xref: /freebsd/sys/kern/uipc_ktls.c (revision 5ac01ce026aa871e24065f931b5b5c36024c96f9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014-2019 Netflix Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 #include "opt_rss.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/ktls.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/rmlock.h>
42 #include <sys/proc.h>
43 #include <sys/protosw.h>
44 #include <sys/refcount.h>
45 #include <sys/smp.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sysctl.h>
49 #include <sys/taskqueue.h>
50 #include <sys/kthread.h>
51 #include <sys/uio.h>
52 #include <sys/vmmeter.h>
53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
54 #include <machine/pcb.h>
55 #endif
56 #include <machine/vmparam.h>
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #ifdef RSS
60 #include <net/netisr.h>
61 #include <net/rss_config.h>
62 #endif
63 #include <net/route.h>
64 #include <net/route/nhop.h>
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #endif
69 #include <netinet/tcp_var.h>
70 #ifdef TCP_OFFLOAD
71 #include <netinet/tcp_offload.h>
72 #endif
73 #include <opencrypto/xform.h>
74 #include <vm/uma_dbg.h>
75 #include <vm/vm.h>
76 #include <vm/vm_pageout.h>
77 #include <vm/vm_page.h>
78 
79 struct ktls_wq {
80 	struct mtx	mtx;
81 	STAILQ_HEAD(, mbuf) m_head;
82 	STAILQ_HEAD(, socket) so_head;
83 	bool		running;
84 } __aligned(CACHE_LINE_SIZE);
85 
86 static struct ktls_wq *ktls_wq;
87 static struct proc *ktls_proc;
88 LIST_HEAD(, ktls_crypto_backend) ktls_backends;
89 static struct rmlock ktls_backends_lock;
90 static uma_zone_t ktls_session_zone;
91 static uint16_t ktls_cpuid_lookup[MAXCPU];
92 
93 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
94     "Kernel TLS offload");
95 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
96     "Kernel TLS offload stats");
97 
98 static int ktls_allow_unload;
99 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN,
100     &ktls_allow_unload, 0, "Allow software crypto modules to unload");
101 
102 #ifdef RSS
103 static int ktls_bind_threads = 1;
104 #else
105 static int ktls_bind_threads;
106 #endif
107 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
108     &ktls_bind_threads, 0,
109     "Bind crypto threads to cores or domains at boot");
110 
111 static u_int ktls_maxlen = 16384;
112 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN,
113     &ktls_maxlen, 0, "Maximum TLS record size");
114 
115 static int ktls_number_threads;
116 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
117     &ktls_number_threads, 0,
118     "Number of TLS threads in thread-pool");
119 
120 static bool ktls_offload_enable;
121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW,
122     &ktls_offload_enable, 0,
123     "Enable support for kernel TLS offload");
124 
125 static bool ktls_cbc_enable = true;
126 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW,
127     &ktls_cbc_enable, 1,
128     "Enable Support of AES-CBC crypto for kernel TLS");
129 
130 static counter_u64_t ktls_tasks_active;
131 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
132     &ktls_tasks_active, "Number of active tasks");
133 
134 static counter_u64_t ktls_cnt_tx_queued;
135 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
136     &ktls_cnt_tx_queued,
137     "Number of TLS records in queue to tasks for SW encryption");
138 
139 static counter_u64_t ktls_cnt_rx_queued;
140 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
141     &ktls_cnt_rx_queued,
142     "Number of TLS sockets in queue to tasks for SW decryption");
143 
144 static counter_u64_t ktls_offload_total;
145 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
146     CTLFLAG_RD, &ktls_offload_total,
147     "Total successful TLS setups (parameters set)");
148 
149 static counter_u64_t ktls_offload_enable_calls;
150 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
151     CTLFLAG_RD, &ktls_offload_enable_calls,
152     "Total number of TLS enable calls made");
153 
154 static counter_u64_t ktls_offload_active;
155 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
156     &ktls_offload_active, "Total Active TLS sessions");
157 
158 static counter_u64_t ktls_offload_corrupted_records;
159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
160     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
161 
162 static counter_u64_t ktls_offload_failed_crypto;
163 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
164     &ktls_offload_failed_crypto, "Total TLS crypto failures");
165 
166 static counter_u64_t ktls_switch_to_ifnet;
167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
168     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
169 
170 static counter_u64_t ktls_switch_to_sw;
171 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
172     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
173 
174 static counter_u64_t ktls_switch_failed;
175 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
176     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
177 
178 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
179     "Software TLS session stats");
180 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
181     "Hardware (ifnet) TLS session stats");
182 #ifdef TCP_OFFLOAD
183 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
184     "TOE TLS session stats");
185 #endif
186 
187 static counter_u64_t ktls_sw_cbc;
188 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
189     "Active number of software TLS sessions using AES-CBC");
190 
191 static counter_u64_t ktls_sw_gcm;
192 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
193     "Active number of software TLS sessions using AES-GCM");
194 
195 static counter_u64_t ktls_ifnet_cbc;
196 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
197     &ktls_ifnet_cbc,
198     "Active number of ifnet TLS sessions using AES-CBC");
199 
200 static counter_u64_t ktls_ifnet_gcm;
201 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
202     &ktls_ifnet_gcm,
203     "Active number of ifnet TLS sessions using AES-GCM");
204 
205 static counter_u64_t ktls_ifnet_reset;
206 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
207     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
208 
209 static counter_u64_t ktls_ifnet_reset_dropped;
210 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
211     &ktls_ifnet_reset_dropped,
212     "TLS sessions dropped after failing to update ifnet send tag");
213 
214 static counter_u64_t ktls_ifnet_reset_failed;
215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
216     &ktls_ifnet_reset_failed,
217     "TLS sessions that failed to allocate a new ifnet send tag");
218 
219 static int ktls_ifnet_permitted;
220 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
221     &ktls_ifnet_permitted, 1,
222     "Whether to permit hardware (ifnet) TLS sessions");
223 
224 #ifdef TCP_OFFLOAD
225 static counter_u64_t ktls_toe_cbc;
226 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
227     &ktls_toe_cbc,
228     "Active number of TOE TLS sessions using AES-CBC");
229 
230 static counter_u64_t ktls_toe_gcm;
231 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
232     &ktls_toe_gcm,
233     "Active number of TOE TLS sessions using AES-GCM");
234 #endif
235 
236 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
237 
238 static void ktls_cleanup(struct ktls_session *tls);
239 #if defined(INET) || defined(INET6)
240 static void ktls_reset_send_tag(void *context, int pending);
241 #endif
242 static void ktls_work_thread(void *ctx);
243 
244 int
245 ktls_crypto_backend_register(struct ktls_crypto_backend *be)
246 {
247 	struct ktls_crypto_backend *curr_be, *tmp;
248 
249 	if (be->api_version != KTLS_API_VERSION) {
250 		printf("KTLS: API version mismatch (%d vs %d) for %s\n",
251 		    be->api_version, KTLS_API_VERSION,
252 		    be->name);
253 		return (EINVAL);
254 	}
255 
256 	rm_wlock(&ktls_backends_lock);
257 	printf("KTLS: Registering crypto method %s with prio %d\n",
258 	       be->name, be->prio);
259 	if (LIST_EMPTY(&ktls_backends)) {
260 		LIST_INSERT_HEAD(&ktls_backends, be, next);
261 	} else {
262 		LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) {
263 			if (curr_be->prio < be->prio) {
264 				LIST_INSERT_BEFORE(curr_be, be, next);
265 				break;
266 			}
267 			if (LIST_NEXT(curr_be, next) == NULL) {
268 				LIST_INSERT_AFTER(curr_be, be, next);
269 				break;
270 			}
271 		}
272 	}
273 	rm_wunlock(&ktls_backends_lock);
274 	return (0);
275 }
276 
277 int
278 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be)
279 {
280 	struct ktls_crypto_backend *tmp;
281 
282 	/*
283 	 * Don't error if the backend isn't registered.  This permits
284 	 * MOD_UNLOAD handlers to use this function unconditionally.
285 	 */
286 	rm_wlock(&ktls_backends_lock);
287 	LIST_FOREACH(tmp, &ktls_backends, next) {
288 		if (tmp == be)
289 			break;
290 	}
291 	if (tmp == NULL) {
292 		rm_wunlock(&ktls_backends_lock);
293 		return (0);
294 	}
295 
296 	if (!ktls_allow_unload) {
297 		rm_wunlock(&ktls_backends_lock);
298 		printf(
299 		    "KTLS: Deregistering crypto method %s is not supported\n",
300 		    be->name);
301 		return (EBUSY);
302 	}
303 
304 	if (be->use_count) {
305 		rm_wunlock(&ktls_backends_lock);
306 		return (EBUSY);
307 	}
308 
309 	LIST_REMOVE(be, next);
310 	rm_wunlock(&ktls_backends_lock);
311 	return (0);
312 }
313 
314 #if defined(INET) || defined(INET6)
315 static u_int
316 ktls_get_cpu(struct socket *so)
317 {
318 	struct inpcb *inp;
319 	u_int cpuid;
320 
321 	inp = sotoinpcb(so);
322 #ifdef RSS
323 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
324 	if (cpuid != NETISR_CPUID_NONE)
325 		return (cpuid);
326 #endif
327 	/*
328 	 * Just use the flowid to shard connections in a repeatable
329 	 * fashion.  Note that some crypto backends rely on the
330 	 * serialization provided by having the same connection use
331 	 * the same queue.
332 	 */
333 	cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
334 	return (cpuid);
335 }
336 #endif
337 
338 static void
339 ktls_init(void *dummy __unused)
340 {
341 	struct thread *td;
342 	struct pcpu *pc;
343 	cpuset_t mask;
344 	int error, i;
345 
346 	ktls_tasks_active = counter_u64_alloc(M_WAITOK);
347 	ktls_cnt_tx_queued = counter_u64_alloc(M_WAITOK);
348 	ktls_cnt_rx_queued = counter_u64_alloc(M_WAITOK);
349 	ktls_offload_total = counter_u64_alloc(M_WAITOK);
350 	ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK);
351 	ktls_offload_active = counter_u64_alloc(M_WAITOK);
352 	ktls_offload_corrupted_records = counter_u64_alloc(M_WAITOK);
353 	ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK);
354 	ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK);
355 	ktls_switch_to_sw = counter_u64_alloc(M_WAITOK);
356 	ktls_switch_failed = counter_u64_alloc(M_WAITOK);
357 	ktls_sw_cbc = counter_u64_alloc(M_WAITOK);
358 	ktls_sw_gcm = counter_u64_alloc(M_WAITOK);
359 	ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK);
360 	ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK);
361 	ktls_ifnet_reset = counter_u64_alloc(M_WAITOK);
362 	ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK);
363 	ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK);
364 #ifdef TCP_OFFLOAD
365 	ktls_toe_cbc = counter_u64_alloc(M_WAITOK);
366 	ktls_toe_gcm = counter_u64_alloc(M_WAITOK);
367 #endif
368 
369 	rm_init(&ktls_backends_lock, "ktls backends");
370 	LIST_INIT(&ktls_backends);
371 
372 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
373 	    M_WAITOK | M_ZERO);
374 
375 	ktls_session_zone = uma_zcreate("ktls_session",
376 	    sizeof(struct ktls_session),
377 	    NULL, NULL, NULL, NULL,
378 	    UMA_ALIGN_CACHE, 0);
379 
380 	/*
381 	 * Initialize the workqueues to run the TLS work.  We create a
382 	 * work queue for each CPU.
383 	 */
384 	CPU_FOREACH(i) {
385 		STAILQ_INIT(&ktls_wq[i].m_head);
386 		STAILQ_INIT(&ktls_wq[i].so_head);
387 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
388 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
389 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
390 		if (error)
391 			panic("Can't add KTLS thread %d error %d", i, error);
392 
393 		/*
394 		 * Bind threads to cores.  If ktls_bind_threads is >
395 		 * 1, then we bind to the NUMA domain.
396 		 */
397 		if (ktls_bind_threads) {
398 			if (ktls_bind_threads > 1) {
399 				pc = pcpu_find(i);
400 				CPU_COPY(&cpuset_domain[pc->pc_domain], &mask);
401 			} else {
402 				CPU_SETOF(i, &mask);
403 			}
404 			error = cpuset_setthread(td->td_tid, &mask);
405 			if (error)
406 				panic(
407 			    "Unable to bind KTLS thread for CPU %d error %d",
408 				     i, error);
409 		}
410 		ktls_cpuid_lookup[ktls_number_threads] = i;
411 		ktls_number_threads++;
412 	}
413 	printf("KTLS: Initialized %d threads\n", ktls_number_threads);
414 }
415 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL);
416 
417 #if defined(INET) || defined(INET6)
418 static int
419 ktls_create_session(struct socket *so, struct tls_enable *en,
420     struct ktls_session **tlsp)
421 {
422 	struct ktls_session *tls;
423 	int error;
424 
425 	/* Only TLS 1.0 - 1.3 are supported. */
426 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
427 		return (EINVAL);
428 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
429 	    en->tls_vminor > TLS_MINOR_VER_THREE)
430 		return (EINVAL);
431 
432 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
433 		return (EINVAL);
434 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
435 		return (EINVAL);
436 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
437 		return (EINVAL);
438 
439 	/* All supported algorithms require a cipher key. */
440 	if (en->cipher_key_len == 0)
441 		return (EINVAL);
442 
443 	/* No flags are currently supported. */
444 	if (en->flags != 0)
445 		return (EINVAL);
446 
447 	/* Common checks for supported algorithms. */
448 	switch (en->cipher_algorithm) {
449 	case CRYPTO_AES_NIST_GCM_16:
450 		/*
451 		 * auth_algorithm isn't used, but permit GMAC values
452 		 * for compatibility.
453 		 */
454 		switch (en->auth_algorithm) {
455 		case 0:
456 #ifdef COMPAT_FREEBSD12
457 		/* XXX: Really 13.0-current COMPAT. */
458 		case CRYPTO_AES_128_NIST_GMAC:
459 		case CRYPTO_AES_192_NIST_GMAC:
460 		case CRYPTO_AES_256_NIST_GMAC:
461 #endif
462 			break;
463 		default:
464 			return (EINVAL);
465 		}
466 		if (en->auth_key_len != 0)
467 			return (EINVAL);
468 		if ((en->tls_vminor == TLS_MINOR_VER_TWO &&
469 			en->iv_len != TLS_AEAD_GCM_LEN) ||
470 		    (en->tls_vminor == TLS_MINOR_VER_THREE &&
471 			en->iv_len != TLS_1_3_GCM_IV_LEN))
472 			return (EINVAL);
473 		break;
474 	case CRYPTO_AES_CBC:
475 		switch (en->auth_algorithm) {
476 		case CRYPTO_SHA1_HMAC:
477 			/*
478 			 * TLS 1.0 requires an implicit IV.  TLS 1.1+
479 			 * all use explicit IVs.
480 			 */
481 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
482 				if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
483 					return (EINVAL);
484 				break;
485 			}
486 
487 			/* FALLTHROUGH */
488 		case CRYPTO_SHA2_256_HMAC:
489 		case CRYPTO_SHA2_384_HMAC:
490 			/* Ignore any supplied IV. */
491 			en->iv_len = 0;
492 			break;
493 		default:
494 			return (EINVAL);
495 		}
496 		if (en->auth_key_len == 0)
497 			return (EINVAL);
498 		break;
499 	default:
500 		return (EINVAL);
501 	}
502 
503 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
504 
505 	counter_u64_add(ktls_offload_active, 1);
506 
507 	refcount_init(&tls->refcount, 1);
508 	TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
509 
510 	tls->wq_index = ktls_get_cpu(so);
511 
512 	tls->params.cipher_algorithm = en->cipher_algorithm;
513 	tls->params.auth_algorithm = en->auth_algorithm;
514 	tls->params.tls_vmajor = en->tls_vmajor;
515 	tls->params.tls_vminor = en->tls_vminor;
516 	tls->params.flags = en->flags;
517 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
518 
519 	/* Set the header and trailer lengths. */
520 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
521 	switch (en->cipher_algorithm) {
522 	case CRYPTO_AES_NIST_GCM_16:
523 		/*
524 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
525 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
526 		 */
527 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
528 			tls->params.tls_hlen += sizeof(uint64_t);
529 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
530 
531 		/*
532 		 * TLS 1.3 includes optional padding which we
533 		 * do not support, and also puts the "real" record
534 		 * type at the end of the encrypted data.
535 		 */
536 		if (en->tls_vminor == TLS_MINOR_VER_THREE)
537 			tls->params.tls_tlen += sizeof(uint8_t);
538 
539 		tls->params.tls_bs = 1;
540 		break;
541 	case CRYPTO_AES_CBC:
542 		switch (en->auth_algorithm) {
543 		case CRYPTO_SHA1_HMAC:
544 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
545 				/* Implicit IV, no nonce. */
546 			} else {
547 				tls->params.tls_hlen += AES_BLOCK_LEN;
548 			}
549 			tls->params.tls_tlen = AES_BLOCK_LEN +
550 			    SHA1_HASH_LEN;
551 			break;
552 		case CRYPTO_SHA2_256_HMAC:
553 			tls->params.tls_hlen += AES_BLOCK_LEN;
554 			tls->params.tls_tlen = AES_BLOCK_LEN +
555 			    SHA2_256_HASH_LEN;
556 			break;
557 		case CRYPTO_SHA2_384_HMAC:
558 			tls->params.tls_hlen += AES_BLOCK_LEN;
559 			tls->params.tls_tlen = AES_BLOCK_LEN +
560 			    SHA2_384_HASH_LEN;
561 			break;
562 		default:
563 			panic("invalid hmac");
564 		}
565 		tls->params.tls_bs = AES_BLOCK_LEN;
566 		break;
567 	default:
568 		panic("invalid cipher");
569 	}
570 
571 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
572 	    ("TLS header length too long: %d", tls->params.tls_hlen));
573 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
574 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
575 
576 	if (en->auth_key_len != 0) {
577 		tls->params.auth_key_len = en->auth_key_len;
578 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
579 		    M_WAITOK);
580 		error = copyin(en->auth_key, tls->params.auth_key,
581 		    en->auth_key_len);
582 		if (error)
583 			goto out;
584 	}
585 
586 	tls->params.cipher_key_len = en->cipher_key_len;
587 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
588 	error = copyin(en->cipher_key, tls->params.cipher_key,
589 	    en->cipher_key_len);
590 	if (error)
591 		goto out;
592 
593 	/*
594 	 * This holds the implicit portion of the nonce for GCM and
595 	 * the initial implicit IV for TLS 1.0.  The explicit portions
596 	 * of the IV are generated in ktls_frame().
597 	 */
598 	if (en->iv_len != 0) {
599 		tls->params.iv_len = en->iv_len;
600 		error = copyin(en->iv, tls->params.iv, en->iv_len);
601 		if (error)
602 			goto out;
603 
604 		/*
605 		 * For TLS 1.2, generate an 8-byte nonce as a counter
606 		 * to generate unique explicit IVs.
607 		 *
608 		 * Store this counter in the last 8 bytes of the IV
609 		 * array so that it is 8-byte aligned.
610 		 */
611 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
612 		    en->tls_vminor == TLS_MINOR_VER_TWO)
613 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
614 	}
615 
616 	*tlsp = tls;
617 	return (0);
618 
619 out:
620 	ktls_cleanup(tls);
621 	return (error);
622 }
623 
624 static struct ktls_session *
625 ktls_clone_session(struct ktls_session *tls)
626 {
627 	struct ktls_session *tls_new;
628 
629 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
630 
631 	counter_u64_add(ktls_offload_active, 1);
632 
633 	refcount_init(&tls_new->refcount, 1);
634 
635 	/* Copy fields from existing session. */
636 	tls_new->params = tls->params;
637 	tls_new->wq_index = tls->wq_index;
638 
639 	/* Deep copy keys. */
640 	if (tls_new->params.auth_key != NULL) {
641 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
642 		    M_KTLS, M_WAITOK);
643 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
644 		    tls->params.auth_key_len);
645 	}
646 
647 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
648 	    M_WAITOK);
649 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
650 	    tls->params.cipher_key_len);
651 
652 	return (tls_new);
653 }
654 #endif
655 
656 static void
657 ktls_cleanup(struct ktls_session *tls)
658 {
659 
660 	counter_u64_add(ktls_offload_active, -1);
661 	switch (tls->mode) {
662 	case TCP_TLS_MODE_SW:
663 		MPASS(tls->be != NULL);
664 		switch (tls->params.cipher_algorithm) {
665 		case CRYPTO_AES_CBC:
666 			counter_u64_add(ktls_sw_cbc, -1);
667 			break;
668 		case CRYPTO_AES_NIST_GCM_16:
669 			counter_u64_add(ktls_sw_gcm, -1);
670 			break;
671 		}
672 		tls->free(tls);
673 		break;
674 	case TCP_TLS_MODE_IFNET:
675 		switch (tls->params.cipher_algorithm) {
676 		case CRYPTO_AES_CBC:
677 			counter_u64_add(ktls_ifnet_cbc, -1);
678 			break;
679 		case CRYPTO_AES_NIST_GCM_16:
680 			counter_u64_add(ktls_ifnet_gcm, -1);
681 			break;
682 		}
683 		m_snd_tag_rele(tls->snd_tag);
684 		break;
685 #ifdef TCP_OFFLOAD
686 	case TCP_TLS_MODE_TOE:
687 		switch (tls->params.cipher_algorithm) {
688 		case CRYPTO_AES_CBC:
689 			counter_u64_add(ktls_toe_cbc, -1);
690 			break;
691 		case CRYPTO_AES_NIST_GCM_16:
692 			counter_u64_add(ktls_toe_gcm, -1);
693 			break;
694 		}
695 		break;
696 #endif
697 	}
698 	if (tls->params.auth_key != NULL) {
699 		zfree(tls->params.auth_key, M_KTLS);
700 		tls->params.auth_key = NULL;
701 		tls->params.auth_key_len = 0;
702 	}
703 	if (tls->params.cipher_key != NULL) {
704 		zfree(tls->params.cipher_key, M_KTLS);
705 		tls->params.cipher_key = NULL;
706 		tls->params.cipher_key_len = 0;
707 	}
708 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
709 }
710 
711 #if defined(INET) || defined(INET6)
712 
713 #ifdef TCP_OFFLOAD
714 static int
715 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
716 {
717 	struct inpcb *inp;
718 	struct tcpcb *tp;
719 	int error;
720 
721 	inp = so->so_pcb;
722 	INP_WLOCK(inp);
723 	if (inp->inp_flags2 & INP_FREED) {
724 		INP_WUNLOCK(inp);
725 		return (ECONNRESET);
726 	}
727 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
728 		INP_WUNLOCK(inp);
729 		return (ECONNRESET);
730 	}
731 	if (inp->inp_socket == NULL) {
732 		INP_WUNLOCK(inp);
733 		return (ECONNRESET);
734 	}
735 	tp = intotcpcb(inp);
736 	if (tp->tod == NULL) {
737 		INP_WUNLOCK(inp);
738 		return (EOPNOTSUPP);
739 	}
740 
741 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
742 	INP_WUNLOCK(inp);
743 	if (error == 0) {
744 		tls->mode = TCP_TLS_MODE_TOE;
745 		switch (tls->params.cipher_algorithm) {
746 		case CRYPTO_AES_CBC:
747 			counter_u64_add(ktls_toe_cbc, 1);
748 			break;
749 		case CRYPTO_AES_NIST_GCM_16:
750 			counter_u64_add(ktls_toe_gcm, 1);
751 			break;
752 		}
753 	}
754 	return (error);
755 }
756 #endif
757 
758 /*
759  * Common code used when first enabling ifnet TLS on a connection or
760  * when allocating a new ifnet TLS session due to a routing change.
761  * This function allocates a new TLS send tag on whatever interface
762  * the connection is currently routed over.
763  */
764 static int
765 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
766     struct m_snd_tag **mstp)
767 {
768 	union if_snd_tag_alloc_params params;
769 	struct ifnet *ifp;
770 	struct nhop_object *nh;
771 	struct tcpcb *tp;
772 	int error;
773 
774 	INP_RLOCK(inp);
775 	if (inp->inp_flags2 & INP_FREED) {
776 		INP_RUNLOCK(inp);
777 		return (ECONNRESET);
778 	}
779 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
780 		INP_RUNLOCK(inp);
781 		return (ECONNRESET);
782 	}
783 	if (inp->inp_socket == NULL) {
784 		INP_RUNLOCK(inp);
785 		return (ECONNRESET);
786 	}
787 	tp = intotcpcb(inp);
788 
789 	/*
790 	 * Check administrative controls on ifnet TLS to determine if
791 	 * ifnet TLS should be denied.
792 	 *
793 	 * - Always permit 'force' requests.
794 	 * - ktls_ifnet_permitted == 0: always deny.
795 	 */
796 	if (!force && ktls_ifnet_permitted == 0) {
797 		INP_RUNLOCK(inp);
798 		return (ENXIO);
799 	}
800 
801 	/*
802 	 * XXX: Use the cached route in the inpcb to find the
803 	 * interface.  This should perhaps instead use
804 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
805 	 * enabled after a connection has completed key negotiation in
806 	 * userland, the cached route will be present in practice.
807 	 */
808 	nh = inp->inp_route.ro_nh;
809 	if (nh == NULL) {
810 		INP_RUNLOCK(inp);
811 		return (ENXIO);
812 	}
813 	ifp = nh->nh_ifp;
814 	if_ref(ifp);
815 
816 	params.hdr.type = IF_SND_TAG_TYPE_TLS;
817 	params.hdr.flowid = inp->inp_flowid;
818 	params.hdr.flowtype = inp->inp_flowtype;
819 	params.hdr.numa_domain = inp->inp_numa_domain;
820 	params.tls.inp = inp;
821 	params.tls.tls = tls;
822 	INP_RUNLOCK(inp);
823 
824 	if (ifp->if_snd_tag_alloc == NULL) {
825 		error = EOPNOTSUPP;
826 		goto out;
827 	}
828 	if ((ifp->if_capenable & IFCAP_NOMAP) == 0) {
829 		error = EOPNOTSUPP;
830 		goto out;
831 	}
832 	if (inp->inp_vflag & INP_IPV6) {
833 		if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) {
834 			error = EOPNOTSUPP;
835 			goto out;
836 		}
837 	} else {
838 		if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) {
839 			error = EOPNOTSUPP;
840 			goto out;
841 		}
842 	}
843 	error = ifp->if_snd_tag_alloc(ifp, &params, mstp);
844 out:
845 	if_rele(ifp);
846 	return (error);
847 }
848 
849 static int
850 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force)
851 {
852 	struct m_snd_tag *mst;
853 	int error;
854 
855 	error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
856 	if (error == 0) {
857 		tls->mode = TCP_TLS_MODE_IFNET;
858 		tls->snd_tag = mst;
859 		switch (tls->params.cipher_algorithm) {
860 		case CRYPTO_AES_CBC:
861 			counter_u64_add(ktls_ifnet_cbc, 1);
862 			break;
863 		case CRYPTO_AES_NIST_GCM_16:
864 			counter_u64_add(ktls_ifnet_gcm, 1);
865 			break;
866 		}
867 	}
868 	return (error);
869 }
870 
871 static int
872 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction)
873 {
874 	struct rm_priotracker prio;
875 	struct ktls_crypto_backend *be;
876 
877 	/*
878 	 * Choose the best software crypto backend.  Backends are
879 	 * stored in sorted priority order (larget value == most
880 	 * important at the head of the list), so this just stops on
881 	 * the first backend that claims the session by returning
882 	 * success.
883 	 */
884 	if (ktls_allow_unload)
885 		rm_rlock(&ktls_backends_lock, &prio);
886 	LIST_FOREACH(be, &ktls_backends, next) {
887 		if (be->try(so, tls, direction) == 0)
888 			break;
889 		KASSERT(tls->cipher == NULL,
890 		    ("ktls backend leaked a cipher pointer"));
891 	}
892 	if (be != NULL) {
893 		if (ktls_allow_unload)
894 			be->use_count++;
895 		tls->be = be;
896 	}
897 	if (ktls_allow_unload)
898 		rm_runlock(&ktls_backends_lock, &prio);
899 	if (be == NULL)
900 		return (EOPNOTSUPP);
901 	tls->mode = TCP_TLS_MODE_SW;
902 	switch (tls->params.cipher_algorithm) {
903 	case CRYPTO_AES_CBC:
904 		counter_u64_add(ktls_sw_cbc, 1);
905 		break;
906 	case CRYPTO_AES_NIST_GCM_16:
907 		counter_u64_add(ktls_sw_gcm, 1);
908 		break;
909 	}
910 	return (0);
911 }
912 
913 /*
914  * KTLS RX stores data in the socket buffer as a list of TLS records,
915  * where each record is stored as a control message containg the TLS
916  * header followed by data mbufs containing the decrypted data.  This
917  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
918  * both encrypted and decrypted data.  TLS records decrypted by a NIC
919  * should be queued to the socket buffer as records, but encrypted
920  * data which needs to be decrypted by software arrives as a stream of
921  * regular mbufs which need to be converted.  In addition, there may
922  * already be pending encrypted data in the socket buffer when KTLS RX
923  * is enabled.
924  *
925  * To manage not-yet-decrypted data for KTLS RX, the following scheme
926  * is used:
927  *
928  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
929  *
930  * - ktls_check_rx checks this chain of mbufs reading the TLS header
931  *   from the first mbuf.  Once all of the data for that TLS record is
932  *   queued, the socket is queued to a worker thread.
933  *
934  * - The worker thread calls ktls_decrypt to decrypt TLS records in
935  *   the TLS chain.  Each TLS record is detached from the TLS chain,
936  *   decrypted, and inserted into the regular socket buffer chain as
937  *   record starting with a control message holding the TLS header and
938  *   a chain of mbufs holding the encrypted data.
939  */
940 
941 static void
942 sb_mark_notready(struct sockbuf *sb)
943 {
944 	struct mbuf *m;
945 
946 	m = sb->sb_mb;
947 	sb->sb_mtls = m;
948 	sb->sb_mb = NULL;
949 	sb->sb_mbtail = NULL;
950 	sb->sb_lastrecord = NULL;
951 	for (; m != NULL; m = m->m_next) {
952 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
953 		    __func__));
954 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
955 		    __func__));
956 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
957 		    __func__));
958 		m->m_flags |= M_NOTREADY;
959 		sb->sb_acc -= m->m_len;
960 		sb->sb_tlscc += m->m_len;
961 		sb->sb_mtlstail = m;
962 	}
963 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
964 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
965 	    sb->sb_ccc));
966 }
967 
968 int
969 ktls_enable_rx(struct socket *so, struct tls_enable *en)
970 {
971 	struct ktls_session *tls;
972 	int error;
973 
974 	if (!ktls_offload_enable)
975 		return (ENOTSUP);
976 
977 	counter_u64_add(ktls_offload_enable_calls, 1);
978 
979 	/*
980 	 * This should always be true since only the TCP socket option
981 	 * invokes this function.
982 	 */
983 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
984 		return (EINVAL);
985 
986 	/*
987 	 * XXX: Don't overwrite existing sessions.  We should permit
988 	 * this to support rekeying in the future.
989 	 */
990 	if (so->so_rcv.sb_tls_info != NULL)
991 		return (EALREADY);
992 
993 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
994 		return (ENOTSUP);
995 
996 	/* TLS 1.3 is not yet supported. */
997 	if (en->tls_vmajor == TLS_MAJOR_VER_ONE &&
998 	    en->tls_vminor == TLS_MINOR_VER_THREE)
999 		return (ENOTSUP);
1000 
1001 	error = ktls_create_session(so, en, &tls);
1002 	if (error)
1003 		return (error);
1004 
1005 #ifdef TCP_OFFLOAD
1006 	error = ktls_try_toe(so, tls, KTLS_RX);
1007 	if (error)
1008 #endif
1009 		error = ktls_try_sw(so, tls, KTLS_RX);
1010 
1011 	if (error) {
1012 		ktls_cleanup(tls);
1013 		return (error);
1014 	}
1015 
1016 	/* Mark the socket as using TLS offload. */
1017 	SOCKBUF_LOCK(&so->so_rcv);
1018 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
1019 	so->so_rcv.sb_tls_info = tls;
1020 	so->so_rcv.sb_flags |= SB_TLS_RX;
1021 
1022 	/* Mark existing data as not ready until it can be decrypted. */
1023 	sb_mark_notready(&so->so_rcv);
1024 	ktls_check_rx(&so->so_rcv);
1025 	SOCKBUF_UNLOCK(&so->so_rcv);
1026 
1027 	counter_u64_add(ktls_offload_total, 1);
1028 
1029 	return (0);
1030 }
1031 
1032 int
1033 ktls_enable_tx(struct socket *so, struct tls_enable *en)
1034 {
1035 	struct ktls_session *tls;
1036 	int error;
1037 
1038 	if (!ktls_offload_enable)
1039 		return (ENOTSUP);
1040 
1041 	counter_u64_add(ktls_offload_enable_calls, 1);
1042 
1043 	/*
1044 	 * This should always be true since only the TCP socket option
1045 	 * invokes this function.
1046 	 */
1047 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
1048 		return (EINVAL);
1049 
1050 	/*
1051 	 * XXX: Don't overwrite existing sessions.  We should permit
1052 	 * this to support rekeying in the future.
1053 	 */
1054 	if (so->so_snd.sb_tls_info != NULL)
1055 		return (EALREADY);
1056 
1057 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
1058 		return (ENOTSUP);
1059 
1060 	/* TLS requires ext pgs */
1061 	if (mb_use_ext_pgs == 0)
1062 		return (ENXIO);
1063 
1064 	error = ktls_create_session(so, en, &tls);
1065 	if (error)
1066 		return (error);
1067 
1068 	/* Prefer TOE -> ifnet TLS -> software TLS. */
1069 #ifdef TCP_OFFLOAD
1070 	error = ktls_try_toe(so, tls, KTLS_TX);
1071 	if (error)
1072 #endif
1073 		error = ktls_try_ifnet(so, tls, false);
1074 	if (error)
1075 		error = ktls_try_sw(so, tls, KTLS_TX);
1076 
1077 	if (error) {
1078 		ktls_cleanup(tls);
1079 		return (error);
1080 	}
1081 
1082 	error = sblock(&so->so_snd, SBL_WAIT);
1083 	if (error) {
1084 		ktls_cleanup(tls);
1085 		return (error);
1086 	}
1087 
1088 	SOCKBUF_LOCK(&so->so_snd);
1089 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
1090 	so->so_snd.sb_tls_info = tls;
1091 	if (tls->mode != TCP_TLS_MODE_SW)
1092 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1093 	SOCKBUF_UNLOCK(&so->so_snd);
1094 	sbunlock(&so->so_snd);
1095 
1096 	counter_u64_add(ktls_offload_total, 1);
1097 
1098 	return (0);
1099 }
1100 
1101 int
1102 ktls_get_rx_mode(struct socket *so)
1103 {
1104 	struct ktls_session *tls;
1105 	struct inpcb *inp;
1106 	int mode;
1107 
1108 	inp = so->so_pcb;
1109 	INP_WLOCK_ASSERT(inp);
1110 	SOCKBUF_LOCK(&so->so_rcv);
1111 	tls = so->so_rcv.sb_tls_info;
1112 	if (tls == NULL)
1113 		mode = TCP_TLS_MODE_NONE;
1114 	else
1115 		mode = tls->mode;
1116 	SOCKBUF_UNLOCK(&so->so_rcv);
1117 	return (mode);
1118 }
1119 
1120 int
1121 ktls_get_tx_mode(struct socket *so)
1122 {
1123 	struct ktls_session *tls;
1124 	struct inpcb *inp;
1125 	int mode;
1126 
1127 	inp = so->so_pcb;
1128 	INP_WLOCK_ASSERT(inp);
1129 	SOCKBUF_LOCK(&so->so_snd);
1130 	tls = so->so_snd.sb_tls_info;
1131 	if (tls == NULL)
1132 		mode = TCP_TLS_MODE_NONE;
1133 	else
1134 		mode = tls->mode;
1135 	SOCKBUF_UNLOCK(&so->so_snd);
1136 	return (mode);
1137 }
1138 
1139 /*
1140  * Switch between SW and ifnet TLS sessions as requested.
1141  */
1142 int
1143 ktls_set_tx_mode(struct socket *so, int mode)
1144 {
1145 	struct ktls_session *tls, *tls_new;
1146 	struct inpcb *inp;
1147 	int error;
1148 
1149 	switch (mode) {
1150 	case TCP_TLS_MODE_SW:
1151 	case TCP_TLS_MODE_IFNET:
1152 		break;
1153 	default:
1154 		return (EINVAL);
1155 	}
1156 
1157 	inp = so->so_pcb;
1158 	INP_WLOCK_ASSERT(inp);
1159 	SOCKBUF_LOCK(&so->so_snd);
1160 	tls = so->so_snd.sb_tls_info;
1161 	if (tls == NULL) {
1162 		SOCKBUF_UNLOCK(&so->so_snd);
1163 		return (0);
1164 	}
1165 
1166 	if (tls->mode == mode) {
1167 		SOCKBUF_UNLOCK(&so->so_snd);
1168 		return (0);
1169 	}
1170 
1171 	tls = ktls_hold(tls);
1172 	SOCKBUF_UNLOCK(&so->so_snd);
1173 	INP_WUNLOCK(inp);
1174 
1175 	tls_new = ktls_clone_session(tls);
1176 
1177 	if (mode == TCP_TLS_MODE_IFNET)
1178 		error = ktls_try_ifnet(so, tls_new, true);
1179 	else
1180 		error = ktls_try_sw(so, tls_new, KTLS_TX);
1181 	if (error) {
1182 		counter_u64_add(ktls_switch_failed, 1);
1183 		ktls_free(tls_new);
1184 		ktls_free(tls);
1185 		INP_WLOCK(inp);
1186 		return (error);
1187 	}
1188 
1189 	error = sblock(&so->so_snd, SBL_WAIT);
1190 	if (error) {
1191 		counter_u64_add(ktls_switch_failed, 1);
1192 		ktls_free(tls_new);
1193 		ktls_free(tls);
1194 		INP_WLOCK(inp);
1195 		return (error);
1196 	}
1197 
1198 	/*
1199 	 * If we raced with another session change, keep the existing
1200 	 * session.
1201 	 */
1202 	if (tls != so->so_snd.sb_tls_info) {
1203 		counter_u64_add(ktls_switch_failed, 1);
1204 		sbunlock(&so->so_snd);
1205 		ktls_free(tls_new);
1206 		ktls_free(tls);
1207 		INP_WLOCK(inp);
1208 		return (EBUSY);
1209 	}
1210 
1211 	SOCKBUF_LOCK(&so->so_snd);
1212 	so->so_snd.sb_tls_info = tls_new;
1213 	if (tls_new->mode != TCP_TLS_MODE_SW)
1214 		so->so_snd.sb_flags |= SB_TLS_IFNET;
1215 	SOCKBUF_UNLOCK(&so->so_snd);
1216 	sbunlock(&so->so_snd);
1217 
1218 	/*
1219 	 * Drop two references on 'tls'.  The first is for the
1220 	 * ktls_hold() above.  The second drops the reference from the
1221 	 * socket buffer.
1222 	 */
1223 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
1224 	ktls_free(tls);
1225 	ktls_free(tls);
1226 
1227 	if (mode == TCP_TLS_MODE_IFNET)
1228 		counter_u64_add(ktls_switch_to_ifnet, 1);
1229 	else
1230 		counter_u64_add(ktls_switch_to_sw, 1);
1231 
1232 	INP_WLOCK(inp);
1233 	return (0);
1234 }
1235 
1236 /*
1237  * Try to allocate a new TLS send tag.  This task is scheduled when
1238  * ip_output detects a route change while trying to transmit a packet
1239  * holding a TLS record.  If a new tag is allocated, replace the tag
1240  * in the TLS session.  Subsequent packets on the connection will use
1241  * the new tag.  If a new tag cannot be allocated, drop the
1242  * connection.
1243  */
1244 static void
1245 ktls_reset_send_tag(void *context, int pending)
1246 {
1247 	struct epoch_tracker et;
1248 	struct ktls_session *tls;
1249 	struct m_snd_tag *old, *new;
1250 	struct inpcb *inp;
1251 	struct tcpcb *tp;
1252 	int error;
1253 
1254 	MPASS(pending == 1);
1255 
1256 	tls = context;
1257 	inp = tls->inp;
1258 
1259 	/*
1260 	 * Free the old tag first before allocating a new one.
1261 	 * ip[6]_output_send() will treat a NULL send tag the same as
1262 	 * an ifp mismatch and drop packets until a new tag is
1263 	 * allocated.
1264 	 *
1265 	 * Write-lock the INP when changing tls->snd_tag since
1266 	 * ip[6]_output_send() holds a read-lock when reading the
1267 	 * pointer.
1268 	 */
1269 	INP_WLOCK(inp);
1270 	old = tls->snd_tag;
1271 	tls->snd_tag = NULL;
1272 	INP_WUNLOCK(inp);
1273 	if (old != NULL)
1274 		m_snd_tag_rele(old);
1275 
1276 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
1277 
1278 	if (error == 0) {
1279 		INP_WLOCK(inp);
1280 		tls->snd_tag = new;
1281 		mtx_pool_lock(mtxpool_sleep, tls);
1282 		tls->reset_pending = false;
1283 		mtx_pool_unlock(mtxpool_sleep, tls);
1284 		if (!in_pcbrele_wlocked(inp))
1285 			INP_WUNLOCK(inp);
1286 
1287 		counter_u64_add(ktls_ifnet_reset, 1);
1288 
1289 		/*
1290 		 * XXX: Should we kick tcp_output explicitly now that
1291 		 * the send tag is fixed or just rely on timers?
1292 		 */
1293 	} else {
1294 		NET_EPOCH_ENTER(et);
1295 		INP_WLOCK(inp);
1296 		if (!in_pcbrele_wlocked(inp)) {
1297 			if (!(inp->inp_flags & INP_TIMEWAIT) &&
1298 			    !(inp->inp_flags & INP_DROPPED)) {
1299 				tp = intotcpcb(inp);
1300 				CURVNET_SET(tp->t_vnet);
1301 				tp = tcp_drop(tp, ECONNABORTED);
1302 				CURVNET_RESTORE();
1303 				if (tp != NULL)
1304 					INP_WUNLOCK(inp);
1305 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
1306 			} else
1307 				INP_WUNLOCK(inp);
1308 		}
1309 		NET_EPOCH_EXIT(et);
1310 
1311 		counter_u64_add(ktls_ifnet_reset_failed, 1);
1312 
1313 		/*
1314 		 * Leave reset_pending true to avoid future tasks while
1315 		 * the socket goes away.
1316 		 */
1317 	}
1318 
1319 	ktls_free(tls);
1320 }
1321 
1322 int
1323 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
1324 {
1325 
1326 	if (inp == NULL)
1327 		return (ENOBUFS);
1328 
1329 	INP_LOCK_ASSERT(inp);
1330 
1331 	/*
1332 	 * See if we should schedule a task to update the send tag for
1333 	 * this session.
1334 	 */
1335 	mtx_pool_lock(mtxpool_sleep, tls);
1336 	if (!tls->reset_pending) {
1337 		(void) ktls_hold(tls);
1338 		in_pcbref(inp);
1339 		tls->inp = inp;
1340 		tls->reset_pending = true;
1341 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
1342 	}
1343 	mtx_pool_unlock(mtxpool_sleep, tls);
1344 	return (ENOBUFS);
1345 }
1346 #endif
1347 
1348 void
1349 ktls_destroy(struct ktls_session *tls)
1350 {
1351 	struct rm_priotracker prio;
1352 
1353 	ktls_cleanup(tls);
1354 	if (tls->be != NULL && ktls_allow_unload) {
1355 		rm_rlock(&ktls_backends_lock, &prio);
1356 		tls->be->use_count--;
1357 		rm_runlock(&ktls_backends_lock, &prio);
1358 	}
1359 	uma_zfree(ktls_session_zone, tls);
1360 }
1361 
1362 void
1363 ktls_seq(struct sockbuf *sb, struct mbuf *m)
1364 {
1365 
1366 	for (; m != NULL; m = m->m_next) {
1367 		KASSERT((m->m_flags & M_EXTPG) != 0,
1368 		    ("ktls_seq: mapped mbuf %p", m));
1369 
1370 		m->m_epg_seqno = sb->sb_tls_seqno;
1371 		sb->sb_tls_seqno++;
1372 	}
1373 }
1374 
1375 /*
1376  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
1377  * mbuf in the chain must be an unmapped mbuf.  The payload of the
1378  * mbuf must be populated with the payload of each TLS record.
1379  *
1380  * The record_type argument specifies the TLS record type used when
1381  * populating the TLS header.
1382  *
1383  * The enq_count argument on return is set to the number of pages of
1384  * payload data for this entire chain that need to be encrypted via SW
1385  * encryption.  The returned value should be passed to ktls_enqueue
1386  * when scheduling encryption of this chain of mbufs.
1387  */
1388 void
1389 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
1390     uint8_t record_type)
1391 {
1392 	struct tls_record_layer *tlshdr;
1393 	struct mbuf *m;
1394 	uint64_t *noncep;
1395 	uint16_t tls_len;
1396 	int maxlen;
1397 
1398 	maxlen = tls->params.max_frame_len;
1399 	*enq_cnt = 0;
1400 	for (m = top; m != NULL; m = m->m_next) {
1401 		/*
1402 		 * All mbufs in the chain should be non-empty TLS
1403 		 * records whose payload does not exceed the maximum
1404 		 * frame length.
1405 		 */
1406 		KASSERT(m->m_len <= maxlen && m->m_len > 0,
1407 		    ("ktls_frame: m %p len %d\n", m, m->m_len));
1408 		/*
1409 		 * TLS frames require unmapped mbufs to store session
1410 		 * info.
1411 		 */
1412 		KASSERT((m->m_flags & M_EXTPG) != 0,
1413 		    ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top));
1414 
1415 		tls_len = m->m_len;
1416 
1417 		/* Save a reference to the session. */
1418 		m->m_epg_tls = ktls_hold(tls);
1419 
1420 		m->m_epg_hdrlen = tls->params.tls_hlen;
1421 		m->m_epg_trllen = tls->params.tls_tlen;
1422 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
1423 			int bs, delta;
1424 
1425 			/*
1426 			 * AES-CBC pads messages to a multiple of the
1427 			 * block size.  Note that the padding is
1428 			 * applied after the digest and the encryption
1429 			 * is done on the "plaintext || mac || padding".
1430 			 * At least one byte of padding is always
1431 			 * present.
1432 			 *
1433 			 * Compute the final trailer length assuming
1434 			 * at most one block of padding.
1435 			 * tls->params.sb_tls_tlen is the maximum
1436 			 * possible trailer length (padding + digest).
1437 			 * delta holds the number of excess padding
1438 			 * bytes if the maximum were used.  Those
1439 			 * extra bytes are removed.
1440 			 */
1441 			bs = tls->params.tls_bs;
1442 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
1443 			m->m_epg_trllen -= delta;
1444 		}
1445 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
1446 
1447 		/* Populate the TLS header. */
1448 		tlshdr = (void *)m->m_epg_hdr;
1449 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
1450 
1451 		/*
1452 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
1453 		 * of TLS_RLTYPE_APP.
1454 		 */
1455 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
1456 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
1457 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
1458 			tlshdr->tls_type = TLS_RLTYPE_APP;
1459 			/* save the real record type for later */
1460 			m->m_epg_record_type = record_type;
1461 			m->m_epg_trail[0] = record_type;
1462 		} else {
1463 			tlshdr->tls_vminor = tls->params.tls_vminor;
1464 			tlshdr->tls_type = record_type;
1465 		}
1466 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
1467 
1468 		/*
1469 		 * Store nonces / explicit IVs after the end of the
1470 		 * TLS header.
1471 		 *
1472 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
1473 		 * from the end of the IV.  The nonce is then
1474 		 * incremented for use by the next record.
1475 		 *
1476 		 * For CBC, a random nonce is inserted for TLS 1.1+.
1477 		 */
1478 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
1479 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
1480 			noncep = (uint64_t *)(tls->params.iv + 8);
1481 			be64enc(tlshdr + 1, *noncep);
1482 			(*noncep)++;
1483 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
1484 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
1485 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
1486 
1487 		/*
1488 		 * When using SW encryption, mark the mbuf not ready.
1489 		 * It will be marked ready via sbready() after the
1490 		 * record has been encrypted.
1491 		 *
1492 		 * When using ifnet TLS, unencrypted TLS records are
1493 		 * sent down the stack to the NIC.
1494 		 */
1495 		if (tls->mode == TCP_TLS_MODE_SW) {
1496 			m->m_flags |= M_NOTREADY;
1497 			m->m_epg_nrdy = m->m_epg_npgs;
1498 			*enq_cnt += m->m_epg_npgs;
1499 		}
1500 	}
1501 }
1502 
1503 void
1504 ktls_check_rx(struct sockbuf *sb)
1505 {
1506 	struct tls_record_layer hdr;
1507 	struct ktls_wq *wq;
1508 	struct socket *so;
1509 	bool running;
1510 
1511 	SOCKBUF_LOCK_ASSERT(sb);
1512 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
1513 	    __func__, sb));
1514 	so = __containerof(sb, struct socket, so_rcv);
1515 
1516 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
1517 		return;
1518 
1519 	/* Is there enough queued for a TLS header? */
1520 	if (sb->sb_tlscc < sizeof(hdr)) {
1521 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
1522 			so->so_error = EMSGSIZE;
1523 		return;
1524 	}
1525 
1526 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
1527 
1528 	/* Is the entire record queued? */
1529 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
1530 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
1531 			so->so_error = EMSGSIZE;
1532 		return;
1533 	}
1534 
1535 	sb->sb_flags |= SB_TLS_RX_RUNNING;
1536 
1537 	soref(so);
1538 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
1539 	mtx_lock(&wq->mtx);
1540 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
1541 	running = wq->running;
1542 	mtx_unlock(&wq->mtx);
1543 	if (!running)
1544 		wakeup(wq);
1545 	counter_u64_add(ktls_cnt_rx_queued, 1);
1546 }
1547 
1548 static struct mbuf *
1549 ktls_detach_record(struct sockbuf *sb, int len)
1550 {
1551 	struct mbuf *m, *n, *top;
1552 	int remain;
1553 
1554 	SOCKBUF_LOCK_ASSERT(sb);
1555 	MPASS(len <= sb->sb_tlscc);
1556 
1557 	/*
1558 	 * If TLS chain is the exact size of the record,
1559 	 * just grab the whole record.
1560 	 */
1561 	top = sb->sb_mtls;
1562 	if (sb->sb_tlscc == len) {
1563 		sb->sb_mtls = NULL;
1564 		sb->sb_mtlstail = NULL;
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * While it would be nice to use m_split() here, we need
1570 	 * to know exactly what m_split() allocates to update the
1571 	 * accounting, so do it inline instead.
1572 	 */
1573 	remain = len;
1574 	for (m = top; remain > m->m_len; m = m->m_next)
1575 		remain -= m->m_len;
1576 
1577 	/* Easy case: don't have to split 'm'. */
1578 	if (remain == m->m_len) {
1579 		sb->sb_mtls = m->m_next;
1580 		if (sb->sb_mtls == NULL)
1581 			sb->sb_mtlstail = NULL;
1582 		m->m_next = NULL;
1583 		goto out;
1584 	}
1585 
1586 	/*
1587 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
1588 	 * with M_NOWAIT first.
1589 	 */
1590 	n = m_get(M_NOWAIT, MT_DATA);
1591 	if (n == NULL) {
1592 		/*
1593 		 * Use M_WAITOK with socket buffer unlocked.  If
1594 		 * 'sb_mtls' changes while the lock is dropped, return
1595 		 * NULL to force the caller to retry.
1596 		 */
1597 		SOCKBUF_UNLOCK(sb);
1598 
1599 		n = m_get(M_WAITOK, MT_DATA);
1600 
1601 		SOCKBUF_LOCK(sb);
1602 		if (sb->sb_mtls != top) {
1603 			m_free(n);
1604 			return (NULL);
1605 		}
1606 	}
1607 	n->m_flags |= M_NOTREADY;
1608 
1609 	/* Store remainder in 'n'. */
1610 	n->m_len = m->m_len - remain;
1611 	if (m->m_flags & M_EXT) {
1612 		n->m_data = m->m_data + remain;
1613 		mb_dupcl(n, m);
1614 	} else {
1615 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
1616 	}
1617 
1618 	/* Trim 'm' and update accounting. */
1619 	m->m_len -= n->m_len;
1620 	sb->sb_tlscc -= n->m_len;
1621 	sb->sb_ccc -= n->m_len;
1622 
1623 	/* Account for 'n'. */
1624 	sballoc_ktls_rx(sb, n);
1625 
1626 	/* Insert 'n' into the TLS chain. */
1627 	sb->sb_mtls = n;
1628 	n->m_next = m->m_next;
1629 	if (sb->sb_mtlstail == m)
1630 		sb->sb_mtlstail = n;
1631 
1632 	/* Detach the record from the TLS chain. */
1633 	m->m_next = NULL;
1634 
1635 out:
1636 	MPASS(m_length(top, NULL) == len);
1637 	for (m = top; m != NULL; m = m->m_next)
1638 		sbfree_ktls_rx(sb, m);
1639 	sb->sb_tlsdcc = len;
1640 	sb->sb_ccc += len;
1641 	SBCHECK(sb);
1642 	return (top);
1643 }
1644 
1645 static int
1646 m_segments(struct mbuf *m, int skip)
1647 {
1648 	int count;
1649 
1650 	while (skip >= m->m_len) {
1651 		skip -= m->m_len;
1652 		m = m->m_next;
1653 	}
1654 
1655 	for (count = 0; m != NULL; count++)
1656 		m = m->m_next;
1657 	return (count);
1658 }
1659 
1660 static void
1661 ktls_decrypt(struct socket *so)
1662 {
1663 	char tls_header[MBUF_PEXT_HDR_LEN];
1664 	struct ktls_session *tls;
1665 	struct sockbuf *sb;
1666 	struct tls_record_layer *hdr;
1667 	struct tls_get_record tgr;
1668 	struct mbuf *control, *data, *m;
1669 	uint64_t seqno;
1670 	int error, remain, tls_len, trail_len;
1671 
1672 	hdr = (struct tls_record_layer *)tls_header;
1673 	sb = &so->so_rcv;
1674 	SOCKBUF_LOCK(sb);
1675 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
1676 	    ("%s: socket %p not running", __func__, so));
1677 
1678 	tls = sb->sb_tls_info;
1679 	MPASS(tls != NULL);
1680 
1681 	for (;;) {
1682 		/* Is there enough queued for a TLS header? */
1683 		if (sb->sb_tlscc < tls->params.tls_hlen)
1684 			break;
1685 
1686 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
1687 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
1688 
1689 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
1690 		    hdr->tls_vminor != tls->params.tls_vminor)
1691 			error = EINVAL;
1692 		else if (tls_len < tls->params.tls_hlen || tls_len >
1693 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
1694 		    tls->params.tls_tlen)
1695 			error = EMSGSIZE;
1696 		else
1697 			error = 0;
1698 		if (__predict_false(error != 0)) {
1699 			/*
1700 			 * We have a corrupted record and are likely
1701 			 * out of sync.  The connection isn't
1702 			 * recoverable at this point, so abort it.
1703 			 */
1704 			SOCKBUF_UNLOCK(sb);
1705 			counter_u64_add(ktls_offload_corrupted_records, 1);
1706 
1707 			CURVNET_SET(so->so_vnet);
1708 			so->so_proto->pr_usrreqs->pru_abort(so);
1709 			so->so_error = error;
1710 			CURVNET_RESTORE();
1711 			goto deref;
1712 		}
1713 
1714 		/* Is the entire record queued? */
1715 		if (sb->sb_tlscc < tls_len)
1716 			break;
1717 
1718 		/*
1719 		 * Split out the portion of the mbuf chain containing
1720 		 * this TLS record.
1721 		 */
1722 		data = ktls_detach_record(sb, tls_len);
1723 		if (data == NULL)
1724 			continue;
1725 		MPASS(sb->sb_tlsdcc == tls_len);
1726 
1727 		seqno = sb->sb_tls_seqno;
1728 		sb->sb_tls_seqno++;
1729 		SBCHECK(sb);
1730 		SOCKBUF_UNLOCK(sb);
1731 
1732 		error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len);
1733 		if (error) {
1734 			counter_u64_add(ktls_offload_failed_crypto, 1);
1735 
1736 			SOCKBUF_LOCK(sb);
1737 			if (sb->sb_tlsdcc == 0) {
1738 				/*
1739 				 * sbcut/drop/flush discarded these
1740 				 * mbufs.
1741 				 */
1742 				m_freem(data);
1743 				break;
1744 			}
1745 
1746 			/*
1747 			 * Drop this TLS record's data, but keep
1748 			 * decrypting subsequent records.
1749 			 */
1750 			sb->sb_ccc -= tls_len;
1751 			sb->sb_tlsdcc = 0;
1752 
1753 			CURVNET_SET(so->so_vnet);
1754 			so->so_error = EBADMSG;
1755 			sorwakeup_locked(so);
1756 			CURVNET_RESTORE();
1757 
1758 			m_freem(data);
1759 
1760 			SOCKBUF_LOCK(sb);
1761 			continue;
1762 		}
1763 
1764 		/* Allocate the control mbuf. */
1765 		tgr.tls_type = hdr->tls_type;
1766 		tgr.tls_vmajor = hdr->tls_vmajor;
1767 		tgr.tls_vminor = hdr->tls_vminor;
1768 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
1769 		    trail_len);
1770 		control = sbcreatecontrol_how(&tgr, sizeof(tgr),
1771 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
1772 
1773 		SOCKBUF_LOCK(sb);
1774 		if (sb->sb_tlsdcc == 0) {
1775 			/* sbcut/drop/flush discarded these mbufs. */
1776 			MPASS(sb->sb_tlscc == 0);
1777 			m_freem(data);
1778 			m_freem(control);
1779 			break;
1780 		}
1781 
1782 		/*
1783 		 * Clear the 'dcc' accounting in preparation for
1784 		 * adding the decrypted record.
1785 		 */
1786 		sb->sb_ccc -= tls_len;
1787 		sb->sb_tlsdcc = 0;
1788 		SBCHECK(sb);
1789 
1790 		/* If there is no payload, drop all of the data. */
1791 		if (tgr.tls_length == htobe16(0)) {
1792 			m_freem(data);
1793 			data = NULL;
1794 		} else {
1795 			/* Trim header. */
1796 			remain = tls->params.tls_hlen;
1797 			while (remain > 0) {
1798 				if (data->m_len > remain) {
1799 					data->m_data += remain;
1800 					data->m_len -= remain;
1801 					break;
1802 				}
1803 				remain -= data->m_len;
1804 				data = m_free(data);
1805 			}
1806 
1807 			/* Trim trailer and clear M_NOTREADY. */
1808 			remain = be16toh(tgr.tls_length);
1809 			m = data;
1810 			for (m = data; remain > m->m_len; m = m->m_next) {
1811 				m->m_flags &= ~M_NOTREADY;
1812 				remain -= m->m_len;
1813 			}
1814 			m->m_len = remain;
1815 			m_freem(m->m_next);
1816 			m->m_next = NULL;
1817 			m->m_flags &= ~M_NOTREADY;
1818 
1819 			/* Set EOR on the final mbuf. */
1820 			m->m_flags |= M_EOR;
1821 		}
1822 
1823 		sbappendcontrol_locked(sb, data, control, 0);
1824 	}
1825 
1826 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
1827 
1828 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
1829 		so->so_error = EMSGSIZE;
1830 
1831 	sorwakeup_locked(so);
1832 
1833 deref:
1834 	SOCKBUF_UNLOCK_ASSERT(sb);
1835 
1836 	CURVNET_SET(so->so_vnet);
1837 	SOCK_LOCK(so);
1838 	sorele(so);
1839 	CURVNET_RESTORE();
1840 }
1841 
1842 void
1843 ktls_enqueue_to_free(struct mbuf *m)
1844 {
1845 	struct ktls_wq *wq;
1846 	bool running;
1847 
1848 	/* Mark it for freeing. */
1849 	m->m_epg_flags |= EPG_FLAG_2FREE;
1850 	wq = &ktls_wq[m->m_epg_tls->wq_index];
1851 	mtx_lock(&wq->mtx);
1852 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1853 	running = wq->running;
1854 	mtx_unlock(&wq->mtx);
1855 	if (!running)
1856 		wakeup(wq);
1857 }
1858 
1859 void
1860 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
1861 {
1862 	struct ktls_wq *wq;
1863 	bool running;
1864 
1865 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
1866 	    (M_EXTPG | M_NOTREADY)),
1867 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
1868 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
1869 
1870 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
1871 
1872 	m->m_epg_enc_cnt = page_count;
1873 
1874 	/*
1875 	 * Save a pointer to the socket.  The caller is responsible
1876 	 * for taking an additional reference via soref().
1877 	 */
1878 	m->m_epg_so = so;
1879 
1880 	wq = &ktls_wq[m->m_epg_tls->wq_index];
1881 	mtx_lock(&wq->mtx);
1882 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
1883 	running = wq->running;
1884 	mtx_unlock(&wq->mtx);
1885 	if (!running)
1886 		wakeup(wq);
1887 	counter_u64_add(ktls_cnt_tx_queued, 1);
1888 }
1889 
1890 static __noinline void
1891 ktls_encrypt(struct mbuf *top)
1892 {
1893 	struct ktls_session *tls;
1894 	struct socket *so;
1895 	struct mbuf *m;
1896 	vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1897 	struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1898 	struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)];
1899 	vm_page_t pg;
1900 	int error, i, len, npages, off, total_pages;
1901 	bool is_anon;
1902 
1903 	so = top->m_epg_so;
1904 	tls = top->m_epg_tls;
1905 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
1906 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
1907 #ifdef INVARIANTS
1908 	top->m_epg_so = NULL;
1909 #endif
1910 	total_pages = top->m_epg_enc_cnt;
1911 	npages = 0;
1912 
1913 	/*
1914 	 * Encrypt the TLS records in the chain of mbufs starting with
1915 	 * 'top'.  'total_pages' gives us a total count of pages and is
1916 	 * used to know when we have finished encrypting the TLS
1917 	 * records originally queued with 'top'.
1918 	 *
1919 	 * NB: These mbufs are queued in the socket buffer and
1920 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
1921 	 * socket buffer lock is not held while traversing this chain.
1922 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
1923 	 * pointers should be stable.  However, the 'm_next' of the
1924 	 * last mbuf encrypted is not necessarily NULL.  It can point
1925 	 * to other mbufs appended while 'top' was on the TLS work
1926 	 * queue.
1927 	 *
1928 	 * Each mbuf holds an entire TLS record.
1929 	 */
1930 	error = 0;
1931 	for (m = top; npages != total_pages; m = m->m_next) {
1932 		KASSERT(m->m_epg_tls == tls,
1933 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
1934 		    tls, m->m_epg_tls));
1935 		KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
1936 		    (M_EXTPG | M_NOTREADY),
1937 		    ("%p not unready & nomap mbuf (top = %p)\n", m, top));
1938 		KASSERT(npages + m->m_epg_npgs <= total_pages,
1939 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
1940 		    total_pages, m));
1941 
1942 		/*
1943 		 * Generate source and destination ivoecs to pass to
1944 		 * the SW encryption backend.  For writable mbufs, the
1945 		 * destination iovec is a copy of the source and
1946 		 * encryption is done in place.  For file-backed mbufs
1947 		 * (from sendfile), anonymous wired pages are
1948 		 * allocated and assigned to the destination iovec.
1949 		 */
1950 		is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0;
1951 
1952 		off = m->m_epg_1st_off;
1953 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
1954 			len = m_epg_pagelen(m, i, off);
1955 			src_iov[i].iov_len = len;
1956 			src_iov[i].iov_base =
1957 			    (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) +
1958 				off;
1959 
1960 			if (is_anon) {
1961 				dst_iov[i].iov_base = src_iov[i].iov_base;
1962 				dst_iov[i].iov_len = src_iov[i].iov_len;
1963 				continue;
1964 			}
1965 retry_page:
1966 			pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
1967 			    VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED);
1968 			if (pg == NULL) {
1969 				vm_wait(NULL);
1970 				goto retry_page;
1971 			}
1972 			parray[i] = VM_PAGE_TO_PHYS(pg);
1973 			dst_iov[i].iov_base =
1974 			    (char *)(void *)PHYS_TO_DMAP(parray[i]) + off;
1975 			dst_iov[i].iov_len = len;
1976 		}
1977 
1978 		npages += i;
1979 
1980 		error = (*tls->sw_encrypt)(tls,
1981 		    (const struct tls_record_layer *)m->m_epg_hdr,
1982 		    m->m_epg_trail, src_iov, dst_iov, i, m->m_epg_seqno,
1983 		    m->m_epg_record_type);
1984 		if (error) {
1985 			counter_u64_add(ktls_offload_failed_crypto, 1);
1986 			break;
1987 		}
1988 
1989 		/*
1990 		 * For file-backed mbufs, release the file-backed
1991 		 * pages and replace them in the ext_pgs array with
1992 		 * the anonymous wired pages allocated above.
1993 		 */
1994 		if (!is_anon) {
1995 			/* Free the old pages. */
1996 			m->m_ext.ext_free(m);
1997 
1998 			/* Replace them with the new pages. */
1999 			for (i = 0; i < m->m_epg_npgs; i++)
2000 				m->m_epg_pa[i] = parray[i];
2001 
2002 			/* Use the basic free routine. */
2003 			m->m_ext.ext_free = mb_free_mext_pgs;
2004 
2005 			/* Pages are now writable. */
2006 			m->m_epg_flags |= EPG_FLAG_ANON;
2007 		}
2008 
2009 		/*
2010 		 * Drop a reference to the session now that it is no
2011 		 * longer needed.  Existing code depends on encrypted
2012 		 * records having no associated session vs
2013 		 * yet-to-be-encrypted records having an associated
2014 		 * session.
2015 		 */
2016 		m->m_epg_tls = NULL;
2017 		ktls_free(tls);
2018 	}
2019 
2020 	CURVNET_SET(so->so_vnet);
2021 	if (error == 0) {
2022 		(void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages);
2023 	} else {
2024 		so->so_proto->pr_usrreqs->pru_abort(so);
2025 		so->so_error = EIO;
2026 		mb_free_notready(top, total_pages);
2027 	}
2028 
2029 	SOCK_LOCK(so);
2030 	sorele(so);
2031 	CURVNET_RESTORE();
2032 }
2033 
2034 static void
2035 ktls_work_thread(void *ctx)
2036 {
2037 	struct ktls_wq *wq = ctx;
2038 	struct mbuf *m, *n;
2039 	struct socket *so, *son;
2040 	STAILQ_HEAD(, mbuf) local_m_head;
2041 	STAILQ_HEAD(, socket) local_so_head;
2042 
2043 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
2044 	fpu_kern_thread(0);
2045 #endif
2046 	for (;;) {
2047 		mtx_lock(&wq->mtx);
2048 		while (STAILQ_EMPTY(&wq->m_head) &&
2049 		    STAILQ_EMPTY(&wq->so_head)) {
2050 			wq->running = false;
2051 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
2052 			wq->running = true;
2053 		}
2054 
2055 		STAILQ_INIT(&local_m_head);
2056 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
2057 		STAILQ_INIT(&local_so_head);
2058 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
2059 		mtx_unlock(&wq->mtx);
2060 
2061 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
2062 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
2063 				ktls_free(m->m_epg_tls);
2064 				uma_zfree(zone_mbuf, m);
2065 			} else {
2066 				ktls_encrypt(m);
2067 				counter_u64_add(ktls_cnt_tx_queued, -1);
2068 			}
2069 		}
2070 
2071 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
2072 			ktls_decrypt(so);
2073 			counter_u64_add(ktls_cnt_rx_queued, -1);
2074 		}
2075 	}
2076 }
2077