1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 switch (en->tls_vminor) { 555 case TLS_MINOR_VER_TWO: 556 if (en->iv_len != TLS_AEAD_GCM_LEN) 557 return (EINVAL); 558 break; 559 case TLS_MINOR_VER_THREE: 560 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 561 return (EINVAL); 562 break; 563 default: 564 return (EINVAL); 565 } 566 break; 567 case CRYPTO_AES_CBC: 568 switch (en->auth_algorithm) { 569 case CRYPTO_SHA1_HMAC: 570 break; 571 case CRYPTO_SHA2_256_HMAC: 572 case CRYPTO_SHA2_384_HMAC: 573 if (en->tls_vminor != TLS_MINOR_VER_TWO) 574 return (EINVAL); 575 break; 576 default: 577 return (EINVAL); 578 } 579 if (en->auth_key_len == 0) 580 return (EINVAL); 581 582 /* 583 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 584 * use explicit IVs. 585 */ 586 switch (en->tls_vminor) { 587 case TLS_MINOR_VER_ZERO: 588 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 589 return (EINVAL); 590 break; 591 case TLS_MINOR_VER_ONE: 592 case TLS_MINOR_VER_TWO: 593 /* Ignore any supplied IV. */ 594 en->iv_len = 0; 595 break; 596 default: 597 return (EINVAL); 598 } 599 break; 600 case CRYPTO_CHACHA20_POLY1305: 601 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 602 return (EINVAL); 603 if (en->tls_vminor != TLS_MINOR_VER_TWO && 604 en->tls_vminor != TLS_MINOR_VER_THREE) 605 return (EINVAL); 606 if (en->iv_len != TLS_CHACHA20_IV_LEN) 607 return (EINVAL); 608 break; 609 default: 610 return (EINVAL); 611 } 612 613 error = ktls_start_kthreads(); 614 if (error != 0) 615 return (error); 616 617 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 618 619 counter_u64_add(ktls_offload_active, 1); 620 621 refcount_init(&tls->refcount, 1); 622 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 623 624 tls->wq_index = ktls_get_cpu(so); 625 626 tls->params.cipher_algorithm = en->cipher_algorithm; 627 tls->params.auth_algorithm = en->auth_algorithm; 628 tls->params.tls_vmajor = en->tls_vmajor; 629 tls->params.tls_vminor = en->tls_vminor; 630 tls->params.flags = en->flags; 631 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 632 633 /* Set the header and trailer lengths. */ 634 tls->params.tls_hlen = sizeof(struct tls_record_layer); 635 switch (en->cipher_algorithm) { 636 case CRYPTO_AES_NIST_GCM_16: 637 /* 638 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 639 * nonce. TLS 1.3 uses a 12 byte implicit IV. 640 */ 641 if (en->tls_vminor < TLS_MINOR_VER_THREE) 642 tls->params.tls_hlen += sizeof(uint64_t); 643 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 644 tls->params.tls_bs = 1; 645 break; 646 case CRYPTO_AES_CBC: 647 switch (en->auth_algorithm) { 648 case CRYPTO_SHA1_HMAC: 649 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 650 /* Implicit IV, no nonce. */ 651 tls->sequential_records = true; 652 tls->next_seqno = be64dec(en->rec_seq); 653 STAILQ_INIT(&tls->pending_records); 654 } else { 655 tls->params.tls_hlen += AES_BLOCK_LEN; 656 } 657 tls->params.tls_tlen = AES_BLOCK_LEN + 658 SHA1_HASH_LEN; 659 break; 660 case CRYPTO_SHA2_256_HMAC: 661 tls->params.tls_hlen += AES_BLOCK_LEN; 662 tls->params.tls_tlen = AES_BLOCK_LEN + 663 SHA2_256_HASH_LEN; 664 break; 665 case CRYPTO_SHA2_384_HMAC: 666 tls->params.tls_hlen += AES_BLOCK_LEN; 667 tls->params.tls_tlen = AES_BLOCK_LEN + 668 SHA2_384_HASH_LEN; 669 break; 670 default: 671 panic("invalid hmac"); 672 } 673 tls->params.tls_bs = AES_BLOCK_LEN; 674 break; 675 case CRYPTO_CHACHA20_POLY1305: 676 /* 677 * Chacha20 uses a 12 byte implicit IV. 678 */ 679 tls->params.tls_tlen = POLY1305_HASH_LEN; 680 tls->params.tls_bs = 1; 681 break; 682 default: 683 panic("invalid cipher"); 684 } 685 686 /* 687 * TLS 1.3 includes optional padding which we do not support, 688 * and also puts the "real" record type at the end of the 689 * encrypted data. 690 */ 691 if (en->tls_vminor == TLS_MINOR_VER_THREE) 692 tls->params.tls_tlen += sizeof(uint8_t); 693 694 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 695 ("TLS header length too long: %d", tls->params.tls_hlen)); 696 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 697 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 698 699 if (en->auth_key_len != 0) { 700 tls->params.auth_key_len = en->auth_key_len; 701 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 702 M_WAITOK); 703 error = copyin(en->auth_key, tls->params.auth_key, 704 en->auth_key_len); 705 if (error) 706 goto out; 707 } 708 709 tls->params.cipher_key_len = en->cipher_key_len; 710 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 711 error = copyin(en->cipher_key, tls->params.cipher_key, 712 en->cipher_key_len); 713 if (error) 714 goto out; 715 716 /* 717 * This holds the implicit portion of the nonce for AEAD 718 * ciphers and the initial implicit IV for TLS 1.0. The 719 * explicit portions of the IV are generated in ktls_frame(). 720 */ 721 if (en->iv_len != 0) { 722 tls->params.iv_len = en->iv_len; 723 error = copyin(en->iv, tls->params.iv, en->iv_len); 724 if (error) 725 goto out; 726 727 /* 728 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 729 * counter to generate unique explicit IVs. 730 * 731 * Store this counter in the last 8 bytes of the IV 732 * array so that it is 8-byte aligned. 733 */ 734 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 735 en->tls_vminor == TLS_MINOR_VER_TWO) 736 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 737 } 738 739 *tlsp = tls; 740 return (0); 741 742 out: 743 ktls_cleanup(tls); 744 return (error); 745 } 746 747 static struct ktls_session * 748 ktls_clone_session(struct ktls_session *tls) 749 { 750 struct ktls_session *tls_new; 751 752 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 753 754 counter_u64_add(ktls_offload_active, 1); 755 756 refcount_init(&tls_new->refcount, 1); 757 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 758 759 /* Copy fields from existing session. */ 760 tls_new->params = tls->params; 761 tls_new->wq_index = tls->wq_index; 762 763 /* Deep copy keys. */ 764 if (tls_new->params.auth_key != NULL) { 765 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 766 M_KTLS, M_WAITOK); 767 memcpy(tls_new->params.auth_key, tls->params.auth_key, 768 tls->params.auth_key_len); 769 } 770 771 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 772 M_WAITOK); 773 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 774 tls->params.cipher_key_len); 775 776 return (tls_new); 777 } 778 #endif 779 780 static void 781 ktls_cleanup(struct ktls_session *tls) 782 { 783 784 counter_u64_add(ktls_offload_active, -1); 785 switch (tls->mode) { 786 case TCP_TLS_MODE_SW: 787 switch (tls->params.cipher_algorithm) { 788 case CRYPTO_AES_CBC: 789 counter_u64_add(ktls_sw_cbc, -1); 790 break; 791 case CRYPTO_AES_NIST_GCM_16: 792 counter_u64_add(ktls_sw_gcm, -1); 793 break; 794 case CRYPTO_CHACHA20_POLY1305: 795 counter_u64_add(ktls_sw_chacha20, -1); 796 break; 797 } 798 break; 799 case TCP_TLS_MODE_IFNET: 800 switch (tls->params.cipher_algorithm) { 801 case CRYPTO_AES_CBC: 802 counter_u64_add(ktls_ifnet_cbc, -1); 803 break; 804 case CRYPTO_AES_NIST_GCM_16: 805 counter_u64_add(ktls_ifnet_gcm, -1); 806 break; 807 case CRYPTO_CHACHA20_POLY1305: 808 counter_u64_add(ktls_ifnet_chacha20, -1); 809 break; 810 } 811 if (tls->snd_tag != NULL) 812 m_snd_tag_rele(tls->snd_tag); 813 break; 814 #ifdef TCP_OFFLOAD 815 case TCP_TLS_MODE_TOE: 816 switch (tls->params.cipher_algorithm) { 817 case CRYPTO_AES_CBC: 818 counter_u64_add(ktls_toe_cbc, -1); 819 break; 820 case CRYPTO_AES_NIST_GCM_16: 821 counter_u64_add(ktls_toe_gcm, -1); 822 break; 823 case CRYPTO_CHACHA20_POLY1305: 824 counter_u64_add(ktls_toe_chacha20, -1); 825 break; 826 } 827 break; 828 #endif 829 } 830 if (tls->ocf_session != NULL) 831 ktls_ocf_free(tls); 832 if (tls->params.auth_key != NULL) { 833 zfree(tls->params.auth_key, M_KTLS); 834 tls->params.auth_key = NULL; 835 tls->params.auth_key_len = 0; 836 } 837 if (tls->params.cipher_key != NULL) { 838 zfree(tls->params.cipher_key, M_KTLS); 839 tls->params.cipher_key = NULL; 840 tls->params.cipher_key_len = 0; 841 } 842 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 843 } 844 845 #if defined(INET) || defined(INET6) 846 847 #ifdef TCP_OFFLOAD 848 static int 849 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 850 { 851 struct inpcb *inp; 852 struct tcpcb *tp; 853 int error; 854 855 inp = so->so_pcb; 856 INP_WLOCK(inp); 857 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 858 INP_WUNLOCK(inp); 859 return (ECONNRESET); 860 } 861 if (inp->inp_socket == NULL) { 862 INP_WUNLOCK(inp); 863 return (ECONNRESET); 864 } 865 tp = intotcpcb(inp); 866 if (!(tp->t_flags & TF_TOE)) { 867 INP_WUNLOCK(inp); 868 return (EOPNOTSUPP); 869 } 870 871 error = tcp_offload_alloc_tls_session(tp, tls, direction); 872 INP_WUNLOCK(inp); 873 if (error == 0) { 874 tls->mode = TCP_TLS_MODE_TOE; 875 switch (tls->params.cipher_algorithm) { 876 case CRYPTO_AES_CBC: 877 counter_u64_add(ktls_toe_cbc, 1); 878 break; 879 case CRYPTO_AES_NIST_GCM_16: 880 counter_u64_add(ktls_toe_gcm, 1); 881 break; 882 case CRYPTO_CHACHA20_POLY1305: 883 counter_u64_add(ktls_toe_chacha20, 1); 884 break; 885 } 886 } 887 return (error); 888 } 889 #endif 890 891 /* 892 * Common code used when first enabling ifnet TLS on a connection or 893 * when allocating a new ifnet TLS session due to a routing change. 894 * This function allocates a new TLS send tag on whatever interface 895 * the connection is currently routed over. 896 */ 897 static int 898 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 899 struct m_snd_tag **mstp) 900 { 901 union if_snd_tag_alloc_params params; 902 struct ifnet *ifp; 903 struct nhop_object *nh; 904 struct tcpcb *tp; 905 int error; 906 907 INP_RLOCK(inp); 908 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 909 INP_RUNLOCK(inp); 910 return (ECONNRESET); 911 } 912 if (inp->inp_socket == NULL) { 913 INP_RUNLOCK(inp); 914 return (ECONNRESET); 915 } 916 tp = intotcpcb(inp); 917 918 /* 919 * Check administrative controls on ifnet TLS to determine if 920 * ifnet TLS should be denied. 921 * 922 * - Always permit 'force' requests. 923 * - ktls_ifnet_permitted == 0: always deny. 924 */ 925 if (!force && ktls_ifnet_permitted == 0) { 926 INP_RUNLOCK(inp); 927 return (ENXIO); 928 } 929 930 /* 931 * XXX: Use the cached route in the inpcb to find the 932 * interface. This should perhaps instead use 933 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 934 * enabled after a connection has completed key negotiation in 935 * userland, the cached route will be present in practice. 936 */ 937 nh = inp->inp_route.ro_nh; 938 if (nh == NULL) { 939 INP_RUNLOCK(inp); 940 return (ENXIO); 941 } 942 ifp = nh->nh_ifp; 943 if_ref(ifp); 944 945 /* 946 * Allocate a TLS + ratelimit tag if the connection has an 947 * existing pacing rate. 948 */ 949 if (tp->t_pacing_rate != -1 && 950 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 951 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 952 params.tls_rate_limit.inp = inp; 953 params.tls_rate_limit.tls = tls; 954 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 955 } else { 956 params.hdr.type = IF_SND_TAG_TYPE_TLS; 957 params.tls.inp = inp; 958 params.tls.tls = tls; 959 } 960 params.hdr.flowid = inp->inp_flowid; 961 params.hdr.flowtype = inp->inp_flowtype; 962 params.hdr.numa_domain = inp->inp_numa_domain; 963 INP_RUNLOCK(inp); 964 965 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 966 error = EOPNOTSUPP; 967 goto out; 968 } 969 if (inp->inp_vflag & INP_IPV6) { 970 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 971 error = EOPNOTSUPP; 972 goto out; 973 } 974 } else { 975 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 976 error = EOPNOTSUPP; 977 goto out; 978 } 979 } 980 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 981 out: 982 if_rele(ifp); 983 return (error); 984 } 985 986 static int 987 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 988 { 989 struct m_snd_tag *mst; 990 int error; 991 992 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 993 if (error == 0) { 994 tls->mode = TCP_TLS_MODE_IFNET; 995 tls->snd_tag = mst; 996 switch (tls->params.cipher_algorithm) { 997 case CRYPTO_AES_CBC: 998 counter_u64_add(ktls_ifnet_cbc, 1); 999 break; 1000 case CRYPTO_AES_NIST_GCM_16: 1001 counter_u64_add(ktls_ifnet_gcm, 1); 1002 break; 1003 case CRYPTO_CHACHA20_POLY1305: 1004 counter_u64_add(ktls_ifnet_chacha20, 1); 1005 break; 1006 } 1007 } 1008 return (error); 1009 } 1010 1011 static void 1012 ktls_use_sw(struct ktls_session *tls) 1013 { 1014 tls->mode = TCP_TLS_MODE_SW; 1015 switch (tls->params.cipher_algorithm) { 1016 case CRYPTO_AES_CBC: 1017 counter_u64_add(ktls_sw_cbc, 1); 1018 break; 1019 case CRYPTO_AES_NIST_GCM_16: 1020 counter_u64_add(ktls_sw_gcm, 1); 1021 break; 1022 case CRYPTO_CHACHA20_POLY1305: 1023 counter_u64_add(ktls_sw_chacha20, 1); 1024 break; 1025 } 1026 } 1027 1028 static int 1029 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1030 { 1031 int error; 1032 1033 error = ktls_ocf_try(so, tls, direction); 1034 if (error) 1035 return (error); 1036 ktls_use_sw(tls); 1037 return (0); 1038 } 1039 1040 /* 1041 * KTLS RX stores data in the socket buffer as a list of TLS records, 1042 * where each record is stored as a control message containg the TLS 1043 * header followed by data mbufs containing the decrypted data. This 1044 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1045 * both encrypted and decrypted data. TLS records decrypted by a NIC 1046 * should be queued to the socket buffer as records, but encrypted 1047 * data which needs to be decrypted by software arrives as a stream of 1048 * regular mbufs which need to be converted. In addition, there may 1049 * already be pending encrypted data in the socket buffer when KTLS RX 1050 * is enabled. 1051 * 1052 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1053 * is used: 1054 * 1055 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1056 * 1057 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1058 * from the first mbuf. Once all of the data for that TLS record is 1059 * queued, the socket is queued to a worker thread. 1060 * 1061 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1062 * the TLS chain. Each TLS record is detached from the TLS chain, 1063 * decrypted, and inserted into the regular socket buffer chain as 1064 * record starting with a control message holding the TLS header and 1065 * a chain of mbufs holding the encrypted data. 1066 */ 1067 1068 static void 1069 sb_mark_notready(struct sockbuf *sb) 1070 { 1071 struct mbuf *m; 1072 1073 m = sb->sb_mb; 1074 sb->sb_mtls = m; 1075 sb->sb_mb = NULL; 1076 sb->sb_mbtail = NULL; 1077 sb->sb_lastrecord = NULL; 1078 for (; m != NULL; m = m->m_next) { 1079 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1080 __func__)); 1081 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1082 __func__)); 1083 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1084 __func__)); 1085 m->m_flags |= M_NOTREADY; 1086 sb->sb_acc -= m->m_len; 1087 sb->sb_tlscc += m->m_len; 1088 sb->sb_mtlstail = m; 1089 } 1090 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1091 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1092 sb->sb_ccc)); 1093 } 1094 1095 /* 1096 * Return information about the pending TLS data in a socket 1097 * buffer. On return, 'seqno' is set to the sequence number 1098 * of the next TLS record to be received, 'resid' is set to 1099 * the amount of bytes still needed for the last pending 1100 * record. The function returns 'false' if the last pending 1101 * record contains a partial TLS header. In that case, 'resid' 1102 * is the number of bytes needed to complete the TLS header. 1103 */ 1104 bool 1105 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1106 { 1107 struct tls_record_layer hdr; 1108 struct mbuf *m; 1109 uint64_t seqno; 1110 size_t resid; 1111 u_int offset, record_len; 1112 1113 SOCKBUF_LOCK_ASSERT(sb); 1114 MPASS(sb->sb_flags & SB_TLS_RX); 1115 seqno = sb->sb_tls_seqno; 1116 resid = sb->sb_tlscc; 1117 m = sb->sb_mtls; 1118 offset = 0; 1119 1120 if (resid == 0) { 1121 *seqnop = seqno; 1122 *residp = 0; 1123 return (true); 1124 } 1125 1126 for (;;) { 1127 seqno++; 1128 1129 if (resid < sizeof(hdr)) { 1130 *seqnop = seqno; 1131 *residp = sizeof(hdr) - resid; 1132 return (false); 1133 } 1134 1135 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1136 1137 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1138 if (resid <= record_len) { 1139 *seqnop = seqno; 1140 *residp = record_len - resid; 1141 return (true); 1142 } 1143 resid -= record_len; 1144 1145 while (record_len != 0) { 1146 if (m->m_len - offset > record_len) { 1147 offset += record_len; 1148 break; 1149 } 1150 1151 record_len -= (m->m_len - offset); 1152 offset = 0; 1153 m = m->m_next; 1154 } 1155 } 1156 } 1157 1158 int 1159 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1160 { 1161 struct ktls_session *tls; 1162 int error; 1163 1164 if (!ktls_offload_enable) 1165 return (ENOTSUP); 1166 if (SOLISTENING(so)) 1167 return (EINVAL); 1168 1169 counter_u64_add(ktls_offload_enable_calls, 1); 1170 1171 /* 1172 * This should always be true since only the TCP socket option 1173 * invokes this function. 1174 */ 1175 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1176 return (EINVAL); 1177 1178 /* 1179 * XXX: Don't overwrite existing sessions. We should permit 1180 * this to support rekeying in the future. 1181 */ 1182 if (so->so_rcv.sb_tls_info != NULL) 1183 return (EALREADY); 1184 1185 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1186 return (ENOTSUP); 1187 1188 error = ktls_create_session(so, en, &tls); 1189 if (error) 1190 return (error); 1191 1192 error = ktls_ocf_try(so, tls, KTLS_RX); 1193 if (error) { 1194 ktls_cleanup(tls); 1195 return (error); 1196 } 1197 1198 #ifdef TCP_OFFLOAD 1199 error = ktls_try_toe(so, tls, KTLS_RX); 1200 if (error) 1201 #endif 1202 ktls_use_sw(tls); 1203 1204 /* Mark the socket as using TLS offload. */ 1205 SOCKBUF_LOCK(&so->so_rcv); 1206 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1207 so->so_rcv.sb_tls_info = tls; 1208 so->so_rcv.sb_flags |= SB_TLS_RX; 1209 1210 /* Mark existing data as not ready until it can be decrypted. */ 1211 if (tls->mode != TCP_TLS_MODE_TOE) { 1212 sb_mark_notready(&so->so_rcv); 1213 ktls_check_rx(&so->so_rcv); 1214 } 1215 SOCKBUF_UNLOCK(&so->so_rcv); 1216 1217 counter_u64_add(ktls_offload_total, 1); 1218 1219 return (0); 1220 } 1221 1222 int 1223 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1224 { 1225 struct ktls_session *tls; 1226 struct inpcb *inp; 1227 int error; 1228 1229 if (!ktls_offload_enable) 1230 return (ENOTSUP); 1231 if (SOLISTENING(so)) 1232 return (EINVAL); 1233 1234 counter_u64_add(ktls_offload_enable_calls, 1); 1235 1236 /* 1237 * This should always be true since only the TCP socket option 1238 * invokes this function. 1239 */ 1240 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1241 return (EINVAL); 1242 1243 /* 1244 * XXX: Don't overwrite existing sessions. We should permit 1245 * this to support rekeying in the future. 1246 */ 1247 if (so->so_snd.sb_tls_info != NULL) 1248 return (EALREADY); 1249 1250 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1251 return (ENOTSUP); 1252 1253 /* TLS requires ext pgs */ 1254 if (mb_use_ext_pgs == 0) 1255 return (ENXIO); 1256 1257 error = ktls_create_session(so, en, &tls); 1258 if (error) 1259 return (error); 1260 1261 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1262 #ifdef TCP_OFFLOAD 1263 error = ktls_try_toe(so, tls, KTLS_TX); 1264 if (error) 1265 #endif 1266 error = ktls_try_ifnet(so, tls, false); 1267 if (error) 1268 error = ktls_try_sw(so, tls, KTLS_TX); 1269 1270 if (error) { 1271 ktls_cleanup(tls); 1272 return (error); 1273 } 1274 1275 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1276 if (error) { 1277 ktls_cleanup(tls); 1278 return (error); 1279 } 1280 1281 /* 1282 * Write lock the INP when setting sb_tls_info so that 1283 * routines in tcp_ratelimit.c can read sb_tls_info while 1284 * holding the INP lock. 1285 */ 1286 inp = so->so_pcb; 1287 INP_WLOCK(inp); 1288 SOCKBUF_LOCK(&so->so_snd); 1289 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1290 so->so_snd.sb_tls_info = tls; 1291 if (tls->mode != TCP_TLS_MODE_SW) 1292 so->so_snd.sb_flags |= SB_TLS_IFNET; 1293 SOCKBUF_UNLOCK(&so->so_snd); 1294 INP_WUNLOCK(inp); 1295 SOCK_IO_SEND_UNLOCK(so); 1296 1297 counter_u64_add(ktls_offload_total, 1); 1298 1299 return (0); 1300 } 1301 1302 int 1303 ktls_get_rx_mode(struct socket *so, int *modep) 1304 { 1305 struct ktls_session *tls; 1306 struct inpcb *inp __diagused; 1307 1308 if (SOLISTENING(so)) 1309 return (EINVAL); 1310 inp = so->so_pcb; 1311 INP_WLOCK_ASSERT(inp); 1312 SOCK_RECVBUF_LOCK(so); 1313 tls = so->so_rcv.sb_tls_info; 1314 if (tls == NULL) 1315 *modep = TCP_TLS_MODE_NONE; 1316 else 1317 *modep = tls->mode; 1318 SOCK_RECVBUF_UNLOCK(so); 1319 return (0); 1320 } 1321 1322 /* 1323 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1324 * 1325 * This function gets information about the next TCP- and TLS- 1326 * sequence number to be processed by the TLS receive worker 1327 * thread. The information is extracted from the given "inpcb" 1328 * structure. The values are stored in host endian format at the two 1329 * given output pointer locations. The TCP sequence number points to 1330 * the beginning of the TLS header. 1331 * 1332 * This function returns zero on success, else a non-zero error code 1333 * is returned. 1334 */ 1335 int 1336 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1337 { 1338 struct socket *so; 1339 struct tcpcb *tp; 1340 1341 INP_RLOCK(inp); 1342 so = inp->inp_socket; 1343 if (__predict_false(so == NULL)) { 1344 INP_RUNLOCK(inp); 1345 return (EINVAL); 1346 } 1347 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1348 INP_RUNLOCK(inp); 1349 return (ECONNRESET); 1350 } 1351 1352 tp = intotcpcb(inp); 1353 MPASS(tp != NULL); 1354 1355 SOCKBUF_LOCK(&so->so_rcv); 1356 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1357 *tlsseq = so->so_rcv.sb_tls_seqno; 1358 SOCKBUF_UNLOCK(&so->so_rcv); 1359 1360 INP_RUNLOCK(inp); 1361 1362 return (0); 1363 } 1364 1365 int 1366 ktls_get_tx_mode(struct socket *so, int *modep) 1367 { 1368 struct ktls_session *tls; 1369 struct inpcb *inp __diagused; 1370 1371 if (SOLISTENING(so)) 1372 return (EINVAL); 1373 inp = so->so_pcb; 1374 INP_WLOCK_ASSERT(inp); 1375 SOCK_SENDBUF_LOCK(so); 1376 tls = so->so_snd.sb_tls_info; 1377 if (tls == NULL) 1378 *modep = TCP_TLS_MODE_NONE; 1379 else 1380 *modep = tls->mode; 1381 SOCK_SENDBUF_UNLOCK(so); 1382 return (0); 1383 } 1384 1385 /* 1386 * Switch between SW and ifnet TLS sessions as requested. 1387 */ 1388 int 1389 ktls_set_tx_mode(struct socket *so, int mode) 1390 { 1391 struct ktls_session *tls, *tls_new; 1392 struct inpcb *inp; 1393 int error; 1394 1395 if (SOLISTENING(so)) 1396 return (EINVAL); 1397 switch (mode) { 1398 case TCP_TLS_MODE_SW: 1399 case TCP_TLS_MODE_IFNET: 1400 break; 1401 default: 1402 return (EINVAL); 1403 } 1404 1405 inp = so->so_pcb; 1406 INP_WLOCK_ASSERT(inp); 1407 SOCKBUF_LOCK(&so->so_snd); 1408 tls = so->so_snd.sb_tls_info; 1409 if (tls == NULL) { 1410 SOCKBUF_UNLOCK(&so->so_snd); 1411 return (0); 1412 } 1413 1414 if (tls->mode == mode) { 1415 SOCKBUF_UNLOCK(&so->so_snd); 1416 return (0); 1417 } 1418 1419 tls = ktls_hold(tls); 1420 SOCKBUF_UNLOCK(&so->so_snd); 1421 INP_WUNLOCK(inp); 1422 1423 tls_new = ktls_clone_session(tls); 1424 1425 if (mode == TCP_TLS_MODE_IFNET) 1426 error = ktls_try_ifnet(so, tls_new, true); 1427 else 1428 error = ktls_try_sw(so, tls_new, KTLS_TX); 1429 if (error) { 1430 counter_u64_add(ktls_switch_failed, 1); 1431 ktls_free(tls_new); 1432 ktls_free(tls); 1433 INP_WLOCK(inp); 1434 return (error); 1435 } 1436 1437 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1438 if (error) { 1439 counter_u64_add(ktls_switch_failed, 1); 1440 ktls_free(tls_new); 1441 ktls_free(tls); 1442 INP_WLOCK(inp); 1443 return (error); 1444 } 1445 1446 /* 1447 * If we raced with another session change, keep the existing 1448 * session. 1449 */ 1450 if (tls != so->so_snd.sb_tls_info) { 1451 counter_u64_add(ktls_switch_failed, 1); 1452 SOCK_IO_SEND_UNLOCK(so); 1453 ktls_free(tls_new); 1454 ktls_free(tls); 1455 INP_WLOCK(inp); 1456 return (EBUSY); 1457 } 1458 1459 SOCKBUF_LOCK(&so->so_snd); 1460 so->so_snd.sb_tls_info = tls_new; 1461 if (tls_new->mode != TCP_TLS_MODE_SW) 1462 so->so_snd.sb_flags |= SB_TLS_IFNET; 1463 SOCKBUF_UNLOCK(&so->so_snd); 1464 SOCK_IO_SEND_UNLOCK(so); 1465 1466 /* 1467 * Drop two references on 'tls'. The first is for the 1468 * ktls_hold() above. The second drops the reference from the 1469 * socket buffer. 1470 */ 1471 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1472 ktls_free(tls); 1473 ktls_free(tls); 1474 1475 if (mode == TCP_TLS_MODE_IFNET) 1476 counter_u64_add(ktls_switch_to_ifnet, 1); 1477 else 1478 counter_u64_add(ktls_switch_to_sw, 1); 1479 1480 INP_WLOCK(inp); 1481 return (0); 1482 } 1483 1484 /* 1485 * Try to allocate a new TLS send tag. This task is scheduled when 1486 * ip_output detects a route change while trying to transmit a packet 1487 * holding a TLS record. If a new tag is allocated, replace the tag 1488 * in the TLS session. Subsequent packets on the connection will use 1489 * the new tag. If a new tag cannot be allocated, drop the 1490 * connection. 1491 */ 1492 static void 1493 ktls_reset_send_tag(void *context, int pending) 1494 { 1495 struct epoch_tracker et; 1496 struct ktls_session *tls; 1497 struct m_snd_tag *old, *new; 1498 struct inpcb *inp; 1499 struct tcpcb *tp; 1500 int error; 1501 1502 MPASS(pending == 1); 1503 1504 tls = context; 1505 inp = tls->inp; 1506 1507 /* 1508 * Free the old tag first before allocating a new one. 1509 * ip[6]_output_send() will treat a NULL send tag the same as 1510 * an ifp mismatch and drop packets until a new tag is 1511 * allocated. 1512 * 1513 * Write-lock the INP when changing tls->snd_tag since 1514 * ip[6]_output_send() holds a read-lock when reading the 1515 * pointer. 1516 */ 1517 INP_WLOCK(inp); 1518 old = tls->snd_tag; 1519 tls->snd_tag = NULL; 1520 INP_WUNLOCK(inp); 1521 if (old != NULL) 1522 m_snd_tag_rele(old); 1523 1524 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1525 1526 if (error == 0) { 1527 INP_WLOCK(inp); 1528 tls->snd_tag = new; 1529 mtx_pool_lock(mtxpool_sleep, tls); 1530 tls->reset_pending = false; 1531 mtx_pool_unlock(mtxpool_sleep, tls); 1532 if (!in_pcbrele_wlocked(inp)) 1533 INP_WUNLOCK(inp); 1534 1535 counter_u64_add(ktls_ifnet_reset, 1); 1536 1537 /* 1538 * XXX: Should we kick tcp_output explicitly now that 1539 * the send tag is fixed or just rely on timers? 1540 */ 1541 } else { 1542 NET_EPOCH_ENTER(et); 1543 INP_WLOCK(inp); 1544 if (!in_pcbrele_wlocked(inp)) { 1545 if (!(inp->inp_flags & INP_TIMEWAIT) && 1546 !(inp->inp_flags & INP_DROPPED)) { 1547 tp = intotcpcb(inp); 1548 CURVNET_SET(tp->t_vnet); 1549 tp = tcp_drop(tp, ECONNABORTED); 1550 CURVNET_RESTORE(); 1551 if (tp != NULL) 1552 INP_WUNLOCK(inp); 1553 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1554 } else 1555 INP_WUNLOCK(inp); 1556 } 1557 NET_EPOCH_EXIT(et); 1558 1559 counter_u64_add(ktls_ifnet_reset_failed, 1); 1560 1561 /* 1562 * Leave reset_pending true to avoid future tasks while 1563 * the socket goes away. 1564 */ 1565 } 1566 1567 ktls_free(tls); 1568 } 1569 1570 int 1571 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1572 { 1573 1574 if (inp == NULL) 1575 return (ENOBUFS); 1576 1577 INP_LOCK_ASSERT(inp); 1578 1579 /* 1580 * See if we should schedule a task to update the send tag for 1581 * this session. 1582 */ 1583 mtx_pool_lock(mtxpool_sleep, tls); 1584 if (!tls->reset_pending) { 1585 (void) ktls_hold(tls); 1586 in_pcbref(inp); 1587 tls->inp = inp; 1588 tls->reset_pending = true; 1589 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1590 } 1591 mtx_pool_unlock(mtxpool_sleep, tls); 1592 return (ENOBUFS); 1593 } 1594 1595 #ifdef RATELIMIT 1596 int 1597 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1598 { 1599 union if_snd_tag_modify_params params = { 1600 .rate_limit.max_rate = max_pacing_rate, 1601 .rate_limit.flags = M_NOWAIT, 1602 }; 1603 struct m_snd_tag *mst; 1604 1605 /* Can't get to the inp, but it should be locked. */ 1606 /* INP_LOCK_ASSERT(inp); */ 1607 1608 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1609 1610 if (tls->snd_tag == NULL) { 1611 /* 1612 * Resetting send tag, ignore this change. The 1613 * pending reset may or may not see this updated rate 1614 * in the tcpcb. If it doesn't, we will just lose 1615 * this rate change. 1616 */ 1617 return (0); 1618 } 1619 1620 MPASS(tls->snd_tag != NULL); 1621 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1622 1623 mst = tls->snd_tag; 1624 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1625 } 1626 #endif 1627 #endif 1628 1629 void 1630 ktls_destroy(struct ktls_session *tls) 1631 { 1632 1633 if (tls->sequential_records) { 1634 struct mbuf *m, *n; 1635 int page_count; 1636 1637 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1638 page_count = m->m_epg_enc_cnt; 1639 while (page_count > 0) { 1640 KASSERT(page_count >= m->m_epg_nrdy, 1641 ("%s: too few pages", __func__)); 1642 page_count -= m->m_epg_nrdy; 1643 m = m_free(m); 1644 } 1645 } 1646 } 1647 ktls_cleanup(tls); 1648 uma_zfree(ktls_session_zone, tls); 1649 } 1650 1651 void 1652 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1653 { 1654 1655 for (; m != NULL; m = m->m_next) { 1656 KASSERT((m->m_flags & M_EXTPG) != 0, 1657 ("ktls_seq: mapped mbuf %p", m)); 1658 1659 m->m_epg_seqno = sb->sb_tls_seqno; 1660 sb->sb_tls_seqno++; 1661 } 1662 } 1663 1664 /* 1665 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1666 * mbuf in the chain must be an unmapped mbuf. The payload of the 1667 * mbuf must be populated with the payload of each TLS record. 1668 * 1669 * The record_type argument specifies the TLS record type used when 1670 * populating the TLS header. 1671 * 1672 * The enq_count argument on return is set to the number of pages of 1673 * payload data for this entire chain that need to be encrypted via SW 1674 * encryption. The returned value should be passed to ktls_enqueue 1675 * when scheduling encryption of this chain of mbufs. To handle the 1676 * special case of empty fragments for TLS 1.0 sessions, an empty 1677 * fragment counts as one page. 1678 */ 1679 void 1680 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1681 uint8_t record_type) 1682 { 1683 struct tls_record_layer *tlshdr; 1684 struct mbuf *m; 1685 uint64_t *noncep; 1686 uint16_t tls_len; 1687 int maxlen __diagused; 1688 1689 maxlen = tls->params.max_frame_len; 1690 *enq_cnt = 0; 1691 for (m = top; m != NULL; m = m->m_next) { 1692 /* 1693 * All mbufs in the chain should be TLS records whose 1694 * payload does not exceed the maximum frame length. 1695 * 1696 * Empty TLS records are permitted when using CBC. 1697 */ 1698 KASSERT(m->m_len <= maxlen && 1699 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1700 m->m_len >= 0 : m->m_len > 0), 1701 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1702 1703 /* 1704 * TLS frames require unmapped mbufs to store session 1705 * info. 1706 */ 1707 KASSERT((m->m_flags & M_EXTPG) != 0, 1708 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1709 1710 tls_len = m->m_len; 1711 1712 /* Save a reference to the session. */ 1713 m->m_epg_tls = ktls_hold(tls); 1714 1715 m->m_epg_hdrlen = tls->params.tls_hlen; 1716 m->m_epg_trllen = tls->params.tls_tlen; 1717 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1718 int bs, delta; 1719 1720 /* 1721 * AES-CBC pads messages to a multiple of the 1722 * block size. Note that the padding is 1723 * applied after the digest and the encryption 1724 * is done on the "plaintext || mac || padding". 1725 * At least one byte of padding is always 1726 * present. 1727 * 1728 * Compute the final trailer length assuming 1729 * at most one block of padding. 1730 * tls->params.tls_tlen is the maximum 1731 * possible trailer length (padding + digest). 1732 * delta holds the number of excess padding 1733 * bytes if the maximum were used. Those 1734 * extra bytes are removed. 1735 */ 1736 bs = tls->params.tls_bs; 1737 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1738 m->m_epg_trllen -= delta; 1739 } 1740 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1741 1742 /* Populate the TLS header. */ 1743 tlshdr = (void *)m->m_epg_hdr; 1744 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1745 1746 /* 1747 * TLS 1.3 masquarades as TLS 1.2 with a record type 1748 * of TLS_RLTYPE_APP. 1749 */ 1750 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1751 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1752 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1753 tlshdr->tls_type = TLS_RLTYPE_APP; 1754 /* save the real record type for later */ 1755 m->m_epg_record_type = record_type; 1756 m->m_epg_trail[0] = record_type; 1757 } else { 1758 tlshdr->tls_vminor = tls->params.tls_vminor; 1759 tlshdr->tls_type = record_type; 1760 } 1761 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1762 1763 /* 1764 * Store nonces / explicit IVs after the end of the 1765 * TLS header. 1766 * 1767 * For GCM with TLS 1.2, an 8 byte nonce is copied 1768 * from the end of the IV. The nonce is then 1769 * incremented for use by the next record. 1770 * 1771 * For CBC, a random nonce is inserted for TLS 1.1+. 1772 */ 1773 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1774 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1775 noncep = (uint64_t *)(tls->params.iv + 8); 1776 be64enc(tlshdr + 1, *noncep); 1777 (*noncep)++; 1778 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1779 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1780 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1781 1782 /* 1783 * When using SW encryption, mark the mbuf not ready. 1784 * It will be marked ready via sbready() after the 1785 * record has been encrypted. 1786 * 1787 * When using ifnet TLS, unencrypted TLS records are 1788 * sent down the stack to the NIC. 1789 */ 1790 if (tls->mode == TCP_TLS_MODE_SW) { 1791 m->m_flags |= M_NOTREADY; 1792 if (__predict_false(tls_len == 0)) { 1793 /* TLS 1.0 empty fragment. */ 1794 m->m_epg_nrdy = 1; 1795 } else 1796 m->m_epg_nrdy = m->m_epg_npgs; 1797 *enq_cnt += m->m_epg_nrdy; 1798 } 1799 } 1800 } 1801 1802 void 1803 ktls_check_rx(struct sockbuf *sb) 1804 { 1805 struct tls_record_layer hdr; 1806 struct ktls_wq *wq; 1807 struct socket *so; 1808 bool running; 1809 1810 SOCKBUF_LOCK_ASSERT(sb); 1811 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1812 __func__, sb)); 1813 so = __containerof(sb, struct socket, so_rcv); 1814 1815 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1816 return; 1817 1818 /* Is there enough queued for a TLS header? */ 1819 if (sb->sb_tlscc < sizeof(hdr)) { 1820 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1821 so->so_error = EMSGSIZE; 1822 return; 1823 } 1824 1825 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1826 1827 /* Is the entire record queued? */ 1828 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1829 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1830 so->so_error = EMSGSIZE; 1831 return; 1832 } 1833 1834 sb->sb_flags |= SB_TLS_RX_RUNNING; 1835 1836 soref(so); 1837 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1838 mtx_lock(&wq->mtx); 1839 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1840 running = wq->running; 1841 mtx_unlock(&wq->mtx); 1842 if (!running) 1843 wakeup(wq); 1844 counter_u64_add(ktls_cnt_rx_queued, 1); 1845 } 1846 1847 static struct mbuf * 1848 ktls_detach_record(struct sockbuf *sb, int len) 1849 { 1850 struct mbuf *m, *n, *top; 1851 int remain; 1852 1853 SOCKBUF_LOCK_ASSERT(sb); 1854 MPASS(len <= sb->sb_tlscc); 1855 1856 /* 1857 * If TLS chain is the exact size of the record, 1858 * just grab the whole record. 1859 */ 1860 top = sb->sb_mtls; 1861 if (sb->sb_tlscc == len) { 1862 sb->sb_mtls = NULL; 1863 sb->sb_mtlstail = NULL; 1864 goto out; 1865 } 1866 1867 /* 1868 * While it would be nice to use m_split() here, we need 1869 * to know exactly what m_split() allocates to update the 1870 * accounting, so do it inline instead. 1871 */ 1872 remain = len; 1873 for (m = top; remain > m->m_len; m = m->m_next) 1874 remain -= m->m_len; 1875 1876 /* Easy case: don't have to split 'm'. */ 1877 if (remain == m->m_len) { 1878 sb->sb_mtls = m->m_next; 1879 if (sb->sb_mtls == NULL) 1880 sb->sb_mtlstail = NULL; 1881 m->m_next = NULL; 1882 goto out; 1883 } 1884 1885 /* 1886 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1887 * with M_NOWAIT first. 1888 */ 1889 n = m_get(M_NOWAIT, MT_DATA); 1890 if (n == NULL) { 1891 /* 1892 * Use M_WAITOK with socket buffer unlocked. If 1893 * 'sb_mtls' changes while the lock is dropped, return 1894 * NULL to force the caller to retry. 1895 */ 1896 SOCKBUF_UNLOCK(sb); 1897 1898 n = m_get(M_WAITOK, MT_DATA); 1899 1900 SOCKBUF_LOCK(sb); 1901 if (sb->sb_mtls != top) { 1902 m_free(n); 1903 return (NULL); 1904 } 1905 } 1906 n->m_flags |= M_NOTREADY; 1907 1908 /* Store remainder in 'n'. */ 1909 n->m_len = m->m_len - remain; 1910 if (m->m_flags & M_EXT) { 1911 n->m_data = m->m_data + remain; 1912 mb_dupcl(n, m); 1913 } else { 1914 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1915 } 1916 1917 /* Trim 'm' and update accounting. */ 1918 m->m_len -= n->m_len; 1919 sb->sb_tlscc -= n->m_len; 1920 sb->sb_ccc -= n->m_len; 1921 1922 /* Account for 'n'. */ 1923 sballoc_ktls_rx(sb, n); 1924 1925 /* Insert 'n' into the TLS chain. */ 1926 sb->sb_mtls = n; 1927 n->m_next = m->m_next; 1928 if (sb->sb_mtlstail == m) 1929 sb->sb_mtlstail = n; 1930 1931 /* Detach the record from the TLS chain. */ 1932 m->m_next = NULL; 1933 1934 out: 1935 MPASS(m_length(top, NULL) == len); 1936 for (m = top; m != NULL; m = m->m_next) 1937 sbfree_ktls_rx(sb, m); 1938 sb->sb_tlsdcc = len; 1939 sb->sb_ccc += len; 1940 SBCHECK(sb); 1941 return (top); 1942 } 1943 1944 /* 1945 * Determine the length of the trailing zero padding and find the real 1946 * record type in the byte before the padding. 1947 * 1948 * Walking the mbuf chain backwards is clumsy, so another option would 1949 * be to scan forwards remembering the last non-zero byte before the 1950 * trailer. However, it would be expensive to scan the entire record. 1951 * Instead, find the last non-zero byte of each mbuf in the chain 1952 * keeping track of the relative offset of that nonzero byte. 1953 * 1954 * trail_len is the size of the MAC/tag on input and is set to the 1955 * size of the full trailer including padding and the record type on 1956 * return. 1957 */ 1958 static int 1959 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 1960 int *trailer_len, uint8_t *record_typep) 1961 { 1962 char *cp; 1963 u_int digest_start, last_offset, m_len, offset; 1964 uint8_t record_type; 1965 1966 digest_start = tls_len - *trailer_len; 1967 last_offset = 0; 1968 offset = 0; 1969 for (; m != NULL && offset < digest_start; 1970 offset += m->m_len, m = m->m_next) { 1971 /* Don't look for padding in the tag. */ 1972 m_len = min(digest_start - offset, m->m_len); 1973 cp = mtod(m, char *); 1974 1975 /* Find last non-zero byte in this mbuf. */ 1976 while (m_len > 0 && cp[m_len - 1] == 0) 1977 m_len--; 1978 if (m_len > 0) { 1979 record_type = cp[m_len - 1]; 1980 last_offset = offset + m_len; 1981 } 1982 } 1983 if (last_offset < tls->params.tls_hlen) 1984 return (EBADMSG); 1985 1986 *record_typep = record_type; 1987 *trailer_len = tls_len - last_offset + 1; 1988 return (0); 1989 } 1990 1991 static void 1992 ktls_decrypt(struct socket *so) 1993 { 1994 char tls_header[MBUF_PEXT_HDR_LEN]; 1995 struct ktls_session *tls; 1996 struct sockbuf *sb; 1997 struct tls_record_layer *hdr; 1998 struct tls_get_record tgr; 1999 struct mbuf *control, *data, *m; 2000 uint64_t seqno; 2001 int error, remain, tls_len, trail_len; 2002 bool tls13; 2003 uint8_t vminor, record_type; 2004 2005 hdr = (struct tls_record_layer *)tls_header; 2006 sb = &so->so_rcv; 2007 SOCKBUF_LOCK(sb); 2008 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2009 ("%s: socket %p not running", __func__, so)); 2010 2011 tls = sb->sb_tls_info; 2012 MPASS(tls != NULL); 2013 2014 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2015 if (tls13) 2016 vminor = TLS_MINOR_VER_TWO; 2017 else 2018 vminor = tls->params.tls_vminor; 2019 for (;;) { 2020 /* Is there enough queued for a TLS header? */ 2021 if (sb->sb_tlscc < tls->params.tls_hlen) 2022 break; 2023 2024 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2025 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2026 2027 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2028 hdr->tls_vminor != vminor) 2029 error = EINVAL; 2030 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2031 error = EINVAL; 2032 else if (tls_len < tls->params.tls_hlen || tls_len > 2033 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2034 tls->params.tls_tlen) 2035 error = EMSGSIZE; 2036 else 2037 error = 0; 2038 if (__predict_false(error != 0)) { 2039 /* 2040 * We have a corrupted record and are likely 2041 * out of sync. The connection isn't 2042 * recoverable at this point, so abort it. 2043 */ 2044 SOCKBUF_UNLOCK(sb); 2045 counter_u64_add(ktls_offload_corrupted_records, 1); 2046 2047 CURVNET_SET(so->so_vnet); 2048 so->so_proto->pr_usrreqs->pru_abort(so); 2049 so->so_error = error; 2050 CURVNET_RESTORE(); 2051 goto deref; 2052 } 2053 2054 /* Is the entire record queued? */ 2055 if (sb->sb_tlscc < tls_len) 2056 break; 2057 2058 /* 2059 * Split out the portion of the mbuf chain containing 2060 * this TLS record. 2061 */ 2062 data = ktls_detach_record(sb, tls_len); 2063 if (data == NULL) 2064 continue; 2065 MPASS(sb->sb_tlsdcc == tls_len); 2066 2067 seqno = sb->sb_tls_seqno; 2068 sb->sb_tls_seqno++; 2069 SBCHECK(sb); 2070 SOCKBUF_UNLOCK(sb); 2071 2072 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 2073 if (error == 0) { 2074 if (tls13) 2075 error = tls13_find_record_type(tls, data, 2076 tls_len, &trail_len, &record_type); 2077 else 2078 record_type = hdr->tls_type; 2079 } 2080 if (error) { 2081 counter_u64_add(ktls_offload_failed_crypto, 1); 2082 2083 SOCKBUF_LOCK(sb); 2084 if (sb->sb_tlsdcc == 0) { 2085 /* 2086 * sbcut/drop/flush discarded these 2087 * mbufs. 2088 */ 2089 m_freem(data); 2090 break; 2091 } 2092 2093 /* 2094 * Drop this TLS record's data, but keep 2095 * decrypting subsequent records. 2096 */ 2097 sb->sb_ccc -= tls_len; 2098 sb->sb_tlsdcc = 0; 2099 2100 CURVNET_SET(so->so_vnet); 2101 so->so_error = EBADMSG; 2102 sorwakeup_locked(so); 2103 CURVNET_RESTORE(); 2104 2105 m_freem(data); 2106 2107 SOCKBUF_LOCK(sb); 2108 continue; 2109 } 2110 2111 /* Allocate the control mbuf. */ 2112 memset(&tgr, 0, sizeof(tgr)); 2113 tgr.tls_type = record_type; 2114 tgr.tls_vmajor = hdr->tls_vmajor; 2115 tgr.tls_vminor = hdr->tls_vminor; 2116 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2117 trail_len); 2118 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 2119 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2120 2121 SOCKBUF_LOCK(sb); 2122 if (sb->sb_tlsdcc == 0) { 2123 /* sbcut/drop/flush discarded these mbufs. */ 2124 MPASS(sb->sb_tlscc == 0); 2125 m_freem(data); 2126 m_freem(control); 2127 break; 2128 } 2129 2130 /* 2131 * Clear the 'dcc' accounting in preparation for 2132 * adding the decrypted record. 2133 */ 2134 sb->sb_ccc -= tls_len; 2135 sb->sb_tlsdcc = 0; 2136 SBCHECK(sb); 2137 2138 /* If there is no payload, drop all of the data. */ 2139 if (tgr.tls_length == htobe16(0)) { 2140 m_freem(data); 2141 data = NULL; 2142 } else { 2143 /* Trim header. */ 2144 remain = tls->params.tls_hlen; 2145 while (remain > 0) { 2146 if (data->m_len > remain) { 2147 data->m_data += remain; 2148 data->m_len -= remain; 2149 break; 2150 } 2151 remain -= data->m_len; 2152 data = m_free(data); 2153 } 2154 2155 /* Trim trailer and clear M_NOTREADY. */ 2156 remain = be16toh(tgr.tls_length); 2157 m = data; 2158 for (m = data; remain > m->m_len; m = m->m_next) { 2159 m->m_flags &= ~M_NOTREADY; 2160 remain -= m->m_len; 2161 } 2162 m->m_len = remain; 2163 m_freem(m->m_next); 2164 m->m_next = NULL; 2165 m->m_flags &= ~M_NOTREADY; 2166 2167 /* Set EOR on the final mbuf. */ 2168 m->m_flags |= M_EOR; 2169 } 2170 2171 sbappendcontrol_locked(sb, data, control, 0); 2172 } 2173 2174 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2175 2176 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2177 so->so_error = EMSGSIZE; 2178 2179 sorwakeup_locked(so); 2180 2181 deref: 2182 SOCKBUF_UNLOCK_ASSERT(sb); 2183 2184 CURVNET_SET(so->so_vnet); 2185 sorele(so); 2186 CURVNET_RESTORE(); 2187 } 2188 2189 void 2190 ktls_enqueue_to_free(struct mbuf *m) 2191 { 2192 struct ktls_wq *wq; 2193 bool running; 2194 2195 /* Mark it for freeing. */ 2196 m->m_epg_flags |= EPG_FLAG_2FREE; 2197 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2198 mtx_lock(&wq->mtx); 2199 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2200 running = wq->running; 2201 mtx_unlock(&wq->mtx); 2202 if (!running) 2203 wakeup(wq); 2204 } 2205 2206 static void * 2207 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2208 { 2209 void *buf; 2210 int domain, running; 2211 2212 if (m->m_epg_npgs <= 2) 2213 return (NULL); 2214 if (ktls_buffer_zone == NULL) 2215 return (NULL); 2216 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2217 /* 2218 * Rate-limit allocation attempts after a failure. 2219 * ktls_buffer_import() will acquire a per-domain mutex to check 2220 * the free page queues and may fail consistently if memory is 2221 * fragmented. 2222 */ 2223 return (NULL); 2224 } 2225 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2226 if (buf == NULL) { 2227 domain = PCPU_GET(domain); 2228 wq->lastallocfail = ticks; 2229 2230 /* 2231 * Note that this check is "racy", but the races are 2232 * harmless, and are either a spurious wakeup if 2233 * multiple threads fail allocations before the alloc 2234 * thread wakes, or waiting an extra second in case we 2235 * see an old value of running == true. 2236 */ 2237 if (!VM_DOMAIN_EMPTY(domain)) { 2238 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2239 if (!running) 2240 wakeup(&ktls_domains[domain].alloc_td); 2241 } 2242 } 2243 return (buf); 2244 } 2245 2246 static int 2247 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2248 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2249 { 2250 vm_page_t pg; 2251 int error, i, len, off; 2252 2253 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2254 ("%p not unready & nomap mbuf\n", m)); 2255 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2256 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2257 ktls_maxlen)); 2258 2259 /* Anonymous mbufs are encrypted in place. */ 2260 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2261 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2262 2263 /* 2264 * For file-backed mbufs (from sendfile), anonymous wired 2265 * pages are allocated and used as the encryption destination. 2266 */ 2267 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2268 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2269 m->m_epg_1st_off; 2270 state->dst_iov[0].iov_base = (char *)state->cbuf + 2271 m->m_epg_1st_off; 2272 state->dst_iov[0].iov_len = len; 2273 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2274 i = 1; 2275 } else { 2276 off = m->m_epg_1st_off; 2277 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2278 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2279 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2280 len = m_epg_pagelen(m, i, off); 2281 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2282 state->dst_iov[i].iov_base = 2283 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2284 state->dst_iov[i].iov_len = len; 2285 } 2286 } 2287 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2288 state->dst_iov[i].iov_base = m->m_epg_trail; 2289 state->dst_iov[i].iov_len = m->m_epg_trllen; 2290 2291 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2292 2293 if (__predict_false(error != 0)) { 2294 /* Free the anonymous pages. */ 2295 if (state->cbuf != NULL) 2296 uma_zfree(ktls_buffer_zone, state->cbuf); 2297 else { 2298 for (i = 0; i < m->m_epg_npgs; i++) { 2299 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2300 (void)vm_page_unwire_noq(pg); 2301 vm_page_free(pg); 2302 } 2303 } 2304 } 2305 return (error); 2306 } 2307 2308 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2309 static u_int 2310 ktls_batched_records(struct mbuf *m) 2311 { 2312 int page_count, records; 2313 2314 records = 0; 2315 page_count = m->m_epg_enc_cnt; 2316 while (page_count > 0) { 2317 records++; 2318 page_count -= m->m_epg_nrdy; 2319 m = m->m_next; 2320 } 2321 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2322 return (records); 2323 } 2324 2325 void 2326 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2327 { 2328 struct ktls_session *tls; 2329 struct ktls_wq *wq; 2330 int queued; 2331 bool running; 2332 2333 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2334 (M_EXTPG | M_NOTREADY)), 2335 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2336 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2337 2338 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2339 2340 m->m_epg_enc_cnt = page_count; 2341 2342 /* 2343 * Save a pointer to the socket. The caller is responsible 2344 * for taking an additional reference via soref(). 2345 */ 2346 m->m_epg_so = so; 2347 2348 queued = 1; 2349 tls = m->m_epg_tls; 2350 wq = &ktls_wq[tls->wq_index]; 2351 mtx_lock(&wq->mtx); 2352 if (__predict_false(tls->sequential_records)) { 2353 /* 2354 * For TLS 1.0, records must be encrypted 2355 * sequentially. For a given connection, all records 2356 * queued to the associated work queue are processed 2357 * sequentially. However, sendfile(2) might complete 2358 * I/O requests spanning multiple TLS records out of 2359 * order. Here we ensure TLS records are enqueued to 2360 * the work queue in FIFO order. 2361 * 2362 * tls->next_seqno holds the sequence number of the 2363 * next TLS record that should be enqueued to the work 2364 * queue. If this next record is not tls->next_seqno, 2365 * it must be a future record, so insert it, sorted by 2366 * TLS sequence number, into tls->pending_records and 2367 * return. 2368 * 2369 * If this TLS record matches tls->next_seqno, place 2370 * it in the work queue and then check 2371 * tls->pending_records to see if any 2372 * previously-queued records are now ready for 2373 * encryption. 2374 */ 2375 if (m->m_epg_seqno != tls->next_seqno) { 2376 struct mbuf *n, *p; 2377 2378 p = NULL; 2379 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2380 if (n->m_epg_seqno > m->m_epg_seqno) 2381 break; 2382 p = n; 2383 } 2384 if (n == NULL) 2385 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2386 m_epg_stailq); 2387 else if (p == NULL) 2388 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2389 m_epg_stailq); 2390 else 2391 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2392 m_epg_stailq); 2393 mtx_unlock(&wq->mtx); 2394 counter_u64_add(ktls_cnt_tx_pending, 1); 2395 return; 2396 } 2397 2398 tls->next_seqno += ktls_batched_records(m); 2399 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2400 2401 while (!STAILQ_EMPTY(&tls->pending_records)) { 2402 struct mbuf *n; 2403 2404 n = STAILQ_FIRST(&tls->pending_records); 2405 if (n->m_epg_seqno != tls->next_seqno) 2406 break; 2407 2408 queued++; 2409 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2410 tls->next_seqno += ktls_batched_records(n); 2411 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2412 } 2413 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2414 } else 2415 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2416 2417 running = wq->running; 2418 mtx_unlock(&wq->mtx); 2419 if (!running) 2420 wakeup(wq); 2421 counter_u64_add(ktls_cnt_tx_queued, queued); 2422 } 2423 2424 /* 2425 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2426 * the pages from the file and replace them with the anonymous pages 2427 * allocated in ktls_encrypt_record(). 2428 */ 2429 static void 2430 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2431 { 2432 int i; 2433 2434 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2435 2436 /* Free the old pages. */ 2437 m->m_ext.ext_free(m); 2438 2439 /* Replace them with the new pages. */ 2440 if (state->cbuf != NULL) { 2441 for (i = 0; i < m->m_epg_npgs; i++) 2442 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2443 2444 /* Contig pages should go back to the cache. */ 2445 m->m_ext.ext_free = ktls_free_mext_contig; 2446 } else { 2447 for (i = 0; i < m->m_epg_npgs; i++) 2448 m->m_epg_pa[i] = state->parray[i]; 2449 2450 /* Use the basic free routine. */ 2451 m->m_ext.ext_free = mb_free_mext_pgs; 2452 } 2453 2454 /* Pages are now writable. */ 2455 m->m_epg_flags |= EPG_FLAG_ANON; 2456 } 2457 2458 static __noinline void 2459 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2460 { 2461 struct ktls_ocf_encrypt_state state; 2462 struct ktls_session *tls; 2463 struct socket *so; 2464 struct mbuf *m; 2465 int error, npages, total_pages; 2466 2467 so = top->m_epg_so; 2468 tls = top->m_epg_tls; 2469 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2470 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2471 #ifdef INVARIANTS 2472 top->m_epg_so = NULL; 2473 #endif 2474 total_pages = top->m_epg_enc_cnt; 2475 npages = 0; 2476 2477 /* 2478 * Encrypt the TLS records in the chain of mbufs starting with 2479 * 'top'. 'total_pages' gives us a total count of pages and is 2480 * used to know when we have finished encrypting the TLS 2481 * records originally queued with 'top'. 2482 * 2483 * NB: These mbufs are queued in the socket buffer and 2484 * 'm_next' is traversing the mbufs in the socket buffer. The 2485 * socket buffer lock is not held while traversing this chain. 2486 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2487 * pointers should be stable. However, the 'm_next' of the 2488 * last mbuf encrypted is not necessarily NULL. It can point 2489 * to other mbufs appended while 'top' was on the TLS work 2490 * queue. 2491 * 2492 * Each mbuf holds an entire TLS record. 2493 */ 2494 error = 0; 2495 for (m = top; npages != total_pages; m = m->m_next) { 2496 KASSERT(m->m_epg_tls == tls, 2497 ("different TLS sessions in a single mbuf chain: %p vs %p", 2498 tls, m->m_epg_tls)); 2499 KASSERT(npages + m->m_epg_npgs <= total_pages, 2500 ("page count mismatch: top %p, total_pages %d, m %p", top, 2501 total_pages, m)); 2502 2503 error = ktls_encrypt_record(wq, m, tls, &state); 2504 if (error) { 2505 counter_u64_add(ktls_offload_failed_crypto, 1); 2506 break; 2507 } 2508 2509 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2510 ktls_finish_nonanon(m, &state); 2511 2512 npages += m->m_epg_nrdy; 2513 2514 /* 2515 * Drop a reference to the session now that it is no 2516 * longer needed. Existing code depends on encrypted 2517 * records having no associated session vs 2518 * yet-to-be-encrypted records having an associated 2519 * session. 2520 */ 2521 m->m_epg_tls = NULL; 2522 ktls_free(tls); 2523 } 2524 2525 CURVNET_SET(so->so_vnet); 2526 if (error == 0) { 2527 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2528 } else { 2529 so->so_proto->pr_usrreqs->pru_abort(so); 2530 so->so_error = EIO; 2531 mb_free_notready(top, total_pages); 2532 } 2533 2534 sorele(so); 2535 CURVNET_RESTORE(); 2536 } 2537 2538 void 2539 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2540 { 2541 struct ktls_session *tls; 2542 struct socket *so; 2543 struct mbuf *m; 2544 int npages; 2545 2546 m = state->m; 2547 2548 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2549 ktls_finish_nonanon(m, state); 2550 2551 so = state->so; 2552 free(state, M_KTLS); 2553 2554 /* 2555 * Drop a reference to the session now that it is no longer 2556 * needed. Existing code depends on encrypted records having 2557 * no associated session vs yet-to-be-encrypted records having 2558 * an associated session. 2559 */ 2560 tls = m->m_epg_tls; 2561 m->m_epg_tls = NULL; 2562 ktls_free(tls); 2563 2564 if (error != 0) 2565 counter_u64_add(ktls_offload_failed_crypto, 1); 2566 2567 CURVNET_SET(so->so_vnet); 2568 npages = m->m_epg_nrdy; 2569 2570 if (error == 0) { 2571 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2572 } else { 2573 so->so_proto->pr_usrreqs->pru_abort(so); 2574 so->so_error = EIO; 2575 mb_free_notready(m, npages); 2576 } 2577 2578 sorele(so); 2579 CURVNET_RESTORE(); 2580 } 2581 2582 /* 2583 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2584 * (coprocessors) where encryption does not use host CPU resources and 2585 * it can be beneficial to queue more requests than CPUs. 2586 */ 2587 static __noinline void 2588 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2589 { 2590 struct ktls_ocf_encrypt_state *state; 2591 struct ktls_session *tls; 2592 struct socket *so; 2593 struct mbuf *m, *n; 2594 int error, mpages, npages, total_pages; 2595 2596 so = top->m_epg_so; 2597 tls = top->m_epg_tls; 2598 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2599 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2600 #ifdef INVARIANTS 2601 top->m_epg_so = NULL; 2602 #endif 2603 total_pages = top->m_epg_enc_cnt; 2604 npages = 0; 2605 2606 error = 0; 2607 for (m = top; npages != total_pages; m = n) { 2608 KASSERT(m->m_epg_tls == tls, 2609 ("different TLS sessions in a single mbuf chain: %p vs %p", 2610 tls, m->m_epg_tls)); 2611 KASSERT(npages + m->m_epg_npgs <= total_pages, 2612 ("page count mismatch: top %p, total_pages %d, m %p", top, 2613 total_pages, m)); 2614 2615 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2616 soref(so); 2617 state->so = so; 2618 state->m = m; 2619 2620 mpages = m->m_epg_nrdy; 2621 n = m->m_next; 2622 2623 error = ktls_encrypt_record(wq, m, tls, state); 2624 if (error) { 2625 counter_u64_add(ktls_offload_failed_crypto, 1); 2626 free(state, M_KTLS); 2627 CURVNET_SET(so->so_vnet); 2628 sorele(so); 2629 CURVNET_RESTORE(); 2630 break; 2631 } 2632 2633 npages += mpages; 2634 } 2635 2636 CURVNET_SET(so->so_vnet); 2637 if (error != 0) { 2638 so->so_proto->pr_usrreqs->pru_abort(so); 2639 so->so_error = EIO; 2640 mb_free_notready(m, total_pages - npages); 2641 } 2642 2643 sorele(so); 2644 CURVNET_RESTORE(); 2645 } 2646 2647 static int 2648 ktls_bind_domain(int domain) 2649 { 2650 int error; 2651 2652 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2653 if (error != 0) 2654 return (error); 2655 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2656 return (0); 2657 } 2658 2659 static void 2660 ktls_alloc_thread(void *ctx) 2661 { 2662 struct ktls_domain_info *ktls_domain = ctx; 2663 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2664 void **buf; 2665 struct sysctl_oid *oid; 2666 char name[80]; 2667 int domain, error, i, nbufs; 2668 2669 domain = ktls_domain - ktls_domains; 2670 if (bootverbose) 2671 printf("Starting KTLS alloc thread for domain %d\n", domain); 2672 error = ktls_bind_domain(domain); 2673 if (error) 2674 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2675 domain, error); 2676 snprintf(name, sizeof(name), "domain%d", domain); 2677 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2678 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2679 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2680 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2681 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2682 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2683 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2684 CTLFLAG_RD, &sc->running, 0, "thread running"); 2685 2686 buf = NULL; 2687 nbufs = 0; 2688 for (;;) { 2689 atomic_store_int(&sc->running, 0); 2690 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2691 atomic_store_int(&sc->running, 1); 2692 sc->wakeups++; 2693 if (nbufs != ktls_max_alloc) { 2694 free(buf, M_KTLS); 2695 nbufs = atomic_load_int(&ktls_max_alloc); 2696 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2697 M_WAITOK | M_ZERO); 2698 } 2699 /* 2700 * Below we allocate nbufs with different allocation 2701 * flags than we use when allocating normally during 2702 * encryption in the ktls worker thread. We specify 2703 * M_NORECLAIM in the worker thread. However, we omit 2704 * that flag here and add M_WAITOK so that the VM 2705 * system is permitted to perform expensive work to 2706 * defragment memory. We do this here, as it does not 2707 * matter if this thread blocks. If we block a ktls 2708 * worker thread, we risk developing backlogs of 2709 * buffers to be encrypted, leading to surges of 2710 * traffic and potential NIC output drops. 2711 */ 2712 for (i = 0; i < nbufs; i++) { 2713 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2714 sc->allocs++; 2715 } 2716 for (i = 0; i < nbufs; i++) { 2717 uma_zfree(ktls_buffer_zone, buf[i]); 2718 buf[i] = NULL; 2719 } 2720 } 2721 } 2722 2723 static void 2724 ktls_work_thread(void *ctx) 2725 { 2726 struct ktls_wq *wq = ctx; 2727 struct mbuf *m, *n; 2728 struct socket *so, *son; 2729 STAILQ_HEAD(, mbuf) local_m_head; 2730 STAILQ_HEAD(, socket) local_so_head; 2731 int cpu; 2732 2733 cpu = wq - ktls_wq; 2734 if (bootverbose) 2735 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2736 2737 /* 2738 * Bind to a core. If ktls_bind_threads is > 1, then 2739 * we bind to the NUMA domain instead. 2740 */ 2741 if (ktls_bind_threads) { 2742 int error; 2743 2744 if (ktls_bind_threads > 1) { 2745 struct pcpu *pc = pcpu_find(cpu); 2746 2747 error = ktls_bind_domain(pc->pc_domain); 2748 } else { 2749 cpuset_t mask; 2750 2751 CPU_SETOF(cpu, &mask); 2752 error = cpuset_setthread(curthread->td_tid, &mask); 2753 } 2754 if (error) 2755 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2756 cpu, error); 2757 } 2758 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2759 fpu_kern_thread(0); 2760 #endif 2761 for (;;) { 2762 mtx_lock(&wq->mtx); 2763 while (STAILQ_EMPTY(&wq->m_head) && 2764 STAILQ_EMPTY(&wq->so_head)) { 2765 wq->running = false; 2766 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2767 wq->running = true; 2768 } 2769 2770 STAILQ_INIT(&local_m_head); 2771 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2772 STAILQ_INIT(&local_so_head); 2773 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2774 mtx_unlock(&wq->mtx); 2775 2776 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2777 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2778 ktls_free(m->m_epg_tls); 2779 m_free_raw(m); 2780 } else { 2781 if (m->m_epg_tls->sync_dispatch) 2782 ktls_encrypt(wq, m); 2783 else 2784 ktls_encrypt_async(wq, m); 2785 counter_u64_add(ktls_cnt_tx_queued, -1); 2786 } 2787 } 2788 2789 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2790 ktls_decrypt(so); 2791 counter_u64_add(ktls_cnt_rx_queued, -1); 2792 } 2793 } 2794 } 2795 2796 #if defined(INET) || defined(INET6) 2797 static void 2798 ktls_disable_ifnet_help(void *context, int pending __unused) 2799 { 2800 struct ktls_session *tls; 2801 struct inpcb *inp; 2802 struct tcpcb *tp; 2803 struct socket *so; 2804 int err; 2805 2806 tls = context; 2807 inp = tls->inp; 2808 if (inp == NULL) 2809 return; 2810 INP_WLOCK(inp); 2811 so = inp->inp_socket; 2812 MPASS(so != NULL); 2813 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2814 goto out; 2815 } 2816 2817 if (so->so_snd.sb_tls_info != NULL) 2818 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2819 else 2820 err = ENXIO; 2821 if (err == 0) { 2822 counter_u64_add(ktls_ifnet_disable_ok, 1); 2823 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2824 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2825 (tp = intotcpcb(inp)) != NULL && 2826 tp->t_fb->tfb_hwtls_change != NULL) 2827 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2828 } else { 2829 counter_u64_add(ktls_ifnet_disable_fail, 1); 2830 } 2831 2832 out: 2833 sorele(so); 2834 if (!in_pcbrele_wlocked(inp)) 2835 INP_WUNLOCK(inp); 2836 ktls_free(tls); 2837 } 2838 2839 /* 2840 * Called when re-transmits are becoming a substantial portion of the 2841 * sends on this connection. When this happens, we transition the 2842 * connection to software TLS. This is needed because most inline TLS 2843 * NICs keep crypto state only for in-order transmits. This means 2844 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2845 * re-DMA the entire TLS record up to and including the current 2846 * segment. This means that when re-transmitting the last ~1448 byte 2847 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2848 * of magnitude more data than we are sending. This can cause the 2849 * PCIe link to saturate well before the network, which can cause 2850 * output drops, and a general loss of capacity. 2851 */ 2852 void 2853 ktls_disable_ifnet(void *arg) 2854 { 2855 struct tcpcb *tp; 2856 struct inpcb *inp; 2857 struct socket *so; 2858 struct ktls_session *tls; 2859 2860 tp = arg; 2861 inp = tp->t_inpcb; 2862 INP_WLOCK_ASSERT(inp); 2863 so = inp->inp_socket; 2864 SOCK_LOCK(so); 2865 tls = so->so_snd.sb_tls_info; 2866 if (tls->disable_ifnet_pending) { 2867 SOCK_UNLOCK(so); 2868 return; 2869 } 2870 2871 /* 2872 * note that disable_ifnet_pending is never cleared; disabling 2873 * ifnet can only be done once per session, so we never want 2874 * to do it again 2875 */ 2876 2877 (void)ktls_hold(tls); 2878 in_pcbref(inp); 2879 soref(so); 2880 tls->disable_ifnet_pending = true; 2881 tls->inp = inp; 2882 SOCK_UNLOCK(so); 2883 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2884 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2885 } 2886 #endif 2887