1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 555 en->iv_len != TLS_AEAD_GCM_LEN) || 556 (en->tls_vminor == TLS_MINOR_VER_THREE && 557 en->iv_len != TLS_1_3_GCM_IV_LEN)) 558 return (EINVAL); 559 break; 560 case CRYPTO_AES_CBC: 561 switch (en->auth_algorithm) { 562 case CRYPTO_SHA1_HMAC: 563 /* 564 * TLS 1.0 requires an implicit IV. TLS 1.1+ 565 * all use explicit IVs. 566 */ 567 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 568 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 569 return (EINVAL); 570 break; 571 } 572 573 /* FALLTHROUGH */ 574 case CRYPTO_SHA2_256_HMAC: 575 case CRYPTO_SHA2_384_HMAC: 576 /* Ignore any supplied IV. */ 577 en->iv_len = 0; 578 break; 579 default: 580 return (EINVAL); 581 } 582 if (en->auth_key_len == 0) 583 return (EINVAL); 584 if (en->tls_vminor != TLS_MINOR_VER_ZERO && 585 en->tls_vminor != TLS_MINOR_VER_ONE && 586 en->tls_vminor != TLS_MINOR_VER_TWO) 587 return (EINVAL); 588 break; 589 case CRYPTO_CHACHA20_POLY1305: 590 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 591 return (EINVAL); 592 if (en->tls_vminor != TLS_MINOR_VER_TWO && 593 en->tls_vminor != TLS_MINOR_VER_THREE) 594 return (EINVAL); 595 if (en->iv_len != TLS_CHACHA20_IV_LEN) 596 return (EINVAL); 597 break; 598 default: 599 return (EINVAL); 600 } 601 602 error = ktls_start_kthreads(); 603 if (error != 0) 604 return (error); 605 606 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 607 608 counter_u64_add(ktls_offload_active, 1); 609 610 refcount_init(&tls->refcount, 1); 611 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 612 613 tls->wq_index = ktls_get_cpu(so); 614 615 tls->params.cipher_algorithm = en->cipher_algorithm; 616 tls->params.auth_algorithm = en->auth_algorithm; 617 tls->params.tls_vmajor = en->tls_vmajor; 618 tls->params.tls_vminor = en->tls_vminor; 619 tls->params.flags = en->flags; 620 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 621 622 /* Set the header and trailer lengths. */ 623 tls->params.tls_hlen = sizeof(struct tls_record_layer); 624 switch (en->cipher_algorithm) { 625 case CRYPTO_AES_NIST_GCM_16: 626 /* 627 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 628 * nonce. TLS 1.3 uses a 12 byte implicit IV. 629 */ 630 if (en->tls_vminor < TLS_MINOR_VER_THREE) 631 tls->params.tls_hlen += sizeof(uint64_t); 632 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 633 tls->params.tls_bs = 1; 634 break; 635 case CRYPTO_AES_CBC: 636 switch (en->auth_algorithm) { 637 case CRYPTO_SHA1_HMAC: 638 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 639 /* Implicit IV, no nonce. */ 640 tls->sequential_records = true; 641 tls->next_seqno = be64dec(en->rec_seq); 642 STAILQ_INIT(&tls->pending_records); 643 } else { 644 tls->params.tls_hlen += AES_BLOCK_LEN; 645 } 646 tls->params.tls_tlen = AES_BLOCK_LEN + 647 SHA1_HASH_LEN; 648 break; 649 case CRYPTO_SHA2_256_HMAC: 650 tls->params.tls_hlen += AES_BLOCK_LEN; 651 tls->params.tls_tlen = AES_BLOCK_LEN + 652 SHA2_256_HASH_LEN; 653 break; 654 case CRYPTO_SHA2_384_HMAC: 655 tls->params.tls_hlen += AES_BLOCK_LEN; 656 tls->params.tls_tlen = AES_BLOCK_LEN + 657 SHA2_384_HASH_LEN; 658 break; 659 default: 660 panic("invalid hmac"); 661 } 662 tls->params.tls_bs = AES_BLOCK_LEN; 663 break; 664 case CRYPTO_CHACHA20_POLY1305: 665 /* 666 * Chacha20 uses a 12 byte implicit IV. 667 */ 668 tls->params.tls_tlen = POLY1305_HASH_LEN; 669 tls->params.tls_bs = 1; 670 break; 671 default: 672 panic("invalid cipher"); 673 } 674 675 /* 676 * TLS 1.3 includes optional padding which we do not support, 677 * and also puts the "real" record type at the end of the 678 * encrypted data. 679 */ 680 if (en->tls_vminor == TLS_MINOR_VER_THREE) 681 tls->params.tls_tlen += sizeof(uint8_t); 682 683 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 684 ("TLS header length too long: %d", tls->params.tls_hlen)); 685 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 686 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 687 688 if (en->auth_key_len != 0) { 689 tls->params.auth_key_len = en->auth_key_len; 690 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 691 M_WAITOK); 692 error = copyin(en->auth_key, tls->params.auth_key, 693 en->auth_key_len); 694 if (error) 695 goto out; 696 } 697 698 tls->params.cipher_key_len = en->cipher_key_len; 699 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 700 error = copyin(en->cipher_key, tls->params.cipher_key, 701 en->cipher_key_len); 702 if (error) 703 goto out; 704 705 /* 706 * This holds the implicit portion of the nonce for AEAD 707 * ciphers and the initial implicit IV for TLS 1.0. The 708 * explicit portions of the IV are generated in ktls_frame(). 709 */ 710 if (en->iv_len != 0) { 711 tls->params.iv_len = en->iv_len; 712 error = copyin(en->iv, tls->params.iv, en->iv_len); 713 if (error) 714 goto out; 715 716 /* 717 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 718 * counter to generate unique explicit IVs. 719 * 720 * Store this counter in the last 8 bytes of the IV 721 * array so that it is 8-byte aligned. 722 */ 723 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 724 en->tls_vminor == TLS_MINOR_VER_TWO) 725 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 726 } 727 728 *tlsp = tls; 729 return (0); 730 731 out: 732 ktls_cleanup(tls); 733 return (error); 734 } 735 736 static struct ktls_session * 737 ktls_clone_session(struct ktls_session *tls) 738 { 739 struct ktls_session *tls_new; 740 741 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 742 743 counter_u64_add(ktls_offload_active, 1); 744 745 refcount_init(&tls_new->refcount, 1); 746 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 747 748 /* Copy fields from existing session. */ 749 tls_new->params = tls->params; 750 tls_new->wq_index = tls->wq_index; 751 752 /* Deep copy keys. */ 753 if (tls_new->params.auth_key != NULL) { 754 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 755 M_KTLS, M_WAITOK); 756 memcpy(tls_new->params.auth_key, tls->params.auth_key, 757 tls->params.auth_key_len); 758 } 759 760 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 761 M_WAITOK); 762 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 763 tls->params.cipher_key_len); 764 765 return (tls_new); 766 } 767 #endif 768 769 static void 770 ktls_cleanup(struct ktls_session *tls) 771 { 772 773 counter_u64_add(ktls_offload_active, -1); 774 switch (tls->mode) { 775 case TCP_TLS_MODE_SW: 776 switch (tls->params.cipher_algorithm) { 777 case CRYPTO_AES_CBC: 778 counter_u64_add(ktls_sw_cbc, -1); 779 break; 780 case CRYPTO_AES_NIST_GCM_16: 781 counter_u64_add(ktls_sw_gcm, -1); 782 break; 783 case CRYPTO_CHACHA20_POLY1305: 784 counter_u64_add(ktls_sw_chacha20, -1); 785 break; 786 } 787 ktls_ocf_free(tls); 788 break; 789 case TCP_TLS_MODE_IFNET: 790 switch (tls->params.cipher_algorithm) { 791 case CRYPTO_AES_CBC: 792 counter_u64_add(ktls_ifnet_cbc, -1); 793 break; 794 case CRYPTO_AES_NIST_GCM_16: 795 counter_u64_add(ktls_ifnet_gcm, -1); 796 break; 797 case CRYPTO_CHACHA20_POLY1305: 798 counter_u64_add(ktls_ifnet_chacha20, -1); 799 break; 800 } 801 if (tls->snd_tag != NULL) 802 m_snd_tag_rele(tls->snd_tag); 803 break; 804 #ifdef TCP_OFFLOAD 805 case TCP_TLS_MODE_TOE: 806 switch (tls->params.cipher_algorithm) { 807 case CRYPTO_AES_CBC: 808 counter_u64_add(ktls_toe_cbc, -1); 809 break; 810 case CRYPTO_AES_NIST_GCM_16: 811 counter_u64_add(ktls_toe_gcm, -1); 812 break; 813 case CRYPTO_CHACHA20_POLY1305: 814 counter_u64_add(ktls_toe_chacha20, -1); 815 break; 816 } 817 break; 818 #endif 819 } 820 if (tls->params.auth_key != NULL) { 821 zfree(tls->params.auth_key, M_KTLS); 822 tls->params.auth_key = NULL; 823 tls->params.auth_key_len = 0; 824 } 825 if (tls->params.cipher_key != NULL) { 826 zfree(tls->params.cipher_key, M_KTLS); 827 tls->params.cipher_key = NULL; 828 tls->params.cipher_key_len = 0; 829 } 830 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 831 } 832 833 #if defined(INET) || defined(INET6) 834 835 #ifdef TCP_OFFLOAD 836 static int 837 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 838 { 839 struct inpcb *inp; 840 struct tcpcb *tp; 841 int error; 842 843 inp = so->so_pcb; 844 INP_WLOCK(inp); 845 if (inp->inp_flags2 & INP_FREED) { 846 INP_WUNLOCK(inp); 847 return (ECONNRESET); 848 } 849 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 850 INP_WUNLOCK(inp); 851 return (ECONNRESET); 852 } 853 if (inp->inp_socket == NULL) { 854 INP_WUNLOCK(inp); 855 return (ECONNRESET); 856 } 857 tp = intotcpcb(inp); 858 if (!(tp->t_flags & TF_TOE)) { 859 INP_WUNLOCK(inp); 860 return (EOPNOTSUPP); 861 } 862 863 error = tcp_offload_alloc_tls_session(tp, tls, direction); 864 INP_WUNLOCK(inp); 865 if (error == 0) { 866 tls->mode = TCP_TLS_MODE_TOE; 867 switch (tls->params.cipher_algorithm) { 868 case CRYPTO_AES_CBC: 869 counter_u64_add(ktls_toe_cbc, 1); 870 break; 871 case CRYPTO_AES_NIST_GCM_16: 872 counter_u64_add(ktls_toe_gcm, 1); 873 break; 874 case CRYPTO_CHACHA20_POLY1305: 875 counter_u64_add(ktls_toe_chacha20, 1); 876 break; 877 } 878 } 879 return (error); 880 } 881 #endif 882 883 /* 884 * Common code used when first enabling ifnet TLS on a connection or 885 * when allocating a new ifnet TLS session due to a routing change. 886 * This function allocates a new TLS send tag on whatever interface 887 * the connection is currently routed over. 888 */ 889 static int 890 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 891 struct m_snd_tag **mstp) 892 { 893 union if_snd_tag_alloc_params params; 894 struct ifnet *ifp; 895 struct nhop_object *nh; 896 struct tcpcb *tp; 897 int error; 898 899 INP_RLOCK(inp); 900 if (inp->inp_flags2 & INP_FREED) { 901 INP_RUNLOCK(inp); 902 return (ECONNRESET); 903 } 904 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 905 INP_RUNLOCK(inp); 906 return (ECONNRESET); 907 } 908 if (inp->inp_socket == NULL) { 909 INP_RUNLOCK(inp); 910 return (ECONNRESET); 911 } 912 tp = intotcpcb(inp); 913 914 /* 915 * Check administrative controls on ifnet TLS to determine if 916 * ifnet TLS should be denied. 917 * 918 * - Always permit 'force' requests. 919 * - ktls_ifnet_permitted == 0: always deny. 920 */ 921 if (!force && ktls_ifnet_permitted == 0) { 922 INP_RUNLOCK(inp); 923 return (ENXIO); 924 } 925 926 /* 927 * XXX: Use the cached route in the inpcb to find the 928 * interface. This should perhaps instead use 929 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 930 * enabled after a connection has completed key negotiation in 931 * userland, the cached route will be present in practice. 932 */ 933 nh = inp->inp_route.ro_nh; 934 if (nh == NULL) { 935 INP_RUNLOCK(inp); 936 return (ENXIO); 937 } 938 ifp = nh->nh_ifp; 939 if_ref(ifp); 940 941 /* 942 * Allocate a TLS + ratelimit tag if the connection has an 943 * existing pacing rate. 944 */ 945 if (tp->t_pacing_rate != -1 && 946 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 947 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 948 params.tls_rate_limit.inp = inp; 949 params.tls_rate_limit.tls = tls; 950 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 951 } else { 952 params.hdr.type = IF_SND_TAG_TYPE_TLS; 953 params.tls.inp = inp; 954 params.tls.tls = tls; 955 } 956 params.hdr.flowid = inp->inp_flowid; 957 params.hdr.flowtype = inp->inp_flowtype; 958 params.hdr.numa_domain = inp->inp_numa_domain; 959 INP_RUNLOCK(inp); 960 961 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 962 error = EOPNOTSUPP; 963 goto out; 964 } 965 if (inp->inp_vflag & INP_IPV6) { 966 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 967 error = EOPNOTSUPP; 968 goto out; 969 } 970 } else { 971 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 972 error = EOPNOTSUPP; 973 goto out; 974 } 975 } 976 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 977 out: 978 if_rele(ifp); 979 return (error); 980 } 981 982 static int 983 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 984 { 985 struct m_snd_tag *mst; 986 int error; 987 988 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 989 if (error == 0) { 990 tls->mode = TCP_TLS_MODE_IFNET; 991 tls->snd_tag = mst; 992 switch (tls->params.cipher_algorithm) { 993 case CRYPTO_AES_CBC: 994 counter_u64_add(ktls_ifnet_cbc, 1); 995 break; 996 case CRYPTO_AES_NIST_GCM_16: 997 counter_u64_add(ktls_ifnet_gcm, 1); 998 break; 999 case CRYPTO_CHACHA20_POLY1305: 1000 counter_u64_add(ktls_ifnet_chacha20, 1); 1001 break; 1002 } 1003 } 1004 return (error); 1005 } 1006 1007 static int 1008 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1009 { 1010 int error; 1011 1012 error = ktls_ocf_try(so, tls, direction); 1013 if (error) 1014 return (error); 1015 tls->mode = TCP_TLS_MODE_SW; 1016 switch (tls->params.cipher_algorithm) { 1017 case CRYPTO_AES_CBC: 1018 counter_u64_add(ktls_sw_cbc, 1); 1019 break; 1020 case CRYPTO_AES_NIST_GCM_16: 1021 counter_u64_add(ktls_sw_gcm, 1); 1022 break; 1023 case CRYPTO_CHACHA20_POLY1305: 1024 counter_u64_add(ktls_sw_chacha20, 1); 1025 break; 1026 } 1027 return (0); 1028 } 1029 1030 /* 1031 * KTLS RX stores data in the socket buffer as a list of TLS records, 1032 * where each record is stored as a control message containg the TLS 1033 * header followed by data mbufs containing the decrypted data. This 1034 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1035 * both encrypted and decrypted data. TLS records decrypted by a NIC 1036 * should be queued to the socket buffer as records, but encrypted 1037 * data which needs to be decrypted by software arrives as a stream of 1038 * regular mbufs which need to be converted. In addition, there may 1039 * already be pending encrypted data in the socket buffer when KTLS RX 1040 * is enabled. 1041 * 1042 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1043 * is used: 1044 * 1045 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1046 * 1047 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1048 * from the first mbuf. Once all of the data for that TLS record is 1049 * queued, the socket is queued to a worker thread. 1050 * 1051 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1052 * the TLS chain. Each TLS record is detached from the TLS chain, 1053 * decrypted, and inserted into the regular socket buffer chain as 1054 * record starting with a control message holding the TLS header and 1055 * a chain of mbufs holding the encrypted data. 1056 */ 1057 1058 static void 1059 sb_mark_notready(struct sockbuf *sb) 1060 { 1061 struct mbuf *m; 1062 1063 m = sb->sb_mb; 1064 sb->sb_mtls = m; 1065 sb->sb_mb = NULL; 1066 sb->sb_mbtail = NULL; 1067 sb->sb_lastrecord = NULL; 1068 for (; m != NULL; m = m->m_next) { 1069 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1070 __func__)); 1071 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1072 __func__)); 1073 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1074 __func__)); 1075 m->m_flags |= M_NOTREADY; 1076 sb->sb_acc -= m->m_len; 1077 sb->sb_tlscc += m->m_len; 1078 sb->sb_mtlstail = m; 1079 } 1080 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1081 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1082 sb->sb_ccc)); 1083 } 1084 1085 int 1086 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1087 { 1088 struct ktls_session *tls; 1089 int error; 1090 1091 if (!ktls_offload_enable) 1092 return (ENOTSUP); 1093 if (SOLISTENING(so)) 1094 return (EINVAL); 1095 1096 counter_u64_add(ktls_offload_enable_calls, 1); 1097 1098 /* 1099 * This should always be true since only the TCP socket option 1100 * invokes this function. 1101 */ 1102 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1103 return (EINVAL); 1104 1105 /* 1106 * XXX: Don't overwrite existing sessions. We should permit 1107 * this to support rekeying in the future. 1108 */ 1109 if (so->so_rcv.sb_tls_info != NULL) 1110 return (EALREADY); 1111 1112 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1113 return (ENOTSUP); 1114 1115 /* TLS 1.3 is not yet supported. */ 1116 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1117 en->tls_vminor == TLS_MINOR_VER_THREE) 1118 return (ENOTSUP); 1119 1120 error = ktls_create_session(so, en, &tls); 1121 if (error) 1122 return (error); 1123 1124 #ifdef TCP_OFFLOAD 1125 error = ktls_try_toe(so, tls, KTLS_RX); 1126 if (error) 1127 #endif 1128 error = ktls_try_sw(so, tls, KTLS_RX); 1129 1130 if (error) { 1131 ktls_cleanup(tls); 1132 return (error); 1133 } 1134 1135 /* Mark the socket as using TLS offload. */ 1136 SOCKBUF_LOCK(&so->so_rcv); 1137 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1138 so->so_rcv.sb_tls_info = tls; 1139 so->so_rcv.sb_flags |= SB_TLS_RX; 1140 1141 /* Mark existing data as not ready until it can be decrypted. */ 1142 if (tls->mode != TCP_TLS_MODE_TOE) { 1143 sb_mark_notready(&so->so_rcv); 1144 ktls_check_rx(&so->so_rcv); 1145 } 1146 SOCKBUF_UNLOCK(&so->so_rcv); 1147 1148 counter_u64_add(ktls_offload_total, 1); 1149 1150 return (0); 1151 } 1152 1153 int 1154 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1155 { 1156 struct ktls_session *tls; 1157 struct inpcb *inp; 1158 int error; 1159 1160 if (!ktls_offload_enable) 1161 return (ENOTSUP); 1162 if (SOLISTENING(so)) 1163 return (EINVAL); 1164 1165 counter_u64_add(ktls_offload_enable_calls, 1); 1166 1167 /* 1168 * This should always be true since only the TCP socket option 1169 * invokes this function. 1170 */ 1171 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1172 return (EINVAL); 1173 1174 /* 1175 * XXX: Don't overwrite existing sessions. We should permit 1176 * this to support rekeying in the future. 1177 */ 1178 if (so->so_snd.sb_tls_info != NULL) 1179 return (EALREADY); 1180 1181 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1182 return (ENOTSUP); 1183 1184 /* TLS requires ext pgs */ 1185 if (mb_use_ext_pgs == 0) 1186 return (ENXIO); 1187 1188 error = ktls_create_session(so, en, &tls); 1189 if (error) 1190 return (error); 1191 1192 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1193 #ifdef TCP_OFFLOAD 1194 error = ktls_try_toe(so, tls, KTLS_TX); 1195 if (error) 1196 #endif 1197 error = ktls_try_ifnet(so, tls, false); 1198 if (error) 1199 error = ktls_try_sw(so, tls, KTLS_TX); 1200 1201 if (error) { 1202 ktls_cleanup(tls); 1203 return (error); 1204 } 1205 1206 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1207 if (error) { 1208 ktls_cleanup(tls); 1209 return (error); 1210 } 1211 1212 /* 1213 * Write lock the INP when setting sb_tls_info so that 1214 * routines in tcp_ratelimit.c can read sb_tls_info while 1215 * holding the INP lock. 1216 */ 1217 inp = so->so_pcb; 1218 INP_WLOCK(inp); 1219 SOCKBUF_LOCK(&so->so_snd); 1220 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1221 so->so_snd.sb_tls_info = tls; 1222 if (tls->mode != TCP_TLS_MODE_SW) 1223 so->so_snd.sb_flags |= SB_TLS_IFNET; 1224 SOCKBUF_UNLOCK(&so->so_snd); 1225 INP_WUNLOCK(inp); 1226 SOCK_IO_SEND_UNLOCK(so); 1227 1228 counter_u64_add(ktls_offload_total, 1); 1229 1230 return (0); 1231 } 1232 1233 int 1234 ktls_get_rx_mode(struct socket *so, int *modep) 1235 { 1236 struct ktls_session *tls; 1237 struct inpcb *inp; 1238 1239 if (SOLISTENING(so)) 1240 return (EINVAL); 1241 inp = so->so_pcb; 1242 INP_WLOCK_ASSERT(inp); 1243 SOCK_RECVBUF_LOCK(so); 1244 tls = so->so_rcv.sb_tls_info; 1245 if (tls == NULL) 1246 *modep = TCP_TLS_MODE_NONE; 1247 else 1248 *modep = tls->mode; 1249 SOCK_RECVBUF_UNLOCK(so); 1250 return (0); 1251 } 1252 1253 int 1254 ktls_get_tx_mode(struct socket *so, int *modep) 1255 { 1256 struct ktls_session *tls; 1257 struct inpcb *inp; 1258 1259 if (SOLISTENING(so)) 1260 return (EINVAL); 1261 inp = so->so_pcb; 1262 INP_WLOCK_ASSERT(inp); 1263 SOCK_SENDBUF_LOCK(so); 1264 tls = so->so_snd.sb_tls_info; 1265 if (tls == NULL) 1266 *modep = TCP_TLS_MODE_NONE; 1267 else 1268 *modep = tls->mode; 1269 SOCK_SENDBUF_UNLOCK(so); 1270 return (0); 1271 } 1272 1273 /* 1274 * Switch between SW and ifnet TLS sessions as requested. 1275 */ 1276 int 1277 ktls_set_tx_mode(struct socket *so, int mode) 1278 { 1279 struct ktls_session *tls, *tls_new; 1280 struct inpcb *inp; 1281 int error; 1282 1283 if (SOLISTENING(so)) 1284 return (EINVAL); 1285 switch (mode) { 1286 case TCP_TLS_MODE_SW: 1287 case TCP_TLS_MODE_IFNET: 1288 break; 1289 default: 1290 return (EINVAL); 1291 } 1292 1293 inp = so->so_pcb; 1294 INP_WLOCK_ASSERT(inp); 1295 SOCKBUF_LOCK(&so->so_snd); 1296 tls = so->so_snd.sb_tls_info; 1297 if (tls == NULL) { 1298 SOCKBUF_UNLOCK(&so->so_snd); 1299 return (0); 1300 } 1301 1302 if (tls->mode == mode) { 1303 SOCKBUF_UNLOCK(&so->so_snd); 1304 return (0); 1305 } 1306 1307 tls = ktls_hold(tls); 1308 SOCKBUF_UNLOCK(&so->so_snd); 1309 INP_WUNLOCK(inp); 1310 1311 tls_new = ktls_clone_session(tls); 1312 1313 if (mode == TCP_TLS_MODE_IFNET) 1314 error = ktls_try_ifnet(so, tls_new, true); 1315 else 1316 error = ktls_try_sw(so, tls_new, KTLS_TX); 1317 if (error) { 1318 counter_u64_add(ktls_switch_failed, 1); 1319 ktls_free(tls_new); 1320 ktls_free(tls); 1321 INP_WLOCK(inp); 1322 return (error); 1323 } 1324 1325 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1326 if (error) { 1327 counter_u64_add(ktls_switch_failed, 1); 1328 ktls_free(tls_new); 1329 ktls_free(tls); 1330 INP_WLOCK(inp); 1331 return (error); 1332 } 1333 1334 /* 1335 * If we raced with another session change, keep the existing 1336 * session. 1337 */ 1338 if (tls != so->so_snd.sb_tls_info) { 1339 counter_u64_add(ktls_switch_failed, 1); 1340 SOCK_IO_SEND_UNLOCK(so); 1341 ktls_free(tls_new); 1342 ktls_free(tls); 1343 INP_WLOCK(inp); 1344 return (EBUSY); 1345 } 1346 1347 SOCKBUF_LOCK(&so->so_snd); 1348 so->so_snd.sb_tls_info = tls_new; 1349 if (tls_new->mode != TCP_TLS_MODE_SW) 1350 so->so_snd.sb_flags |= SB_TLS_IFNET; 1351 SOCKBUF_UNLOCK(&so->so_snd); 1352 SOCK_IO_SEND_UNLOCK(so); 1353 1354 /* 1355 * Drop two references on 'tls'. The first is for the 1356 * ktls_hold() above. The second drops the reference from the 1357 * socket buffer. 1358 */ 1359 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1360 ktls_free(tls); 1361 ktls_free(tls); 1362 1363 if (mode == TCP_TLS_MODE_IFNET) 1364 counter_u64_add(ktls_switch_to_ifnet, 1); 1365 else 1366 counter_u64_add(ktls_switch_to_sw, 1); 1367 1368 INP_WLOCK(inp); 1369 return (0); 1370 } 1371 1372 /* 1373 * Try to allocate a new TLS send tag. This task is scheduled when 1374 * ip_output detects a route change while trying to transmit a packet 1375 * holding a TLS record. If a new tag is allocated, replace the tag 1376 * in the TLS session. Subsequent packets on the connection will use 1377 * the new tag. If a new tag cannot be allocated, drop the 1378 * connection. 1379 */ 1380 static void 1381 ktls_reset_send_tag(void *context, int pending) 1382 { 1383 struct epoch_tracker et; 1384 struct ktls_session *tls; 1385 struct m_snd_tag *old, *new; 1386 struct inpcb *inp; 1387 struct tcpcb *tp; 1388 int error; 1389 1390 MPASS(pending == 1); 1391 1392 tls = context; 1393 inp = tls->inp; 1394 1395 /* 1396 * Free the old tag first before allocating a new one. 1397 * ip[6]_output_send() will treat a NULL send tag the same as 1398 * an ifp mismatch and drop packets until a new tag is 1399 * allocated. 1400 * 1401 * Write-lock the INP when changing tls->snd_tag since 1402 * ip[6]_output_send() holds a read-lock when reading the 1403 * pointer. 1404 */ 1405 INP_WLOCK(inp); 1406 old = tls->snd_tag; 1407 tls->snd_tag = NULL; 1408 INP_WUNLOCK(inp); 1409 if (old != NULL) 1410 m_snd_tag_rele(old); 1411 1412 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1413 1414 if (error == 0) { 1415 INP_WLOCK(inp); 1416 tls->snd_tag = new; 1417 mtx_pool_lock(mtxpool_sleep, tls); 1418 tls->reset_pending = false; 1419 mtx_pool_unlock(mtxpool_sleep, tls); 1420 if (!in_pcbrele_wlocked(inp)) 1421 INP_WUNLOCK(inp); 1422 1423 counter_u64_add(ktls_ifnet_reset, 1); 1424 1425 /* 1426 * XXX: Should we kick tcp_output explicitly now that 1427 * the send tag is fixed or just rely on timers? 1428 */ 1429 } else { 1430 NET_EPOCH_ENTER(et); 1431 INP_WLOCK(inp); 1432 if (!in_pcbrele_wlocked(inp)) { 1433 if (!(inp->inp_flags & INP_TIMEWAIT) && 1434 !(inp->inp_flags & INP_DROPPED)) { 1435 tp = intotcpcb(inp); 1436 CURVNET_SET(tp->t_vnet); 1437 tp = tcp_drop(tp, ECONNABORTED); 1438 CURVNET_RESTORE(); 1439 if (tp != NULL) 1440 INP_WUNLOCK(inp); 1441 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1442 } else 1443 INP_WUNLOCK(inp); 1444 } 1445 NET_EPOCH_EXIT(et); 1446 1447 counter_u64_add(ktls_ifnet_reset_failed, 1); 1448 1449 /* 1450 * Leave reset_pending true to avoid future tasks while 1451 * the socket goes away. 1452 */ 1453 } 1454 1455 ktls_free(tls); 1456 } 1457 1458 int 1459 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1460 { 1461 1462 if (inp == NULL) 1463 return (ENOBUFS); 1464 1465 INP_LOCK_ASSERT(inp); 1466 1467 /* 1468 * See if we should schedule a task to update the send tag for 1469 * this session. 1470 */ 1471 mtx_pool_lock(mtxpool_sleep, tls); 1472 if (!tls->reset_pending) { 1473 (void) ktls_hold(tls); 1474 in_pcbref(inp); 1475 tls->inp = inp; 1476 tls->reset_pending = true; 1477 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1478 } 1479 mtx_pool_unlock(mtxpool_sleep, tls); 1480 return (ENOBUFS); 1481 } 1482 1483 #ifdef RATELIMIT 1484 int 1485 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1486 { 1487 union if_snd_tag_modify_params params = { 1488 .rate_limit.max_rate = max_pacing_rate, 1489 .rate_limit.flags = M_NOWAIT, 1490 }; 1491 struct m_snd_tag *mst; 1492 1493 /* Can't get to the inp, but it should be locked. */ 1494 /* INP_LOCK_ASSERT(inp); */ 1495 1496 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1497 1498 if (tls->snd_tag == NULL) { 1499 /* 1500 * Resetting send tag, ignore this change. The 1501 * pending reset may or may not see this updated rate 1502 * in the tcpcb. If it doesn't, we will just lose 1503 * this rate change. 1504 */ 1505 return (0); 1506 } 1507 1508 MPASS(tls->snd_tag != NULL); 1509 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1510 1511 mst = tls->snd_tag; 1512 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1513 } 1514 #endif 1515 #endif 1516 1517 void 1518 ktls_destroy(struct ktls_session *tls) 1519 { 1520 1521 if (tls->sequential_records) { 1522 struct mbuf *m, *n; 1523 int page_count; 1524 1525 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1526 page_count = m->m_epg_enc_cnt; 1527 while (page_count > 0) { 1528 KASSERT(page_count >= m->m_epg_nrdy, 1529 ("%s: too few pages", __func__)); 1530 page_count -= m->m_epg_nrdy; 1531 m = m_free(m); 1532 } 1533 } 1534 } 1535 ktls_cleanup(tls); 1536 uma_zfree(ktls_session_zone, tls); 1537 } 1538 1539 void 1540 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1541 { 1542 1543 for (; m != NULL; m = m->m_next) { 1544 KASSERT((m->m_flags & M_EXTPG) != 0, 1545 ("ktls_seq: mapped mbuf %p", m)); 1546 1547 m->m_epg_seqno = sb->sb_tls_seqno; 1548 sb->sb_tls_seqno++; 1549 } 1550 } 1551 1552 /* 1553 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1554 * mbuf in the chain must be an unmapped mbuf. The payload of the 1555 * mbuf must be populated with the payload of each TLS record. 1556 * 1557 * The record_type argument specifies the TLS record type used when 1558 * populating the TLS header. 1559 * 1560 * The enq_count argument on return is set to the number of pages of 1561 * payload data for this entire chain that need to be encrypted via SW 1562 * encryption. The returned value should be passed to ktls_enqueue 1563 * when scheduling encryption of this chain of mbufs. To handle the 1564 * special case of empty fragments for TLS 1.0 sessions, an empty 1565 * fragment counts as one page. 1566 */ 1567 void 1568 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1569 uint8_t record_type) 1570 { 1571 struct tls_record_layer *tlshdr; 1572 struct mbuf *m; 1573 uint64_t *noncep; 1574 uint16_t tls_len; 1575 int maxlen; 1576 1577 maxlen = tls->params.max_frame_len; 1578 *enq_cnt = 0; 1579 for (m = top; m != NULL; m = m->m_next) { 1580 /* 1581 * All mbufs in the chain should be TLS records whose 1582 * payload does not exceed the maximum frame length. 1583 * 1584 * Empty TLS records are permitted when using CBC. 1585 */ 1586 KASSERT(m->m_len <= maxlen && 1587 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1588 m->m_len >= 0 : m->m_len > 0), 1589 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1590 1591 /* 1592 * TLS frames require unmapped mbufs to store session 1593 * info. 1594 */ 1595 KASSERT((m->m_flags & M_EXTPG) != 0, 1596 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1597 1598 tls_len = m->m_len; 1599 1600 /* Save a reference to the session. */ 1601 m->m_epg_tls = ktls_hold(tls); 1602 1603 m->m_epg_hdrlen = tls->params.tls_hlen; 1604 m->m_epg_trllen = tls->params.tls_tlen; 1605 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1606 int bs, delta; 1607 1608 /* 1609 * AES-CBC pads messages to a multiple of the 1610 * block size. Note that the padding is 1611 * applied after the digest and the encryption 1612 * is done on the "plaintext || mac || padding". 1613 * At least one byte of padding is always 1614 * present. 1615 * 1616 * Compute the final trailer length assuming 1617 * at most one block of padding. 1618 * tls->params.tls_tlen is the maximum 1619 * possible trailer length (padding + digest). 1620 * delta holds the number of excess padding 1621 * bytes if the maximum were used. Those 1622 * extra bytes are removed. 1623 */ 1624 bs = tls->params.tls_bs; 1625 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1626 m->m_epg_trllen -= delta; 1627 } 1628 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1629 1630 /* Populate the TLS header. */ 1631 tlshdr = (void *)m->m_epg_hdr; 1632 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1633 1634 /* 1635 * TLS 1.3 masquarades as TLS 1.2 with a record type 1636 * of TLS_RLTYPE_APP. 1637 */ 1638 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1639 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1640 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1641 tlshdr->tls_type = TLS_RLTYPE_APP; 1642 /* save the real record type for later */ 1643 m->m_epg_record_type = record_type; 1644 m->m_epg_trail[0] = record_type; 1645 } else { 1646 tlshdr->tls_vminor = tls->params.tls_vminor; 1647 tlshdr->tls_type = record_type; 1648 } 1649 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1650 1651 /* 1652 * Store nonces / explicit IVs after the end of the 1653 * TLS header. 1654 * 1655 * For GCM with TLS 1.2, an 8 byte nonce is copied 1656 * from the end of the IV. The nonce is then 1657 * incremented for use by the next record. 1658 * 1659 * For CBC, a random nonce is inserted for TLS 1.1+. 1660 */ 1661 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1662 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1663 noncep = (uint64_t *)(tls->params.iv + 8); 1664 be64enc(tlshdr + 1, *noncep); 1665 (*noncep)++; 1666 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1667 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1668 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1669 1670 /* 1671 * When using SW encryption, mark the mbuf not ready. 1672 * It will be marked ready via sbready() after the 1673 * record has been encrypted. 1674 * 1675 * When using ifnet TLS, unencrypted TLS records are 1676 * sent down the stack to the NIC. 1677 */ 1678 if (tls->mode == TCP_TLS_MODE_SW) { 1679 m->m_flags |= M_NOTREADY; 1680 if (__predict_false(tls_len == 0)) { 1681 /* TLS 1.0 empty fragment. */ 1682 m->m_epg_nrdy = 1; 1683 } else 1684 m->m_epg_nrdy = m->m_epg_npgs; 1685 *enq_cnt += m->m_epg_nrdy; 1686 } 1687 } 1688 } 1689 1690 void 1691 ktls_check_rx(struct sockbuf *sb) 1692 { 1693 struct tls_record_layer hdr; 1694 struct ktls_wq *wq; 1695 struct socket *so; 1696 bool running; 1697 1698 SOCKBUF_LOCK_ASSERT(sb); 1699 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1700 __func__, sb)); 1701 so = __containerof(sb, struct socket, so_rcv); 1702 1703 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1704 return; 1705 1706 /* Is there enough queued for a TLS header? */ 1707 if (sb->sb_tlscc < sizeof(hdr)) { 1708 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1709 so->so_error = EMSGSIZE; 1710 return; 1711 } 1712 1713 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1714 1715 /* Is the entire record queued? */ 1716 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1717 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1718 so->so_error = EMSGSIZE; 1719 return; 1720 } 1721 1722 sb->sb_flags |= SB_TLS_RX_RUNNING; 1723 1724 soref(so); 1725 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1726 mtx_lock(&wq->mtx); 1727 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1728 running = wq->running; 1729 mtx_unlock(&wq->mtx); 1730 if (!running) 1731 wakeup(wq); 1732 counter_u64_add(ktls_cnt_rx_queued, 1); 1733 } 1734 1735 static struct mbuf * 1736 ktls_detach_record(struct sockbuf *sb, int len) 1737 { 1738 struct mbuf *m, *n, *top; 1739 int remain; 1740 1741 SOCKBUF_LOCK_ASSERT(sb); 1742 MPASS(len <= sb->sb_tlscc); 1743 1744 /* 1745 * If TLS chain is the exact size of the record, 1746 * just grab the whole record. 1747 */ 1748 top = sb->sb_mtls; 1749 if (sb->sb_tlscc == len) { 1750 sb->sb_mtls = NULL; 1751 sb->sb_mtlstail = NULL; 1752 goto out; 1753 } 1754 1755 /* 1756 * While it would be nice to use m_split() here, we need 1757 * to know exactly what m_split() allocates to update the 1758 * accounting, so do it inline instead. 1759 */ 1760 remain = len; 1761 for (m = top; remain > m->m_len; m = m->m_next) 1762 remain -= m->m_len; 1763 1764 /* Easy case: don't have to split 'm'. */ 1765 if (remain == m->m_len) { 1766 sb->sb_mtls = m->m_next; 1767 if (sb->sb_mtls == NULL) 1768 sb->sb_mtlstail = NULL; 1769 m->m_next = NULL; 1770 goto out; 1771 } 1772 1773 /* 1774 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1775 * with M_NOWAIT first. 1776 */ 1777 n = m_get(M_NOWAIT, MT_DATA); 1778 if (n == NULL) { 1779 /* 1780 * Use M_WAITOK with socket buffer unlocked. If 1781 * 'sb_mtls' changes while the lock is dropped, return 1782 * NULL to force the caller to retry. 1783 */ 1784 SOCKBUF_UNLOCK(sb); 1785 1786 n = m_get(M_WAITOK, MT_DATA); 1787 1788 SOCKBUF_LOCK(sb); 1789 if (sb->sb_mtls != top) { 1790 m_free(n); 1791 return (NULL); 1792 } 1793 } 1794 n->m_flags |= M_NOTREADY; 1795 1796 /* Store remainder in 'n'. */ 1797 n->m_len = m->m_len - remain; 1798 if (m->m_flags & M_EXT) { 1799 n->m_data = m->m_data + remain; 1800 mb_dupcl(n, m); 1801 } else { 1802 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1803 } 1804 1805 /* Trim 'm' and update accounting. */ 1806 m->m_len -= n->m_len; 1807 sb->sb_tlscc -= n->m_len; 1808 sb->sb_ccc -= n->m_len; 1809 1810 /* Account for 'n'. */ 1811 sballoc_ktls_rx(sb, n); 1812 1813 /* Insert 'n' into the TLS chain. */ 1814 sb->sb_mtls = n; 1815 n->m_next = m->m_next; 1816 if (sb->sb_mtlstail == m) 1817 sb->sb_mtlstail = n; 1818 1819 /* Detach the record from the TLS chain. */ 1820 m->m_next = NULL; 1821 1822 out: 1823 MPASS(m_length(top, NULL) == len); 1824 for (m = top; m != NULL; m = m->m_next) 1825 sbfree_ktls_rx(sb, m); 1826 sb->sb_tlsdcc = len; 1827 sb->sb_ccc += len; 1828 SBCHECK(sb); 1829 return (top); 1830 } 1831 1832 static void 1833 ktls_decrypt(struct socket *so) 1834 { 1835 char tls_header[MBUF_PEXT_HDR_LEN]; 1836 struct ktls_session *tls; 1837 struct sockbuf *sb; 1838 struct tls_record_layer *hdr; 1839 struct tls_get_record tgr; 1840 struct mbuf *control, *data, *m; 1841 uint64_t seqno; 1842 int error, remain, tls_len, trail_len; 1843 1844 hdr = (struct tls_record_layer *)tls_header; 1845 sb = &so->so_rcv; 1846 SOCKBUF_LOCK(sb); 1847 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1848 ("%s: socket %p not running", __func__, so)); 1849 1850 tls = sb->sb_tls_info; 1851 MPASS(tls != NULL); 1852 1853 for (;;) { 1854 /* Is there enough queued for a TLS header? */ 1855 if (sb->sb_tlscc < tls->params.tls_hlen) 1856 break; 1857 1858 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1859 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1860 1861 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1862 hdr->tls_vminor != tls->params.tls_vminor) 1863 error = EINVAL; 1864 else if (tls_len < tls->params.tls_hlen || tls_len > 1865 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1866 tls->params.tls_tlen) 1867 error = EMSGSIZE; 1868 else 1869 error = 0; 1870 if (__predict_false(error != 0)) { 1871 /* 1872 * We have a corrupted record and are likely 1873 * out of sync. The connection isn't 1874 * recoverable at this point, so abort it. 1875 */ 1876 SOCKBUF_UNLOCK(sb); 1877 counter_u64_add(ktls_offload_corrupted_records, 1); 1878 1879 CURVNET_SET(so->so_vnet); 1880 so->so_proto->pr_usrreqs->pru_abort(so); 1881 so->so_error = error; 1882 CURVNET_RESTORE(); 1883 goto deref; 1884 } 1885 1886 /* Is the entire record queued? */ 1887 if (sb->sb_tlscc < tls_len) 1888 break; 1889 1890 /* 1891 * Split out the portion of the mbuf chain containing 1892 * this TLS record. 1893 */ 1894 data = ktls_detach_record(sb, tls_len); 1895 if (data == NULL) 1896 continue; 1897 MPASS(sb->sb_tlsdcc == tls_len); 1898 1899 seqno = sb->sb_tls_seqno; 1900 sb->sb_tls_seqno++; 1901 SBCHECK(sb); 1902 SOCKBUF_UNLOCK(sb); 1903 1904 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1905 if (error) { 1906 counter_u64_add(ktls_offload_failed_crypto, 1); 1907 1908 SOCKBUF_LOCK(sb); 1909 if (sb->sb_tlsdcc == 0) { 1910 /* 1911 * sbcut/drop/flush discarded these 1912 * mbufs. 1913 */ 1914 m_freem(data); 1915 break; 1916 } 1917 1918 /* 1919 * Drop this TLS record's data, but keep 1920 * decrypting subsequent records. 1921 */ 1922 sb->sb_ccc -= tls_len; 1923 sb->sb_tlsdcc = 0; 1924 1925 CURVNET_SET(so->so_vnet); 1926 so->so_error = EBADMSG; 1927 sorwakeup_locked(so); 1928 CURVNET_RESTORE(); 1929 1930 m_freem(data); 1931 1932 SOCKBUF_LOCK(sb); 1933 continue; 1934 } 1935 1936 /* Allocate the control mbuf. */ 1937 tgr.tls_type = hdr->tls_type; 1938 tgr.tls_vmajor = hdr->tls_vmajor; 1939 tgr.tls_vminor = hdr->tls_vminor; 1940 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1941 trail_len); 1942 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1943 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1944 1945 SOCKBUF_LOCK(sb); 1946 if (sb->sb_tlsdcc == 0) { 1947 /* sbcut/drop/flush discarded these mbufs. */ 1948 MPASS(sb->sb_tlscc == 0); 1949 m_freem(data); 1950 m_freem(control); 1951 break; 1952 } 1953 1954 /* 1955 * Clear the 'dcc' accounting in preparation for 1956 * adding the decrypted record. 1957 */ 1958 sb->sb_ccc -= tls_len; 1959 sb->sb_tlsdcc = 0; 1960 SBCHECK(sb); 1961 1962 /* If there is no payload, drop all of the data. */ 1963 if (tgr.tls_length == htobe16(0)) { 1964 m_freem(data); 1965 data = NULL; 1966 } else { 1967 /* Trim header. */ 1968 remain = tls->params.tls_hlen; 1969 while (remain > 0) { 1970 if (data->m_len > remain) { 1971 data->m_data += remain; 1972 data->m_len -= remain; 1973 break; 1974 } 1975 remain -= data->m_len; 1976 data = m_free(data); 1977 } 1978 1979 /* Trim trailer and clear M_NOTREADY. */ 1980 remain = be16toh(tgr.tls_length); 1981 m = data; 1982 for (m = data; remain > m->m_len; m = m->m_next) { 1983 m->m_flags &= ~M_NOTREADY; 1984 remain -= m->m_len; 1985 } 1986 m->m_len = remain; 1987 m_freem(m->m_next); 1988 m->m_next = NULL; 1989 m->m_flags &= ~M_NOTREADY; 1990 1991 /* Set EOR on the final mbuf. */ 1992 m->m_flags |= M_EOR; 1993 } 1994 1995 sbappendcontrol_locked(sb, data, control, 0); 1996 } 1997 1998 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1999 2000 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2001 so->so_error = EMSGSIZE; 2002 2003 sorwakeup_locked(so); 2004 2005 deref: 2006 SOCKBUF_UNLOCK_ASSERT(sb); 2007 2008 CURVNET_SET(so->so_vnet); 2009 SOCK_LOCK(so); 2010 sorele(so); 2011 CURVNET_RESTORE(); 2012 } 2013 2014 void 2015 ktls_enqueue_to_free(struct mbuf *m) 2016 { 2017 struct ktls_wq *wq; 2018 bool running; 2019 2020 /* Mark it for freeing. */ 2021 m->m_epg_flags |= EPG_FLAG_2FREE; 2022 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2023 mtx_lock(&wq->mtx); 2024 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2025 running = wq->running; 2026 mtx_unlock(&wq->mtx); 2027 if (!running) 2028 wakeup(wq); 2029 } 2030 2031 static void * 2032 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2033 { 2034 void *buf; 2035 int domain, running; 2036 2037 if (m->m_epg_npgs <= 2) 2038 return (NULL); 2039 if (ktls_buffer_zone == NULL) 2040 return (NULL); 2041 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2042 /* 2043 * Rate-limit allocation attempts after a failure. 2044 * ktls_buffer_import() will acquire a per-domain mutex to check 2045 * the free page queues and may fail consistently if memory is 2046 * fragmented. 2047 */ 2048 return (NULL); 2049 } 2050 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2051 if (buf == NULL) { 2052 domain = PCPU_GET(domain); 2053 wq->lastallocfail = ticks; 2054 2055 /* 2056 * Note that this check is "racy", but the races are 2057 * harmless, and are either a spurious wakeup if 2058 * multiple threads fail allocations before the alloc 2059 * thread wakes, or waiting an extra second in case we 2060 * see an old value of running == true. 2061 */ 2062 if (!VM_DOMAIN_EMPTY(domain)) { 2063 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2064 if (!running) 2065 wakeup(&ktls_domains[domain].alloc_td); 2066 } 2067 } 2068 return (buf); 2069 } 2070 2071 static int 2072 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2073 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2074 { 2075 vm_page_t pg; 2076 int error, i, len, off; 2077 2078 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2079 ("%p not unready & nomap mbuf\n", m)); 2080 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2081 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2082 ktls_maxlen)); 2083 2084 /* Anonymous mbufs are encrypted in place. */ 2085 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2086 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2087 2088 /* 2089 * For file-backed mbufs (from sendfile), anonymous wired 2090 * pages are allocated and used as the encryption destination. 2091 */ 2092 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2093 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2094 m->m_epg_1st_off; 2095 state->dst_iov[0].iov_base = (char *)state->cbuf + 2096 m->m_epg_1st_off; 2097 state->dst_iov[0].iov_len = len; 2098 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2099 i = 1; 2100 } else { 2101 off = m->m_epg_1st_off; 2102 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2103 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2104 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2105 len = m_epg_pagelen(m, i, off); 2106 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2107 state->dst_iov[i].iov_base = 2108 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2109 state->dst_iov[i].iov_len = len; 2110 } 2111 } 2112 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2113 state->dst_iov[i].iov_base = m->m_epg_trail; 2114 state->dst_iov[i].iov_len = m->m_epg_trllen; 2115 2116 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2117 2118 if (__predict_false(error != 0)) { 2119 /* Free the anonymous pages. */ 2120 if (state->cbuf != NULL) 2121 uma_zfree(ktls_buffer_zone, state->cbuf); 2122 else { 2123 for (i = 0; i < m->m_epg_npgs; i++) { 2124 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2125 (void)vm_page_unwire_noq(pg); 2126 vm_page_free(pg); 2127 } 2128 } 2129 } 2130 return (error); 2131 } 2132 2133 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2134 static u_int 2135 ktls_batched_records(struct mbuf *m) 2136 { 2137 int page_count, records; 2138 2139 records = 0; 2140 page_count = m->m_epg_enc_cnt; 2141 while (page_count > 0) { 2142 records++; 2143 page_count -= m->m_epg_nrdy; 2144 m = m->m_next; 2145 } 2146 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2147 return (records); 2148 } 2149 2150 void 2151 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2152 { 2153 struct ktls_session *tls; 2154 struct ktls_wq *wq; 2155 int queued; 2156 bool running; 2157 2158 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2159 (M_EXTPG | M_NOTREADY)), 2160 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2161 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2162 2163 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2164 2165 m->m_epg_enc_cnt = page_count; 2166 2167 /* 2168 * Save a pointer to the socket. The caller is responsible 2169 * for taking an additional reference via soref(). 2170 */ 2171 m->m_epg_so = so; 2172 2173 queued = 1; 2174 tls = m->m_epg_tls; 2175 wq = &ktls_wq[tls->wq_index]; 2176 mtx_lock(&wq->mtx); 2177 if (__predict_false(tls->sequential_records)) { 2178 /* 2179 * For TLS 1.0, records must be encrypted 2180 * sequentially. For a given connection, all records 2181 * queued to the associated work queue are processed 2182 * sequentially. However, sendfile(2) might complete 2183 * I/O requests spanning multiple TLS records out of 2184 * order. Here we ensure TLS records are enqueued to 2185 * the work queue in FIFO order. 2186 * 2187 * tls->next_seqno holds the sequence number of the 2188 * next TLS record that should be enqueued to the work 2189 * queue. If this next record is not tls->next_seqno, 2190 * it must be a future record, so insert it, sorted by 2191 * TLS sequence number, into tls->pending_records and 2192 * return. 2193 * 2194 * If this TLS record matches tls->next_seqno, place 2195 * it in the work queue and then check 2196 * tls->pending_records to see if any 2197 * previously-queued records are now ready for 2198 * encryption. 2199 */ 2200 if (m->m_epg_seqno != tls->next_seqno) { 2201 struct mbuf *n, *p; 2202 2203 p = NULL; 2204 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2205 if (n->m_epg_seqno > m->m_epg_seqno) 2206 break; 2207 p = n; 2208 } 2209 if (n == NULL) 2210 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2211 m_epg_stailq); 2212 else if (p == NULL) 2213 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2214 m_epg_stailq); 2215 else 2216 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2217 m_epg_stailq); 2218 mtx_unlock(&wq->mtx); 2219 counter_u64_add(ktls_cnt_tx_pending, 1); 2220 return; 2221 } 2222 2223 tls->next_seqno += ktls_batched_records(m); 2224 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2225 2226 while (!STAILQ_EMPTY(&tls->pending_records)) { 2227 struct mbuf *n; 2228 2229 n = STAILQ_FIRST(&tls->pending_records); 2230 if (n->m_epg_seqno != tls->next_seqno) 2231 break; 2232 2233 queued++; 2234 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2235 tls->next_seqno += ktls_batched_records(n); 2236 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2237 } 2238 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2239 } else 2240 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2241 2242 running = wq->running; 2243 mtx_unlock(&wq->mtx); 2244 if (!running) 2245 wakeup(wq); 2246 counter_u64_add(ktls_cnt_tx_queued, queued); 2247 } 2248 2249 /* 2250 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2251 * the pages from the file and replace them with the anonymous pages 2252 * allocated in ktls_encrypt_record(). 2253 */ 2254 static void 2255 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2256 { 2257 int i; 2258 2259 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2260 2261 /* Free the old pages. */ 2262 m->m_ext.ext_free(m); 2263 2264 /* Replace them with the new pages. */ 2265 if (state->cbuf != NULL) { 2266 for (i = 0; i < m->m_epg_npgs; i++) 2267 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2268 2269 /* Contig pages should go back to the cache. */ 2270 m->m_ext.ext_free = ktls_free_mext_contig; 2271 } else { 2272 for (i = 0; i < m->m_epg_npgs; i++) 2273 m->m_epg_pa[i] = state->parray[i]; 2274 2275 /* Use the basic free routine. */ 2276 m->m_ext.ext_free = mb_free_mext_pgs; 2277 } 2278 2279 /* Pages are now writable. */ 2280 m->m_epg_flags |= EPG_FLAG_ANON; 2281 } 2282 2283 static __noinline void 2284 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2285 { 2286 struct ktls_ocf_encrypt_state state; 2287 struct ktls_session *tls; 2288 struct socket *so; 2289 struct mbuf *m; 2290 int error, npages, total_pages; 2291 2292 so = top->m_epg_so; 2293 tls = top->m_epg_tls; 2294 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2295 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2296 #ifdef INVARIANTS 2297 top->m_epg_so = NULL; 2298 #endif 2299 total_pages = top->m_epg_enc_cnt; 2300 npages = 0; 2301 2302 /* 2303 * Encrypt the TLS records in the chain of mbufs starting with 2304 * 'top'. 'total_pages' gives us a total count of pages and is 2305 * used to know when we have finished encrypting the TLS 2306 * records originally queued with 'top'. 2307 * 2308 * NB: These mbufs are queued in the socket buffer and 2309 * 'm_next' is traversing the mbufs in the socket buffer. The 2310 * socket buffer lock is not held while traversing this chain. 2311 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2312 * pointers should be stable. However, the 'm_next' of the 2313 * last mbuf encrypted is not necessarily NULL. It can point 2314 * to other mbufs appended while 'top' was on the TLS work 2315 * queue. 2316 * 2317 * Each mbuf holds an entire TLS record. 2318 */ 2319 error = 0; 2320 for (m = top; npages != total_pages; m = m->m_next) { 2321 KASSERT(m->m_epg_tls == tls, 2322 ("different TLS sessions in a single mbuf chain: %p vs %p", 2323 tls, m->m_epg_tls)); 2324 KASSERT(npages + m->m_epg_npgs <= total_pages, 2325 ("page count mismatch: top %p, total_pages %d, m %p", top, 2326 total_pages, m)); 2327 2328 error = ktls_encrypt_record(wq, m, tls, &state); 2329 if (error) { 2330 counter_u64_add(ktls_offload_failed_crypto, 1); 2331 break; 2332 } 2333 2334 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2335 ktls_finish_nonanon(m, &state); 2336 2337 npages += m->m_epg_nrdy; 2338 2339 /* 2340 * Drop a reference to the session now that it is no 2341 * longer needed. Existing code depends on encrypted 2342 * records having no associated session vs 2343 * yet-to-be-encrypted records having an associated 2344 * session. 2345 */ 2346 m->m_epg_tls = NULL; 2347 ktls_free(tls); 2348 } 2349 2350 CURVNET_SET(so->so_vnet); 2351 if (error == 0) { 2352 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2353 } else { 2354 so->so_proto->pr_usrreqs->pru_abort(so); 2355 so->so_error = EIO; 2356 mb_free_notready(top, total_pages); 2357 } 2358 2359 SOCK_LOCK(so); 2360 sorele(so); 2361 CURVNET_RESTORE(); 2362 } 2363 2364 void 2365 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2366 { 2367 struct ktls_session *tls; 2368 struct socket *so; 2369 struct mbuf *m; 2370 int npages; 2371 2372 m = state->m; 2373 2374 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2375 ktls_finish_nonanon(m, state); 2376 2377 so = state->so; 2378 free(state, M_KTLS); 2379 2380 /* 2381 * Drop a reference to the session now that it is no longer 2382 * needed. Existing code depends on encrypted records having 2383 * no associated session vs yet-to-be-encrypted records having 2384 * an associated session. 2385 */ 2386 tls = m->m_epg_tls; 2387 m->m_epg_tls = NULL; 2388 ktls_free(tls); 2389 2390 if (error != 0) 2391 counter_u64_add(ktls_offload_failed_crypto, 1); 2392 2393 CURVNET_SET(so->so_vnet); 2394 npages = m->m_epg_nrdy; 2395 2396 if (error == 0) { 2397 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2398 } else { 2399 so->so_proto->pr_usrreqs->pru_abort(so); 2400 so->so_error = EIO; 2401 mb_free_notready(m, npages); 2402 } 2403 2404 SOCK_LOCK(so); 2405 sorele(so); 2406 CURVNET_RESTORE(); 2407 } 2408 2409 /* 2410 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2411 * (coprocessors) where encryption does not use host CPU resources and 2412 * it can be beneficial to queue more requests than CPUs. 2413 */ 2414 static __noinline void 2415 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2416 { 2417 struct ktls_ocf_encrypt_state *state; 2418 struct ktls_session *tls; 2419 struct socket *so; 2420 struct mbuf *m, *n; 2421 int error, mpages, npages, total_pages; 2422 2423 so = top->m_epg_so; 2424 tls = top->m_epg_tls; 2425 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2426 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2427 #ifdef INVARIANTS 2428 top->m_epg_so = NULL; 2429 #endif 2430 total_pages = top->m_epg_enc_cnt; 2431 npages = 0; 2432 2433 error = 0; 2434 for (m = top; npages != total_pages; m = n) { 2435 KASSERT(m->m_epg_tls == tls, 2436 ("different TLS sessions in a single mbuf chain: %p vs %p", 2437 tls, m->m_epg_tls)); 2438 KASSERT(npages + m->m_epg_npgs <= total_pages, 2439 ("page count mismatch: top %p, total_pages %d, m %p", top, 2440 total_pages, m)); 2441 2442 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2443 soref(so); 2444 state->so = so; 2445 state->m = m; 2446 2447 mpages = m->m_epg_nrdy; 2448 n = m->m_next; 2449 2450 error = ktls_encrypt_record(wq, m, tls, state); 2451 if (error) { 2452 counter_u64_add(ktls_offload_failed_crypto, 1); 2453 free(state, M_KTLS); 2454 CURVNET_SET(so->so_vnet); 2455 SOCK_LOCK(so); 2456 sorele(so); 2457 CURVNET_RESTORE(); 2458 break; 2459 } 2460 2461 npages += mpages; 2462 } 2463 2464 CURVNET_SET(so->so_vnet); 2465 if (error != 0) { 2466 so->so_proto->pr_usrreqs->pru_abort(so); 2467 so->so_error = EIO; 2468 mb_free_notready(m, total_pages - npages); 2469 } 2470 2471 SOCK_LOCK(so); 2472 sorele(so); 2473 CURVNET_RESTORE(); 2474 } 2475 2476 static int 2477 ktls_bind_domain(int domain) 2478 { 2479 int error; 2480 2481 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2482 if (error != 0) 2483 return (error); 2484 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2485 return (0); 2486 } 2487 2488 static void 2489 ktls_alloc_thread(void *ctx) 2490 { 2491 struct ktls_domain_info *ktls_domain = ctx; 2492 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2493 void **buf; 2494 struct sysctl_oid *oid; 2495 char name[80]; 2496 int domain, error, i, nbufs; 2497 2498 domain = ktls_domain - ktls_domains; 2499 if (bootverbose) 2500 printf("Starting KTLS alloc thread for domain %d\n", domain); 2501 error = ktls_bind_domain(domain); 2502 if (error) 2503 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2504 domain, error); 2505 snprintf(name, sizeof(name), "domain%d", domain); 2506 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2507 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2508 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2509 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2510 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2511 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2512 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2513 CTLFLAG_RD, &sc->running, 0, "thread running"); 2514 2515 buf = NULL; 2516 nbufs = 0; 2517 for (;;) { 2518 atomic_store_int(&sc->running, 0); 2519 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2520 atomic_store_int(&sc->running, 1); 2521 sc->wakeups++; 2522 if (nbufs != ktls_max_alloc) { 2523 free(buf, M_KTLS); 2524 nbufs = atomic_load_int(&ktls_max_alloc); 2525 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2526 M_WAITOK | M_ZERO); 2527 } 2528 /* 2529 * Below we allocate nbufs with different allocation 2530 * flags than we use when allocating normally during 2531 * encryption in the ktls worker thread. We specify 2532 * M_NORECLAIM in the worker thread. However, we omit 2533 * that flag here and add M_WAITOK so that the VM 2534 * system is permitted to perform expensive work to 2535 * defragment memory. We do this here, as it does not 2536 * matter if this thread blocks. If we block a ktls 2537 * worker thread, we risk developing backlogs of 2538 * buffers to be encrypted, leading to surges of 2539 * traffic and potential NIC output drops. 2540 */ 2541 for (i = 0; i < nbufs; i++) { 2542 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2543 sc->allocs++; 2544 } 2545 for (i = 0; i < nbufs; i++) { 2546 uma_zfree(ktls_buffer_zone, buf[i]); 2547 buf[i] = NULL; 2548 } 2549 } 2550 } 2551 2552 static void 2553 ktls_work_thread(void *ctx) 2554 { 2555 struct ktls_wq *wq = ctx; 2556 struct mbuf *m, *n; 2557 struct socket *so, *son; 2558 STAILQ_HEAD(, mbuf) local_m_head; 2559 STAILQ_HEAD(, socket) local_so_head; 2560 int cpu; 2561 2562 cpu = wq - ktls_wq; 2563 if (bootverbose) 2564 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2565 2566 /* 2567 * Bind to a core. If ktls_bind_threads is > 1, then 2568 * we bind to the NUMA domain instead. 2569 */ 2570 if (ktls_bind_threads) { 2571 int error; 2572 2573 if (ktls_bind_threads > 1) { 2574 struct pcpu *pc = pcpu_find(cpu); 2575 2576 error = ktls_bind_domain(pc->pc_domain); 2577 } else { 2578 cpuset_t mask; 2579 2580 CPU_SETOF(cpu, &mask); 2581 error = cpuset_setthread(curthread->td_tid, &mask); 2582 } 2583 if (error) 2584 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2585 cpu, error); 2586 } 2587 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2588 fpu_kern_thread(0); 2589 #endif 2590 for (;;) { 2591 mtx_lock(&wq->mtx); 2592 while (STAILQ_EMPTY(&wq->m_head) && 2593 STAILQ_EMPTY(&wq->so_head)) { 2594 wq->running = false; 2595 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2596 wq->running = true; 2597 } 2598 2599 STAILQ_INIT(&local_m_head); 2600 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2601 STAILQ_INIT(&local_so_head); 2602 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2603 mtx_unlock(&wq->mtx); 2604 2605 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2606 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2607 ktls_free(m->m_epg_tls); 2608 m_free_raw(m); 2609 } else { 2610 if (m->m_epg_tls->sync_dispatch) 2611 ktls_encrypt(wq, m); 2612 else 2613 ktls_encrypt_async(wq, m); 2614 counter_u64_add(ktls_cnt_tx_queued, -1); 2615 } 2616 } 2617 2618 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2619 ktls_decrypt(so); 2620 counter_u64_add(ktls_cnt_rx_queued, -1); 2621 } 2622 } 2623 } 2624 2625 #if defined(INET) || defined(INET6) 2626 static void 2627 ktls_disable_ifnet_help(void *context, int pending __unused) 2628 { 2629 struct ktls_session *tls; 2630 struct inpcb *inp; 2631 struct tcpcb *tp; 2632 struct socket *so; 2633 int err; 2634 2635 tls = context; 2636 inp = tls->inp; 2637 if (inp == NULL) 2638 return; 2639 INP_WLOCK(inp); 2640 so = inp->inp_socket; 2641 MPASS(so != NULL); 2642 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2643 (inp->inp_flags2 & INP_FREED)) { 2644 goto out; 2645 } 2646 2647 if (so->so_snd.sb_tls_info != NULL) 2648 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2649 else 2650 err = ENXIO; 2651 if (err == 0) { 2652 counter_u64_add(ktls_ifnet_disable_ok, 1); 2653 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2654 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2655 (inp->inp_flags2 & INP_FREED) == 0 && 2656 (tp = intotcpcb(inp)) != NULL && 2657 tp->t_fb->tfb_hwtls_change != NULL) 2658 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2659 } else { 2660 counter_u64_add(ktls_ifnet_disable_fail, 1); 2661 } 2662 2663 out: 2664 SOCK_LOCK(so); 2665 sorele(so); 2666 if (!in_pcbrele_wlocked(inp)) 2667 INP_WUNLOCK(inp); 2668 ktls_free(tls); 2669 } 2670 2671 /* 2672 * Called when re-transmits are becoming a substantial portion of the 2673 * sends on this connection. When this happens, we transition the 2674 * connection to software TLS. This is needed because most inline TLS 2675 * NICs keep crypto state only for in-order transmits. This means 2676 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2677 * re-DMA the entire TLS record up to and including the current 2678 * segment. This means that when re-transmitting the last ~1448 byte 2679 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2680 * of magnitude more data than we are sending. This can cause the 2681 * PCIe link to saturate well before the network, which can cause 2682 * output drops, and a general loss of capacity. 2683 */ 2684 void 2685 ktls_disable_ifnet(void *arg) 2686 { 2687 struct tcpcb *tp; 2688 struct inpcb *inp; 2689 struct socket *so; 2690 struct ktls_session *tls; 2691 2692 tp = arg; 2693 inp = tp->t_inpcb; 2694 INP_WLOCK_ASSERT(inp); 2695 so = inp->inp_socket; 2696 SOCK_LOCK(so); 2697 tls = so->so_snd.sb_tls_info; 2698 if (tls->disable_ifnet_pending) { 2699 SOCK_UNLOCK(so); 2700 return; 2701 } 2702 2703 /* 2704 * note that disable_ifnet_pending is never cleared; disabling 2705 * ifnet can only be done once per session, so we never want 2706 * to do it again 2707 */ 2708 2709 (void)ktls_hold(tls); 2710 in_pcbref(inp); 2711 soref(so); 2712 tls->disable_ifnet_pending = true; 2713 tls->inp = inp; 2714 SOCK_UNLOCK(so); 2715 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2716 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2717 } 2718 #endif 2719