG) != 0,
1705 		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
1706 
1707 		tls_len = m->m_len;
1708 
1709 		/* Save a reference to the session. */
1710 		m->m_epg_tls = ktls_hold(tls);
1711 
1712 		m->m_epg_hdrlen = tls->params.tls_hlen;
1713 		m->m_epg_trllen = tls->params.tls_tlen;
1714 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1715 			int bs, delta;
1716 
1717 			/*
1718 			 * AES-CBC pads messages to a multiple of the
1719 			 * block size.  Note that the padding is
1720 			 * applied after the digest and the encryption
1721 			 * is done on the "plaintext || mac || padding".
1722 			 * At least one byte of padding is always
1723 			 * present.
1724 			 *
1725 			 * Compute the final trailer length assuming
1726 			 * at most one block of padding.
1727 			 * tls->params.tls_tlen is the maximum
1728 			 * possible trailer length (padding + digest).
1729 			 * delta holds the number of excess padding
1730 			 * bytes if the maximum were used.  Those
1731 			 * extra bytes are removed.
1732 			 */
1733 			bs = tls->params.tls_bs;
1734 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1735 			m->m_epg_trllen -= delta;
1736 		}
1737 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1738 
1739 		/* Populate the TLS header. */
1740 		tlshdr = (void *)m->m_epg_hdr;
1741 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
1742 
1743 		/*
1744 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
1745 		 * of TLS_RLTYPE_APP.
1746 		 */
1747 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1748 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1749 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1750 			tlshdr->tls_type = TLS_RLTYPE_APP;
1751 			/* save the real record type for later */
1752 			m->m_epg_record_type = record_type;
1753 			m->m_epg_trail[0] = record_type;
1754 		} else {
1755 			tlshdr->tls_vminor = tls->params.tls_vminor;
1756 			tlshdr->tls_type = record_type;
1757 		}
1758 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1759 
1760 		/*
1761 		 * Store nonces / explicit IVs after the end of the
1762 		 * TLS header.
1763 		 *
1764 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
1765 		 * from the end of the IV.  The nonce is then
1766 		 * incremented for use by the next record.
1767 		 *
1768 		 * For CBC, a random nonce is inserted for TLS 1.1+.
1769 		 */
1770 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1771 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1772 			noncep = (uint64_t *)(tls->params.iv + 8);
1773 			be64enc(tlshdr + 1, *noncep);
1774 			(*noncep)++;
1775 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1776 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1777 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1778 
1779 		/*
1780 		 * When using SW encryption, mark the mbuf not ready.
1781 		 * It will be marked ready via sbready() after the
1782 		 * record has been encrypted.
1783 		 *
1784 		 * When using ifnet TLS, unencrypted TLS records are
1785 		 * sent down the stack to the NIC.
1786 		 */
1787 		if (tls->mode == TCP_TLS_MODE_SW) {
1788 			m->m_flags |= M_NOTREADY;
1789 			if (__predict_false(tls_len == 0)) {
1790 				/* TLS 1.0 empty fragment. */
1791 				m->m_epg_nrdy = 1;
1792 			} else
1793 				m->m_epg_nrdy = m->m_epg_npgs;
1794 			*enq_cnt += m->m_epg_nrdy;
1795 		}
1796 	}
1797 }
1798 
1799 bool
1800 ktls_permit_empty_frames(struct ktls_session *tls)
1801 {
1802 	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1803 	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
1804 }
1805 
1806 void
1807 ktls_check_rx(struct sockbuf *sb)
1808 {
1809 	struct tls_record_layer hdr;
1810 	struct ktls_wq *wq;
1811 	struct socket *so;
1812 	bool running;
1813 
1814 	SOCKBUF_LOCK_ASSERT(sb);
1815 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1816 	    __func__, sb));
1817 	so = __containerof(sb, struct socket, so_rcv);
1818 
1819 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
1820 		return;
1821 
1822 	/* Is there enough queued for a TLS header? */
1823 	if (sb->sb_tlscc < sizeof(hdr)) {
1824 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1825 			so->so_error = EMSGSIZE;
1826 		return;
1827 	}
1828 
1829 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1830 
1831 	/* Is the entire record queued? */
1832 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1833 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1834 			so->so_error = EMSGSIZE;
1835 		return;
1836 	}
1837 
1838 	sb->sb_flags |= SB_TLS_RX_RUNNING;
1839 
1840 	soref(so);
1841 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1842 	mtx_lock(&wq->mtx);
1843 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1844 	running = wq->running;
1845 	mtx_unlock(&wq->mtx);
1846 	if (!running)
1847 		wakeup(wq);
1848 	counter_u64_add(ktls_cnt_rx_queued, 1);
1849 }
1850 
1851 static struct mbuf *
1852 ktls_detach_record(struct sockbuf *sb, int len)
1853 {
1854 	struct mbuf *m, *n, *top;
1855 	int remain;
1856 
1857 	SOCKBUF_LOCK_ASSERT(sb);
1858 	MPASS(len <= sb->sb_tlscc);
1859 
1860 	/*
1861 	 * If TLS chain is the exact size of the record,
1862 	 * just grab the whole record.
1863 	 */
1864 	top = sb->sb_mtls;
1865 	if (sb->sb_tlscc == len) {
1866 		sb->sb_mtls = NULL;
1867 		sb->sb_mtlstail = NULL;
1868 		goto out;
1869 	}
1870 
1871 	/*
1872 	 * While it would be nice to use m_split() here, we need
1873 	 * to know exactly what m_split() allocates to update the
1874 	 * accounting, so do it inline instead.
1875 	 */
1876 	remain = len;
1877 	for (m = top; remain > m->m_len; m = m->m_next)
1878 		remain -= m->m_len;
1879 
1880 	/* Easy case: don't have to split 'm'. */
1881 	if (remain == m->m_len) {
1882 		sb->sb_mtls = m->m_next;
1883 		if (sb->sb_mtls == NULL)
1884 			sb->sb_mtlstail = NULL;
1885 		m->m_next = NULL;
1886 		goto out;
1887 	}
1888 
1889 	/*
1890 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1891 	 * with M_NOWAIT first.
1892 	 */
1893 	n = m_get(M_NOWAIT, MT_DATA);
1894 	if (n == NULL) {
1895 		/*
1896 		 * Use M_WAITOK with socket buffer unlocked.  If
1897 		 * 'sb_mtls' changes while the lock is dropped, return
1898 		 * NULL to force the caller to retry.
1899 		 */
1900 		SOCKBUF_UNLOCK(sb);
1901 
1902 		n = m_get(M_WAITOK, MT_DATA);
1903 
1904 		SOCKBUF_LOCK(sb);
1905 		if (sb->sb_mtls != top) {
1906 			m_free(n);
1907 			return (NULL);
1908 		}
1909 	}
1910 	n->m_flags |= M_NOTREADY;
1911 
1912 	/* Store remainder in 'n'. */
1913 	n->m_len = m->m_len - remain;
1914 	if (m->m_flags & M_EXT) {
1915 		n->m_data = m->m_data + remain;
1916 		mb_dupcl(n, m);
1917 	} else {
1918 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1919 	}
1920 
1921 	/* Trim 'm' and update accounting. */
1922 	m->m_len -= n->m_len;
1923 	sb->sb_tlscc -= n->m_len;
1924 	sb->sb_ccc -= n->m_len;
1925 
1926 	/* Account for 'n'. */
1927 	sballoc_ktls_rx(sb, n);
1928 
1929 	/* Insert 'n' into the TLS chain. */
1930 	sb->sb_mtls = n;
1931 	n->m_next = m->m_next;
1932 	if (sb->sb_mtlstail == m)
1933 		sb->sb_mtlstail = n;
1934 
1935 	/* Detach the record from the TLS chain. */
1936 	m->m_next = NULL;
1937 
1938 out:
1939 	MPASS(m_length(top, NULL) == len);
1940 	for (m = top; m != NULL; m = m->m_next)
1941 		sbfree_ktls_rx(sb, m);
1942 	sb->sb_tlsdcc = len;
1943 	sb->sb_ccc += len;
1944 	SBCHECK(sb);
1945 	return (top);
1946 }
1947 
1948 /*
1949  * Determine the length of the trailing zero padding and find the real
1950  * record type in the byte before the padding.
1951  *
1952  * Walking the mbuf chain backwards is clumsy, so another option would
1953  * be to scan forwards remembering the last non-zero byte before the
1954  * trailer.  However, it would be expensive to scan the entire record.
1955  * Instead, find the last non-zero byte of each mbuf in the chain
1956  * keeping track of the relative offset of that nonzero byte.
1957  *
1958  * trail_len is the size of the MAC/tag on input and is set to the
1959  * size of the full trailer including padding and the record type on
1960  * return.
1961  */
1962 static int
1963 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
1964     int *trailer_len, uint8_t *record_typep)
1965 {
1966 	char *cp;
1967 	u_int digest_start, last_offset, m_len, offset;
1968 	uint8_t record_type;
1969 
1970 	digest_start = tls_len - *trailer_len;
1971 	last_offset = 0;
1972 	offset = 0;
1973 	for (; m != NULL && offset < digest_start;
1974 	     offset += m->m_len, m = m->m_next) {
1975 		/* Don't look for padding in the tag. */
1976 		m_len = min(digest_start - offset, m->m_len);
1977 		cp = mtod(m, char *);
1978 
1979 		/* Find last non-zero byte in this mbuf. */
1980 		while (m_len > 0 && cp[m_len - 1] == 0)
1981 			m_len--;
1982 		if (m_len > 0) {
1983 			record_type = cp[m_len - 1];
1984 			last_offset = offset + m_len;
1985 		}
1986 	}
1987 	if (last_offset < tls->params.tls_hlen)
1988 		return (EBADMSG);
1989 
1990 	*record_typep = record_type;
1991 	*trailer_len = tls_len - last_offset + 1;
1992 	return (0);
1993 }
1994 
1995 static void
1996 ktls_decrypt(struct socket *so)
1997 {
1998 	char tls_header[MBUF_PEXT_HDR_LEN];
1999 	struct ktls_session *tls;
2000 	struct sockbuf *sb;
2001 	struct tls_record_layer *hdr;
2002 	struct tls_get_record tgr;
2003 	struct mbuf *control, *data, *m;
2004 	uint64_t seqno;
2005 	int error, remain, tls_len, trail_len;
2006 	bool tls13;
2007 	uint8_t vminor, record_type;
2008 
2009 	hdr = (struct tls_record_layer *)tls_header;
2010 	sb = &so->so_rcv;
2011 	SOCKBUF_LOCK(sb);
2012 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
2013 	    ("%s: socket %p not running", __func__, so));
2014 
2015 	tls = sb->sb_tls_info;
2016 	MPASS(tls != NULL);
2017 
2018 	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
2019 	if (tls13)
2020 		vminor = TLS_MINOR_VER_TWO;
2021 	else
2022 		vminor = tls->params.tls_vminor;
2023 	for (;;) {
2024 		/* Is there enough queued for a TLS header? */
2025 		if (sb->sb_tlscc < tls->params.tls_hlen)
2026 			break;
2027 
2028 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
2029 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
2030 
2031 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
2032 		    hdr->tls_vminor != vminor)
2033 			error = EINVAL;
2034 		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
2035 			error = EINVAL;
2036 		else if (tls_len < tls->params.tls_hlen || tls_len >
2037 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
2038 		    tls->params.tls_tlen)
2039 			error = EMSGSIZE;
2040 		else
2041 			error = 0;
2042 		if (__predict_false(error != 0)) {
2043 			/*
2044 			 * We have a corrupted record and are likely
2045 			 * out of sync.  The connection isn't
2046 			 * recoverable at this point, so abort it.
2047 			 */
2048 			SOCKBUF_UNLOCK(sb);
2049 			counter_u64_add(ktls_offload_corrupted_records, 1);
2050 
2051 			CURVNET_SET(so->so_vnet);
2052 			so->so_proto->pr_usrreqs->pru_abort(so);
2053 			so->so_error = error;
2054 			CURVNET_RESTORE();
2055 			goto deref;
2056 		}
2057 
2058 		/* Is the entire record queued? */
2059 		if (sb->sb_tlscc < tls_len)
2060 			break;
2061 
2062 		/*
2063 		 * Split out the portion of the mbuf chain containing
2064 		 * this TLS record.
2065 		 */
2066 		data = ktls_detach_record(sb, tls_len);
2067 		if (data == NULL)
2068 			continue;
2069 		MPASS(sb->sb_tlsdcc == tls_len);
2070 
2071 		seqno = sb->sb_tls_seqno;
2072 		sb->sb_tls_seqno++;
2073 		SBCHECK(sb);
2074 		SOCKBUF_UNLOCK(sb);
2075 
2076 		error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
2077 		if (error == 0) {
2078 			if (tls13)
2079 				error = tls13_find_record_type(tls, data,
2080 				    tls_len, &trail_len, &record_type);
2081 			else
2082 				record_type = hdr->tls_type;
2083 		}
2084 		if (error) {
2085 			counter_u64_add(ktls_offload_failed_crypto, 1);
2086 
2087 			SOCKBUF_LOCK(sb);
2088 			if (sb->sb_tlsdcc == 0) {
2089 				/*
2090 				 * sbcut/drop/flush discarded these
2091 				 * mbufs.
2092 				 */
2093 				m_freem(data);
2094 				break;
2095 			}
2096 
2097 			/*
2098 			 * Drop this TLS record's data, but keep
2099 			 * decrypting subsequent records.
2100 			 */
2101 			sb->sb_ccc -= tls_len;
2102 			sb->sb_tlsdcc = 0;
2103 
2104 			CURVNET_SET(so->so_vnet);
2105 			so->so_error = EBADMSG;
2106 			sorwakeup_locked(so);
2107 			CURVNET_RESTORE();
2108 
2109 			m_freem(data);
2110 
2111 			SOCKBUF_LOCK(sb);
2112 			continue;
2113 		}
2114 
2115 		/* Allocate the control mbuf. */
2116 		memset(&tgr, 0, sizeof(tgr));
2117 		tgr.tls_type = record_type;
2118 		tgr.tls_vmajor = hdr->tls_vmajor;
2119 		tgr.tls_vminor = hdr->tls_vminor;
2120 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
2121 		    trail_len);
2122 		control = sbcreatecontrol_how(&tgr, sizeof(tgr),
2123 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
2124 
2125 		SOCKBUF_LOCK(sb);
2126 		if (sb->sb_tlsdcc == 0) {
2127 			/* sbcut/drop/flush discarded these mbufs. */
2128 			MPASS(sb->sb_tlscc == 0);
2129 			m_freem(data);
2130 			m_freem(control);
2131 			break;
2132 		}
2133 
2134 		/*
2135 		 * Clear the 'dcc' accounting in preparation for
2136 		 * adding the decrypted record.
2137 		 */
2138 		sb->sb_ccc -= tls_len;
2139 		sb->sb_tlsdcc = 0;
2140 		SBCHECK(sb);
2141 
2142 		/* If there is no payload, drop all of the data. */
2143 		if (tgr.tls_length == htobe16(0)) {
2144 			m_freem(data);
2145 			data = NULL;
2146 		} else {
2147 			/* Trim header. */
2148 			remain = tls->params.tls_hlen;
2149 			while (remain > 0) {
2150 				if (data->m_len > remain) {
2151 					data->m_data += remain;
2152 					data->m_len -= remain;
2153 					break;
2154 				}
2155 				remain -= data->m_len;
2156 				data = m_free(data);
2157 			}
2158 
2159 			/* Trim trailer and clear M_NOTREADY. */
2160 			remain = be16toh(tgr.tls_length);
2161 			m = data;
2162 			for (m = data; remain > m->m_len; m = m->m_next) {
2163 				m->m_flags &= ~M_NOTREADY;
2164 				remain -= m->m_len;
2165 			}
2166 			m->m_len = remain;
2167 			m_freem(m->m_next);
2168 			m->m_next = NULL;
2169 			m->m_flags &= ~M_NOTREADY;
2170 
2171 			/* Set EOR on the final mbuf. */
2172 			m->m_flags |= M_EOR;
2173 		}
2174 
2175 		sbappendcontrol_locked(sb, data, control, 0);
2176 	}
2177 
2178 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
2179 
2180 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
2181 		so->so_error = EMSGSIZE;
2182 
2183 	sorwakeup_locked(so);
2184 
2185 deref:
2186 	SOCKBUF_UNLOCK_ASSERT(sb);
2187 
2188 	CURVNET_SET(so->so_vnet);
2189 	sorele(so);
2190 	CURVNET_RESTORE();
2191 }
2192 
2193 void
2194 ktls_enqueue_to_free(struct mbuf *m)
2195 {
2196 	struct ktls_wq *wq;
2197 	bool running;
2198 
2199 	/* Mark it for freeing. */
2200 	m->m_epg_flags |= EPG_FLAG_2FREE;
2201 	wq = &ktls_wq[m->m_epg_tls->wq_index];
2202 	mtx_lock(&wq->mtx);
2203 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2204 	running = wq->running;
2205 	mtx_unlock(&wq->mtx);
2206 	if (!running)
2207 		wakeup(wq);
2208 }
2209 
2210 static void *
2211 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
2212 {
2213 	void *buf;
2214 	int domain, running;
2215 
2216 	if (m->m_epg_npgs <= 2)
2217 		return (NULL);
2218 	if (ktls_buffer_zone == NULL)
2219 		return (NULL);
2220 	if ((u_int)(ticks - wq->lastallocfail) < hz) {
2221 		/*
2222 		 * Rate-limit allocation attempts after a failure.
2223 		 * ktls_buffer_import() will acquire a per-domain mutex to check
2224 		 * the free page queues and may fail consistently if memory is
2225 		 * fragmented.
2226 		 */
2227 		return (NULL);
2228 	}
2229 	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
2230 	if (buf == NULL) {
2231 		domain = PCPU_GET(domain);
2232 		wq->lastallocfail = ticks;
2233 
2234 		/*
2235 		 * Note that this check is "racy", but the races are
2236 		 * harmless, and are either a spurious wakeup if
2237 		 * multiple threads fail allocations before the alloc
2238 		 * thread wakes, or waiting an extra second in case we
2239 		 * see an old value of running == true.
2240 		 */
2241 		if (!VM_DOMAIN_EMPTY(domain)) {
2242 			running = atomic_load_int(&ktls_domains[domain].alloc_td.running);
2243 			if (!running)
2244 				wakeup(&ktls_domains[domain].alloc_td);
2245 		}
2246 	}
2247 	return (buf);
2248 }
2249 
2250 static int
2251 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
2252     struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
2253 {
2254 	vm_page_t pg;
2255 	int error, i, len, off;
2256 
2257 	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
2258 	    ("%p not unready & nomap mbuf\n", m));
2259 	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
2260 	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
2261 	    ktls_maxlen));
2262 
2263 	/* Anonymous mbufs are encrypted in place. */
2264 	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
2265 		return (tls->sw_encrypt(state, tls, m, NULL, 0));
2266 
2267 	/*
2268 	 * For file-backed mbufs (from sendfile), anonymous wired
2269 	 * pages are allocated and used as the encryption destination.
2270 	 */
2271 	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
2272 		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
2273 		    m->m_epg_1st_off;
2274 		state->dst_iov[0].iov_base = (char *)state->cbuf +
2275 		    m->m_epg_1st_off;
2276 		state->dst_iov[0].iov_len = len;
2277 		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
2278 		i = 1;
2279 	} else {
2280 		off = m->m_epg_1st_off;
2281 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
2282 			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
2283 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
2284 			len = m_epg_pagelen(m, i, off);
2285 			state->parray[i] = VM_PAGE_TO_PHYS(pg);
2286 			state->dst_iov[i].iov_base =
2287 			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
2288 			state->dst_iov[i].iov_len = len;
2289 		}
2290 	}
2291 	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
2292 	state->dst_iov[i].iov_base = m->m_epg_trail;
2293 	state->dst_iov[i].iov_len = m->m_epg_trllen;
2294 
2295 	error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1);
2296 
2297 	if (__predict_false(error != 0)) {
2298 		/* Free the anonymous pages. */
2299 		if (state->cbuf != NULL)
2300 			uma_zfree(ktls_buffer_zone, state->cbuf);
2301 		else {
2302 			for (i = 0; i < m->m_epg_npgs; i++) {
2303 				pg = PHYS_TO_VM_PAGE(state->parray[i]);
2304 				(void)vm_page_unwire_noq(pg);
2305 				vm_page_free(pg);
2306 			}
2307 		}
2308 	}
2309 	return (error);
2310 }
2311 
2312 /* Number of TLS records in a batch passed to ktls_enqueue(). */
2313 static u_int
2314 ktls_batched_records(struct mbuf *m)
2315 {
2316 	int page_count, records;
2317 
2318 	records = 0;
2319 	page_count = m->m_epg_enc_cnt;
2320 	while (page_count > 0) {
2321 		records++;
2322 		page_count -= m->m_epg_nrdy;
2323 		m = m->m_next;
2324 	}
2325 	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
2326 	return (records);
2327 }
2328 
2329 void
2330 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
2331 {
2332 	struct ktls_session *tls;
2333 	struct ktls_wq *wq;
2334 	int queued;
2335 	bool running;
2336 
2337 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
2338 	    (M_EXTPG | M_NOTREADY)),
2339 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
2340 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
2341 
2342 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
2343 
2344 	m->m_epg_enc_cnt = page_count;
2345 
2346 	/*
2347 	 * Save a pointer to the socket.  The caller is responsible
2348 	 * for taking an additional reference via soref().
2349 	 */
2350 	m->m_epg_so = so;
2351 
2352 	queued = 1;
2353 	tls = m->m_epg_tls;
2354 	wq = &ktls_wq[tls->wq_index];
2355 	mtx_lock(&wq->mtx);
2356 	if (__predict_false(tls->sequential_records)) {
2357 		/*
2358 		 * For TLS 1.0, records must be encrypted
2359 		 * sequentially.  For a given connection, all records
2360 		 * queued to the associated work queue are processed
2361 		 * sequentially.  However, sendfile(2) might complete
2362 		 * I/O requests spanning multiple TLS records out of
2363 		 * order.  Here we ensure TLS records are enqueued to
2364 		 * the work queue in FIFO order.
2365 		 *
2366 		 * tls->next_seqno holds the sequence number of the
2367 		 * next TLS record that should be enqueued to the work
2368 		 * queue.  If this next record is not tls->next_seqno,
2369 		 * it must be a future record, so insert it, sorted by
2370 		 * TLS sequence number, into tls->pending_records and
2371 		 * return.
2372 		 *
2373 		 * If this TLS record matches tls->next_seqno, place
2374 		 * it in the work queue and then check
2375 		 * tls->pending_records to see if any
2376 		 * previously-queued records are now ready for
2377 		 * encryption.
2378 		 */
2379 		if (m->m_epg_seqno != tls->next_seqno) {
2380 			struct mbuf *n, *p;
2381 
2382 			p = NULL;
2383 			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
2384 				if (n->m_epg_seqno > m->m_epg_seqno)
2385 					break;
2386 				p = n;
2387 			}
2388 			if (n == NULL)
2389 				STAILQ_INSERT_TAIL(&tls->pending_records, m,
2390 				    m_epg_stailq);
2391 			else if (p == NULL)
2392 				STAILQ_INSERT_HEAD(&tls->pending_records, m,
2393 				    m_epg_stailq);
2394 			else
2395 				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
2396 				    m_epg_stailq);
2397 			mtx_unlock(&wq->mtx);
2398 			counter_u64_add(ktls_cnt_tx_pending, 1);
2399 			return;
2400 		}
2401 
2402 		tls->next_seqno += ktls_batched_records(m);
2403 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2404 
2405 		while (!STAILQ_EMPTY(&tls->pending_records)) {
2406 			struct mbuf *n;
2407 
2408 			n = STAILQ_FIRST(&tls->pending_records);
2409 			if (n->m_epg_seqno != tls->next_seqno)
2410 				break;
2411 
2412 			queued++;
2413 			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
2414 			tls->next_seqno += ktls_batched_records(n);
2415 			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
2416 		}
2417 		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
2418 	} else
2419 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
2420 
2421 	running = wq->running;
2422 	mtx_unlock(&wq->mtx);
2423 	if (!running)
2424 		wakeup(wq);
2425 	counter_u64_add(ktls_cnt_tx_queued, queued);
2426 }
2427 
2428 /*
2429  * Once a file-backed mbuf (from sendfile) has been encrypted, free
2430  * the pages from the file and replace them with the anonymous pages
2431  * allocated in ktls_encrypt_record().
2432  */
2433 static void
2434 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
2435 {
2436 	int i;
2437 
2438 	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
2439 
2440 	/* Free the old pages. */
2441 	m->m_ext.ext_free(m);
2442 
2443 	/* Replace them with the new pages. */
2444 	if (state->cbuf != NULL) {
2445 		for (i = 0; i < m->m_epg_npgs; i++)
2446 			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
2447 
2448 		/* Contig pages should go back to the cache. */
2449 		m->m_ext.ext_free = ktls_free_mext_contig;
2450 	} else {
2451 		for (i = 0; i < m->m_epg_npgs; i++)
2452 			m->m_epg_pa[i] = state->parray[i];
2453 
2454 		/* Use the basic free routine. */
2455 		m->m_ext.ext_free = mb_free_mext_pgs;
2456 	}
2457 
2458 	/* Pages are now writable. */
2459 	m->m_epg_flags |= EPG_FLAG_ANON;
2460 }
2461 
2462 static __noinline void
2463 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
2464 {
2465 	struct ktls_ocf_encrypt_state state;
2466 	struct ktls_session *tls;
2467 	struct socket *so;
2468 	struct mbuf *m;
2469 	int error, npages, total_pages;
2470 
2471 	so = top->m_epg_so;
2472 	tls = top->m_epg_tls;
2473 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
2474 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2475 #ifdef INVARIANTS
2476 	top->m_epg_so = NULL;
2477 #endif
2478 	total_pages = top->m_epg_enc_cnt;
2479 	npages = 0;
2480 
2481 	/*
2482 	 * Encrypt the TLS records in the chain of mbufs starting with
2483 	 * 'top'.  'total_pages' gives us a total count of pages and is
2484 	 * used to know when we have finished encrypting the TLS
2485 	 * records originally queued with 'top'.
2486 	 *
2487 	 * NB: These mbufs are queued in the socket buffer and
2488 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
2489 	 * socket buffer lock is not held while traversing this chain.
2490 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
2491 	 * pointers should be stable.  However, the 'm_next' of the
2492 	 * last mbuf encrypted is not necessarily NULL.  It can point
2493 	 * to other mbufs appended while 'top' was on the TLS work
2494 	 * queue.
2495 	 *
2496 	 * Each mbuf holds an entire TLS record.
2497 	 */
2498 	error = 0;
2499 	for (m = top; npages != total_pages; m = m->m_next) {
2500 		KASSERT(m->m_epg_tls == tls,
2501 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
2502 		    tls, m->m_epg_tls));
2503 		KASSERT(npages + m->m_epg_npgs <= total_pages,
2504 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
2505 		    total_pages, m));
2506 
2507 		error = ktls_encrypt_record(wq, m, tls, &state);
2508 		if (error) {
2509 			counter_u64_add(ktls_offload_failed_crypto, 1);
2510 			break;
2511 		}
2512 
2513 		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
2514 			ktls_finish_nonanon(m, &state);
2515 
2516 		npages += m->m_epg_nrdy;
2517 
2518 		/*
2519 		 * Drop a reference to the session now that it is no
2520 		 * longer needed.  Existing code depends on encrypted
2521 		 * records having no associated session vs
2522 		 * yet-to-be-encrypted records having an associated
2523 		 * session.
2524 		 */
2525 		m->m_epg_tls = NULL;
2526 		ktls_free(tls);
2527 	}
2528 
2529 	CURVNET_SET(so->so_vnet);
2530 	if (error == 0) {
2531 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2532 	} else {
2533 		so->so_proto->pr_usrreqs->pru_abort(so);
2534 		so->so_error = EIO;
2535 		mb_free_notready(top, total_pages);
2536 	}
2537 
2538 	sorele(so);
2539 	CURVNET_RESTORE();
2540 }
2541 
2542 void
2543 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
2544 {
2545 	struct ktls_session *tls;
2546 	struct socket *so;
2547 	struct mbuf *m;
2548 	int npages;
2549 
2550 	m = state->m;
2551 
2552 	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
2553 		ktls_finish_nonanon(m, state);
2554 
2555 	so = state->so;
2556 	free(state, M_KTLS);
2557 
2558 	/*
2559 	 * Drop a reference to the session now that it is no longer
2560 	 * needed.  Existing code depends on encrypted records having
2561 	 * no associated session vs yet-to-be-encrypted records having
2562 	 * an associated session.
2563 	 */
2564 	tls = m->m_epg_tls;
2565 	m->m_epg_tls = NULL;
2566 	ktls_free(tls);
2567 
2568 	if (error != 0)
2569 		counter_u64_add(ktls_offload_failed_crypto, 1);
2570 
2571 	CURVNET_SET(so->so_vnet);
2572 	npages = m->m_epg_nrdy;
2573 
2574 	if (error == 0) {
2575 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages);
2576 	} else {
2577 		so->so_proto->pr_usrreqs->pru_abort(so);
2578 		so->so_error = EIO;
2579 		mb_free_notready(m, npages);
2580 	}
2581 
2582 	sorele(so);
2583 	CURVNET_RESTORE();
2584 }
2585 
2586 /*
2587  * Similar to ktls_encrypt, but used with asynchronous OCF backends
2588  * (coprocessors) where encryption does not use host CPU resources and
2589  * it can be beneficial to queue more requests than CPUs.
2590  */
2591 static __noinline void
2592 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
2593 {
2594 	struct ktls_ocf_encrypt_state *state;
2595 	struct ktls_session *tls;
2596 	struct socket *so;
2597 	struct mbuf *m, *n;
2598 	int error, mpages, npages, total_pages;
2599 
2600 	so = top->m_epg_so;
2601 	tls = top->m_epg_tls;
2602 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
2603 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
2604 #ifdef INVARIANTS
2605 	top->m_epg_so = NULL;
2606 #endif
2607 	total_pages = top->m_epg_enc_cnt;
2608 	npages = 0;
2609 
2610 	error = 0;
2611 	for (m = top; npages != total_pages; m = n) {
2612 		KASSERT(m->m_epg_tls == tls,
2613 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
2614 		    tls, m->m_epg_tls));
2615 		KASSERT(npages + m->m_epg_npgs <= total_pages,
2616 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
2617 		    total_pages, m));
2618 
2619 		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
2620 		soref(so);
2621 		state->so = so;
2622 		state->m = m;
2623 
2624 		mpages = m->m_epg_nrdy;
2625 		n = m->m_next;
2626 
2627 		error = ktls_encrypt_record(wq, m, tls, state);
2628 		if (error) {
2629 			counter_u64_add(ktls_offload_failed_crypto, 1);
2630 			free(state, M_KTLS);
2631 			CURVNET_SET(so->so_vnet);
2632 			sorele(so);
2633 			CURVNET_RESTORE();
2634 			break;
2635 		}
2636 
2637 		npages += mpages;
2638 	}
2639 
2640 	CURVNET_SET(so->so_vnet);
2641 	if (error != 0) {
2642 		so->so_proto->pr_usrreqs->pru_abort(so);
2643 		so->so_error = EIO;
2644 		mb_free_notready(m, total_pages - npages);
2645 	}
2646 
2647 	sorele(so);
2648 	CURVNET_RESTORE();
2649 }
2650 
2651 static int
2652 ktls_bind_domain(int domain)
2653 {
2654 	int error;
2655 
2656 	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
2657 	if (error != 0)
2658 		return (error);
2659 	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
2660 	return (0);
2661 }
2662 
2663 static void
2664 ktls_alloc_thread(void *ctx)
2665 {
2666 	struct ktls_domain_info *ktls_domain = ctx;
2667 	struct ktls_alloc_thread *sc = &ktls_domain->alloc_td;
2668 	void **buf;
2669 	struct sysctl_oid *oid;
2670 	char name[80];
2671 	int domain, error, i, nbufs;
2672 
2673 	domain = ktls_domain - ktls_domains;
2674 	if (bootverbose)
2675 		printf("Starting KTLS alloc thread for domain %d\n", domain);
2676 	error = ktls_bind_domain(domain);
2677 	if (error)
2678 		printf("Unable to bind KTLS alloc thread for domain %d: error %d\n",
2679 		    domain, error);
2680 	snprintf(name, sizeof(name), "domain%d", domain);
2681 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
2682 	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2683 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs",
2684 	    CTLFLAG_RD,  &sc->allocs, 0, "buffers allocated");
2685 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
2686 	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
2687 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
2688 	    CTLFLAG_RD,  &sc->running, 0, "thread running");
2689 
2690 	buf = NULL;
2691 	nbufs = 0;
2692 	for (;;) {
2693 		atomic_store_int(&sc->running, 0);
2694 		tsleep(sc, PZERO | PNOLOCK, "-",  0);
2695 		atomic_store_int(&sc->running, 1);
2696 		sc->wakeups++;
2697 		if (nbufs != ktls_max_alloc) {
2698 			free(buf, M_KTLS);
2699 			nbufs = atomic_load_int(&ktls_max_alloc);
2700 			buf = malloc(sizeof(void *) * nbufs, M_KTLS,
2701 			    M_WAITOK | M_ZERO);
2702 		}
2703 		/*
2704 		 * Below we allocate nbufs with different allocation
2705 		 * flags than we use when allocating normally during
2706 		 * encryption in the ktls worker thread.  We specify
2707 		 * M_NORECLAIM in the worker thread. However, we omit
2708 		 * that flag here and add M_WAITOK so that the VM
2709 		 * system is permitted to perform expensive work to
2710 		 * defragment memory.  We do this here, as it does not
2711 		 * matter if this thread blocks.  If we block a ktls
2712 		 * worker thread, we risk developing backlogs of
2713 		 * buffers to be encrypted, leading to surges of
2714 		 * traffic and potential NIC output drops.
2715 		 */
2716 		for (i = 0; i < nbufs; i++) {
2717 			buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK);
2718 			sc->allocs++;
2719 		}
2720 		for (i = 0; i < nbufs; i++) {
2721 			uma_zfree(ktls_buffer_zone, buf[i]);
2722 			buf[i] = NULL;
2723 		}
2724 	}
2725 }
2726 
2727 static void
2728 ktls_work_thread(void *ctx)
2729 {
2730 	struct ktls_wq *wq = ctx;
2731 	struct mbuf *m, *n;
2732 	struct socket *so, *son;
2733 	STAILQ_HEAD(, mbuf) local_m_head;
2734 	STAILQ_HEAD(, socket) local_so_head;
2735 	int cpu;
2736 
2737 	cpu = wq - ktls_wq;
2738 	if (bootverbose)
2739 		printf("Starting KTLS worker thread for CPU %d\n", cpu);
2740 
2741 	/*
2742 	 * Bind to a core.  If ktls_bind_threads is > 1, then
2743 	 * we bind to the NUMA domain instead.
2744 	 */
2745 	if (ktls_bind_threads) {
2746 		int error;
2747 
2748 		if (ktls_bind_threads > 1) {
2749 			struct pcpu *pc = pcpu_find(cpu);
2750 
2751 			error = ktls_bind_domain(pc->pc_domain);
2752 		} else {
2753 			cpuset_t mask;
2754 
2755 			CPU_SETOF(cpu, &mask);
2756 			error = cpuset_setthread(curthread->td_tid, &mask);
2757 		}
2758 		if (error)
2759 			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
2760 				cpu, error);
2761 	}
2762 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2763 	fpu_kern_thread(0);
2764 #endif
2765 	for (;;) {
2766 		mtx_lock(&wq->mtx);
2767 		while (STAILQ_EMPTY(&wq->m_head) &&
2768 		    STAILQ_EMPTY(&wq->so_head)) {
2769 			wq->running = false;
2770 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2771 			wq->running = true;
2772 		}
2773 
2774 		STAILQ_INIT(&local_m_head);
2775 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
2776 		STAILQ_INIT(&local_so_head);
2777 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
2778 		mtx_unlock(&wq->mtx);
2779 
2780 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2781 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
2782 				ktls_free(m->m_epg_tls);
2783 				m_free_raw(m);
2784 			} else {
2785 				if (m->m_epg_tls->sync_dispatch)
2786 					ktls_encrypt(wq, m);
2787 				else
2788 					ktls_encrypt_async(wq, m);
2789 				counter_u64_add(ktls_cnt_tx_queued, -1);
2790 			}
2791 		}
2792 
2793 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2794 			ktls_decrypt(so);
2795 			counter_u64_add(ktls_cnt_rx_queued, -1);
2796 		}
2797 	}
2798 }
2799 
2800 #if defined(INET) || defined(INET6)
2801 static void
2802 ktls_disable_ifnet_help(void *context, int pending __unused)
2803 {
2804 	struct ktls_session *tls;
2805 	struct inpcb *inp;
2806 	struct tcpcb *tp;
2807 	struct socket *so;
2808 	int err;
2809 
2810 	tls = context;
2811 	inp = tls->inp;
2812 	if (inp == NULL)
2813 		return;
2814 	INP_WLOCK(inp);
2815 	so = inp->inp_socket;
2816 	MPASS(so != NULL);
2817 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
2818 		goto out;
2819 	}
2820 
2821 	if (so->so_snd.sb_tls_info != NULL)
2822 		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
2823 	else
2824 		err = ENXIO;
2825 	if (err == 0) {
2826 		counter_u64_add(ktls_ifnet_disable_ok, 1);
2827 		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
2828 		if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 &&
2829 		    (tp = intotcpcb(inp)) != NULL &&
2830 		    tp->t_fb->tfb_hwtls_change != NULL)
2831 			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
2832 	} else {
2833 		counter_u64_add(ktls_ifnet_disable_fail, 1);
2834 	}
2835 
2836 out:
2837 	sorele(so);
2838 	if (!in_pcbrele_wlocked(inp))
2839 		INP_WUNLOCK(inp);
2840 	ktls_free(tls);
2841 }
2842 
2843 /*
2844  * Called when re-transmits are becoming a substantial portion of the
2845  * sends on this connection.  When this happens, we transition the
2846  * connection to software TLS.  This is needed because most inline TLS
2847  * NICs keep crypto state only for in-order transmits.  This means
2848  * that to handle a TCP rexmit (which is out-of-order), the NIC must
2849  * re-DMA the entire TLS record up to and including the current
2850  * segment.  This means that when re-transmitting the last ~1448 byte
2851  * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
2852  * of magnitude more data than we are sending.  This can cause the
2853  * PCIe link to saturate well before the network, which can cause
2854  * output drops, and a general loss of capacity.
2855  */
2856 void
2857 ktls_disable_ifnet(void *arg)
2858 {
2859 	struct tcpcb *tp;
2860 	struct inpcb *inp;
2861 	struct socket *so;
2862 	struct ktls_session *tls;
2863 
2864 	tp = arg;
2865 	inp = tp->t_inpcb;
2866 	INP_WLOCK_ASSERT(inp);
2867 	so = inp->inp_socket;
2868 	SOCK_LOCK(so);
2869 	tls = so->so_snd.sb_tls_info;
2870 	if (tls->disable_ifnet_pending) {
2871 		SOCK_UNLOCK(so);
2872 		return;
2873 	}
2874 
2875 	/*
2876 	 * note that disable_ifnet_pending is never cleared; disabling
2877 	 * ifnet can only be done once per session, so we never want
2878 	 * to do it again
2879 	 */
2880 
2881 	(void)ktls_hold(tls);
2882 	in_pcbref(inp);
2883 	soref(so);
2884 	tls->disable_ifnet_pending = true;
2885 	tls->inp = inp;
2886 	SOCK_UNLOCK(so);
2887 	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
2888 	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
2889 }
2890 #endif
2891