1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/ktls.h> 41 #include <sys/lock.h> 42 #include <sys/mbuf.h> 43 #include <sys/mutex.h> 44 #include <sys/rmlock.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/refcount.h> 48 #include <sys/smp.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/taskqueue.h> 53 #include <sys/kthread.h> 54 #include <sys/uio.h> 55 #include <sys/vmmeter.h> 56 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 57 #include <machine/pcb.h> 58 #endif 59 #include <machine/vmparam.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #ifdef RSS 63 #include <net/netisr.h> 64 #include <net/rss_config.h> 65 #endif 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #if defined(INET) || defined(INET6) 69 #include <netinet/in.h> 70 #include <netinet/in_pcb.h> 71 #endif 72 #include <netinet/tcp_var.h> 73 #ifdef TCP_OFFLOAD 74 #include <netinet/tcp_offload.h> 75 #endif 76 #include <opencrypto/xform.h> 77 #include <vm/uma_dbg.h> 78 #include <vm/vm.h> 79 #include <vm/vm_pageout.h> 80 #include <vm/vm_page.h> 81 82 struct ktls_wq { 83 struct mtx mtx; 84 STAILQ_HEAD(, mbuf) m_head; 85 STAILQ_HEAD(, socket) so_head; 86 bool running; 87 int lastallocfail; 88 } __aligned(CACHE_LINE_SIZE); 89 90 struct ktls_domain_info { 91 int count; 92 int cpu[MAXCPU]; 93 }; 94 95 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 96 static struct ktls_wq *ktls_wq; 97 static struct proc *ktls_proc; 98 static uma_zone_t ktls_session_zone; 99 static uma_zone_t ktls_buffer_zone; 100 static uint16_t ktls_cpuid_lookup[MAXCPU]; 101 102 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload"); 104 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 105 "Kernel TLS offload stats"); 106 107 #ifdef RSS 108 static int ktls_bind_threads = 1; 109 #else 110 static int ktls_bind_threads; 111 #endif 112 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 113 &ktls_bind_threads, 0, 114 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 115 116 static u_int ktls_maxlen = 16384; 117 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 118 &ktls_maxlen, 0, "Maximum TLS record size"); 119 120 static int ktls_number_threads; 121 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 122 &ktls_number_threads, 0, 123 "Number of TLS threads in thread-pool"); 124 125 unsigned int ktls_ifnet_max_rexmit_pct = 2; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 127 &ktls_ifnet_max_rexmit_pct, 2, 128 "Max percent bytes retransmitted before ifnet TLS is disabled"); 129 130 static bool ktls_offload_enable; 131 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 132 &ktls_offload_enable, 0, 133 "Enable support for kernel TLS offload"); 134 135 static bool ktls_cbc_enable = true; 136 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 137 &ktls_cbc_enable, 1, 138 "Enable Support of AES-CBC crypto for kernel TLS"); 139 140 static bool ktls_sw_buffer_cache = true; 141 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 142 &ktls_sw_buffer_cache, 1, 143 "Enable caching of output buffers for SW encryption"); 144 145 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 146 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 147 &ktls_tasks_active, "Number of active tasks"); 148 149 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 151 &ktls_cnt_tx_queued, 152 "Number of TLS records in queue to tasks for SW encryption"); 153 154 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 155 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 156 &ktls_cnt_rx_queued, 157 "Number of TLS sockets in queue to tasks for SW decryption"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 161 CTLFLAG_RD, &ktls_offload_total, 162 "Total successful TLS setups (parameters set)"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 166 CTLFLAG_RD, &ktls_offload_enable_calls, 167 "Total number of TLS enable calls made"); 168 169 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 171 &ktls_offload_active, "Total Active TLS sessions"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 175 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 176 177 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 179 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 180 181 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 183 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 184 185 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 186 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 187 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 188 189 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 190 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 191 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 195 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 199 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 200 201 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 202 "Software TLS session stats"); 203 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 204 "Hardware (ifnet) TLS session stats"); 205 #ifdef TCP_OFFLOAD 206 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 207 "TOE TLS session stats"); 208 #endif 209 210 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 211 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 212 "Active number of software TLS sessions using AES-CBC"); 213 214 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 216 "Active number of software TLS sessions using AES-GCM"); 217 218 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 219 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 220 &ktls_sw_chacha20, 221 "Active number of software TLS sessions using Chacha20-Poly1305"); 222 223 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 224 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 225 &ktls_ifnet_cbc, 226 "Active number of ifnet TLS sessions using AES-CBC"); 227 228 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 229 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 230 &ktls_ifnet_gcm, 231 "Active number of ifnet TLS sessions using AES-GCM"); 232 233 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 234 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 235 &ktls_ifnet_chacha20, 236 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 240 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 244 &ktls_ifnet_reset_dropped, 245 "TLS sessions dropped after failing to update ifnet send tag"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 249 &ktls_ifnet_reset_failed, 250 "TLS sessions that failed to allocate a new ifnet send tag"); 251 252 static int ktls_ifnet_permitted; 253 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 254 &ktls_ifnet_permitted, 1, 255 "Whether to permit hardware (ifnet) TLS sessions"); 256 257 #ifdef TCP_OFFLOAD 258 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 259 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 260 &ktls_toe_cbc, 261 "Active number of TOE TLS sessions using AES-CBC"); 262 263 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 264 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 265 &ktls_toe_gcm, 266 "Active number of TOE TLS sessions using AES-GCM"); 267 268 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 269 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 270 &ktls_toe_chacha20, 271 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 272 #endif 273 274 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 275 276 static void ktls_cleanup(struct ktls_session *tls); 277 #if defined(INET) || defined(INET6) 278 static void ktls_reset_send_tag(void *context, int pending); 279 #endif 280 static void ktls_work_thread(void *ctx); 281 282 #if defined(INET) || defined(INET6) 283 static u_int 284 ktls_get_cpu(struct socket *so) 285 { 286 struct inpcb *inp; 287 #ifdef NUMA 288 struct ktls_domain_info *di; 289 #endif 290 u_int cpuid; 291 292 inp = sotoinpcb(so); 293 #ifdef RSS 294 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 295 if (cpuid != NETISR_CPUID_NONE) 296 return (cpuid); 297 #endif 298 /* 299 * Just use the flowid to shard connections in a repeatable 300 * fashion. Note that TLS 1.0 sessions rely on the 301 * serialization provided by having the same connection use 302 * the same queue. 303 */ 304 #ifdef NUMA 305 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 306 di = &ktls_domains[inp->inp_numa_domain]; 307 cpuid = di->cpu[inp->inp_flowid % di->count]; 308 } else 309 #endif 310 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 311 return (cpuid); 312 } 313 #endif 314 315 static int 316 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 317 { 318 vm_page_t m; 319 int i; 320 321 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 322 ("%s: ktls max length %d is not page size-aligned", 323 __func__, ktls_maxlen)); 324 325 for (i = 0; i < count; i++) { 326 m = vm_page_alloc_contig_domain(NULL, 0, domain, 327 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 328 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 329 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 330 VM_MEMATTR_DEFAULT); 331 if (m == NULL) 332 break; 333 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 334 } 335 return (i); 336 } 337 338 static void 339 ktls_buffer_release(void *arg __unused, void **store, int count) 340 { 341 vm_page_t m; 342 int i, j; 343 344 for (i = 0; i < count; i++) { 345 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 346 for (j = 0; j < atop(ktls_maxlen); j++) { 347 (void)vm_page_unwire_noq(m + j); 348 vm_page_free(m + j); 349 } 350 } 351 } 352 353 static void 354 ktls_free_mext_contig(struct mbuf *m) 355 { 356 M_ASSERTEXTPG(m); 357 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 358 } 359 360 static void 361 ktls_init(void *dummy __unused) 362 { 363 struct thread *td; 364 struct pcpu *pc; 365 cpuset_t mask; 366 int count, domain, error, i; 367 368 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 369 M_WAITOK | M_ZERO); 370 371 ktls_session_zone = uma_zcreate("ktls_session", 372 sizeof(struct ktls_session), 373 NULL, NULL, NULL, NULL, 374 UMA_ALIGN_CACHE, 0); 375 376 if (ktls_sw_buffer_cache) { 377 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 378 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 379 ktls_buffer_import, ktls_buffer_release, NULL, 380 UMA_ZONE_FIRSTTOUCH); 381 } 382 383 /* 384 * Initialize the workqueues to run the TLS work. We create a 385 * work queue for each CPU. 386 */ 387 CPU_FOREACH(i) { 388 STAILQ_INIT(&ktls_wq[i].m_head); 389 STAILQ_INIT(&ktls_wq[i].so_head); 390 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 391 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 392 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 393 if (error) 394 panic("Can't add KTLS thread %d error %d", i, error); 395 396 /* 397 * Bind threads to cores. If ktls_bind_threads is > 398 * 1, then we bind to the NUMA domain. 399 */ 400 if (ktls_bind_threads) { 401 if (ktls_bind_threads > 1) { 402 pc = pcpu_find(i); 403 domain = pc->pc_domain; 404 CPU_COPY(&cpuset_domain[domain], &mask); 405 count = ktls_domains[domain].count; 406 ktls_domains[domain].cpu[count] = i; 407 ktls_domains[domain].count++; 408 } else { 409 CPU_SETOF(i, &mask); 410 } 411 error = cpuset_setthread(td->td_tid, &mask); 412 if (error) 413 panic( 414 "Unable to bind KTLS thread for CPU %d error %d", 415 i, error); 416 } 417 ktls_cpuid_lookup[ktls_number_threads] = i; 418 ktls_number_threads++; 419 } 420 421 /* 422 * If we somehow have an empty domain, fall back to choosing 423 * among all KTLS threads. 424 */ 425 if (ktls_bind_threads > 1) { 426 for (i = 0; i < vm_ndomains; i++) { 427 if (ktls_domains[i].count == 0) { 428 ktls_bind_threads = 1; 429 break; 430 } 431 } 432 } 433 434 if (bootverbose) 435 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 436 } 437 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 438 439 #if defined(INET) || defined(INET6) 440 static int 441 ktls_create_session(struct socket *so, struct tls_enable *en, 442 struct ktls_session **tlsp) 443 { 444 struct ktls_session *tls; 445 int error; 446 447 /* Only TLS 1.0 - 1.3 are supported. */ 448 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 449 return (EINVAL); 450 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 451 en->tls_vminor > TLS_MINOR_VER_THREE) 452 return (EINVAL); 453 454 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 455 return (EINVAL); 456 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 457 return (EINVAL); 458 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 459 return (EINVAL); 460 461 /* All supported algorithms require a cipher key. */ 462 if (en->cipher_key_len == 0) 463 return (EINVAL); 464 465 /* No flags are currently supported. */ 466 if (en->flags != 0) 467 return (EINVAL); 468 469 /* Common checks for supported algorithms. */ 470 switch (en->cipher_algorithm) { 471 case CRYPTO_AES_NIST_GCM_16: 472 /* 473 * auth_algorithm isn't used, but permit GMAC values 474 * for compatibility. 475 */ 476 switch (en->auth_algorithm) { 477 case 0: 478 #ifdef COMPAT_FREEBSD12 479 /* XXX: Really 13.0-current COMPAT. */ 480 case CRYPTO_AES_128_NIST_GMAC: 481 case CRYPTO_AES_192_NIST_GMAC: 482 case CRYPTO_AES_256_NIST_GMAC: 483 #endif 484 break; 485 default: 486 return (EINVAL); 487 } 488 if (en->auth_key_len != 0) 489 return (EINVAL); 490 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 491 en->iv_len != TLS_AEAD_GCM_LEN) || 492 (en->tls_vminor == TLS_MINOR_VER_THREE && 493 en->iv_len != TLS_1_3_GCM_IV_LEN)) 494 return (EINVAL); 495 break; 496 case CRYPTO_AES_CBC: 497 switch (en->auth_algorithm) { 498 case CRYPTO_SHA1_HMAC: 499 /* 500 * TLS 1.0 requires an implicit IV. TLS 1.1+ 501 * all use explicit IVs. 502 */ 503 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 504 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 505 return (EINVAL); 506 break; 507 } 508 509 /* FALLTHROUGH */ 510 case CRYPTO_SHA2_256_HMAC: 511 case CRYPTO_SHA2_384_HMAC: 512 /* Ignore any supplied IV. */ 513 en->iv_len = 0; 514 break; 515 default: 516 return (EINVAL); 517 } 518 if (en->auth_key_len == 0) 519 return (EINVAL); 520 break; 521 case CRYPTO_CHACHA20_POLY1305: 522 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 523 return (EINVAL); 524 if (en->tls_vminor != TLS_MINOR_VER_TWO && 525 en->tls_vminor != TLS_MINOR_VER_THREE) 526 return (EINVAL); 527 if (en->iv_len != TLS_CHACHA20_IV_LEN) 528 return (EINVAL); 529 break; 530 default: 531 return (EINVAL); 532 } 533 534 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 535 536 counter_u64_add(ktls_offload_active, 1); 537 538 refcount_init(&tls->refcount, 1); 539 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 540 541 tls->wq_index = ktls_get_cpu(so); 542 543 tls->params.cipher_algorithm = en->cipher_algorithm; 544 tls->params.auth_algorithm = en->auth_algorithm; 545 tls->params.tls_vmajor = en->tls_vmajor; 546 tls->params.tls_vminor = en->tls_vminor; 547 tls->params.flags = en->flags; 548 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 549 550 /* Set the header and trailer lengths. */ 551 tls->params.tls_hlen = sizeof(struct tls_record_layer); 552 switch (en->cipher_algorithm) { 553 case CRYPTO_AES_NIST_GCM_16: 554 /* 555 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 556 * nonce. TLS 1.3 uses a 12 byte implicit IV. 557 */ 558 if (en->tls_vminor < TLS_MINOR_VER_THREE) 559 tls->params.tls_hlen += sizeof(uint64_t); 560 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 561 tls->params.tls_bs = 1; 562 break; 563 case CRYPTO_AES_CBC: 564 switch (en->auth_algorithm) { 565 case CRYPTO_SHA1_HMAC: 566 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 567 /* Implicit IV, no nonce. */ 568 } else { 569 tls->params.tls_hlen += AES_BLOCK_LEN; 570 } 571 tls->params.tls_tlen = AES_BLOCK_LEN + 572 SHA1_HASH_LEN; 573 break; 574 case CRYPTO_SHA2_256_HMAC: 575 tls->params.tls_hlen += AES_BLOCK_LEN; 576 tls->params.tls_tlen = AES_BLOCK_LEN + 577 SHA2_256_HASH_LEN; 578 break; 579 case CRYPTO_SHA2_384_HMAC: 580 tls->params.tls_hlen += AES_BLOCK_LEN; 581 tls->params.tls_tlen = AES_BLOCK_LEN + 582 SHA2_384_HASH_LEN; 583 break; 584 default: 585 panic("invalid hmac"); 586 } 587 tls->params.tls_bs = AES_BLOCK_LEN; 588 break; 589 case CRYPTO_CHACHA20_POLY1305: 590 /* 591 * Chacha20 uses a 12 byte implicit IV. 592 */ 593 tls->params.tls_tlen = POLY1305_HASH_LEN; 594 tls->params.tls_bs = 1; 595 break; 596 default: 597 panic("invalid cipher"); 598 } 599 600 /* 601 * TLS 1.3 includes optional padding which we do not support, 602 * and also puts the "real" record type at the end of the 603 * encrypted data. 604 */ 605 if (en->tls_vminor == TLS_MINOR_VER_THREE) 606 tls->params.tls_tlen += sizeof(uint8_t); 607 608 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 609 ("TLS header length too long: %d", tls->params.tls_hlen)); 610 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 611 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 612 613 if (en->auth_key_len != 0) { 614 tls->params.auth_key_len = en->auth_key_len; 615 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 616 M_WAITOK); 617 error = copyin(en->auth_key, tls->params.auth_key, 618 en->auth_key_len); 619 if (error) 620 goto out; 621 } 622 623 tls->params.cipher_key_len = en->cipher_key_len; 624 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 625 error = copyin(en->cipher_key, tls->params.cipher_key, 626 en->cipher_key_len); 627 if (error) 628 goto out; 629 630 /* 631 * This holds the implicit portion of the nonce for AEAD 632 * ciphers and the initial implicit IV for TLS 1.0. The 633 * explicit portions of the IV are generated in ktls_frame(). 634 */ 635 if (en->iv_len != 0) { 636 tls->params.iv_len = en->iv_len; 637 error = copyin(en->iv, tls->params.iv, en->iv_len); 638 if (error) 639 goto out; 640 641 /* 642 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 643 * counter to generate unique explicit IVs. 644 * 645 * Store this counter in the last 8 bytes of the IV 646 * array so that it is 8-byte aligned. 647 */ 648 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 649 en->tls_vminor == TLS_MINOR_VER_TWO) 650 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 651 } 652 653 *tlsp = tls; 654 return (0); 655 656 out: 657 ktls_cleanup(tls); 658 return (error); 659 } 660 661 static struct ktls_session * 662 ktls_clone_session(struct ktls_session *tls) 663 { 664 struct ktls_session *tls_new; 665 666 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 667 668 counter_u64_add(ktls_offload_active, 1); 669 670 refcount_init(&tls_new->refcount, 1); 671 672 /* Copy fields from existing session. */ 673 tls_new->params = tls->params; 674 tls_new->wq_index = tls->wq_index; 675 676 /* Deep copy keys. */ 677 if (tls_new->params.auth_key != NULL) { 678 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 679 M_KTLS, M_WAITOK); 680 memcpy(tls_new->params.auth_key, tls->params.auth_key, 681 tls->params.auth_key_len); 682 } 683 684 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 685 M_WAITOK); 686 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 687 tls->params.cipher_key_len); 688 689 return (tls_new); 690 } 691 #endif 692 693 static void 694 ktls_cleanup(struct ktls_session *tls) 695 { 696 697 counter_u64_add(ktls_offload_active, -1); 698 switch (tls->mode) { 699 case TCP_TLS_MODE_SW: 700 switch (tls->params.cipher_algorithm) { 701 case CRYPTO_AES_CBC: 702 counter_u64_add(ktls_sw_cbc, -1); 703 break; 704 case CRYPTO_AES_NIST_GCM_16: 705 counter_u64_add(ktls_sw_gcm, -1); 706 break; 707 case CRYPTO_CHACHA20_POLY1305: 708 counter_u64_add(ktls_sw_chacha20, -1); 709 break; 710 } 711 ktls_ocf_free(tls); 712 break; 713 case TCP_TLS_MODE_IFNET: 714 switch (tls->params.cipher_algorithm) { 715 case CRYPTO_AES_CBC: 716 counter_u64_add(ktls_ifnet_cbc, -1); 717 break; 718 case CRYPTO_AES_NIST_GCM_16: 719 counter_u64_add(ktls_ifnet_gcm, -1); 720 break; 721 case CRYPTO_CHACHA20_POLY1305: 722 counter_u64_add(ktls_ifnet_chacha20, -1); 723 break; 724 } 725 if (tls->snd_tag != NULL) 726 m_snd_tag_rele(tls->snd_tag); 727 break; 728 #ifdef TCP_OFFLOAD 729 case TCP_TLS_MODE_TOE: 730 switch (tls->params.cipher_algorithm) { 731 case CRYPTO_AES_CBC: 732 counter_u64_add(ktls_toe_cbc, -1); 733 break; 734 case CRYPTO_AES_NIST_GCM_16: 735 counter_u64_add(ktls_toe_gcm, -1); 736 break; 737 case CRYPTO_CHACHA20_POLY1305: 738 counter_u64_add(ktls_toe_chacha20, -1); 739 break; 740 } 741 break; 742 #endif 743 } 744 if (tls->params.auth_key != NULL) { 745 zfree(tls->params.auth_key, M_KTLS); 746 tls->params.auth_key = NULL; 747 tls->params.auth_key_len = 0; 748 } 749 if (tls->params.cipher_key != NULL) { 750 zfree(tls->params.cipher_key, M_KTLS); 751 tls->params.cipher_key = NULL; 752 tls->params.cipher_key_len = 0; 753 } 754 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 755 } 756 757 #if defined(INET) || defined(INET6) 758 759 #ifdef TCP_OFFLOAD 760 static int 761 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 762 { 763 struct inpcb *inp; 764 struct tcpcb *tp; 765 int error; 766 767 inp = so->so_pcb; 768 INP_WLOCK(inp); 769 if (inp->inp_flags2 & INP_FREED) { 770 INP_WUNLOCK(inp); 771 return (ECONNRESET); 772 } 773 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 774 INP_WUNLOCK(inp); 775 return (ECONNRESET); 776 } 777 if (inp->inp_socket == NULL) { 778 INP_WUNLOCK(inp); 779 return (ECONNRESET); 780 } 781 tp = intotcpcb(inp); 782 if (!(tp->t_flags & TF_TOE)) { 783 INP_WUNLOCK(inp); 784 return (EOPNOTSUPP); 785 } 786 787 error = tcp_offload_alloc_tls_session(tp, tls, direction); 788 INP_WUNLOCK(inp); 789 if (error == 0) { 790 tls->mode = TCP_TLS_MODE_TOE; 791 switch (tls->params.cipher_algorithm) { 792 case CRYPTO_AES_CBC: 793 counter_u64_add(ktls_toe_cbc, 1); 794 break; 795 case CRYPTO_AES_NIST_GCM_16: 796 counter_u64_add(ktls_toe_gcm, 1); 797 break; 798 case CRYPTO_CHACHA20_POLY1305: 799 counter_u64_add(ktls_toe_chacha20, 1); 800 break; 801 } 802 } 803 return (error); 804 } 805 #endif 806 807 /* 808 * Common code used when first enabling ifnet TLS on a connection or 809 * when allocating a new ifnet TLS session due to a routing change. 810 * This function allocates a new TLS send tag on whatever interface 811 * the connection is currently routed over. 812 */ 813 static int 814 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 815 struct m_snd_tag **mstp) 816 { 817 union if_snd_tag_alloc_params params; 818 struct ifnet *ifp; 819 struct nhop_object *nh; 820 struct tcpcb *tp; 821 int error; 822 823 INP_RLOCK(inp); 824 if (inp->inp_flags2 & INP_FREED) { 825 INP_RUNLOCK(inp); 826 return (ECONNRESET); 827 } 828 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 829 INP_RUNLOCK(inp); 830 return (ECONNRESET); 831 } 832 if (inp->inp_socket == NULL) { 833 INP_RUNLOCK(inp); 834 return (ECONNRESET); 835 } 836 tp = intotcpcb(inp); 837 838 /* 839 * Check administrative controls on ifnet TLS to determine if 840 * ifnet TLS should be denied. 841 * 842 * - Always permit 'force' requests. 843 * - ktls_ifnet_permitted == 0: always deny. 844 */ 845 if (!force && ktls_ifnet_permitted == 0) { 846 INP_RUNLOCK(inp); 847 return (ENXIO); 848 } 849 850 /* 851 * XXX: Use the cached route in the inpcb to find the 852 * interface. This should perhaps instead use 853 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 854 * enabled after a connection has completed key negotiation in 855 * userland, the cached route will be present in practice. 856 */ 857 nh = inp->inp_route.ro_nh; 858 if (nh == NULL) { 859 INP_RUNLOCK(inp); 860 return (ENXIO); 861 } 862 ifp = nh->nh_ifp; 863 if_ref(ifp); 864 865 /* 866 * Allocate a TLS + ratelimit tag if the connection has an 867 * existing pacing rate. 868 */ 869 if (tp->t_pacing_rate != -1 && 870 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 871 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 872 params.tls_rate_limit.inp = inp; 873 params.tls_rate_limit.tls = tls; 874 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 875 } else { 876 params.hdr.type = IF_SND_TAG_TYPE_TLS; 877 params.tls.inp = inp; 878 params.tls.tls = tls; 879 } 880 params.hdr.flowid = inp->inp_flowid; 881 params.hdr.flowtype = inp->inp_flowtype; 882 params.hdr.numa_domain = inp->inp_numa_domain; 883 INP_RUNLOCK(inp); 884 885 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 886 error = EOPNOTSUPP; 887 goto out; 888 } 889 if (inp->inp_vflag & INP_IPV6) { 890 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 891 error = EOPNOTSUPP; 892 goto out; 893 } 894 } else { 895 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 896 error = EOPNOTSUPP; 897 goto out; 898 } 899 } 900 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 901 out: 902 if_rele(ifp); 903 return (error); 904 } 905 906 static int 907 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 908 { 909 struct m_snd_tag *mst; 910 int error; 911 912 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 913 if (error == 0) { 914 tls->mode = TCP_TLS_MODE_IFNET; 915 tls->snd_tag = mst; 916 switch (tls->params.cipher_algorithm) { 917 case CRYPTO_AES_CBC: 918 counter_u64_add(ktls_ifnet_cbc, 1); 919 break; 920 case CRYPTO_AES_NIST_GCM_16: 921 counter_u64_add(ktls_ifnet_gcm, 1); 922 break; 923 case CRYPTO_CHACHA20_POLY1305: 924 counter_u64_add(ktls_ifnet_chacha20, 1); 925 break; 926 } 927 } 928 return (error); 929 } 930 931 static int 932 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 933 { 934 int error; 935 936 error = ktls_ocf_try(so, tls, direction); 937 if (error) 938 return (error); 939 tls->mode = TCP_TLS_MODE_SW; 940 switch (tls->params.cipher_algorithm) { 941 case CRYPTO_AES_CBC: 942 counter_u64_add(ktls_sw_cbc, 1); 943 break; 944 case CRYPTO_AES_NIST_GCM_16: 945 counter_u64_add(ktls_sw_gcm, 1); 946 break; 947 case CRYPTO_CHACHA20_POLY1305: 948 counter_u64_add(ktls_sw_chacha20, 1); 949 break; 950 } 951 return (0); 952 } 953 954 /* 955 * KTLS RX stores data in the socket buffer as a list of TLS records, 956 * where each record is stored as a control message containg the TLS 957 * header followed by data mbufs containing the decrypted data. This 958 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 959 * both encrypted and decrypted data. TLS records decrypted by a NIC 960 * should be queued to the socket buffer as records, but encrypted 961 * data which needs to be decrypted by software arrives as a stream of 962 * regular mbufs which need to be converted. In addition, there may 963 * already be pending encrypted data in the socket buffer when KTLS RX 964 * is enabled. 965 * 966 * To manage not-yet-decrypted data for KTLS RX, the following scheme 967 * is used: 968 * 969 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 970 * 971 * - ktls_check_rx checks this chain of mbufs reading the TLS header 972 * from the first mbuf. Once all of the data for that TLS record is 973 * queued, the socket is queued to a worker thread. 974 * 975 * - The worker thread calls ktls_decrypt to decrypt TLS records in 976 * the TLS chain. Each TLS record is detached from the TLS chain, 977 * decrypted, and inserted into the regular socket buffer chain as 978 * record starting with a control message holding the TLS header and 979 * a chain of mbufs holding the encrypted data. 980 */ 981 982 static void 983 sb_mark_notready(struct sockbuf *sb) 984 { 985 struct mbuf *m; 986 987 m = sb->sb_mb; 988 sb->sb_mtls = m; 989 sb->sb_mb = NULL; 990 sb->sb_mbtail = NULL; 991 sb->sb_lastrecord = NULL; 992 for (; m != NULL; m = m->m_next) { 993 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 994 __func__)); 995 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 996 __func__)); 997 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 998 __func__)); 999 m->m_flags |= M_NOTREADY; 1000 sb->sb_acc -= m->m_len; 1001 sb->sb_tlscc += m->m_len; 1002 sb->sb_mtlstail = m; 1003 } 1004 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1005 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1006 sb->sb_ccc)); 1007 } 1008 1009 int 1010 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1011 { 1012 struct ktls_session *tls; 1013 int error; 1014 1015 if (!ktls_offload_enable) 1016 return (ENOTSUP); 1017 if (SOLISTENING(so)) 1018 return (EINVAL); 1019 1020 counter_u64_add(ktls_offload_enable_calls, 1); 1021 1022 /* 1023 * This should always be true since only the TCP socket option 1024 * invokes this function. 1025 */ 1026 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1027 return (EINVAL); 1028 1029 /* 1030 * XXX: Don't overwrite existing sessions. We should permit 1031 * this to support rekeying in the future. 1032 */ 1033 if (so->so_rcv.sb_tls_info != NULL) 1034 return (EALREADY); 1035 1036 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1037 return (ENOTSUP); 1038 1039 /* TLS 1.3 is not yet supported. */ 1040 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1041 en->tls_vminor == TLS_MINOR_VER_THREE) 1042 return (ENOTSUP); 1043 1044 error = ktls_create_session(so, en, &tls); 1045 if (error) 1046 return (error); 1047 1048 #ifdef TCP_OFFLOAD 1049 error = ktls_try_toe(so, tls, KTLS_RX); 1050 if (error) 1051 #endif 1052 error = ktls_try_sw(so, tls, KTLS_RX); 1053 1054 if (error) { 1055 ktls_cleanup(tls); 1056 return (error); 1057 } 1058 1059 /* Mark the socket as using TLS offload. */ 1060 SOCKBUF_LOCK(&so->so_rcv); 1061 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1062 so->so_rcv.sb_tls_info = tls; 1063 so->so_rcv.sb_flags |= SB_TLS_RX; 1064 1065 /* Mark existing data as not ready until it can be decrypted. */ 1066 if (tls->mode != TCP_TLS_MODE_TOE) { 1067 sb_mark_notready(&so->so_rcv); 1068 ktls_check_rx(&so->so_rcv); 1069 } 1070 SOCKBUF_UNLOCK(&so->so_rcv); 1071 1072 counter_u64_add(ktls_offload_total, 1); 1073 1074 return (0); 1075 } 1076 1077 int 1078 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1079 { 1080 struct ktls_session *tls; 1081 struct inpcb *inp; 1082 int error; 1083 1084 if (!ktls_offload_enable) 1085 return (ENOTSUP); 1086 if (SOLISTENING(so)) 1087 return (EINVAL); 1088 1089 counter_u64_add(ktls_offload_enable_calls, 1); 1090 1091 /* 1092 * This should always be true since only the TCP socket option 1093 * invokes this function. 1094 */ 1095 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1096 return (EINVAL); 1097 1098 /* 1099 * XXX: Don't overwrite existing sessions. We should permit 1100 * this to support rekeying in the future. 1101 */ 1102 if (so->so_snd.sb_tls_info != NULL) 1103 return (EALREADY); 1104 1105 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1106 return (ENOTSUP); 1107 1108 /* TLS requires ext pgs */ 1109 if (mb_use_ext_pgs == 0) 1110 return (ENXIO); 1111 1112 error = ktls_create_session(so, en, &tls); 1113 if (error) 1114 return (error); 1115 1116 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1117 #ifdef TCP_OFFLOAD 1118 error = ktls_try_toe(so, tls, KTLS_TX); 1119 if (error) 1120 #endif 1121 error = ktls_try_ifnet(so, tls, false); 1122 if (error) 1123 error = ktls_try_sw(so, tls, KTLS_TX); 1124 1125 if (error) { 1126 ktls_cleanup(tls); 1127 return (error); 1128 } 1129 1130 error = sblock(&so->so_snd, SBL_WAIT); 1131 if (error) { 1132 ktls_cleanup(tls); 1133 return (error); 1134 } 1135 1136 /* 1137 * Write lock the INP when setting sb_tls_info so that 1138 * routines in tcp_ratelimit.c can read sb_tls_info while 1139 * holding the INP lock. 1140 */ 1141 inp = so->so_pcb; 1142 INP_WLOCK(inp); 1143 SOCKBUF_LOCK(&so->so_snd); 1144 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1145 so->so_snd.sb_tls_info = tls; 1146 if (tls->mode != TCP_TLS_MODE_SW) 1147 so->so_snd.sb_flags |= SB_TLS_IFNET; 1148 SOCKBUF_UNLOCK(&so->so_snd); 1149 INP_WUNLOCK(inp); 1150 sbunlock(&so->so_snd); 1151 1152 counter_u64_add(ktls_offload_total, 1); 1153 1154 return (0); 1155 } 1156 1157 int 1158 ktls_get_rx_mode(struct socket *so) 1159 { 1160 struct ktls_session *tls; 1161 struct inpcb *inp; 1162 int mode; 1163 1164 if (SOLISTENING(so)) 1165 return (EINVAL); 1166 inp = so->so_pcb; 1167 INP_WLOCK_ASSERT(inp); 1168 SOCKBUF_LOCK(&so->so_rcv); 1169 tls = so->so_rcv.sb_tls_info; 1170 if (tls == NULL) 1171 mode = TCP_TLS_MODE_NONE; 1172 else 1173 mode = tls->mode; 1174 SOCKBUF_UNLOCK(&so->so_rcv); 1175 return (mode); 1176 } 1177 1178 int 1179 ktls_get_tx_mode(struct socket *so) 1180 { 1181 struct ktls_session *tls; 1182 struct inpcb *inp; 1183 int mode; 1184 1185 if (SOLISTENING(so)) 1186 return (EINVAL); 1187 inp = so->so_pcb; 1188 INP_WLOCK_ASSERT(inp); 1189 SOCKBUF_LOCK(&so->so_snd); 1190 tls = so->so_snd.sb_tls_info; 1191 if (tls == NULL) 1192 mode = TCP_TLS_MODE_NONE; 1193 else 1194 mode = tls->mode; 1195 SOCKBUF_UNLOCK(&so->so_snd); 1196 return (mode); 1197 } 1198 1199 /* 1200 * Switch between SW and ifnet TLS sessions as requested. 1201 */ 1202 int 1203 ktls_set_tx_mode(struct socket *so, int mode) 1204 { 1205 struct ktls_session *tls, *tls_new; 1206 struct inpcb *inp; 1207 int error; 1208 1209 if (SOLISTENING(so)) 1210 return (EINVAL); 1211 switch (mode) { 1212 case TCP_TLS_MODE_SW: 1213 case TCP_TLS_MODE_IFNET: 1214 break; 1215 default: 1216 return (EINVAL); 1217 } 1218 1219 inp = so->so_pcb; 1220 INP_WLOCK_ASSERT(inp); 1221 SOCKBUF_LOCK(&so->so_snd); 1222 tls = so->so_snd.sb_tls_info; 1223 if (tls == NULL) { 1224 SOCKBUF_UNLOCK(&so->so_snd); 1225 return (0); 1226 } 1227 1228 if (tls->mode == mode) { 1229 SOCKBUF_UNLOCK(&so->so_snd); 1230 return (0); 1231 } 1232 1233 tls = ktls_hold(tls); 1234 SOCKBUF_UNLOCK(&so->so_snd); 1235 INP_WUNLOCK(inp); 1236 1237 tls_new = ktls_clone_session(tls); 1238 1239 if (mode == TCP_TLS_MODE_IFNET) 1240 error = ktls_try_ifnet(so, tls_new, true); 1241 else 1242 error = ktls_try_sw(so, tls_new, KTLS_TX); 1243 if (error) { 1244 counter_u64_add(ktls_switch_failed, 1); 1245 ktls_free(tls_new); 1246 ktls_free(tls); 1247 INP_WLOCK(inp); 1248 return (error); 1249 } 1250 1251 error = sblock(&so->so_snd, SBL_WAIT); 1252 if (error) { 1253 counter_u64_add(ktls_switch_failed, 1); 1254 ktls_free(tls_new); 1255 ktls_free(tls); 1256 INP_WLOCK(inp); 1257 return (error); 1258 } 1259 1260 /* 1261 * If we raced with another session change, keep the existing 1262 * session. 1263 */ 1264 if (tls != so->so_snd.sb_tls_info) { 1265 counter_u64_add(ktls_switch_failed, 1); 1266 sbunlock(&so->so_snd); 1267 ktls_free(tls_new); 1268 ktls_free(tls); 1269 INP_WLOCK(inp); 1270 return (EBUSY); 1271 } 1272 1273 SOCKBUF_LOCK(&so->so_snd); 1274 so->so_snd.sb_tls_info = tls_new; 1275 if (tls_new->mode != TCP_TLS_MODE_SW) 1276 so->so_snd.sb_flags |= SB_TLS_IFNET; 1277 SOCKBUF_UNLOCK(&so->so_snd); 1278 sbunlock(&so->so_snd); 1279 1280 /* 1281 * Drop two references on 'tls'. The first is for the 1282 * ktls_hold() above. The second drops the reference from the 1283 * socket buffer. 1284 */ 1285 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1286 ktls_free(tls); 1287 ktls_free(tls); 1288 1289 if (mode == TCP_TLS_MODE_IFNET) 1290 counter_u64_add(ktls_switch_to_ifnet, 1); 1291 else 1292 counter_u64_add(ktls_switch_to_sw, 1); 1293 1294 INP_WLOCK(inp); 1295 return (0); 1296 } 1297 1298 /* 1299 * Try to allocate a new TLS send tag. This task is scheduled when 1300 * ip_output detects a route change while trying to transmit a packet 1301 * holding a TLS record. If a new tag is allocated, replace the tag 1302 * in the TLS session. Subsequent packets on the connection will use 1303 * the new tag. If a new tag cannot be allocated, drop the 1304 * connection. 1305 */ 1306 static void 1307 ktls_reset_send_tag(void *context, int pending) 1308 { 1309 struct epoch_tracker et; 1310 struct ktls_session *tls; 1311 struct m_snd_tag *old, *new; 1312 struct inpcb *inp; 1313 struct tcpcb *tp; 1314 int error; 1315 1316 MPASS(pending == 1); 1317 1318 tls = context; 1319 inp = tls->inp; 1320 1321 /* 1322 * Free the old tag first before allocating a new one. 1323 * ip[6]_output_send() will treat a NULL send tag the same as 1324 * an ifp mismatch and drop packets until a new tag is 1325 * allocated. 1326 * 1327 * Write-lock the INP when changing tls->snd_tag since 1328 * ip[6]_output_send() holds a read-lock when reading the 1329 * pointer. 1330 */ 1331 INP_WLOCK(inp); 1332 old = tls->snd_tag; 1333 tls->snd_tag = NULL; 1334 INP_WUNLOCK(inp); 1335 if (old != NULL) 1336 m_snd_tag_rele(old); 1337 1338 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1339 1340 if (error == 0) { 1341 INP_WLOCK(inp); 1342 tls->snd_tag = new; 1343 mtx_pool_lock(mtxpool_sleep, tls); 1344 tls->reset_pending = false; 1345 mtx_pool_unlock(mtxpool_sleep, tls); 1346 if (!in_pcbrele_wlocked(inp)) 1347 INP_WUNLOCK(inp); 1348 1349 counter_u64_add(ktls_ifnet_reset, 1); 1350 1351 /* 1352 * XXX: Should we kick tcp_output explicitly now that 1353 * the send tag is fixed or just rely on timers? 1354 */ 1355 } else { 1356 NET_EPOCH_ENTER(et); 1357 INP_WLOCK(inp); 1358 if (!in_pcbrele_wlocked(inp)) { 1359 if (!(inp->inp_flags & INP_TIMEWAIT) && 1360 !(inp->inp_flags & INP_DROPPED)) { 1361 tp = intotcpcb(inp); 1362 CURVNET_SET(tp->t_vnet); 1363 tp = tcp_drop(tp, ECONNABORTED); 1364 CURVNET_RESTORE(); 1365 if (tp != NULL) 1366 INP_WUNLOCK(inp); 1367 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1368 } else 1369 INP_WUNLOCK(inp); 1370 } 1371 NET_EPOCH_EXIT(et); 1372 1373 counter_u64_add(ktls_ifnet_reset_failed, 1); 1374 1375 /* 1376 * Leave reset_pending true to avoid future tasks while 1377 * the socket goes away. 1378 */ 1379 } 1380 1381 ktls_free(tls); 1382 } 1383 1384 int 1385 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1386 { 1387 1388 if (inp == NULL) 1389 return (ENOBUFS); 1390 1391 INP_LOCK_ASSERT(inp); 1392 1393 /* 1394 * See if we should schedule a task to update the send tag for 1395 * this session. 1396 */ 1397 mtx_pool_lock(mtxpool_sleep, tls); 1398 if (!tls->reset_pending) { 1399 (void) ktls_hold(tls); 1400 in_pcbref(inp); 1401 tls->inp = inp; 1402 tls->reset_pending = true; 1403 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1404 } 1405 mtx_pool_unlock(mtxpool_sleep, tls); 1406 return (ENOBUFS); 1407 } 1408 1409 #ifdef RATELIMIT 1410 int 1411 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1412 { 1413 union if_snd_tag_modify_params params = { 1414 .rate_limit.max_rate = max_pacing_rate, 1415 .rate_limit.flags = M_NOWAIT, 1416 }; 1417 struct m_snd_tag *mst; 1418 struct ifnet *ifp; 1419 1420 /* Can't get to the inp, but it should be locked. */ 1421 /* INP_LOCK_ASSERT(inp); */ 1422 1423 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1424 1425 if (tls->snd_tag == NULL) { 1426 /* 1427 * Resetting send tag, ignore this change. The 1428 * pending reset may or may not see this updated rate 1429 * in the tcpcb. If it doesn't, we will just lose 1430 * this rate change. 1431 */ 1432 return (0); 1433 } 1434 1435 MPASS(tls->snd_tag != NULL); 1436 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1437 1438 mst = tls->snd_tag; 1439 ifp = mst->ifp; 1440 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1441 } 1442 #endif 1443 #endif 1444 1445 void 1446 ktls_destroy(struct ktls_session *tls) 1447 { 1448 1449 ktls_cleanup(tls); 1450 uma_zfree(ktls_session_zone, tls); 1451 } 1452 1453 void 1454 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1455 { 1456 1457 for (; m != NULL; m = m->m_next) { 1458 KASSERT((m->m_flags & M_EXTPG) != 0, 1459 ("ktls_seq: mapped mbuf %p", m)); 1460 1461 m->m_epg_seqno = sb->sb_tls_seqno; 1462 sb->sb_tls_seqno++; 1463 } 1464 } 1465 1466 /* 1467 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1468 * mbuf in the chain must be an unmapped mbuf. The payload of the 1469 * mbuf must be populated with the payload of each TLS record. 1470 * 1471 * The record_type argument specifies the TLS record type used when 1472 * populating the TLS header. 1473 * 1474 * The enq_count argument on return is set to the number of pages of 1475 * payload data for this entire chain that need to be encrypted via SW 1476 * encryption. The returned value should be passed to ktls_enqueue 1477 * when scheduling encryption of this chain of mbufs. To handle the 1478 * special case of empty fragments for TLS 1.0 sessions, an empty 1479 * fragment counts as one page. 1480 */ 1481 void 1482 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1483 uint8_t record_type) 1484 { 1485 struct tls_record_layer *tlshdr; 1486 struct mbuf *m; 1487 uint64_t *noncep; 1488 uint16_t tls_len; 1489 int maxlen; 1490 1491 maxlen = tls->params.max_frame_len; 1492 *enq_cnt = 0; 1493 for (m = top; m != NULL; m = m->m_next) { 1494 /* 1495 * All mbufs in the chain should be TLS records whose 1496 * payload does not exceed the maximum frame length. 1497 * 1498 * Empty TLS records are permitted when using CBC. 1499 */ 1500 KASSERT(m->m_len <= maxlen && 1501 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1502 m->m_len >= 0 : m->m_len > 0), 1503 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1504 1505 /* 1506 * TLS frames require unmapped mbufs to store session 1507 * info. 1508 */ 1509 KASSERT((m->m_flags & M_EXTPG) != 0, 1510 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1511 1512 tls_len = m->m_len; 1513 1514 /* Save a reference to the session. */ 1515 m->m_epg_tls = ktls_hold(tls); 1516 1517 m->m_epg_hdrlen = tls->params.tls_hlen; 1518 m->m_epg_trllen = tls->params.tls_tlen; 1519 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1520 int bs, delta; 1521 1522 /* 1523 * AES-CBC pads messages to a multiple of the 1524 * block size. Note that the padding is 1525 * applied after the digest and the encryption 1526 * is done on the "plaintext || mac || padding". 1527 * At least one byte of padding is always 1528 * present. 1529 * 1530 * Compute the final trailer length assuming 1531 * at most one block of padding. 1532 * tls->params.tls_tlen is the maximum 1533 * possible trailer length (padding + digest). 1534 * delta holds the number of excess padding 1535 * bytes if the maximum were used. Those 1536 * extra bytes are removed. 1537 */ 1538 bs = tls->params.tls_bs; 1539 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1540 m->m_epg_trllen -= delta; 1541 } 1542 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1543 1544 /* Populate the TLS header. */ 1545 tlshdr = (void *)m->m_epg_hdr; 1546 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1547 1548 /* 1549 * TLS 1.3 masquarades as TLS 1.2 with a record type 1550 * of TLS_RLTYPE_APP. 1551 */ 1552 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1553 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1554 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1555 tlshdr->tls_type = TLS_RLTYPE_APP; 1556 /* save the real record type for later */ 1557 m->m_epg_record_type = record_type; 1558 m->m_epg_trail[0] = record_type; 1559 } else { 1560 tlshdr->tls_vminor = tls->params.tls_vminor; 1561 tlshdr->tls_type = record_type; 1562 } 1563 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1564 1565 /* 1566 * Store nonces / explicit IVs after the end of the 1567 * TLS header. 1568 * 1569 * For GCM with TLS 1.2, an 8 byte nonce is copied 1570 * from the end of the IV. The nonce is then 1571 * incremented for use by the next record. 1572 * 1573 * For CBC, a random nonce is inserted for TLS 1.1+. 1574 */ 1575 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1576 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1577 noncep = (uint64_t *)(tls->params.iv + 8); 1578 be64enc(tlshdr + 1, *noncep); 1579 (*noncep)++; 1580 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1581 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1582 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1583 1584 /* 1585 * When using SW encryption, mark the mbuf not ready. 1586 * It will be marked ready via sbready() after the 1587 * record has been encrypted. 1588 * 1589 * When using ifnet TLS, unencrypted TLS records are 1590 * sent down the stack to the NIC. 1591 */ 1592 if (tls->mode == TCP_TLS_MODE_SW) { 1593 m->m_flags |= M_NOTREADY; 1594 m->m_epg_nrdy = m->m_epg_npgs; 1595 if (__predict_false(tls_len == 0)) { 1596 /* TLS 1.0 empty fragment. */ 1597 *enq_cnt += 1; 1598 } else 1599 *enq_cnt += m->m_epg_npgs; 1600 } 1601 } 1602 } 1603 1604 void 1605 ktls_check_rx(struct sockbuf *sb) 1606 { 1607 struct tls_record_layer hdr; 1608 struct ktls_wq *wq; 1609 struct socket *so; 1610 bool running; 1611 1612 SOCKBUF_LOCK_ASSERT(sb); 1613 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1614 __func__, sb)); 1615 so = __containerof(sb, struct socket, so_rcv); 1616 1617 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1618 return; 1619 1620 /* Is there enough queued for a TLS header? */ 1621 if (sb->sb_tlscc < sizeof(hdr)) { 1622 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1623 so->so_error = EMSGSIZE; 1624 return; 1625 } 1626 1627 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1628 1629 /* Is the entire record queued? */ 1630 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1631 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1632 so->so_error = EMSGSIZE; 1633 return; 1634 } 1635 1636 sb->sb_flags |= SB_TLS_RX_RUNNING; 1637 1638 soref(so); 1639 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1640 mtx_lock(&wq->mtx); 1641 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1642 running = wq->running; 1643 mtx_unlock(&wq->mtx); 1644 if (!running) 1645 wakeup(wq); 1646 counter_u64_add(ktls_cnt_rx_queued, 1); 1647 } 1648 1649 static struct mbuf * 1650 ktls_detach_record(struct sockbuf *sb, int len) 1651 { 1652 struct mbuf *m, *n, *top; 1653 int remain; 1654 1655 SOCKBUF_LOCK_ASSERT(sb); 1656 MPASS(len <= sb->sb_tlscc); 1657 1658 /* 1659 * If TLS chain is the exact size of the record, 1660 * just grab the whole record. 1661 */ 1662 top = sb->sb_mtls; 1663 if (sb->sb_tlscc == len) { 1664 sb->sb_mtls = NULL; 1665 sb->sb_mtlstail = NULL; 1666 goto out; 1667 } 1668 1669 /* 1670 * While it would be nice to use m_split() here, we need 1671 * to know exactly what m_split() allocates to update the 1672 * accounting, so do it inline instead. 1673 */ 1674 remain = len; 1675 for (m = top; remain > m->m_len; m = m->m_next) 1676 remain -= m->m_len; 1677 1678 /* Easy case: don't have to split 'm'. */ 1679 if (remain == m->m_len) { 1680 sb->sb_mtls = m->m_next; 1681 if (sb->sb_mtls == NULL) 1682 sb->sb_mtlstail = NULL; 1683 m->m_next = NULL; 1684 goto out; 1685 } 1686 1687 /* 1688 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1689 * with M_NOWAIT first. 1690 */ 1691 n = m_get(M_NOWAIT, MT_DATA); 1692 if (n == NULL) { 1693 /* 1694 * Use M_WAITOK with socket buffer unlocked. If 1695 * 'sb_mtls' changes while the lock is dropped, return 1696 * NULL to force the caller to retry. 1697 */ 1698 SOCKBUF_UNLOCK(sb); 1699 1700 n = m_get(M_WAITOK, MT_DATA); 1701 1702 SOCKBUF_LOCK(sb); 1703 if (sb->sb_mtls != top) { 1704 m_free(n); 1705 return (NULL); 1706 } 1707 } 1708 n->m_flags |= M_NOTREADY; 1709 1710 /* Store remainder in 'n'. */ 1711 n->m_len = m->m_len - remain; 1712 if (m->m_flags & M_EXT) { 1713 n->m_data = m->m_data + remain; 1714 mb_dupcl(n, m); 1715 } else { 1716 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1717 } 1718 1719 /* Trim 'm' and update accounting. */ 1720 m->m_len -= n->m_len; 1721 sb->sb_tlscc -= n->m_len; 1722 sb->sb_ccc -= n->m_len; 1723 1724 /* Account for 'n'. */ 1725 sballoc_ktls_rx(sb, n); 1726 1727 /* Insert 'n' into the TLS chain. */ 1728 sb->sb_mtls = n; 1729 n->m_next = m->m_next; 1730 if (sb->sb_mtlstail == m) 1731 sb->sb_mtlstail = n; 1732 1733 /* Detach the record from the TLS chain. */ 1734 m->m_next = NULL; 1735 1736 out: 1737 MPASS(m_length(top, NULL) == len); 1738 for (m = top; m != NULL; m = m->m_next) 1739 sbfree_ktls_rx(sb, m); 1740 sb->sb_tlsdcc = len; 1741 sb->sb_ccc += len; 1742 SBCHECK(sb); 1743 return (top); 1744 } 1745 1746 static void 1747 ktls_decrypt(struct socket *so) 1748 { 1749 char tls_header[MBUF_PEXT_HDR_LEN]; 1750 struct ktls_session *tls; 1751 struct sockbuf *sb; 1752 struct tls_record_layer *hdr; 1753 struct tls_get_record tgr; 1754 struct mbuf *control, *data, *m; 1755 uint64_t seqno; 1756 int error, remain, tls_len, trail_len; 1757 1758 hdr = (struct tls_record_layer *)tls_header; 1759 sb = &so->so_rcv; 1760 SOCKBUF_LOCK(sb); 1761 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1762 ("%s: socket %p not running", __func__, so)); 1763 1764 tls = sb->sb_tls_info; 1765 MPASS(tls != NULL); 1766 1767 for (;;) { 1768 /* Is there enough queued for a TLS header? */ 1769 if (sb->sb_tlscc < tls->params.tls_hlen) 1770 break; 1771 1772 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1773 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1774 1775 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1776 hdr->tls_vminor != tls->params.tls_vminor) 1777 error = EINVAL; 1778 else if (tls_len < tls->params.tls_hlen || tls_len > 1779 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1780 tls->params.tls_tlen) 1781 error = EMSGSIZE; 1782 else 1783 error = 0; 1784 if (__predict_false(error != 0)) { 1785 /* 1786 * We have a corrupted record and are likely 1787 * out of sync. The connection isn't 1788 * recoverable at this point, so abort it. 1789 */ 1790 SOCKBUF_UNLOCK(sb); 1791 counter_u64_add(ktls_offload_corrupted_records, 1); 1792 1793 CURVNET_SET(so->so_vnet); 1794 so->so_proto->pr_usrreqs->pru_abort(so); 1795 so->so_error = error; 1796 CURVNET_RESTORE(); 1797 goto deref; 1798 } 1799 1800 /* Is the entire record queued? */ 1801 if (sb->sb_tlscc < tls_len) 1802 break; 1803 1804 /* 1805 * Split out the portion of the mbuf chain containing 1806 * this TLS record. 1807 */ 1808 data = ktls_detach_record(sb, tls_len); 1809 if (data == NULL) 1810 continue; 1811 MPASS(sb->sb_tlsdcc == tls_len); 1812 1813 seqno = sb->sb_tls_seqno; 1814 sb->sb_tls_seqno++; 1815 SBCHECK(sb); 1816 SOCKBUF_UNLOCK(sb); 1817 1818 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1819 if (error) { 1820 counter_u64_add(ktls_offload_failed_crypto, 1); 1821 1822 SOCKBUF_LOCK(sb); 1823 if (sb->sb_tlsdcc == 0) { 1824 /* 1825 * sbcut/drop/flush discarded these 1826 * mbufs. 1827 */ 1828 m_freem(data); 1829 break; 1830 } 1831 1832 /* 1833 * Drop this TLS record's data, but keep 1834 * decrypting subsequent records. 1835 */ 1836 sb->sb_ccc -= tls_len; 1837 sb->sb_tlsdcc = 0; 1838 1839 CURVNET_SET(so->so_vnet); 1840 so->so_error = EBADMSG; 1841 sorwakeup_locked(so); 1842 CURVNET_RESTORE(); 1843 1844 m_freem(data); 1845 1846 SOCKBUF_LOCK(sb); 1847 continue; 1848 } 1849 1850 /* Allocate the control mbuf. */ 1851 tgr.tls_type = hdr->tls_type; 1852 tgr.tls_vmajor = hdr->tls_vmajor; 1853 tgr.tls_vminor = hdr->tls_vminor; 1854 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1855 trail_len); 1856 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1857 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1858 1859 SOCKBUF_LOCK(sb); 1860 if (sb->sb_tlsdcc == 0) { 1861 /* sbcut/drop/flush discarded these mbufs. */ 1862 MPASS(sb->sb_tlscc == 0); 1863 m_freem(data); 1864 m_freem(control); 1865 break; 1866 } 1867 1868 /* 1869 * Clear the 'dcc' accounting in preparation for 1870 * adding the decrypted record. 1871 */ 1872 sb->sb_ccc -= tls_len; 1873 sb->sb_tlsdcc = 0; 1874 SBCHECK(sb); 1875 1876 /* If there is no payload, drop all of the data. */ 1877 if (tgr.tls_length == htobe16(0)) { 1878 m_freem(data); 1879 data = NULL; 1880 } else { 1881 /* Trim header. */ 1882 remain = tls->params.tls_hlen; 1883 while (remain > 0) { 1884 if (data->m_len > remain) { 1885 data->m_data += remain; 1886 data->m_len -= remain; 1887 break; 1888 } 1889 remain -= data->m_len; 1890 data = m_free(data); 1891 } 1892 1893 /* Trim trailer and clear M_NOTREADY. */ 1894 remain = be16toh(tgr.tls_length); 1895 m = data; 1896 for (m = data; remain > m->m_len; m = m->m_next) { 1897 m->m_flags &= ~M_NOTREADY; 1898 remain -= m->m_len; 1899 } 1900 m->m_len = remain; 1901 m_freem(m->m_next); 1902 m->m_next = NULL; 1903 m->m_flags &= ~M_NOTREADY; 1904 1905 /* Set EOR on the final mbuf. */ 1906 m->m_flags |= M_EOR; 1907 } 1908 1909 sbappendcontrol_locked(sb, data, control, 0); 1910 } 1911 1912 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1913 1914 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1915 so->so_error = EMSGSIZE; 1916 1917 sorwakeup_locked(so); 1918 1919 deref: 1920 SOCKBUF_UNLOCK_ASSERT(sb); 1921 1922 CURVNET_SET(so->so_vnet); 1923 SOCK_LOCK(so); 1924 sorele(so); 1925 CURVNET_RESTORE(); 1926 } 1927 1928 void 1929 ktls_enqueue_to_free(struct mbuf *m) 1930 { 1931 struct ktls_wq *wq; 1932 bool running; 1933 1934 /* Mark it for freeing. */ 1935 m->m_epg_flags |= EPG_FLAG_2FREE; 1936 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1937 mtx_lock(&wq->mtx); 1938 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1939 running = wq->running; 1940 mtx_unlock(&wq->mtx); 1941 if (!running) 1942 wakeup(wq); 1943 } 1944 1945 static void * 1946 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 1947 { 1948 void *buf; 1949 1950 if (m->m_epg_npgs <= 2) 1951 return (NULL); 1952 if (ktls_buffer_zone == NULL) 1953 return (NULL); 1954 if ((u_int)(ticks - wq->lastallocfail) < hz) { 1955 /* 1956 * Rate-limit allocation attempts after a failure. 1957 * ktls_buffer_import() will acquire a per-domain mutex to check 1958 * the free page queues and may fail consistently if memory is 1959 * fragmented. 1960 */ 1961 return (NULL); 1962 } 1963 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 1964 if (buf == NULL) 1965 wq->lastallocfail = ticks; 1966 return (buf); 1967 } 1968 1969 void 1970 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1971 { 1972 struct ktls_wq *wq; 1973 bool running; 1974 1975 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1976 (M_EXTPG | M_NOTREADY)), 1977 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1978 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1979 1980 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1981 1982 m->m_epg_enc_cnt = page_count; 1983 1984 /* 1985 * Save a pointer to the socket. The caller is responsible 1986 * for taking an additional reference via soref(). 1987 */ 1988 m->m_epg_so = so; 1989 1990 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1991 mtx_lock(&wq->mtx); 1992 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1993 running = wq->running; 1994 mtx_unlock(&wq->mtx); 1995 if (!running) 1996 wakeup(wq); 1997 counter_u64_add(ktls_cnt_tx_queued, 1); 1998 } 1999 2000 #define MAX_TLS_PAGES (1 + btoc(TLS_MAX_MSG_SIZE_V10_2)) 2001 2002 static __noinline void 2003 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2004 { 2005 struct ktls_session *tls; 2006 struct socket *so; 2007 struct mbuf *m; 2008 vm_paddr_t parray[MAX_TLS_PAGES + 1]; 2009 struct iovec dst_iov[MAX_TLS_PAGES + 2]; 2010 vm_page_t pg; 2011 void *cbuf; 2012 int error, i, len, npages, off, total_pages; 2013 2014 so = top->m_epg_so; 2015 tls = top->m_epg_tls; 2016 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2017 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2018 #ifdef INVARIANTS 2019 top->m_epg_so = NULL; 2020 #endif 2021 total_pages = top->m_epg_enc_cnt; 2022 npages = 0; 2023 2024 /* 2025 * Encrypt the TLS records in the chain of mbufs starting with 2026 * 'top'. 'total_pages' gives us a total count of pages and is 2027 * used to know when we have finished encrypting the TLS 2028 * records originally queued with 'top'. 2029 * 2030 * NB: These mbufs are queued in the socket buffer and 2031 * 'm_next' is traversing the mbufs in the socket buffer. The 2032 * socket buffer lock is not held while traversing this chain. 2033 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2034 * pointers should be stable. However, the 'm_next' of the 2035 * last mbuf encrypted is not necessarily NULL. It can point 2036 * to other mbufs appended while 'top' was on the TLS work 2037 * queue. 2038 * 2039 * Each mbuf holds an entire TLS record. 2040 */ 2041 error = 0; 2042 for (m = top; npages != total_pages; m = m->m_next) { 2043 KASSERT(m->m_epg_tls == tls, 2044 ("different TLS sessions in a single mbuf chain: %p vs %p", 2045 tls, m->m_epg_tls)); 2046 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2047 (M_EXTPG | M_NOTREADY), 2048 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2049 KASSERT(npages + m->m_epg_npgs <= total_pages, 2050 ("page count mismatch: top %p, total_pages %d, m %p", top, 2051 total_pages, m)); 2052 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2053 ("page count %d larger than maximum frame length %d", 2054 m->m_epg_npgs, ktls_maxlen)); 2055 2056 /* 2057 * For anonymous mbufs, encryption is done in place. 2058 * For file-backed mbufs (from sendfile), anonymous 2059 * wired pages are allocated and used as the 2060 * encryption destination. 2061 */ 2062 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) { 2063 error = (*tls->sw_encrypt)(tls, m, NULL, 0); 2064 } else { 2065 if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2066 len = ptoa(m->m_epg_npgs - 1) + 2067 m->m_epg_last_len - m->m_epg_1st_off; 2068 dst_iov[0].iov_base = (char *)cbuf + 2069 m->m_epg_1st_off; 2070 dst_iov[0].iov_len = len; 2071 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2072 i = 1; 2073 } else { 2074 off = m->m_epg_1st_off; 2075 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2076 do { 2077 pg = vm_page_alloc(NULL, 0, 2078 VM_ALLOC_NORMAL | 2079 VM_ALLOC_NOOBJ | 2080 VM_ALLOC_NODUMP | 2081 VM_ALLOC_WIRED | 2082 VM_ALLOC_WAITFAIL); 2083 } while (pg == NULL); 2084 2085 len = m_epg_pagelen(m, i, off); 2086 parray[i] = VM_PAGE_TO_PHYS(pg); 2087 dst_iov[i].iov_base = 2088 (char *)(void *)PHYS_TO_DMAP( 2089 parray[i]) + off; 2090 dst_iov[i].iov_len = len; 2091 } 2092 } 2093 KASSERT(i + 1 <= nitems(dst_iov), 2094 ("dst_iov is too small")); 2095 dst_iov[i].iov_base = m->m_epg_trail; 2096 dst_iov[i].iov_len = m->m_epg_trllen; 2097 2098 error = (*tls->sw_encrypt)(tls, m, dst_iov, i + 1); 2099 2100 /* Free the old pages. */ 2101 m->m_ext.ext_free(m); 2102 2103 /* Replace them with the new pages. */ 2104 if (cbuf != NULL) { 2105 for (i = 0; i < m->m_epg_npgs; i++) 2106 m->m_epg_pa[i] = parray[0] + ptoa(i); 2107 2108 /* Contig pages should go back to the cache. */ 2109 m->m_ext.ext_free = ktls_free_mext_contig; 2110 } else { 2111 for (i = 0; i < m->m_epg_npgs; i++) 2112 m->m_epg_pa[i] = parray[i]; 2113 2114 /* Use the basic free routine. */ 2115 m->m_ext.ext_free = mb_free_mext_pgs; 2116 } 2117 2118 /* Pages are now writable. */ 2119 m->m_epg_flags |= EPG_FLAG_ANON; 2120 } 2121 if (error) { 2122 counter_u64_add(ktls_offload_failed_crypto, 1); 2123 break; 2124 } 2125 2126 if (__predict_false(m->m_epg_npgs == 0)) { 2127 /* TLS 1.0 empty fragment. */ 2128 npages++; 2129 } else 2130 npages += m->m_epg_npgs; 2131 2132 /* 2133 * Drop a reference to the session now that it is no 2134 * longer needed. Existing code depends on encrypted 2135 * records having no associated session vs 2136 * yet-to-be-encrypted records having an associated 2137 * session. 2138 */ 2139 m->m_epg_tls = NULL; 2140 ktls_free(tls); 2141 } 2142 2143 CURVNET_SET(so->so_vnet); 2144 if (error == 0) { 2145 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2146 } else { 2147 so->so_proto->pr_usrreqs->pru_abort(so); 2148 so->so_error = EIO; 2149 mb_free_notready(top, total_pages); 2150 } 2151 2152 SOCK_LOCK(so); 2153 sorele(so); 2154 CURVNET_RESTORE(); 2155 } 2156 2157 static void 2158 ktls_work_thread(void *ctx) 2159 { 2160 struct ktls_wq *wq = ctx; 2161 struct mbuf *m, *n; 2162 struct socket *so, *son; 2163 STAILQ_HEAD(, mbuf) local_m_head; 2164 STAILQ_HEAD(, socket) local_so_head; 2165 2166 if (ktls_bind_threads > 1) { 2167 curthread->td_domain.dr_policy = 2168 DOMAINSET_PREF(PCPU_GET(domain)); 2169 } 2170 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2171 fpu_kern_thread(0); 2172 #endif 2173 for (;;) { 2174 mtx_lock(&wq->mtx); 2175 while (STAILQ_EMPTY(&wq->m_head) && 2176 STAILQ_EMPTY(&wq->so_head)) { 2177 wq->running = false; 2178 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2179 wq->running = true; 2180 } 2181 2182 STAILQ_INIT(&local_m_head); 2183 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2184 STAILQ_INIT(&local_so_head); 2185 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2186 mtx_unlock(&wq->mtx); 2187 2188 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2189 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2190 ktls_free(m->m_epg_tls); 2191 m_free_raw(m); 2192 } else { 2193 ktls_encrypt(wq, m); 2194 counter_u64_add(ktls_cnt_tx_queued, -1); 2195 } 2196 } 2197 2198 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2199 ktls_decrypt(so); 2200 counter_u64_add(ktls_cnt_rx_queued, -1); 2201 } 2202 } 2203 } 2204 2205 #if defined(INET) || defined(INET6) 2206 static void 2207 ktls_disable_ifnet_help(void *context, int pending __unused) 2208 { 2209 struct ktls_session *tls; 2210 struct inpcb *inp; 2211 struct tcpcb *tp; 2212 struct socket *so; 2213 int err; 2214 2215 tls = context; 2216 inp = tls->inp; 2217 if (inp == NULL) 2218 return; 2219 INP_WLOCK(inp); 2220 so = inp->inp_socket; 2221 MPASS(so != NULL); 2222 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2223 (inp->inp_flags2 & INP_FREED)) { 2224 goto out; 2225 } 2226 2227 if (so->so_snd.sb_tls_info != NULL) 2228 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2229 else 2230 err = ENXIO; 2231 if (err == 0) { 2232 counter_u64_add(ktls_ifnet_disable_ok, 1); 2233 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2234 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2235 (inp->inp_flags2 & INP_FREED) == 0 && 2236 (tp = intotcpcb(inp)) != NULL && 2237 tp->t_fb->tfb_hwtls_change != NULL) 2238 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2239 } else { 2240 counter_u64_add(ktls_ifnet_disable_fail, 1); 2241 } 2242 2243 out: 2244 SOCK_LOCK(so); 2245 sorele(so); 2246 if (!in_pcbrele_wlocked(inp)) 2247 INP_WUNLOCK(inp); 2248 ktls_free(tls); 2249 } 2250 2251 /* 2252 * Called when re-transmits are becoming a substantial portion of the 2253 * sends on this connection. When this happens, we transition the 2254 * connection to software TLS. This is needed because most inline TLS 2255 * NICs keep crypto state only for in-order transmits. This means 2256 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2257 * re-DMA the entire TLS record up to and including the current 2258 * segment. This means that when re-transmitting the last ~1448 byte 2259 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2260 * of magnitude more data than we are sending. This can cause the 2261 * PCIe link to saturate well before the network, which can cause 2262 * output drops, and a general loss of capacity. 2263 */ 2264 void 2265 ktls_disable_ifnet(void *arg) 2266 { 2267 struct tcpcb *tp; 2268 struct inpcb *inp; 2269 struct socket *so; 2270 struct ktls_session *tls; 2271 2272 tp = arg; 2273 inp = tp->t_inpcb; 2274 INP_WLOCK_ASSERT(inp); 2275 so = inp->inp_socket; 2276 SOCK_LOCK(so); 2277 tls = so->so_snd.sb_tls_info; 2278 if (tls->disable_ifnet_pending) { 2279 SOCK_UNLOCK(so); 2280 return; 2281 } 2282 2283 /* 2284 * note that disable_ifnet_pending is never cleared; disabling 2285 * ifnet can only be done once per session, so we never want 2286 * to do it again 2287 */ 2288 2289 (void)ktls_hold(tls); 2290 in_pcbref(inp); 2291 soref(so); 2292 tls->disable_ifnet_pending = true; 2293 tls->inp = inp; 2294 SOCK_UNLOCK(so); 2295 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2296 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2297 } 2298 #endif 2299