1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 } __aligned(CACHE_LINE_SIZE); 86 87 struct ktls_domain_info { 88 int count; 89 int cpu[MAXCPU]; 90 }; 91 92 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 93 static struct ktls_wq *ktls_wq; 94 static struct proc *ktls_proc; 95 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 96 static struct rmlock ktls_backends_lock; 97 static uma_zone_t ktls_session_zone; 98 static uint16_t ktls_cpuid_lookup[MAXCPU]; 99 100 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 101 "Kernel TLS offload"); 102 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload stats"); 104 105 static int ktls_allow_unload; 106 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 107 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 108 109 #ifdef RSS 110 static int ktls_bind_threads = 1; 111 #else 112 static int ktls_bind_threads; 113 #endif 114 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 115 &ktls_bind_threads, 0, 116 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 117 118 static u_int ktls_maxlen = 16384; 119 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 120 &ktls_maxlen, 0, "Maximum TLS record size"); 121 122 static int ktls_number_threads; 123 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 124 &ktls_number_threads, 0, 125 "Number of TLS threads in thread-pool"); 126 127 static bool ktls_offload_enable; 128 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 129 &ktls_offload_enable, 0, 130 "Enable support for kernel TLS offload"); 131 132 static bool ktls_cbc_enable = true; 133 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 134 &ktls_cbc_enable, 1, 135 "Enable Support of AES-CBC crypto for kernel TLS"); 136 137 static counter_u64_t ktls_tasks_active; 138 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 139 &ktls_tasks_active, "Number of active tasks"); 140 141 static counter_u64_t ktls_cnt_tx_queued; 142 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 143 &ktls_cnt_tx_queued, 144 "Number of TLS records in queue to tasks for SW encryption"); 145 146 static counter_u64_t ktls_cnt_rx_queued; 147 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 148 &ktls_cnt_rx_queued, 149 "Number of TLS sockets in queue to tasks for SW decryption"); 150 151 static counter_u64_t ktls_offload_total; 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 153 CTLFLAG_RD, &ktls_offload_total, 154 "Total successful TLS setups (parameters set)"); 155 156 static counter_u64_t ktls_offload_enable_calls; 157 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 158 CTLFLAG_RD, &ktls_offload_enable_calls, 159 "Total number of TLS enable calls made"); 160 161 static counter_u64_t ktls_offload_active; 162 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 163 &ktls_offload_active, "Total Active TLS sessions"); 164 165 static counter_u64_t ktls_offload_corrupted_records; 166 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 167 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 168 169 static counter_u64_t ktls_offload_failed_crypto; 170 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 171 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 172 173 static counter_u64_t ktls_switch_to_ifnet; 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 175 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 176 177 static counter_u64_t ktls_switch_to_sw; 178 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 179 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 180 181 static counter_u64_t ktls_switch_failed; 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 183 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 184 185 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 186 "Software TLS session stats"); 187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 188 "Hardware (ifnet) TLS session stats"); 189 #ifdef TCP_OFFLOAD 190 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 191 "TOE TLS session stats"); 192 #endif 193 194 static counter_u64_t ktls_sw_cbc; 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 196 "Active number of software TLS sessions using AES-CBC"); 197 198 static counter_u64_t ktls_sw_gcm; 199 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 200 "Active number of software TLS sessions using AES-GCM"); 201 202 static counter_u64_t ktls_ifnet_cbc; 203 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 204 &ktls_ifnet_cbc, 205 "Active number of ifnet TLS sessions using AES-CBC"); 206 207 static counter_u64_t ktls_ifnet_gcm; 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 209 &ktls_ifnet_gcm, 210 "Active number of ifnet TLS sessions using AES-GCM"); 211 212 static counter_u64_t ktls_ifnet_reset; 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 214 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 215 216 static counter_u64_t ktls_ifnet_reset_dropped; 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 218 &ktls_ifnet_reset_dropped, 219 "TLS sessions dropped after failing to update ifnet send tag"); 220 221 static counter_u64_t ktls_ifnet_reset_failed; 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 223 &ktls_ifnet_reset_failed, 224 "TLS sessions that failed to allocate a new ifnet send tag"); 225 226 static int ktls_ifnet_permitted; 227 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 228 &ktls_ifnet_permitted, 1, 229 "Whether to permit hardware (ifnet) TLS sessions"); 230 231 #ifdef TCP_OFFLOAD 232 static counter_u64_t ktls_toe_cbc; 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 234 &ktls_toe_cbc, 235 "Active number of TOE TLS sessions using AES-CBC"); 236 237 static counter_u64_t ktls_toe_gcm; 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 239 &ktls_toe_gcm, 240 "Active number of TOE TLS sessions using AES-GCM"); 241 #endif 242 243 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 244 245 static void ktls_cleanup(struct ktls_session *tls); 246 #if defined(INET) || defined(INET6) 247 static void ktls_reset_send_tag(void *context, int pending); 248 #endif 249 static void ktls_work_thread(void *ctx); 250 251 int 252 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 253 { 254 struct ktls_crypto_backend *curr_be, *tmp; 255 256 if (be->api_version != KTLS_API_VERSION) { 257 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 258 be->api_version, KTLS_API_VERSION, 259 be->name); 260 return (EINVAL); 261 } 262 263 rm_wlock(&ktls_backends_lock); 264 printf("KTLS: Registering crypto method %s with prio %d\n", 265 be->name, be->prio); 266 if (LIST_EMPTY(&ktls_backends)) { 267 LIST_INSERT_HEAD(&ktls_backends, be, next); 268 } else { 269 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 270 if (curr_be->prio < be->prio) { 271 LIST_INSERT_BEFORE(curr_be, be, next); 272 break; 273 } 274 if (LIST_NEXT(curr_be, next) == NULL) { 275 LIST_INSERT_AFTER(curr_be, be, next); 276 break; 277 } 278 } 279 } 280 rm_wunlock(&ktls_backends_lock); 281 return (0); 282 } 283 284 int 285 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 286 { 287 struct ktls_crypto_backend *tmp; 288 289 /* 290 * Don't error if the backend isn't registered. This permits 291 * MOD_UNLOAD handlers to use this function unconditionally. 292 */ 293 rm_wlock(&ktls_backends_lock); 294 LIST_FOREACH(tmp, &ktls_backends, next) { 295 if (tmp == be) 296 break; 297 } 298 if (tmp == NULL) { 299 rm_wunlock(&ktls_backends_lock); 300 return (0); 301 } 302 303 if (!ktls_allow_unload) { 304 rm_wunlock(&ktls_backends_lock); 305 printf( 306 "KTLS: Deregistering crypto method %s is not supported\n", 307 be->name); 308 return (EBUSY); 309 } 310 311 if (be->use_count) { 312 rm_wunlock(&ktls_backends_lock); 313 return (EBUSY); 314 } 315 316 LIST_REMOVE(be, next); 317 rm_wunlock(&ktls_backends_lock); 318 return (0); 319 } 320 321 #if defined(INET) || defined(INET6) 322 static u_int 323 ktls_get_cpu(struct socket *so) 324 { 325 struct inpcb *inp; 326 #ifdef NUMA 327 struct ktls_domain_info *di; 328 #endif 329 u_int cpuid; 330 331 inp = sotoinpcb(so); 332 #ifdef RSS 333 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 334 if (cpuid != NETISR_CPUID_NONE) 335 return (cpuid); 336 #endif 337 /* 338 * Just use the flowid to shard connections in a repeatable 339 * fashion. Note that some crypto backends rely on the 340 * serialization provided by having the same connection use 341 * the same queue. 342 */ 343 #ifdef NUMA 344 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 345 di = &ktls_domains[inp->inp_numa_domain]; 346 cpuid = di->cpu[inp->inp_flowid % di->count]; 347 } else 348 #endif 349 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 350 return (cpuid); 351 } 352 #endif 353 354 static void 355 ktls_init(void *dummy __unused) 356 { 357 struct thread *td; 358 struct pcpu *pc; 359 cpuset_t mask; 360 int count, domain, error, i; 361 362 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 363 ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK); 364 ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK); 365 ktls_offload_total = counter_u64_alloc(M_WAITOK); 366 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 367 ktls_offload_active = counter_u64_alloc(M_WAITOK); 368 ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK); 369 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 370 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 371 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 372 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 373 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 374 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 375 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 376 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 377 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 378 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 379 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 380 #ifdef TCP_OFFLOAD 381 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 382 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 383 #endif 384 385 rm_init(&ktls_backends_lock, "ktls backends"); 386 LIST_INIT(&ktls_backends); 387 388 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 389 M_WAITOK | M_ZERO); 390 391 ktls_session_zone = uma_zcreate("ktls_session", 392 sizeof(struct ktls_session), 393 NULL, NULL, NULL, NULL, 394 UMA_ALIGN_CACHE, 0); 395 396 /* 397 * Initialize the workqueues to run the TLS work. We create a 398 * work queue for each CPU. 399 */ 400 CPU_FOREACH(i) { 401 STAILQ_INIT(&ktls_wq[i].m_head); 402 STAILQ_INIT(&ktls_wq[i].so_head); 403 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 404 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 405 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 406 if (error) 407 panic("Can't add KTLS thread %d error %d", i, error); 408 409 /* 410 * Bind threads to cores. If ktls_bind_threads is > 411 * 1, then we bind to the NUMA domain. 412 */ 413 if (ktls_bind_threads) { 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 CPU_COPY(&cpuset_domain[domain], &mask); 418 count = ktls_domains[domain].count; 419 ktls_domains[domain].cpu[count] = i; 420 ktls_domains[domain].count++; 421 } else { 422 CPU_SETOF(i, &mask); 423 } 424 error = cpuset_setthread(td->td_tid, &mask); 425 if (error) 426 panic( 427 "Unable to bind KTLS thread for CPU %d error %d", 428 i, error); 429 } 430 ktls_cpuid_lookup[ktls_number_threads] = i; 431 ktls_number_threads++; 432 } 433 434 /* 435 * If we somehow have an empty domain, fall back to choosing 436 * among all KTLS threads. 437 */ 438 if (ktls_bind_threads > 1) { 439 for (i = 0; i < vm_ndomains; i++) { 440 if (ktls_domains[i].count == 0) { 441 ktls_bind_threads = 1; 442 break; 443 } 444 } 445 } 446 447 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 448 } 449 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 450 451 #if defined(INET) || defined(INET6) 452 static int 453 ktls_create_session(struct socket *so, struct tls_enable *en, 454 struct ktls_session **tlsp) 455 { 456 struct ktls_session *tls; 457 int error; 458 459 /* Only TLS 1.0 - 1.3 are supported. */ 460 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 461 return (EINVAL); 462 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 463 en->tls_vminor > TLS_MINOR_VER_THREE) 464 return (EINVAL); 465 466 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 467 return (EINVAL); 468 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 469 return (EINVAL); 470 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 471 return (EINVAL); 472 473 /* All supported algorithms require a cipher key. */ 474 if (en->cipher_key_len == 0) 475 return (EINVAL); 476 477 /* No flags are currently supported. */ 478 if (en->flags != 0) 479 return (EINVAL); 480 481 /* Common checks for supported algorithms. */ 482 switch (en->cipher_algorithm) { 483 case CRYPTO_AES_NIST_GCM_16: 484 /* 485 * auth_algorithm isn't used, but permit GMAC values 486 * for compatibility. 487 */ 488 switch (en->auth_algorithm) { 489 case 0: 490 #ifdef COMPAT_FREEBSD12 491 /* XXX: Really 13.0-current COMPAT. */ 492 case CRYPTO_AES_128_NIST_GMAC: 493 case CRYPTO_AES_192_NIST_GMAC: 494 case CRYPTO_AES_256_NIST_GMAC: 495 #endif 496 break; 497 default: 498 return (EINVAL); 499 } 500 if (en->auth_key_len != 0) 501 return (EINVAL); 502 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 503 en->iv_len != TLS_AEAD_GCM_LEN) || 504 (en->tls_vminor == TLS_MINOR_VER_THREE && 505 en->iv_len != TLS_1_3_GCM_IV_LEN)) 506 return (EINVAL); 507 break; 508 case CRYPTO_AES_CBC: 509 switch (en->auth_algorithm) { 510 case CRYPTO_SHA1_HMAC: 511 /* 512 * TLS 1.0 requires an implicit IV. TLS 1.1+ 513 * all use explicit IVs. 514 */ 515 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 516 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 517 return (EINVAL); 518 break; 519 } 520 521 /* FALLTHROUGH */ 522 case CRYPTO_SHA2_256_HMAC: 523 case CRYPTO_SHA2_384_HMAC: 524 /* Ignore any supplied IV. */ 525 en->iv_len = 0; 526 break; 527 default: 528 return (EINVAL); 529 } 530 if (en->auth_key_len == 0) 531 return (EINVAL); 532 break; 533 default: 534 return (EINVAL); 535 } 536 537 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 538 539 counter_u64_add(ktls_offload_active, 1); 540 541 refcount_init(&tls->refcount, 1); 542 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 543 544 tls->wq_index = ktls_get_cpu(so); 545 546 tls->params.cipher_algorithm = en->cipher_algorithm; 547 tls->params.auth_algorithm = en->auth_algorithm; 548 tls->params.tls_vmajor = en->tls_vmajor; 549 tls->params.tls_vminor = en->tls_vminor; 550 tls->params.flags = en->flags; 551 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 552 553 /* Set the header and trailer lengths. */ 554 tls->params.tls_hlen = sizeof(struct tls_record_layer); 555 switch (en->cipher_algorithm) { 556 case CRYPTO_AES_NIST_GCM_16: 557 /* 558 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 559 * nonce. TLS 1.3 uses a 12 byte implicit IV. 560 */ 561 if (en->tls_vminor < TLS_MINOR_VER_THREE) 562 tls->params.tls_hlen += sizeof(uint64_t); 563 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 564 565 /* 566 * TLS 1.3 includes optional padding which we 567 * do not support, and also puts the "real" record 568 * type at the end of the encrypted data. 569 */ 570 if (en->tls_vminor == TLS_MINOR_VER_THREE) 571 tls->params.tls_tlen += sizeof(uint8_t); 572 573 tls->params.tls_bs = 1; 574 break; 575 case CRYPTO_AES_CBC: 576 switch (en->auth_algorithm) { 577 case CRYPTO_SHA1_HMAC: 578 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 579 /* Implicit IV, no nonce. */ 580 } else { 581 tls->params.tls_hlen += AES_BLOCK_LEN; 582 } 583 tls->params.tls_tlen = AES_BLOCK_LEN + 584 SHA1_HASH_LEN; 585 break; 586 case CRYPTO_SHA2_256_HMAC: 587 tls->params.tls_hlen += AES_BLOCK_LEN; 588 tls->params.tls_tlen = AES_BLOCK_LEN + 589 SHA2_256_HASH_LEN; 590 break; 591 case CRYPTO_SHA2_384_HMAC: 592 tls->params.tls_hlen += AES_BLOCK_LEN; 593 tls->params.tls_tlen = AES_BLOCK_LEN + 594 SHA2_384_HASH_LEN; 595 break; 596 default: 597 panic("invalid hmac"); 598 } 599 tls->params.tls_bs = AES_BLOCK_LEN; 600 break; 601 default: 602 panic("invalid cipher"); 603 } 604 605 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 606 ("TLS header length too long: %d", tls->params.tls_hlen)); 607 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 608 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 609 610 if (en->auth_key_len != 0) { 611 tls->params.auth_key_len = en->auth_key_len; 612 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 613 M_WAITOK); 614 error = copyin(en->auth_key, tls->params.auth_key, 615 en->auth_key_len); 616 if (error) 617 goto out; 618 } 619 620 tls->params.cipher_key_len = en->cipher_key_len; 621 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 622 error = copyin(en->cipher_key, tls->params.cipher_key, 623 en->cipher_key_len); 624 if (error) 625 goto out; 626 627 /* 628 * This holds the implicit portion of the nonce for GCM and 629 * the initial implicit IV for TLS 1.0. The explicit portions 630 * of the IV are generated in ktls_frame(). 631 */ 632 if (en->iv_len != 0) { 633 tls->params.iv_len = en->iv_len; 634 error = copyin(en->iv, tls->params.iv, en->iv_len); 635 if (error) 636 goto out; 637 638 /* 639 * For TLS 1.2, generate an 8-byte nonce as a counter 640 * to generate unique explicit IVs. 641 * 642 * Store this counter in the last 8 bytes of the IV 643 * array so that it is 8-byte aligned. 644 */ 645 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 646 en->tls_vminor == TLS_MINOR_VER_TWO) 647 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 648 } 649 650 *tlsp = tls; 651 return (0); 652 653 out: 654 ktls_cleanup(tls); 655 return (error); 656 } 657 658 static struct ktls_session * 659 ktls_clone_session(struct ktls_session *tls) 660 { 661 struct ktls_session *tls_new; 662 663 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 664 665 counter_u64_add(ktls_offload_active, 1); 666 667 refcount_init(&tls_new->refcount, 1); 668 669 /* Copy fields from existing session. */ 670 tls_new->params = tls->params; 671 tls_new->wq_index = tls->wq_index; 672 673 /* Deep copy keys. */ 674 if (tls_new->params.auth_key != NULL) { 675 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 676 M_KTLS, M_WAITOK); 677 memcpy(tls_new->params.auth_key, tls->params.auth_key, 678 tls->params.auth_key_len); 679 } 680 681 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 682 M_WAITOK); 683 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 684 tls->params.cipher_key_len); 685 686 return (tls_new); 687 } 688 #endif 689 690 static void 691 ktls_cleanup(struct ktls_session *tls) 692 { 693 694 counter_u64_add(ktls_offload_active, -1); 695 switch (tls->mode) { 696 case TCP_TLS_MODE_SW: 697 MPASS(tls->be != NULL); 698 switch (tls->params.cipher_algorithm) { 699 case CRYPTO_AES_CBC: 700 counter_u64_add(ktls_sw_cbc, -1); 701 break; 702 case CRYPTO_AES_NIST_GCM_16: 703 counter_u64_add(ktls_sw_gcm, -1); 704 break; 705 } 706 tls->free(tls); 707 break; 708 case TCP_TLS_MODE_IFNET: 709 switch (tls->params.cipher_algorithm) { 710 case CRYPTO_AES_CBC: 711 counter_u64_add(ktls_ifnet_cbc, -1); 712 break; 713 case CRYPTO_AES_NIST_GCM_16: 714 counter_u64_add(ktls_ifnet_gcm, -1); 715 break; 716 } 717 if (tls->snd_tag != NULL) 718 m_snd_tag_rele(tls->snd_tag); 719 break; 720 #ifdef TCP_OFFLOAD 721 case TCP_TLS_MODE_TOE: 722 switch (tls->params.cipher_algorithm) { 723 case CRYPTO_AES_CBC: 724 counter_u64_add(ktls_toe_cbc, -1); 725 break; 726 case CRYPTO_AES_NIST_GCM_16: 727 counter_u64_add(ktls_toe_gcm, -1); 728 break; 729 } 730 break; 731 #endif 732 } 733 if (tls->params.auth_key != NULL) { 734 zfree(tls->params.auth_key, M_KTLS); 735 tls->params.auth_key = NULL; 736 tls->params.auth_key_len = 0; 737 } 738 if (tls->params.cipher_key != NULL) { 739 zfree(tls->params.cipher_key, M_KTLS); 740 tls->params.cipher_key = NULL; 741 tls->params.cipher_key_len = 0; 742 } 743 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 744 } 745 746 #if defined(INET) || defined(INET6) 747 748 #ifdef TCP_OFFLOAD 749 static int 750 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 751 { 752 struct inpcb *inp; 753 struct tcpcb *tp; 754 int error; 755 756 inp = so->so_pcb; 757 INP_WLOCK(inp); 758 if (inp->inp_flags2 & INP_FREED) { 759 INP_WUNLOCK(inp); 760 return (ECONNRESET); 761 } 762 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 763 INP_WUNLOCK(inp); 764 return (ECONNRESET); 765 } 766 if (inp->inp_socket == NULL) { 767 INP_WUNLOCK(inp); 768 return (ECONNRESET); 769 } 770 tp = intotcpcb(inp); 771 if (!(tp->t_flags & TF_TOE)) { 772 INP_WUNLOCK(inp); 773 return (EOPNOTSUPP); 774 } 775 776 error = tcp_offload_alloc_tls_session(tp, tls, direction); 777 INP_WUNLOCK(inp); 778 if (error == 0) { 779 tls->mode = TCP_TLS_MODE_TOE; 780 switch (tls->params.cipher_algorithm) { 781 case CRYPTO_AES_CBC: 782 counter_u64_add(ktls_toe_cbc, 1); 783 break; 784 case CRYPTO_AES_NIST_GCM_16: 785 counter_u64_add(ktls_toe_gcm, 1); 786 break; 787 } 788 } 789 return (error); 790 } 791 #endif 792 793 /* 794 * Common code used when first enabling ifnet TLS on a connection or 795 * when allocating a new ifnet TLS session due to a routing change. 796 * This function allocates a new TLS send tag on whatever interface 797 * the connection is currently routed over. 798 */ 799 static int 800 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 801 struct m_snd_tag **mstp) 802 { 803 union if_snd_tag_alloc_params params; 804 struct ifnet *ifp; 805 struct nhop_object *nh; 806 struct tcpcb *tp; 807 int error; 808 809 INP_RLOCK(inp); 810 if (inp->inp_flags2 & INP_FREED) { 811 INP_RUNLOCK(inp); 812 return (ECONNRESET); 813 } 814 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 815 INP_RUNLOCK(inp); 816 return (ECONNRESET); 817 } 818 if (inp->inp_socket == NULL) { 819 INP_RUNLOCK(inp); 820 return (ECONNRESET); 821 } 822 tp = intotcpcb(inp); 823 824 /* 825 * Check administrative controls on ifnet TLS to determine if 826 * ifnet TLS should be denied. 827 * 828 * - Always permit 'force' requests. 829 * - ktls_ifnet_permitted == 0: always deny. 830 */ 831 if (!force && ktls_ifnet_permitted == 0) { 832 INP_RUNLOCK(inp); 833 return (ENXIO); 834 } 835 836 /* 837 * XXX: Use the cached route in the inpcb to find the 838 * interface. This should perhaps instead use 839 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 840 * enabled after a connection has completed key negotiation in 841 * userland, the cached route will be present in practice. 842 */ 843 nh = inp->inp_route.ro_nh; 844 if (nh == NULL) { 845 INP_RUNLOCK(inp); 846 return (ENXIO); 847 } 848 ifp = nh->nh_ifp; 849 if_ref(ifp); 850 851 /* 852 * Allocate a TLS + ratelimit tag if the connection has an 853 * existing pacing rate. 854 */ 855 if (tp->t_pacing_rate != -1 && 856 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 857 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 858 params.tls_rate_limit.inp = inp; 859 params.tls_rate_limit.tls = tls; 860 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 861 } else { 862 params.hdr.type = IF_SND_TAG_TYPE_TLS; 863 params.tls.inp = inp; 864 params.tls.tls = tls; 865 } 866 params.hdr.flowid = inp->inp_flowid; 867 params.hdr.flowtype = inp->inp_flowtype; 868 params.hdr.numa_domain = inp->inp_numa_domain; 869 INP_RUNLOCK(inp); 870 871 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 872 error = EOPNOTSUPP; 873 goto out; 874 } 875 if (inp->inp_vflag & INP_IPV6) { 876 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 877 error = EOPNOTSUPP; 878 goto out; 879 } 880 } else { 881 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 882 error = EOPNOTSUPP; 883 goto out; 884 } 885 } 886 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 887 out: 888 if_rele(ifp); 889 return (error); 890 } 891 892 static int 893 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 894 { 895 struct m_snd_tag *mst; 896 int error; 897 898 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 899 if (error == 0) { 900 tls->mode = TCP_TLS_MODE_IFNET; 901 tls->snd_tag = mst; 902 switch (tls->params.cipher_algorithm) { 903 case CRYPTO_AES_CBC: 904 counter_u64_add(ktls_ifnet_cbc, 1); 905 break; 906 case CRYPTO_AES_NIST_GCM_16: 907 counter_u64_add(ktls_ifnet_gcm, 1); 908 break; 909 } 910 } 911 return (error); 912 } 913 914 static int 915 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 916 { 917 struct rm_priotracker prio; 918 struct ktls_crypto_backend *be; 919 920 /* 921 * Choose the best software crypto backend. Backends are 922 * stored in sorted priority order (larget value == most 923 * important at the head of the list), so this just stops on 924 * the first backend that claims the session by returning 925 * success. 926 */ 927 if (ktls_allow_unload) 928 rm_rlock(&ktls_backends_lock, &prio); 929 LIST_FOREACH(be, &ktls_backends, next) { 930 if (be->try(so, tls, direction) == 0) 931 break; 932 KASSERT(tls->cipher == NULL, 933 ("ktls backend leaked a cipher pointer")); 934 } 935 if (be != NULL) { 936 if (ktls_allow_unload) 937 be->use_count++; 938 tls->be = be; 939 } 940 if (ktls_allow_unload) 941 rm_runlock(&ktls_backends_lock, &prio); 942 if (be == NULL) 943 return (EOPNOTSUPP); 944 tls->mode = TCP_TLS_MODE_SW; 945 switch (tls->params.cipher_algorithm) { 946 case CRYPTO_AES_CBC: 947 counter_u64_add(ktls_sw_cbc, 1); 948 break; 949 case CRYPTO_AES_NIST_GCM_16: 950 counter_u64_add(ktls_sw_gcm, 1); 951 break; 952 } 953 return (0); 954 } 955 956 /* 957 * KTLS RX stores data in the socket buffer as a list of TLS records, 958 * where each record is stored as a control message containg the TLS 959 * header followed by data mbufs containing the decrypted data. This 960 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 961 * both encrypted and decrypted data. TLS records decrypted by a NIC 962 * should be queued to the socket buffer as records, but encrypted 963 * data which needs to be decrypted by software arrives as a stream of 964 * regular mbufs which need to be converted. In addition, there may 965 * already be pending encrypted data in the socket buffer when KTLS RX 966 * is enabled. 967 * 968 * To manage not-yet-decrypted data for KTLS RX, the following scheme 969 * is used: 970 * 971 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 972 * 973 * - ktls_check_rx checks this chain of mbufs reading the TLS header 974 * from the first mbuf. Once all of the data for that TLS record is 975 * queued, the socket is queued to a worker thread. 976 * 977 * - The worker thread calls ktls_decrypt to decrypt TLS records in 978 * the TLS chain. Each TLS record is detached from the TLS chain, 979 * decrypted, and inserted into the regular socket buffer chain as 980 * record starting with a control message holding the TLS header and 981 * a chain of mbufs holding the encrypted data. 982 */ 983 984 static void 985 sb_mark_notready(struct sockbuf *sb) 986 { 987 struct mbuf *m; 988 989 m = sb->sb_mb; 990 sb->sb_mtls = m; 991 sb->sb_mb = NULL; 992 sb->sb_mbtail = NULL; 993 sb->sb_lastrecord = NULL; 994 for (; m != NULL; m = m->m_next) { 995 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 996 __func__)); 997 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 998 __func__)); 999 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1000 __func__)); 1001 m->m_flags |= M_NOTREADY; 1002 sb->sb_acc -= m->m_len; 1003 sb->sb_tlscc += m->m_len; 1004 sb->sb_mtlstail = m; 1005 } 1006 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1007 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1008 sb->sb_ccc)); 1009 } 1010 1011 int 1012 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1013 { 1014 struct ktls_session *tls; 1015 int error; 1016 1017 if (!ktls_offload_enable) 1018 return (ENOTSUP); 1019 if (SOLISTENING(so)) 1020 return (EINVAL); 1021 1022 counter_u64_add(ktls_offload_enable_calls, 1); 1023 1024 /* 1025 * This should always be true since only the TCP socket option 1026 * invokes this function. 1027 */ 1028 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1029 return (EINVAL); 1030 1031 /* 1032 * XXX: Don't overwrite existing sessions. We should permit 1033 * this to support rekeying in the future. 1034 */ 1035 if (so->so_rcv.sb_tls_info != NULL) 1036 return (EALREADY); 1037 1038 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1039 return (ENOTSUP); 1040 1041 /* TLS 1.3 is not yet supported. */ 1042 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1043 en->tls_vminor == TLS_MINOR_VER_THREE) 1044 return (ENOTSUP); 1045 1046 error = ktls_create_session(so, en, &tls); 1047 if (error) 1048 return (error); 1049 1050 #ifdef TCP_OFFLOAD 1051 error = ktls_try_toe(so, tls, KTLS_RX); 1052 if (error) 1053 #endif 1054 error = ktls_try_sw(so, tls, KTLS_RX); 1055 1056 if (error) { 1057 ktls_cleanup(tls); 1058 return (error); 1059 } 1060 1061 /* Mark the socket as using TLS offload. */ 1062 SOCKBUF_LOCK(&so->so_rcv); 1063 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1064 so->so_rcv.sb_tls_info = tls; 1065 so->so_rcv.sb_flags |= SB_TLS_RX; 1066 1067 /* Mark existing data as not ready until it can be decrypted. */ 1068 sb_mark_notready(&so->so_rcv); 1069 ktls_check_rx(&so->so_rcv); 1070 SOCKBUF_UNLOCK(&so->so_rcv); 1071 1072 counter_u64_add(ktls_offload_total, 1); 1073 1074 return (0); 1075 } 1076 1077 int 1078 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1079 { 1080 struct ktls_session *tls; 1081 struct inpcb *inp; 1082 int error; 1083 1084 if (!ktls_offload_enable) 1085 return (ENOTSUP); 1086 if (SOLISTENING(so)) 1087 return (EINVAL); 1088 1089 counter_u64_add(ktls_offload_enable_calls, 1); 1090 1091 /* 1092 * This should always be true since only the TCP socket option 1093 * invokes this function. 1094 */ 1095 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1096 return (EINVAL); 1097 1098 /* 1099 * XXX: Don't overwrite existing sessions. We should permit 1100 * this to support rekeying in the future. 1101 */ 1102 if (so->so_snd.sb_tls_info != NULL) 1103 return (EALREADY); 1104 1105 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1106 return (ENOTSUP); 1107 1108 /* TLS requires ext pgs */ 1109 if (mb_use_ext_pgs == 0) 1110 return (ENXIO); 1111 1112 error = ktls_create_session(so, en, &tls); 1113 if (error) 1114 return (error); 1115 1116 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1117 #ifdef TCP_OFFLOAD 1118 error = ktls_try_toe(so, tls, KTLS_TX); 1119 if (error) 1120 #endif 1121 error = ktls_try_ifnet(so, tls, false); 1122 if (error) 1123 error = ktls_try_sw(so, tls, KTLS_TX); 1124 1125 if (error) { 1126 ktls_cleanup(tls); 1127 return (error); 1128 } 1129 1130 error = sblock(&so->so_snd, SBL_WAIT); 1131 if (error) { 1132 ktls_cleanup(tls); 1133 return (error); 1134 } 1135 1136 /* 1137 * Write lock the INP when setting sb_tls_info so that 1138 * routines in tcp_ratelimit.c can read sb_tls_info while 1139 * holding the INP lock. 1140 */ 1141 inp = so->so_pcb; 1142 INP_WLOCK(inp); 1143 SOCKBUF_LOCK(&so->so_snd); 1144 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1145 so->so_snd.sb_tls_info = tls; 1146 if (tls->mode != TCP_TLS_MODE_SW) 1147 so->so_snd.sb_flags |= SB_TLS_IFNET; 1148 SOCKBUF_UNLOCK(&so->so_snd); 1149 INP_WUNLOCK(inp); 1150 sbunlock(&so->so_snd); 1151 1152 counter_u64_add(ktls_offload_total, 1); 1153 1154 return (0); 1155 } 1156 1157 int 1158 ktls_get_rx_mode(struct socket *so) 1159 { 1160 struct ktls_session *tls; 1161 struct inpcb *inp; 1162 int mode; 1163 1164 if (SOLISTENING(so)) 1165 return (EINVAL); 1166 inp = so->so_pcb; 1167 INP_WLOCK_ASSERT(inp); 1168 SOCKBUF_LOCK(&so->so_rcv); 1169 tls = so->so_rcv.sb_tls_info; 1170 if (tls == NULL) 1171 mode = TCP_TLS_MODE_NONE; 1172 else 1173 mode = tls->mode; 1174 SOCKBUF_UNLOCK(&so->so_rcv); 1175 return (mode); 1176 } 1177 1178 int 1179 ktls_get_tx_mode(struct socket *so) 1180 { 1181 struct ktls_session *tls; 1182 struct inpcb *inp; 1183 int mode; 1184 1185 if (SOLISTENING(so)) 1186 return (EINVAL); 1187 inp = so->so_pcb; 1188 INP_WLOCK_ASSERT(inp); 1189 SOCKBUF_LOCK(&so->so_snd); 1190 tls = so->so_snd.sb_tls_info; 1191 if (tls == NULL) 1192 mode = TCP_TLS_MODE_NONE; 1193 else 1194 mode = tls->mode; 1195 SOCKBUF_UNLOCK(&so->so_snd); 1196 return (mode); 1197 } 1198 1199 /* 1200 * Switch between SW and ifnet TLS sessions as requested. 1201 */ 1202 int 1203 ktls_set_tx_mode(struct socket *so, int mode) 1204 { 1205 struct ktls_session *tls, *tls_new; 1206 struct inpcb *inp; 1207 int error; 1208 1209 if (SOLISTENING(so)) 1210 return (EINVAL); 1211 switch (mode) { 1212 case TCP_TLS_MODE_SW: 1213 case TCP_TLS_MODE_IFNET: 1214 break; 1215 default: 1216 return (EINVAL); 1217 } 1218 1219 inp = so->so_pcb; 1220 INP_WLOCK_ASSERT(inp); 1221 SOCKBUF_LOCK(&so->so_snd); 1222 tls = so->so_snd.sb_tls_info; 1223 if (tls == NULL) { 1224 SOCKBUF_UNLOCK(&so->so_snd); 1225 return (0); 1226 } 1227 1228 if (tls->mode == mode) { 1229 SOCKBUF_UNLOCK(&so->so_snd); 1230 return (0); 1231 } 1232 1233 tls = ktls_hold(tls); 1234 SOCKBUF_UNLOCK(&so->so_snd); 1235 INP_WUNLOCK(inp); 1236 1237 tls_new = ktls_clone_session(tls); 1238 1239 if (mode == TCP_TLS_MODE_IFNET) 1240 error = ktls_try_ifnet(so, tls_new, true); 1241 else 1242 error = ktls_try_sw(so, tls_new, KTLS_TX); 1243 if (error) { 1244 counter_u64_add(ktls_switch_failed, 1); 1245 ktls_free(tls_new); 1246 ktls_free(tls); 1247 INP_WLOCK(inp); 1248 return (error); 1249 } 1250 1251 error = sblock(&so->so_snd, SBL_WAIT); 1252 if (error) { 1253 counter_u64_add(ktls_switch_failed, 1); 1254 ktls_free(tls_new); 1255 ktls_free(tls); 1256 INP_WLOCK(inp); 1257 return (error); 1258 } 1259 1260 /* 1261 * If we raced with another session change, keep the existing 1262 * session. 1263 */ 1264 if (tls != so->so_snd.sb_tls_info) { 1265 counter_u64_add(ktls_switch_failed, 1); 1266 sbunlock(&so->so_snd); 1267 ktls_free(tls_new); 1268 ktls_free(tls); 1269 INP_WLOCK(inp); 1270 return (EBUSY); 1271 } 1272 1273 SOCKBUF_LOCK(&so->so_snd); 1274 so->so_snd.sb_tls_info = tls_new; 1275 if (tls_new->mode != TCP_TLS_MODE_SW) 1276 so->so_snd.sb_flags |= SB_TLS_IFNET; 1277 SOCKBUF_UNLOCK(&so->so_snd); 1278 sbunlock(&so->so_snd); 1279 1280 /* 1281 * Drop two references on 'tls'. The first is for the 1282 * ktls_hold() above. The second drops the reference from the 1283 * socket buffer. 1284 */ 1285 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1286 ktls_free(tls); 1287 ktls_free(tls); 1288 1289 if (mode == TCP_TLS_MODE_IFNET) 1290 counter_u64_add(ktls_switch_to_ifnet, 1); 1291 else 1292 counter_u64_add(ktls_switch_to_sw, 1); 1293 1294 INP_WLOCK(inp); 1295 return (0); 1296 } 1297 1298 /* 1299 * Try to allocate a new TLS send tag. This task is scheduled when 1300 * ip_output detects a route change while trying to transmit a packet 1301 * holding a TLS record. If a new tag is allocated, replace the tag 1302 * in the TLS session. Subsequent packets on the connection will use 1303 * the new tag. If a new tag cannot be allocated, drop the 1304 * connection. 1305 */ 1306 static void 1307 ktls_reset_send_tag(void *context, int pending) 1308 { 1309 struct epoch_tracker et; 1310 struct ktls_session *tls; 1311 struct m_snd_tag *old, *new; 1312 struct inpcb *inp; 1313 struct tcpcb *tp; 1314 int error; 1315 1316 MPASS(pending == 1); 1317 1318 tls = context; 1319 inp = tls->inp; 1320 1321 /* 1322 * Free the old tag first before allocating a new one. 1323 * ip[6]_output_send() will treat a NULL send tag the same as 1324 * an ifp mismatch and drop packets until a new tag is 1325 * allocated. 1326 * 1327 * Write-lock the INP when changing tls->snd_tag since 1328 * ip[6]_output_send() holds a read-lock when reading the 1329 * pointer. 1330 */ 1331 INP_WLOCK(inp); 1332 old = tls->snd_tag; 1333 tls->snd_tag = NULL; 1334 INP_WUNLOCK(inp); 1335 if (old != NULL) 1336 m_snd_tag_rele(old); 1337 1338 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1339 1340 if (error == 0) { 1341 INP_WLOCK(inp); 1342 tls->snd_tag = new; 1343 mtx_pool_lock(mtxpool_sleep, tls); 1344 tls->reset_pending = false; 1345 mtx_pool_unlock(mtxpool_sleep, tls); 1346 if (!in_pcbrele_wlocked(inp)) 1347 INP_WUNLOCK(inp); 1348 1349 counter_u64_add(ktls_ifnet_reset, 1); 1350 1351 /* 1352 * XXX: Should we kick tcp_output explicitly now that 1353 * the send tag is fixed or just rely on timers? 1354 */ 1355 } else { 1356 NET_EPOCH_ENTER(et); 1357 INP_WLOCK(inp); 1358 if (!in_pcbrele_wlocked(inp)) { 1359 if (!(inp->inp_flags & INP_TIMEWAIT) && 1360 !(inp->inp_flags & INP_DROPPED)) { 1361 tp = intotcpcb(inp); 1362 CURVNET_SET(tp->t_vnet); 1363 tp = tcp_drop(tp, ECONNABORTED); 1364 CURVNET_RESTORE(); 1365 if (tp != NULL) 1366 INP_WUNLOCK(inp); 1367 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1368 } else 1369 INP_WUNLOCK(inp); 1370 } 1371 NET_EPOCH_EXIT(et); 1372 1373 counter_u64_add(ktls_ifnet_reset_failed, 1); 1374 1375 /* 1376 * Leave reset_pending true to avoid future tasks while 1377 * the socket goes away. 1378 */ 1379 } 1380 1381 ktls_free(tls); 1382 } 1383 1384 int 1385 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1386 { 1387 1388 if (inp == NULL) 1389 return (ENOBUFS); 1390 1391 INP_LOCK_ASSERT(inp); 1392 1393 /* 1394 * See if we should schedule a task to update the send tag for 1395 * this session. 1396 */ 1397 mtx_pool_lock(mtxpool_sleep, tls); 1398 if (!tls->reset_pending) { 1399 (void) ktls_hold(tls); 1400 in_pcbref(inp); 1401 tls->inp = inp; 1402 tls->reset_pending = true; 1403 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1404 } 1405 mtx_pool_unlock(mtxpool_sleep, tls); 1406 return (ENOBUFS); 1407 } 1408 1409 #ifdef RATELIMIT 1410 int 1411 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1412 { 1413 union if_snd_tag_modify_params params = { 1414 .rate_limit.max_rate = max_pacing_rate, 1415 .rate_limit.flags = M_NOWAIT, 1416 }; 1417 struct m_snd_tag *mst; 1418 struct ifnet *ifp; 1419 int error; 1420 1421 /* Can't get to the inp, but it should be locked. */ 1422 /* INP_LOCK_ASSERT(inp); */ 1423 1424 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1425 1426 if (tls->snd_tag == NULL) { 1427 /* 1428 * Resetting send tag, ignore this change. The 1429 * pending reset may or may not see this updated rate 1430 * in the tcpcb. If it doesn't, we will just lose 1431 * this rate change. 1432 */ 1433 return (0); 1434 } 1435 1436 MPASS(tls->snd_tag != NULL); 1437 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1438 1439 mst = tls->snd_tag; 1440 ifp = mst->ifp; 1441 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1442 } 1443 #endif 1444 #endif 1445 1446 void 1447 ktls_destroy(struct ktls_session *tls) 1448 { 1449 struct rm_priotracker prio; 1450 1451 ktls_cleanup(tls); 1452 if (tls->be != NULL && ktls_allow_unload) { 1453 rm_rlock(&ktls_backends_lock, &prio); 1454 tls->be->use_count--; 1455 rm_runlock(&ktls_backends_lock, &prio); 1456 } 1457 uma_zfree(ktls_session_zone, tls); 1458 } 1459 1460 void 1461 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1462 { 1463 1464 for (; m != NULL; m = m->m_next) { 1465 KASSERT((m->m_flags & M_EXTPG) != 0, 1466 ("ktls_seq: mapped mbuf %p", m)); 1467 1468 m->m_epg_seqno = sb->sb_tls_seqno; 1469 sb->sb_tls_seqno++; 1470 } 1471 } 1472 1473 /* 1474 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1475 * mbuf in the chain must be an unmapped mbuf. The payload of the 1476 * mbuf must be populated with the payload of each TLS record. 1477 * 1478 * The record_type argument specifies the TLS record type used when 1479 * populating the TLS header. 1480 * 1481 * The enq_count argument on return is set to the number of pages of 1482 * payload data for this entire chain that need to be encrypted via SW 1483 * encryption. The returned value should be passed to ktls_enqueue 1484 * when scheduling encryption of this chain of mbufs. To handle the 1485 * special case of empty fragments for TLS 1.0 sessions, an empty 1486 * fragment counts as one page. 1487 */ 1488 void 1489 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1490 uint8_t record_type) 1491 { 1492 struct tls_record_layer *tlshdr; 1493 struct mbuf *m; 1494 uint64_t *noncep; 1495 uint16_t tls_len; 1496 int maxlen; 1497 1498 maxlen = tls->params.max_frame_len; 1499 *enq_cnt = 0; 1500 for (m = top; m != NULL; m = m->m_next) { 1501 /* 1502 * All mbufs in the chain should be TLS records whose 1503 * payload does not exceed the maximum frame length. 1504 * 1505 * Empty TLS records are permitted when using CBC. 1506 */ 1507 KASSERT(m->m_len <= maxlen && 1508 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1509 m->m_len >= 0 : m->m_len > 0), 1510 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1511 1512 /* 1513 * TLS frames require unmapped mbufs to store session 1514 * info. 1515 */ 1516 KASSERT((m->m_flags & M_EXTPG) != 0, 1517 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1518 1519 tls_len = m->m_len; 1520 1521 /* Save a reference to the session. */ 1522 m->m_epg_tls = ktls_hold(tls); 1523 1524 m->m_epg_hdrlen = tls->params.tls_hlen; 1525 m->m_epg_trllen = tls->params.tls_tlen; 1526 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1527 int bs, delta; 1528 1529 /* 1530 * AES-CBC pads messages to a multiple of the 1531 * block size. Note that the padding is 1532 * applied after the digest and the encryption 1533 * is done on the "plaintext || mac || padding". 1534 * At least one byte of padding is always 1535 * present. 1536 * 1537 * Compute the final trailer length assuming 1538 * at most one block of padding. 1539 * tls->params.sb_tls_tlen is the maximum 1540 * possible trailer length (padding + digest). 1541 * delta holds the number of excess padding 1542 * bytes if the maximum were used. Those 1543 * extra bytes are removed. 1544 */ 1545 bs = tls->params.tls_bs; 1546 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1547 m->m_epg_trllen -= delta; 1548 } 1549 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1550 1551 /* Populate the TLS header. */ 1552 tlshdr = (void *)m->m_epg_hdr; 1553 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1554 1555 /* 1556 * TLS 1.3 masquarades as TLS 1.2 with a record type 1557 * of TLS_RLTYPE_APP. 1558 */ 1559 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1560 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1561 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1562 tlshdr->tls_type = TLS_RLTYPE_APP; 1563 /* save the real record type for later */ 1564 m->m_epg_record_type = record_type; 1565 m->m_epg_trail[0] = record_type; 1566 } else { 1567 tlshdr->tls_vminor = tls->params.tls_vminor; 1568 tlshdr->tls_type = record_type; 1569 } 1570 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1571 1572 /* 1573 * Store nonces / explicit IVs after the end of the 1574 * TLS header. 1575 * 1576 * For GCM with TLS 1.2, an 8 byte nonce is copied 1577 * from the end of the IV. The nonce is then 1578 * incremented for use by the next record. 1579 * 1580 * For CBC, a random nonce is inserted for TLS 1.1+. 1581 */ 1582 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1583 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1584 noncep = (uint64_t *)(tls->params.iv + 8); 1585 be64enc(tlshdr + 1, *noncep); 1586 (*noncep)++; 1587 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1588 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1589 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1590 1591 /* 1592 * When using SW encryption, mark the mbuf not ready. 1593 * It will be marked ready via sbready() after the 1594 * record has been encrypted. 1595 * 1596 * When using ifnet TLS, unencrypted TLS records are 1597 * sent down the stack to the NIC. 1598 */ 1599 if (tls->mode == TCP_TLS_MODE_SW) { 1600 m->m_flags |= M_NOTREADY; 1601 m->m_epg_nrdy = m->m_epg_npgs; 1602 if (__predict_false(tls_len == 0)) { 1603 /* TLS 1.0 empty fragment. */ 1604 *enq_cnt += 1; 1605 } else 1606 *enq_cnt += m->m_epg_npgs; 1607 } 1608 } 1609 } 1610 1611 void 1612 ktls_check_rx(struct sockbuf *sb) 1613 { 1614 struct tls_record_layer hdr; 1615 struct ktls_wq *wq; 1616 struct socket *so; 1617 bool running; 1618 1619 SOCKBUF_LOCK_ASSERT(sb); 1620 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1621 __func__, sb)); 1622 so = __containerof(sb, struct socket, so_rcv); 1623 1624 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1625 return; 1626 1627 /* Is there enough queued for a TLS header? */ 1628 if (sb->sb_tlscc < sizeof(hdr)) { 1629 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1630 so->so_error = EMSGSIZE; 1631 return; 1632 } 1633 1634 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1635 1636 /* Is the entire record queued? */ 1637 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1638 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1639 so->so_error = EMSGSIZE; 1640 return; 1641 } 1642 1643 sb->sb_flags |= SB_TLS_RX_RUNNING; 1644 1645 soref(so); 1646 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1647 mtx_lock(&wq->mtx); 1648 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1649 running = wq->running; 1650 mtx_unlock(&wq->mtx); 1651 if (!running) 1652 wakeup(wq); 1653 counter_u64_add(ktls_cnt_rx_queued, 1); 1654 } 1655 1656 static struct mbuf * 1657 ktls_detach_record(struct sockbuf *sb, int len) 1658 { 1659 struct mbuf *m, *n, *top; 1660 int remain; 1661 1662 SOCKBUF_LOCK_ASSERT(sb); 1663 MPASS(len <= sb->sb_tlscc); 1664 1665 /* 1666 * If TLS chain is the exact size of the record, 1667 * just grab the whole record. 1668 */ 1669 top = sb->sb_mtls; 1670 if (sb->sb_tlscc == len) { 1671 sb->sb_mtls = NULL; 1672 sb->sb_mtlstail = NULL; 1673 goto out; 1674 } 1675 1676 /* 1677 * While it would be nice to use m_split() here, we need 1678 * to know exactly what m_split() allocates to update the 1679 * accounting, so do it inline instead. 1680 */ 1681 remain = len; 1682 for (m = top; remain > m->m_len; m = m->m_next) 1683 remain -= m->m_len; 1684 1685 /* Easy case: don't have to split 'm'. */ 1686 if (remain == m->m_len) { 1687 sb->sb_mtls = m->m_next; 1688 if (sb->sb_mtls == NULL) 1689 sb->sb_mtlstail = NULL; 1690 m->m_next = NULL; 1691 goto out; 1692 } 1693 1694 /* 1695 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1696 * with M_NOWAIT first. 1697 */ 1698 n = m_get(M_NOWAIT, MT_DATA); 1699 if (n == NULL) { 1700 /* 1701 * Use M_WAITOK with socket buffer unlocked. If 1702 * 'sb_mtls' changes while the lock is dropped, return 1703 * NULL to force the caller to retry. 1704 */ 1705 SOCKBUF_UNLOCK(sb); 1706 1707 n = m_get(M_WAITOK, MT_DATA); 1708 1709 SOCKBUF_LOCK(sb); 1710 if (sb->sb_mtls != top) { 1711 m_free(n); 1712 return (NULL); 1713 } 1714 } 1715 n->m_flags |= M_NOTREADY; 1716 1717 /* Store remainder in 'n'. */ 1718 n->m_len = m->m_len - remain; 1719 if (m->m_flags & M_EXT) { 1720 n->m_data = m->m_data + remain; 1721 mb_dupcl(n, m); 1722 } else { 1723 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1724 } 1725 1726 /* Trim 'm' and update accounting. */ 1727 m->m_len -= n->m_len; 1728 sb->sb_tlscc -= n->m_len; 1729 sb->sb_ccc -= n->m_len; 1730 1731 /* Account for 'n'. */ 1732 sballoc_ktls_rx(sb, n); 1733 1734 /* Insert 'n' into the TLS chain. */ 1735 sb->sb_mtls = n; 1736 n->m_next = m->m_next; 1737 if (sb->sb_mtlstail == m) 1738 sb->sb_mtlstail = n; 1739 1740 /* Detach the record from the TLS chain. */ 1741 m->m_next = NULL; 1742 1743 out: 1744 MPASS(m_length(top, NULL) == len); 1745 for (m = top; m != NULL; m = m->m_next) 1746 sbfree_ktls_rx(sb, m); 1747 sb->sb_tlsdcc = len; 1748 sb->sb_ccc += len; 1749 SBCHECK(sb); 1750 return (top); 1751 } 1752 1753 static void 1754 ktls_decrypt(struct socket *so) 1755 { 1756 char tls_header[MBUF_PEXT_HDR_LEN]; 1757 struct ktls_session *tls; 1758 struct sockbuf *sb; 1759 struct tls_record_layer *hdr; 1760 struct tls_get_record tgr; 1761 struct mbuf *control, *data, *m; 1762 uint64_t seqno; 1763 int error, remain, tls_len, trail_len; 1764 1765 hdr = (struct tls_record_layer *)tls_header; 1766 sb = &so->so_rcv; 1767 SOCKBUF_LOCK(sb); 1768 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1769 ("%s: socket %p not running", __func__, so)); 1770 1771 tls = sb->sb_tls_info; 1772 MPASS(tls != NULL); 1773 1774 for (;;) { 1775 /* Is there enough queued for a TLS header? */ 1776 if (sb->sb_tlscc < tls->params.tls_hlen) 1777 break; 1778 1779 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1780 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1781 1782 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1783 hdr->tls_vminor != tls->params.tls_vminor) 1784 error = EINVAL; 1785 else if (tls_len < tls->params.tls_hlen || tls_len > 1786 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1787 tls->params.tls_tlen) 1788 error = EMSGSIZE; 1789 else 1790 error = 0; 1791 if (__predict_false(error != 0)) { 1792 /* 1793 * We have a corrupted record and are likely 1794 * out of sync. The connection isn't 1795 * recoverable at this point, so abort it. 1796 */ 1797 SOCKBUF_UNLOCK(sb); 1798 counter_u64_add(ktls_offload_corrupted_records, 1); 1799 1800 CURVNET_SET(so->so_vnet); 1801 so->so_proto->pr_usrreqs->pru_abort(so); 1802 so->so_error = error; 1803 CURVNET_RESTORE(); 1804 goto deref; 1805 } 1806 1807 /* Is the entire record queued? */ 1808 if (sb->sb_tlscc < tls_len) 1809 break; 1810 1811 /* 1812 * Split out the portion of the mbuf chain containing 1813 * this TLS record. 1814 */ 1815 data = ktls_detach_record(sb, tls_len); 1816 if (data == NULL) 1817 continue; 1818 MPASS(sb->sb_tlsdcc == tls_len); 1819 1820 seqno = sb->sb_tls_seqno; 1821 sb->sb_tls_seqno++; 1822 SBCHECK(sb); 1823 SOCKBUF_UNLOCK(sb); 1824 1825 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1826 if (error) { 1827 counter_u64_add(ktls_offload_failed_crypto, 1); 1828 1829 SOCKBUF_LOCK(sb); 1830 if (sb->sb_tlsdcc == 0) { 1831 /* 1832 * sbcut/drop/flush discarded these 1833 * mbufs. 1834 */ 1835 m_freem(data); 1836 break; 1837 } 1838 1839 /* 1840 * Drop this TLS record's data, but keep 1841 * decrypting subsequent records. 1842 */ 1843 sb->sb_ccc -= tls_len; 1844 sb->sb_tlsdcc = 0; 1845 1846 CURVNET_SET(so->so_vnet); 1847 so->so_error = EBADMSG; 1848 sorwakeup_locked(so); 1849 CURVNET_RESTORE(); 1850 1851 m_freem(data); 1852 1853 SOCKBUF_LOCK(sb); 1854 continue; 1855 } 1856 1857 /* Allocate the control mbuf. */ 1858 tgr.tls_type = hdr->tls_type; 1859 tgr.tls_vmajor = hdr->tls_vmajor; 1860 tgr.tls_vminor = hdr->tls_vminor; 1861 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1862 trail_len); 1863 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1864 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1865 1866 SOCKBUF_LOCK(sb); 1867 if (sb->sb_tlsdcc == 0) { 1868 /* sbcut/drop/flush discarded these mbufs. */ 1869 MPASS(sb->sb_tlscc == 0); 1870 m_freem(data); 1871 m_freem(control); 1872 break; 1873 } 1874 1875 /* 1876 * Clear the 'dcc' accounting in preparation for 1877 * adding the decrypted record. 1878 */ 1879 sb->sb_ccc -= tls_len; 1880 sb->sb_tlsdcc = 0; 1881 SBCHECK(sb); 1882 1883 /* If there is no payload, drop all of the data. */ 1884 if (tgr.tls_length == htobe16(0)) { 1885 m_freem(data); 1886 data = NULL; 1887 } else { 1888 /* Trim header. */ 1889 remain = tls->params.tls_hlen; 1890 while (remain > 0) { 1891 if (data->m_len > remain) { 1892 data->m_data += remain; 1893 data->m_len -= remain; 1894 break; 1895 } 1896 remain -= data->m_len; 1897 data = m_free(data); 1898 } 1899 1900 /* Trim trailer and clear M_NOTREADY. */ 1901 remain = be16toh(tgr.tls_length); 1902 m = data; 1903 for (m = data; remain > m->m_len; m = m->m_next) { 1904 m->m_flags &= ~M_NOTREADY; 1905 remain -= m->m_len; 1906 } 1907 m->m_len = remain; 1908 m_freem(m->m_next); 1909 m->m_next = NULL; 1910 m->m_flags &= ~M_NOTREADY; 1911 1912 /* Set EOR on the final mbuf. */ 1913 m->m_flags |= M_EOR; 1914 } 1915 1916 sbappendcontrol_locked(sb, data, control, 0); 1917 } 1918 1919 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1920 1921 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1922 so->so_error = EMSGSIZE; 1923 1924 sorwakeup_locked(so); 1925 1926 deref: 1927 SOCKBUF_UNLOCK_ASSERT(sb); 1928 1929 CURVNET_SET(so->so_vnet); 1930 SOCK_LOCK(so); 1931 sorele(so); 1932 CURVNET_RESTORE(); 1933 } 1934 1935 void 1936 ktls_enqueue_to_free(struct mbuf *m) 1937 { 1938 struct ktls_wq *wq; 1939 bool running; 1940 1941 /* Mark it for freeing. */ 1942 m->m_epg_flags |= EPG_FLAG_2FREE; 1943 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1944 mtx_lock(&wq->mtx); 1945 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1946 running = wq->running; 1947 mtx_unlock(&wq->mtx); 1948 if (!running) 1949 wakeup(wq); 1950 } 1951 1952 void 1953 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1954 { 1955 struct ktls_wq *wq; 1956 bool running; 1957 1958 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1959 (M_EXTPG | M_NOTREADY)), 1960 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1961 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1962 1963 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1964 1965 m->m_epg_enc_cnt = page_count; 1966 1967 /* 1968 * Save a pointer to the socket. The caller is responsible 1969 * for taking an additional reference via soref(). 1970 */ 1971 m->m_epg_so = so; 1972 1973 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1974 mtx_lock(&wq->mtx); 1975 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1976 running = wq->running; 1977 mtx_unlock(&wq->mtx); 1978 if (!running) 1979 wakeup(wq); 1980 counter_u64_add(ktls_cnt_tx_queued, 1); 1981 } 1982 1983 static __noinline void 1984 ktls_encrypt(struct mbuf *top) 1985 { 1986 struct ktls_session *tls; 1987 struct socket *so; 1988 struct mbuf *m; 1989 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1990 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1991 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1992 vm_page_t pg; 1993 int error, i, len, npages, off, total_pages; 1994 bool is_anon; 1995 1996 so = top->m_epg_so; 1997 tls = top->m_epg_tls; 1998 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 1999 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2000 #ifdef INVARIANTS 2001 top->m_epg_so = NULL; 2002 #endif 2003 total_pages = top->m_epg_enc_cnt; 2004 npages = 0; 2005 2006 /* 2007 * Encrypt the TLS records in the chain of mbufs starting with 2008 * 'top'. 'total_pages' gives us a total count of pages and is 2009 * used to know when we have finished encrypting the TLS 2010 * records originally queued with 'top'. 2011 * 2012 * NB: These mbufs are queued in the socket buffer and 2013 * 'm_next' is traversing the mbufs in the socket buffer. The 2014 * socket buffer lock is not held while traversing this chain. 2015 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2016 * pointers should be stable. However, the 'm_next' of the 2017 * last mbuf encrypted is not necessarily NULL. It can point 2018 * to other mbufs appended while 'top' was on the TLS work 2019 * queue. 2020 * 2021 * Each mbuf holds an entire TLS record. 2022 */ 2023 error = 0; 2024 for (m = top; npages != total_pages; m = m->m_next) { 2025 KASSERT(m->m_epg_tls == tls, 2026 ("different TLS sessions in a single mbuf chain: %p vs %p", 2027 tls, m->m_epg_tls)); 2028 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2029 (M_EXTPG | M_NOTREADY), 2030 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2031 KASSERT(npages + m->m_epg_npgs <= total_pages, 2032 ("page count mismatch: top %p, total_pages %d, m %p", top, 2033 total_pages, m)); 2034 2035 /* 2036 * Generate source and destination ivoecs to pass to 2037 * the SW encryption backend. For writable mbufs, the 2038 * destination iovec is a copy of the source and 2039 * encryption is done in place. For file-backed mbufs 2040 * (from sendfile), anonymous wired pages are 2041 * allocated and assigned to the destination iovec. 2042 */ 2043 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2044 2045 off = m->m_epg_1st_off; 2046 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2047 len = m_epg_pagelen(m, i, off); 2048 src_iov[i].iov_len = len; 2049 src_iov[i].iov_base = 2050 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + 2051 off; 2052 2053 if (is_anon) { 2054 dst_iov[i].iov_base = src_iov[i].iov_base; 2055 dst_iov[i].iov_len = src_iov[i].iov_len; 2056 continue; 2057 } 2058 retry_page: 2059 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 2060 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 2061 if (pg == NULL) { 2062 vm_wait(NULL); 2063 goto retry_page; 2064 } 2065 parray[i] = VM_PAGE_TO_PHYS(pg); 2066 dst_iov[i].iov_base = 2067 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 2068 dst_iov[i].iov_len = len; 2069 } 2070 2071 if (__predict_false(m->m_epg_npgs == 0)) { 2072 /* TLS 1.0 empty fragment. */ 2073 npages++; 2074 } else 2075 npages += i; 2076 2077 error = (*tls->sw_encrypt)(tls, 2078 (const struct tls_record_layer *)m->m_epg_hdr, 2079 m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno, 2080 m->m_epg_record_type); 2081 if (error) { 2082 counter_u64_add(ktls_offload_failed_crypto, 1); 2083 break; 2084 } 2085 2086 /* 2087 * For file-backed mbufs, release the file-backed 2088 * pages and replace them in the ext_pgs array with 2089 * the anonymous wired pages allocated above. 2090 */ 2091 if (!is_anon) { 2092 /* Free the old pages. */ 2093 m->m_ext.ext_free(m); 2094 2095 /* Replace them with the new pages. */ 2096 for (i = 0; i < m->m_epg_npgs; i++) 2097 m->m_epg_pa[i] = parray[i]; 2098 2099 /* Use the basic free routine. */ 2100 m->m_ext.ext_free = mb_free_mext_pgs; 2101 2102 /* Pages are now writable. */ 2103 m->m_epg_flags |= EPG_FLAG_ANON; 2104 } 2105 2106 /* 2107 * Drop a reference to the session now that it is no 2108 * longer needed. Existing code depends on encrypted 2109 * records having no associated session vs 2110 * yet-to-be-encrypted records having an associated 2111 * session. 2112 */ 2113 m->m_epg_tls = NULL; 2114 ktls_free(tls); 2115 } 2116 2117 CURVNET_SET(so->so_vnet); 2118 if (error == 0) { 2119 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2120 } else { 2121 so->so_proto->pr_usrreqs->pru_abort(so); 2122 so->so_error = EIO; 2123 mb_free_notready(top, total_pages); 2124 } 2125 2126 SOCK_LOCK(so); 2127 sorele(so); 2128 CURVNET_RESTORE(); 2129 } 2130 2131 static void 2132 ktls_work_thread(void *ctx) 2133 { 2134 struct ktls_wq *wq = ctx; 2135 struct mbuf *m, *n; 2136 struct socket *so, *son; 2137 STAILQ_HEAD(, mbuf) local_m_head; 2138 STAILQ_HEAD(, socket) local_so_head; 2139 2140 if (ktls_bind_threads > 1) { 2141 curthread->td_domain.dr_policy = 2142 DOMAINSET_PREF(PCPU_GET(domain)); 2143 } 2144 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2145 fpu_kern_thread(0); 2146 #endif 2147 for (;;) { 2148 mtx_lock(&wq->mtx); 2149 while (STAILQ_EMPTY(&wq->m_head) && 2150 STAILQ_EMPTY(&wq->so_head)) { 2151 wq->running = false; 2152 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2153 wq->running = true; 2154 } 2155 2156 STAILQ_INIT(&local_m_head); 2157 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2158 STAILQ_INIT(&local_so_head); 2159 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2160 mtx_unlock(&wq->mtx); 2161 2162 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2163 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2164 ktls_free(m->m_epg_tls); 2165 uma_zfree(zone_mbuf, m); 2166 } else { 2167 ktls_encrypt(m); 2168 counter_u64_add(ktls_cnt_tx_queued, -1); 2169 } 2170 } 2171 2172 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2173 ktls_decrypt(so); 2174 counter_u64_add(ktls_cnt_rx_queued, -1); 2175 } 2176 } 2177 } 2178