1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reclaim_thread(void *ctx); 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 static void ktls_work_thread(void *ctx); 304 305 int 306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) 307 { 308 struct tls_enable_v0 tls_v0; 309 int error; 310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL; 311 312 if (sopt->sopt_valsize == sizeof(tls_v0)) { 313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); 314 if (error != 0) 315 goto done; 316 memset(tls, 0, sizeof(*tls)); 317 tls->cipher_key = tls_v0.cipher_key; 318 tls->iv = tls_v0.iv; 319 tls->auth_key = tls_v0.auth_key; 320 tls->cipher_algorithm = tls_v0.cipher_algorithm; 321 tls->cipher_key_len = tls_v0.cipher_key_len; 322 tls->iv_len = tls_v0.iv_len; 323 tls->auth_algorithm = tls_v0.auth_algorithm; 324 tls->auth_key_len = tls_v0.auth_key_len; 325 tls->flags = tls_v0.flags; 326 tls->tls_vmajor = tls_v0.tls_vmajor; 327 tls->tls_vminor = tls_v0.tls_vminor; 328 } else 329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)); 330 331 if (error != 0) 332 return (error); 333 334 if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE) 335 return (EINVAL); 336 if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv)) 337 return (EINVAL); 338 if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE) 339 return (EINVAL); 340 341 /* All supported algorithms require a cipher key. */ 342 if (tls->cipher_key_len == 0) 343 return (EINVAL); 344 345 /* 346 * Now do a deep copy of the variable-length arrays in the struct, so that 347 * subsequent consumers of it can reliably assume kernel memory. This 348 * requires doing our own allocations, which we will free in the 349 * error paths so that our caller need only worry about outstanding 350 * allocations existing on successful return. 351 */ 352 if (tls->cipher_key_len != 0) { 353 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK); 354 if (sopt->sopt_td != NULL) { 355 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len); 356 if (error != 0) 357 goto done; 358 } else { 359 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len); 360 } 361 } 362 if (tls->iv_len != 0) { 363 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK); 364 if (sopt->sopt_td != NULL) { 365 error = copyin(tls->iv, iv, tls->iv_len); 366 if (error != 0) 367 goto done; 368 } else { 369 bcopy(tls->iv, iv, tls->iv_len); 370 } 371 } 372 if (tls->auth_key_len != 0) { 373 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK); 374 if (sopt->sopt_td != NULL) { 375 error = copyin(tls->auth_key, auth_key, tls->auth_key_len); 376 if (error != 0) 377 goto done; 378 } else { 379 bcopy(tls->auth_key, auth_key, tls->auth_key_len); 380 } 381 } 382 tls->cipher_key = cipher_key; 383 tls->iv = iv; 384 tls->auth_key = auth_key; 385 386 done: 387 if (error != 0) { 388 zfree(cipher_key, M_KTLS); 389 zfree(iv, M_KTLS); 390 zfree(auth_key, M_KTLS); 391 } 392 393 return (error); 394 } 395 396 void 397 ktls_cleanup_tls_enable(struct tls_enable *tls) 398 { 399 zfree(__DECONST(void *, tls->cipher_key), M_KTLS); 400 zfree(__DECONST(void *, tls->iv), M_KTLS); 401 zfree(__DECONST(void *, tls->auth_key), M_KTLS); 402 } 403 404 static u_int 405 ktls_get_cpu(struct socket *so) 406 { 407 struct inpcb *inp; 408 #ifdef NUMA 409 struct ktls_domain_info *di; 410 #endif 411 u_int cpuid; 412 413 inp = sotoinpcb(so); 414 #ifdef RSS 415 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 416 if (cpuid != NETISR_CPUID_NONE) 417 return (cpuid); 418 #endif 419 /* 420 * Just use the flowid to shard connections in a repeatable 421 * fashion. Note that TLS 1.0 sessions rely on the 422 * serialization provided by having the same connection use 423 * the same queue. 424 */ 425 #ifdef NUMA 426 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 427 di = &ktls_domains[inp->inp_numa_domain]; 428 cpuid = di->cpu[inp->inp_flowid % di->count]; 429 } else 430 #endif 431 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 432 return (cpuid); 433 } 434 435 static int 436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 437 { 438 vm_page_t m; 439 int i, req; 440 441 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 442 ("%s: ktls max length %d is not page size-aligned", 443 __func__, ktls_maxlen)); 444 445 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 446 for (i = 0; i < count; i++) { 447 m = vm_page_alloc_noobj_contig_domain(domain, req, 448 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 449 VM_MEMATTR_DEFAULT); 450 if (m == NULL) 451 break; 452 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 453 } 454 return (i); 455 } 456 457 static void 458 ktls_buffer_release(void *arg __unused, void **store, int count) 459 { 460 vm_page_t m; 461 int i, j; 462 463 for (i = 0; i < count; i++) { 464 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 465 for (j = 0; j < atop(ktls_maxlen); j++) { 466 (void)vm_page_unwire_noq(m + j); 467 vm_page_free(m + j); 468 } 469 } 470 } 471 472 static void 473 ktls_free_mext_contig(struct mbuf *m) 474 { 475 M_ASSERTEXTPG(m); 476 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 477 } 478 479 static int 480 ktls_init(void) 481 { 482 struct thread *td; 483 struct pcpu *pc; 484 int count, domain, error, i; 485 486 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 487 M_WAITOK | M_ZERO); 488 489 ktls_session_zone = uma_zcreate("ktls_session", 490 sizeof(struct ktls_session), 491 NULL, NULL, NULL, NULL, 492 UMA_ALIGN_CACHE, 0); 493 494 if (ktls_sw_buffer_cache) { 495 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 496 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 497 ktls_buffer_import, ktls_buffer_release, NULL, 498 UMA_ZONE_FIRSTTOUCH); 499 } 500 501 /* 502 * Initialize the workqueues to run the TLS work. We create a 503 * work queue for each CPU. 504 */ 505 CPU_FOREACH(i) { 506 STAILQ_INIT(&ktls_wq[i].m_head); 507 STAILQ_INIT(&ktls_wq[i].so_head); 508 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 509 if (ktls_bind_threads > 1) { 510 pc = pcpu_find(i); 511 domain = pc->pc_domain; 512 count = ktls_domains[domain].count; 513 ktls_domains[domain].cpu[count] = i; 514 ktls_domains[domain].count++; 515 } 516 ktls_cpuid_lookup[ktls_number_threads] = i; 517 ktls_number_threads++; 518 } 519 520 /* 521 * If we somehow have an empty domain, fall back to choosing 522 * among all KTLS threads. 523 */ 524 if (ktls_bind_threads > 1) { 525 for (i = 0; i < vm_ndomains; i++) { 526 if (ktls_domains[i].count == 0) { 527 ktls_bind_threads = 1; 528 break; 529 } 530 } 531 } 532 533 /* Start kthreads for each workqueue. */ 534 CPU_FOREACH(i) { 535 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 536 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 537 if (error) { 538 printf("Can't add KTLS thread %d error %d\n", i, error); 539 return (error); 540 } 541 } 542 543 /* 544 * Start an allocation thread per-domain to perform blocking allocations 545 * of 16k physically contiguous TLS crypto destination buffers. 546 */ 547 if (ktls_sw_buffer_cache) { 548 for (domain = 0; domain < vm_ndomains; domain++) { 549 if (VM_DOMAIN_EMPTY(domain)) 550 continue; 551 if (CPU_EMPTY(&cpuset_domain[domain])) 552 continue; 553 error = kproc_kthread_add(ktls_reclaim_thread, 554 &ktls_domains[domain], &ktls_proc, 555 &ktls_domains[domain].reclaim_td.td, 556 0, 0, "KTLS", "reclaim_%d", domain); 557 if (error) { 558 printf("Can't add KTLS reclaim thread %d error %d\n", 559 domain, error); 560 return (error); 561 } 562 } 563 } 564 565 if (bootverbose) 566 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 567 return (0); 568 } 569 570 static int 571 ktls_start_kthreads(void) 572 { 573 int error, state; 574 575 start: 576 state = atomic_load_acq_int(&ktls_init_state); 577 if (__predict_true(state > 0)) 578 return (0); 579 if (state < 0) 580 return (ENXIO); 581 582 sx_xlock(&ktls_init_lock); 583 if (ktls_init_state != 0) { 584 sx_xunlock(&ktls_init_lock); 585 goto start; 586 } 587 588 error = ktls_init(); 589 if (error == 0) 590 state = 1; 591 else 592 state = -1; 593 atomic_store_rel_int(&ktls_init_state, state); 594 sx_xunlock(&ktls_init_lock); 595 return (error); 596 } 597 598 static int 599 ktls_create_session(struct socket *so, struct tls_enable *en, 600 struct ktls_session **tlsp, int direction) 601 { 602 struct ktls_session *tls; 603 int error; 604 605 /* Only TLS 1.0 - 1.3 are supported. */ 606 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 607 return (EINVAL); 608 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 609 en->tls_vminor > TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 612 613 /* No flags are currently supported. */ 614 if (en->flags != 0) 615 return (EINVAL); 616 617 /* Common checks for supported algorithms. */ 618 switch (en->cipher_algorithm) { 619 case CRYPTO_AES_NIST_GCM_16: 620 /* 621 * auth_algorithm isn't used, but permit GMAC values 622 * for compatibility. 623 */ 624 switch (en->auth_algorithm) { 625 case 0: 626 #ifdef COMPAT_FREEBSD12 627 /* XXX: Really 13.0-current COMPAT. */ 628 case CRYPTO_AES_128_NIST_GMAC: 629 case CRYPTO_AES_192_NIST_GMAC: 630 case CRYPTO_AES_256_NIST_GMAC: 631 #endif 632 break; 633 default: 634 return (EINVAL); 635 } 636 if (en->auth_key_len != 0) 637 return (EINVAL); 638 switch (en->tls_vminor) { 639 case TLS_MINOR_VER_TWO: 640 if (en->iv_len != TLS_AEAD_GCM_LEN) 641 return (EINVAL); 642 break; 643 case TLS_MINOR_VER_THREE: 644 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 645 return (EINVAL); 646 break; 647 default: 648 return (EINVAL); 649 } 650 break; 651 case CRYPTO_AES_CBC: 652 switch (en->auth_algorithm) { 653 case CRYPTO_SHA1_HMAC: 654 break; 655 case CRYPTO_SHA2_256_HMAC: 656 case CRYPTO_SHA2_384_HMAC: 657 if (en->tls_vminor != TLS_MINOR_VER_TWO) 658 return (EINVAL); 659 break; 660 default: 661 return (EINVAL); 662 } 663 if (en->auth_key_len == 0) 664 return (EINVAL); 665 666 /* 667 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 668 * use explicit IVs. 669 */ 670 switch (en->tls_vminor) { 671 case TLS_MINOR_VER_ZERO: 672 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 673 return (EINVAL); 674 break; 675 case TLS_MINOR_VER_ONE: 676 case TLS_MINOR_VER_TWO: 677 /* Ignore any supplied IV. */ 678 en->iv_len = 0; 679 break; 680 default: 681 return (EINVAL); 682 } 683 break; 684 case CRYPTO_CHACHA20_POLY1305: 685 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 686 return (EINVAL); 687 if (en->tls_vminor != TLS_MINOR_VER_TWO && 688 en->tls_vminor != TLS_MINOR_VER_THREE) 689 return (EINVAL); 690 if (en->iv_len != TLS_CHACHA20_IV_LEN) 691 return (EINVAL); 692 break; 693 default: 694 return (EINVAL); 695 } 696 697 error = ktls_start_kthreads(); 698 if (error != 0) 699 return (error); 700 701 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 702 703 counter_u64_add(ktls_offload_active, 1); 704 705 refcount_init(&tls->refcount, 1); 706 if (direction == KTLS_RX) { 707 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 708 } else { 709 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 710 tls->inp = so->so_pcb; 711 in_pcbref(tls->inp); 712 tls->tx = true; 713 } 714 715 tls->wq_index = ktls_get_cpu(so); 716 717 tls->params.cipher_algorithm = en->cipher_algorithm; 718 tls->params.auth_algorithm = en->auth_algorithm; 719 tls->params.tls_vmajor = en->tls_vmajor; 720 tls->params.tls_vminor = en->tls_vminor; 721 tls->params.flags = en->flags; 722 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 723 724 /* Set the header and trailer lengths. */ 725 tls->params.tls_hlen = sizeof(struct tls_record_layer); 726 switch (en->cipher_algorithm) { 727 case CRYPTO_AES_NIST_GCM_16: 728 /* 729 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 730 * nonce. TLS 1.3 uses a 12 byte implicit IV. 731 */ 732 if (en->tls_vminor < TLS_MINOR_VER_THREE) 733 tls->params.tls_hlen += sizeof(uint64_t); 734 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 735 tls->params.tls_bs = 1; 736 break; 737 case CRYPTO_AES_CBC: 738 switch (en->auth_algorithm) { 739 case CRYPTO_SHA1_HMAC: 740 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 741 /* Implicit IV, no nonce. */ 742 tls->sequential_records = true; 743 tls->next_seqno = be64dec(en->rec_seq); 744 STAILQ_INIT(&tls->pending_records); 745 } else { 746 tls->params.tls_hlen += AES_BLOCK_LEN; 747 } 748 tls->params.tls_tlen = AES_BLOCK_LEN + 749 SHA1_HASH_LEN; 750 break; 751 case CRYPTO_SHA2_256_HMAC: 752 tls->params.tls_hlen += AES_BLOCK_LEN; 753 tls->params.tls_tlen = AES_BLOCK_LEN + 754 SHA2_256_HASH_LEN; 755 break; 756 case CRYPTO_SHA2_384_HMAC: 757 tls->params.tls_hlen += AES_BLOCK_LEN; 758 tls->params.tls_tlen = AES_BLOCK_LEN + 759 SHA2_384_HASH_LEN; 760 break; 761 default: 762 panic("invalid hmac"); 763 } 764 tls->params.tls_bs = AES_BLOCK_LEN; 765 break; 766 case CRYPTO_CHACHA20_POLY1305: 767 /* 768 * Chacha20 uses a 12 byte implicit IV. 769 */ 770 tls->params.tls_tlen = POLY1305_HASH_LEN; 771 tls->params.tls_bs = 1; 772 break; 773 default: 774 panic("invalid cipher"); 775 } 776 777 /* 778 * TLS 1.3 includes optional padding which we do not support, 779 * and also puts the "real" record type at the end of the 780 * encrypted data. 781 */ 782 if (en->tls_vminor == TLS_MINOR_VER_THREE) 783 tls->params.tls_tlen += sizeof(uint8_t); 784 785 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 786 ("TLS header length too long: %d", tls->params.tls_hlen)); 787 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 788 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 789 790 if (en->auth_key_len != 0) { 791 tls->params.auth_key_len = en->auth_key_len; 792 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 793 M_WAITOK); 794 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len); 795 } 796 797 tls->params.cipher_key_len = en->cipher_key_len; 798 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 799 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len); 800 801 /* 802 * This holds the implicit portion of the nonce for AEAD 803 * ciphers and the initial implicit IV for TLS 1.0. The 804 * explicit portions of the IV are generated in ktls_frame(). 805 */ 806 if (en->iv_len != 0) { 807 tls->params.iv_len = en->iv_len; 808 bcopy(en->iv, tls->params.iv, en->iv_len); 809 810 /* 811 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 812 * counter to generate unique explicit IVs. 813 * 814 * Store this counter in the last 8 bytes of the IV 815 * array so that it is 8-byte aligned. 816 */ 817 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 818 en->tls_vminor == TLS_MINOR_VER_TWO) 819 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 820 } 821 822 *tlsp = tls; 823 return (0); 824 } 825 826 static struct ktls_session * 827 ktls_clone_session(struct ktls_session *tls, int direction) 828 { 829 struct ktls_session *tls_new; 830 831 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 832 833 counter_u64_add(ktls_offload_active, 1); 834 835 refcount_init(&tls_new->refcount, 1); 836 if (direction == KTLS_RX) { 837 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 838 tls_new); 839 } else { 840 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 841 tls_new); 842 tls_new->inp = tls->inp; 843 tls_new->tx = true; 844 in_pcbref(tls_new->inp); 845 } 846 847 /* Copy fields from existing session. */ 848 tls_new->params = tls->params; 849 tls_new->wq_index = tls->wq_index; 850 851 /* Deep copy keys. */ 852 if (tls_new->params.auth_key != NULL) { 853 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 854 M_KTLS, M_WAITOK); 855 memcpy(tls_new->params.auth_key, tls->params.auth_key, 856 tls->params.auth_key_len); 857 } 858 859 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 860 M_WAITOK); 861 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 862 tls->params.cipher_key_len); 863 864 return (tls_new); 865 } 866 867 #ifdef TCP_OFFLOAD 868 static int 869 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 870 { 871 struct inpcb *inp; 872 struct tcpcb *tp; 873 int error; 874 875 inp = so->so_pcb; 876 INP_WLOCK(inp); 877 if (inp->inp_flags & INP_DROPPED) { 878 INP_WUNLOCK(inp); 879 return (ECONNRESET); 880 } 881 if (inp->inp_socket == NULL) { 882 INP_WUNLOCK(inp); 883 return (ECONNRESET); 884 } 885 tp = intotcpcb(inp); 886 if (!(tp->t_flags & TF_TOE)) { 887 INP_WUNLOCK(inp); 888 return (EOPNOTSUPP); 889 } 890 891 error = tcp_offload_alloc_tls_session(tp, tls, direction); 892 INP_WUNLOCK(inp); 893 if (error == 0) { 894 tls->mode = TCP_TLS_MODE_TOE; 895 switch (tls->params.cipher_algorithm) { 896 case CRYPTO_AES_CBC: 897 counter_u64_add(ktls_toe_cbc, 1); 898 break; 899 case CRYPTO_AES_NIST_GCM_16: 900 counter_u64_add(ktls_toe_gcm, 1); 901 break; 902 case CRYPTO_CHACHA20_POLY1305: 903 counter_u64_add(ktls_toe_chacha20, 1); 904 break; 905 } 906 } 907 return (error); 908 } 909 #endif 910 911 /* 912 * Common code used when first enabling ifnet TLS on a connection or 913 * when allocating a new ifnet TLS session due to a routing change. 914 * This function allocates a new TLS send tag on whatever interface 915 * the connection is currently routed over. 916 */ 917 static int 918 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 919 struct m_snd_tag **mstp) 920 { 921 union if_snd_tag_alloc_params params; 922 struct ifnet *ifp; 923 struct nhop_object *nh; 924 struct tcpcb *tp; 925 int error; 926 927 INP_RLOCK(inp); 928 if (inp->inp_flags & INP_DROPPED) { 929 INP_RUNLOCK(inp); 930 return (ECONNRESET); 931 } 932 if (inp->inp_socket == NULL) { 933 INP_RUNLOCK(inp); 934 return (ECONNRESET); 935 } 936 tp = intotcpcb(inp); 937 938 /* 939 * Check administrative controls on ifnet TLS to determine if 940 * ifnet TLS should be denied. 941 * 942 * - Always permit 'force' requests. 943 * - ktls_ifnet_permitted == 0: always deny. 944 */ 945 if (!force && ktls_ifnet_permitted == 0) { 946 INP_RUNLOCK(inp); 947 return (ENXIO); 948 } 949 950 /* 951 * XXX: Use the cached route in the inpcb to find the 952 * interface. This should perhaps instead use 953 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 954 * enabled after a connection has completed key negotiation in 955 * userland, the cached route will be present in practice. 956 */ 957 nh = inp->inp_route.ro_nh; 958 if (nh == NULL) { 959 INP_RUNLOCK(inp); 960 return (ENXIO); 961 } 962 ifp = nh->nh_ifp; 963 if_ref(ifp); 964 965 /* 966 * Allocate a TLS + ratelimit tag if the connection has an 967 * existing pacing rate. 968 */ 969 if (tp->t_pacing_rate != -1 && 970 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 971 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 972 params.tls_rate_limit.inp = inp; 973 params.tls_rate_limit.tls = tls; 974 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 975 } else { 976 params.hdr.type = IF_SND_TAG_TYPE_TLS; 977 params.tls.inp = inp; 978 params.tls.tls = tls; 979 } 980 params.hdr.flowid = inp->inp_flowid; 981 params.hdr.flowtype = inp->inp_flowtype; 982 params.hdr.numa_domain = inp->inp_numa_domain; 983 INP_RUNLOCK(inp); 984 985 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 986 error = EOPNOTSUPP; 987 goto out; 988 } 989 if (inp->inp_vflag & INP_IPV6) { 990 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 991 error = EOPNOTSUPP; 992 goto out; 993 } 994 } else { 995 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 996 error = EOPNOTSUPP; 997 goto out; 998 } 999 } 1000 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1001 out: 1002 if_rele(ifp); 1003 return (error); 1004 } 1005 1006 /* 1007 * Allocate an initial TLS receive tag for doing HW decryption of TLS 1008 * data. 1009 * 1010 * This function allocates a new TLS receive tag on whatever interface 1011 * the connection is currently routed over. If the connection ends up 1012 * using a different interface for receive this will get fixed up via 1013 * ktls_input_ifp_mismatch as future packets arrive. 1014 */ 1015 static int 1016 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1017 struct m_snd_tag **mstp) 1018 { 1019 union if_snd_tag_alloc_params params; 1020 struct ifnet *ifp; 1021 struct nhop_object *nh; 1022 int error; 1023 1024 if (!ktls_ocf_recrypt_supported(tls)) 1025 return (ENXIO); 1026 1027 INP_RLOCK(inp); 1028 if (inp->inp_flags & INP_DROPPED) { 1029 INP_RUNLOCK(inp); 1030 return (ECONNRESET); 1031 } 1032 if (inp->inp_socket == NULL) { 1033 INP_RUNLOCK(inp); 1034 return (ECONNRESET); 1035 } 1036 1037 /* 1038 * Check administrative controls on ifnet TLS to determine if 1039 * ifnet TLS should be denied. 1040 */ 1041 if (ktls_ifnet_permitted == 0) { 1042 INP_RUNLOCK(inp); 1043 return (ENXIO); 1044 } 1045 1046 /* 1047 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1048 * the inpcb to find the interface. 1049 */ 1050 nh = inp->inp_route.ro_nh; 1051 if (nh == NULL) { 1052 INP_RUNLOCK(inp); 1053 return (ENXIO); 1054 } 1055 ifp = nh->nh_ifp; 1056 if_ref(ifp); 1057 tls->rx_ifp = ifp; 1058 1059 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1060 params.hdr.flowid = inp->inp_flowid; 1061 params.hdr.flowtype = inp->inp_flowtype; 1062 params.hdr.numa_domain = inp->inp_numa_domain; 1063 params.tls_rx.inp = inp; 1064 params.tls_rx.tls = tls; 1065 params.tls_rx.vlan_id = 0; 1066 1067 INP_RUNLOCK(inp); 1068 1069 if (inp->inp_vflag & INP_IPV6) { 1070 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 1071 error = EOPNOTSUPP; 1072 goto out; 1073 } 1074 } else { 1075 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 1076 error = EOPNOTSUPP; 1077 goto out; 1078 } 1079 } 1080 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1081 1082 /* 1083 * If this connection is over a vlan, vlan_snd_tag_alloc 1084 * rewrites vlan_id with the saved interface. Save the VLAN 1085 * ID for use in ktls_reset_receive_tag which allocates new 1086 * receive tags directly from the leaf interface bypassing 1087 * if_vlan. 1088 */ 1089 if (error == 0) 1090 tls->rx_vlan_id = params.tls_rx.vlan_id; 1091 out: 1092 return (error); 1093 } 1094 1095 static int 1096 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1097 bool force) 1098 { 1099 struct m_snd_tag *mst; 1100 int error; 1101 1102 switch (direction) { 1103 case KTLS_TX: 1104 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1105 if (__predict_false(error != 0)) 1106 goto done; 1107 break; 1108 case KTLS_RX: 1109 KASSERT(!force, ("%s: forced receive tag", __func__)); 1110 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1111 if (__predict_false(error != 0)) 1112 goto done; 1113 break; 1114 default: 1115 __assert_unreachable(); 1116 } 1117 1118 tls->mode = TCP_TLS_MODE_IFNET; 1119 tls->snd_tag = mst; 1120 1121 switch (tls->params.cipher_algorithm) { 1122 case CRYPTO_AES_CBC: 1123 counter_u64_add(ktls_ifnet_cbc, 1); 1124 break; 1125 case CRYPTO_AES_NIST_GCM_16: 1126 counter_u64_add(ktls_ifnet_gcm, 1); 1127 break; 1128 case CRYPTO_CHACHA20_POLY1305: 1129 counter_u64_add(ktls_ifnet_chacha20, 1); 1130 break; 1131 default: 1132 break; 1133 } 1134 done: 1135 return (error); 1136 } 1137 1138 static void 1139 ktls_use_sw(struct ktls_session *tls) 1140 { 1141 tls->mode = TCP_TLS_MODE_SW; 1142 switch (tls->params.cipher_algorithm) { 1143 case CRYPTO_AES_CBC: 1144 counter_u64_add(ktls_sw_cbc, 1); 1145 break; 1146 case CRYPTO_AES_NIST_GCM_16: 1147 counter_u64_add(ktls_sw_gcm, 1); 1148 break; 1149 case CRYPTO_CHACHA20_POLY1305: 1150 counter_u64_add(ktls_sw_chacha20, 1); 1151 break; 1152 } 1153 } 1154 1155 static int 1156 ktls_try_sw(struct ktls_session *tls, int direction) 1157 { 1158 int error; 1159 1160 error = ktls_ocf_try(tls, direction); 1161 if (error) 1162 return (error); 1163 ktls_use_sw(tls); 1164 return (0); 1165 } 1166 1167 /* 1168 * KTLS RX stores data in the socket buffer as a list of TLS records, 1169 * where each record is stored as a control message containg the TLS 1170 * header followed by data mbufs containing the decrypted data. This 1171 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1172 * both encrypted and decrypted data. TLS records decrypted by a NIC 1173 * should be queued to the socket buffer as records, but encrypted 1174 * data which needs to be decrypted by software arrives as a stream of 1175 * regular mbufs which need to be converted. In addition, there may 1176 * already be pending encrypted data in the socket buffer when KTLS RX 1177 * is enabled. 1178 * 1179 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1180 * is used: 1181 * 1182 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1183 * 1184 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1185 * from the first mbuf. Once all of the data for that TLS record is 1186 * queued, the socket is queued to a worker thread. 1187 * 1188 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1189 * the TLS chain. Each TLS record is detached from the TLS chain, 1190 * decrypted, and inserted into the regular socket buffer chain as 1191 * record starting with a control message holding the TLS header and 1192 * a chain of mbufs holding the encrypted data. 1193 */ 1194 1195 static void 1196 sb_mark_notready(struct sockbuf *sb) 1197 { 1198 struct mbuf *m; 1199 1200 m = sb->sb_mb; 1201 sb->sb_mtls = m; 1202 sb->sb_mb = NULL; 1203 sb->sb_mbtail = NULL; 1204 sb->sb_lastrecord = NULL; 1205 for (; m != NULL; m = m->m_next) { 1206 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1207 __func__)); 1208 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1209 __func__)); 1210 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1211 __func__)); 1212 m->m_flags |= M_NOTREADY; 1213 sb->sb_acc -= m->m_len; 1214 sb->sb_tlscc += m->m_len; 1215 sb->sb_mtlstail = m; 1216 } 1217 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1218 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1219 sb->sb_ccc)); 1220 } 1221 1222 /* 1223 * Return information about the pending TLS data in a socket 1224 * buffer. On return, 'seqno' is set to the sequence number 1225 * of the next TLS record to be received, 'resid' is set to 1226 * the amount of bytes still needed for the last pending 1227 * record. The function returns 'false' if the last pending 1228 * record contains a partial TLS header. In that case, 'resid' 1229 * is the number of bytes needed to complete the TLS header. 1230 */ 1231 bool 1232 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1233 { 1234 struct tls_record_layer hdr; 1235 struct mbuf *m; 1236 uint64_t seqno; 1237 size_t resid; 1238 u_int offset, record_len; 1239 1240 SOCKBUF_LOCK_ASSERT(sb); 1241 MPASS(sb->sb_flags & SB_TLS_RX); 1242 seqno = sb->sb_tls_seqno; 1243 resid = sb->sb_tlscc; 1244 m = sb->sb_mtls; 1245 offset = 0; 1246 1247 if (resid == 0) { 1248 *seqnop = seqno; 1249 *residp = 0; 1250 return (true); 1251 } 1252 1253 for (;;) { 1254 seqno++; 1255 1256 if (resid < sizeof(hdr)) { 1257 *seqnop = seqno; 1258 *residp = sizeof(hdr) - resid; 1259 return (false); 1260 } 1261 1262 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1263 1264 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1265 if (resid <= record_len) { 1266 *seqnop = seqno; 1267 *residp = record_len - resid; 1268 return (true); 1269 } 1270 resid -= record_len; 1271 1272 while (record_len != 0) { 1273 if (m->m_len - offset > record_len) { 1274 offset += record_len; 1275 break; 1276 } 1277 1278 record_len -= (m->m_len - offset); 1279 offset = 0; 1280 m = m->m_next; 1281 } 1282 } 1283 } 1284 1285 int 1286 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1287 { 1288 struct ktls_session *tls; 1289 int error; 1290 1291 if (!ktls_offload_enable) 1292 return (ENOTSUP); 1293 1294 counter_u64_add(ktls_offload_enable_calls, 1); 1295 1296 /* 1297 * This should always be true since only the TCP socket option 1298 * invokes this function. 1299 */ 1300 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1301 return (EINVAL); 1302 1303 /* 1304 * XXX: Don't overwrite existing sessions. We should permit 1305 * this to support rekeying in the future. 1306 */ 1307 if (so->so_rcv.sb_tls_info != NULL) 1308 return (EALREADY); 1309 1310 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1311 return (ENOTSUP); 1312 1313 error = ktls_create_session(so, en, &tls, KTLS_RX); 1314 if (error) 1315 return (error); 1316 1317 error = ktls_ocf_try(tls, KTLS_RX); 1318 if (error) { 1319 ktls_free(tls); 1320 return (error); 1321 } 1322 1323 /* 1324 * Serialize with soreceive_generic() and make sure that we're not 1325 * operating on a listening socket. 1326 */ 1327 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT); 1328 if (error) { 1329 ktls_free(tls); 1330 return (error); 1331 } 1332 1333 /* Mark the socket as using TLS offload. */ 1334 SOCK_RECVBUF_LOCK(so); 1335 if (__predict_false(so->so_rcv.sb_tls_info != NULL)) { 1336 SOCK_RECVBUF_UNLOCK(so); 1337 SOCK_IO_RECV_UNLOCK(so); 1338 ktls_free(tls); 1339 return (EALREADY); 1340 } 1341 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1342 so->so_rcv.sb_tls_info = tls; 1343 so->so_rcv.sb_flags |= SB_TLS_RX; 1344 1345 /* Mark existing data as not ready until it can be decrypted. */ 1346 sb_mark_notready(&so->so_rcv); 1347 ktls_check_rx(&so->so_rcv); 1348 SOCK_RECVBUF_UNLOCK(so); 1349 SOCK_IO_RECV_UNLOCK(so); 1350 1351 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1352 #ifdef TCP_OFFLOAD 1353 error = ktls_try_toe(so, tls, KTLS_RX); 1354 if (error) 1355 #endif 1356 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1357 if (error) 1358 ktls_use_sw(tls); 1359 1360 counter_u64_add(ktls_offload_total, 1); 1361 1362 return (0); 1363 } 1364 1365 int 1366 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1367 { 1368 struct ktls_session *tls; 1369 struct inpcb *inp; 1370 struct tcpcb *tp; 1371 int error; 1372 1373 if (!ktls_offload_enable) 1374 return (ENOTSUP); 1375 1376 counter_u64_add(ktls_offload_enable_calls, 1); 1377 1378 /* 1379 * This should always be true since only the TCP socket option 1380 * invokes this function. 1381 */ 1382 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1383 return (EINVAL); 1384 1385 /* 1386 * XXX: Don't overwrite existing sessions. We should permit 1387 * this to support rekeying in the future. 1388 */ 1389 if (so->so_snd.sb_tls_info != NULL) 1390 return (EALREADY); 1391 1392 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1393 return (ENOTSUP); 1394 1395 /* TLS requires ext pgs */ 1396 if (mb_use_ext_pgs == 0) 1397 return (ENXIO); 1398 1399 error = ktls_create_session(so, en, &tls, KTLS_TX); 1400 if (error) 1401 return (error); 1402 1403 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1404 #ifdef TCP_OFFLOAD 1405 error = ktls_try_toe(so, tls, KTLS_TX); 1406 if (error) 1407 #endif 1408 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1409 if (error) 1410 error = ktls_try_sw(tls, KTLS_TX); 1411 1412 if (error) { 1413 ktls_free(tls); 1414 return (error); 1415 } 1416 1417 /* 1418 * Serialize with sosend_generic() and make sure that we're not 1419 * operating on a listening socket. 1420 */ 1421 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1422 if (error) { 1423 ktls_free(tls); 1424 return (error); 1425 } 1426 1427 /* 1428 * Write lock the INP when setting sb_tls_info so that 1429 * routines in tcp_ratelimit.c can read sb_tls_info while 1430 * holding the INP lock. 1431 */ 1432 inp = so->so_pcb; 1433 INP_WLOCK(inp); 1434 SOCK_SENDBUF_LOCK(so); 1435 if (__predict_false(so->so_snd.sb_tls_info != NULL)) { 1436 SOCK_SENDBUF_UNLOCK(so); 1437 INP_WUNLOCK(inp); 1438 SOCK_IO_SEND_UNLOCK(so); 1439 ktls_free(tls); 1440 return (EALREADY); 1441 } 1442 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1443 so->so_snd.sb_tls_info = tls; 1444 if (tls->mode != TCP_TLS_MODE_SW) { 1445 tp = intotcpcb(inp); 1446 MPASS(tp->t_nic_ktls_xmit == 0); 1447 tp->t_nic_ktls_xmit = 1; 1448 if (tp->t_fb->tfb_hwtls_change != NULL) 1449 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1450 } 1451 SOCK_SENDBUF_UNLOCK(so); 1452 INP_WUNLOCK(inp); 1453 SOCK_IO_SEND_UNLOCK(so); 1454 1455 counter_u64_add(ktls_offload_total, 1); 1456 1457 return (0); 1458 } 1459 1460 int 1461 ktls_get_rx_mode(struct socket *so, int *modep) 1462 { 1463 struct ktls_session *tls; 1464 struct inpcb *inp __diagused; 1465 1466 if (SOLISTENING(so)) 1467 return (EINVAL); 1468 inp = so->so_pcb; 1469 INP_WLOCK_ASSERT(inp); 1470 SOCK_RECVBUF_LOCK(so); 1471 tls = so->so_rcv.sb_tls_info; 1472 if (tls == NULL) 1473 *modep = TCP_TLS_MODE_NONE; 1474 else 1475 *modep = tls->mode; 1476 SOCK_RECVBUF_UNLOCK(so); 1477 return (0); 1478 } 1479 1480 /* 1481 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1482 * 1483 * This function gets information about the next TCP- and TLS- 1484 * sequence number to be processed by the TLS receive worker 1485 * thread. The information is extracted from the given "inpcb" 1486 * structure. The values are stored in host endian format at the two 1487 * given output pointer locations. The TCP sequence number points to 1488 * the beginning of the TLS header. 1489 * 1490 * This function returns zero on success, else a non-zero error code 1491 * is returned. 1492 */ 1493 int 1494 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1495 { 1496 struct socket *so; 1497 struct tcpcb *tp; 1498 1499 INP_RLOCK(inp); 1500 so = inp->inp_socket; 1501 if (__predict_false(so == NULL)) { 1502 INP_RUNLOCK(inp); 1503 return (EINVAL); 1504 } 1505 if (inp->inp_flags & INP_DROPPED) { 1506 INP_RUNLOCK(inp); 1507 return (ECONNRESET); 1508 } 1509 1510 tp = intotcpcb(inp); 1511 MPASS(tp != NULL); 1512 1513 SOCKBUF_LOCK(&so->so_rcv); 1514 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1515 *tlsseq = so->so_rcv.sb_tls_seqno; 1516 SOCKBUF_UNLOCK(&so->so_rcv); 1517 1518 INP_RUNLOCK(inp); 1519 1520 return (0); 1521 } 1522 1523 int 1524 ktls_get_tx_mode(struct socket *so, int *modep) 1525 { 1526 struct ktls_session *tls; 1527 struct inpcb *inp __diagused; 1528 1529 if (SOLISTENING(so)) 1530 return (EINVAL); 1531 inp = so->so_pcb; 1532 INP_WLOCK_ASSERT(inp); 1533 SOCK_SENDBUF_LOCK(so); 1534 tls = so->so_snd.sb_tls_info; 1535 if (tls == NULL) 1536 *modep = TCP_TLS_MODE_NONE; 1537 else 1538 *modep = tls->mode; 1539 SOCK_SENDBUF_UNLOCK(so); 1540 return (0); 1541 } 1542 1543 /* 1544 * Switch between SW and ifnet TLS sessions as requested. 1545 */ 1546 int 1547 ktls_set_tx_mode(struct socket *so, int mode) 1548 { 1549 struct ktls_session *tls, *tls_new; 1550 struct inpcb *inp; 1551 struct tcpcb *tp; 1552 int error; 1553 1554 if (SOLISTENING(so)) 1555 return (EINVAL); 1556 switch (mode) { 1557 case TCP_TLS_MODE_SW: 1558 case TCP_TLS_MODE_IFNET: 1559 break; 1560 default: 1561 return (EINVAL); 1562 } 1563 1564 inp = so->so_pcb; 1565 INP_WLOCK_ASSERT(inp); 1566 tp = intotcpcb(inp); 1567 1568 if (mode == TCP_TLS_MODE_IFNET) { 1569 /* Don't allow enabling ifnet ktls multiple times */ 1570 if (tp->t_nic_ktls_xmit) 1571 return (EALREADY); 1572 1573 /* 1574 * Don't enable ifnet ktls if we disabled it due to an 1575 * excessive retransmission rate 1576 */ 1577 if (tp->t_nic_ktls_xmit_dis) 1578 return (ENXIO); 1579 } 1580 1581 SOCKBUF_LOCK(&so->so_snd); 1582 tls = so->so_snd.sb_tls_info; 1583 if (tls == NULL) { 1584 SOCKBUF_UNLOCK(&so->so_snd); 1585 return (0); 1586 } 1587 1588 if (tls->mode == mode) { 1589 SOCKBUF_UNLOCK(&so->so_snd); 1590 return (0); 1591 } 1592 1593 tls = ktls_hold(tls); 1594 SOCKBUF_UNLOCK(&so->so_snd); 1595 INP_WUNLOCK(inp); 1596 1597 tls_new = ktls_clone_session(tls, KTLS_TX); 1598 1599 if (mode == TCP_TLS_MODE_IFNET) 1600 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1601 else 1602 error = ktls_try_sw(tls_new, KTLS_TX); 1603 if (error) { 1604 counter_u64_add(ktls_switch_failed, 1); 1605 ktls_free(tls_new); 1606 ktls_free(tls); 1607 INP_WLOCK(inp); 1608 return (error); 1609 } 1610 1611 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1612 if (error) { 1613 counter_u64_add(ktls_switch_failed, 1); 1614 ktls_free(tls_new); 1615 ktls_free(tls); 1616 INP_WLOCK(inp); 1617 return (error); 1618 } 1619 1620 /* 1621 * If we raced with another session change, keep the existing 1622 * session. 1623 */ 1624 if (tls != so->so_snd.sb_tls_info) { 1625 counter_u64_add(ktls_switch_failed, 1); 1626 SOCK_IO_SEND_UNLOCK(so); 1627 ktls_free(tls_new); 1628 ktls_free(tls); 1629 INP_WLOCK(inp); 1630 return (EBUSY); 1631 } 1632 1633 INP_WLOCK(inp); 1634 SOCKBUF_LOCK(&so->so_snd); 1635 so->so_snd.sb_tls_info = tls_new; 1636 if (tls_new->mode != TCP_TLS_MODE_SW) { 1637 MPASS(tp->t_nic_ktls_xmit == 0); 1638 tp->t_nic_ktls_xmit = 1; 1639 if (tp->t_fb->tfb_hwtls_change != NULL) 1640 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1641 } 1642 SOCKBUF_UNLOCK(&so->so_snd); 1643 SOCK_IO_SEND_UNLOCK(so); 1644 1645 /* 1646 * Drop two references on 'tls'. The first is for the 1647 * ktls_hold() above. The second drops the reference from the 1648 * socket buffer. 1649 */ 1650 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1651 ktls_free(tls); 1652 ktls_free(tls); 1653 1654 if (mode == TCP_TLS_MODE_IFNET) 1655 counter_u64_add(ktls_switch_to_ifnet, 1); 1656 else 1657 counter_u64_add(ktls_switch_to_sw, 1); 1658 1659 return (0); 1660 } 1661 1662 /* 1663 * Try to allocate a new TLS receive tag. This task is scheduled when 1664 * sbappend_ktls_rx detects an input path change. If a new tag is 1665 * allocated, replace the tag in the TLS session. If a new tag cannot 1666 * be allocated, let the session fall back to software decryption. 1667 */ 1668 static void 1669 ktls_reset_receive_tag(void *context, int pending) 1670 { 1671 union if_snd_tag_alloc_params params; 1672 struct ktls_session *tls; 1673 struct m_snd_tag *mst; 1674 struct inpcb *inp; 1675 struct ifnet *ifp; 1676 struct socket *so; 1677 int error; 1678 1679 MPASS(pending == 1); 1680 1681 tls = context; 1682 so = tls->so; 1683 inp = so->so_pcb; 1684 ifp = NULL; 1685 1686 INP_RLOCK(inp); 1687 if (inp->inp_flags & INP_DROPPED) { 1688 INP_RUNLOCK(inp); 1689 goto out; 1690 } 1691 1692 SOCKBUF_LOCK(&so->so_rcv); 1693 mst = tls->snd_tag; 1694 tls->snd_tag = NULL; 1695 if (mst != NULL) 1696 m_snd_tag_rele(mst); 1697 1698 ifp = tls->rx_ifp; 1699 if_ref(ifp); 1700 SOCKBUF_UNLOCK(&so->so_rcv); 1701 1702 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1703 params.hdr.flowid = inp->inp_flowid; 1704 params.hdr.flowtype = inp->inp_flowtype; 1705 params.hdr.numa_domain = inp->inp_numa_domain; 1706 params.tls_rx.inp = inp; 1707 params.tls_rx.tls = tls; 1708 params.tls_rx.vlan_id = tls->rx_vlan_id; 1709 INP_RUNLOCK(inp); 1710 1711 if (inp->inp_vflag & INP_IPV6) { 1712 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1713 goto out; 1714 } else { 1715 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1716 goto out; 1717 } 1718 1719 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1720 if (error == 0) { 1721 SOCKBUF_LOCK(&so->so_rcv); 1722 tls->snd_tag = mst; 1723 SOCKBUF_UNLOCK(&so->so_rcv); 1724 1725 counter_u64_add(ktls_ifnet_reset, 1); 1726 } else { 1727 /* 1728 * Just fall back to software decryption if a tag 1729 * cannot be allocated leaving the connection intact. 1730 * If a future input path change switches to another 1731 * interface this connection will resume ifnet TLS. 1732 */ 1733 counter_u64_add(ktls_ifnet_reset_failed, 1); 1734 } 1735 1736 out: 1737 mtx_pool_lock(mtxpool_sleep, tls); 1738 tls->reset_pending = false; 1739 mtx_pool_unlock(mtxpool_sleep, tls); 1740 1741 if (ifp != NULL) 1742 if_rele(ifp); 1743 CURVNET_SET(so->so_vnet); 1744 sorele(so); 1745 CURVNET_RESTORE(); 1746 ktls_free(tls); 1747 } 1748 1749 /* 1750 * Try to allocate a new TLS send tag. This task is scheduled when 1751 * ip_output detects a route change while trying to transmit a packet 1752 * holding a TLS record. If a new tag is allocated, replace the tag 1753 * in the TLS session. Subsequent packets on the connection will use 1754 * the new tag. If a new tag cannot be allocated, drop the 1755 * connection. 1756 */ 1757 static void 1758 ktls_reset_send_tag(void *context, int pending) 1759 { 1760 struct epoch_tracker et; 1761 struct ktls_session *tls; 1762 struct m_snd_tag *old, *new; 1763 struct inpcb *inp; 1764 struct tcpcb *tp; 1765 int error; 1766 1767 MPASS(pending == 1); 1768 1769 tls = context; 1770 inp = tls->inp; 1771 1772 /* 1773 * Free the old tag first before allocating a new one. 1774 * ip[6]_output_send() will treat a NULL send tag the same as 1775 * an ifp mismatch and drop packets until a new tag is 1776 * allocated. 1777 * 1778 * Write-lock the INP when changing tls->snd_tag since 1779 * ip[6]_output_send() holds a read-lock when reading the 1780 * pointer. 1781 */ 1782 INP_WLOCK(inp); 1783 old = tls->snd_tag; 1784 tls->snd_tag = NULL; 1785 INP_WUNLOCK(inp); 1786 if (old != NULL) 1787 m_snd_tag_rele(old); 1788 1789 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1790 1791 if (error == 0) { 1792 INP_WLOCK(inp); 1793 tls->snd_tag = new; 1794 mtx_pool_lock(mtxpool_sleep, tls); 1795 tls->reset_pending = false; 1796 mtx_pool_unlock(mtxpool_sleep, tls); 1797 INP_WUNLOCK(inp); 1798 1799 counter_u64_add(ktls_ifnet_reset, 1); 1800 1801 /* 1802 * XXX: Should we kick tcp_output explicitly now that 1803 * the send tag is fixed or just rely on timers? 1804 */ 1805 } else { 1806 NET_EPOCH_ENTER(et); 1807 INP_WLOCK(inp); 1808 if (!(inp->inp_flags & INP_DROPPED)) { 1809 tp = intotcpcb(inp); 1810 CURVNET_SET(inp->inp_vnet); 1811 tp = tcp_drop(tp, ECONNABORTED); 1812 CURVNET_RESTORE(); 1813 if (tp != NULL) { 1814 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1815 INP_WUNLOCK(inp); 1816 } 1817 } else 1818 INP_WUNLOCK(inp); 1819 NET_EPOCH_EXIT(et); 1820 1821 counter_u64_add(ktls_ifnet_reset_failed, 1); 1822 1823 /* 1824 * Leave reset_pending true to avoid future tasks while 1825 * the socket goes away. 1826 */ 1827 } 1828 1829 ktls_free(tls); 1830 } 1831 1832 void 1833 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1834 { 1835 struct ktls_session *tls; 1836 struct socket *so; 1837 1838 SOCKBUF_LOCK_ASSERT(sb); 1839 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1840 __func__, sb)); 1841 so = __containerof(sb, struct socket, so_rcv); 1842 1843 tls = sb->sb_tls_info; 1844 if_rele(tls->rx_ifp); 1845 if_ref(ifp); 1846 tls->rx_ifp = ifp; 1847 1848 /* 1849 * See if we should schedule a task to update the receive tag for 1850 * this session. 1851 */ 1852 mtx_pool_lock(mtxpool_sleep, tls); 1853 if (!tls->reset_pending) { 1854 (void) ktls_hold(tls); 1855 soref(so); 1856 tls->so = so; 1857 tls->reset_pending = true; 1858 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1859 } 1860 mtx_pool_unlock(mtxpool_sleep, tls); 1861 } 1862 1863 int 1864 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1865 { 1866 1867 if (inp == NULL) 1868 return (ENOBUFS); 1869 1870 INP_LOCK_ASSERT(inp); 1871 1872 /* 1873 * See if we should schedule a task to update the send tag for 1874 * this session. 1875 */ 1876 mtx_pool_lock(mtxpool_sleep, tls); 1877 if (!tls->reset_pending) { 1878 (void) ktls_hold(tls); 1879 tls->reset_pending = true; 1880 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1881 } 1882 mtx_pool_unlock(mtxpool_sleep, tls); 1883 return (ENOBUFS); 1884 } 1885 1886 #ifdef RATELIMIT 1887 int 1888 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1889 { 1890 union if_snd_tag_modify_params params = { 1891 .rate_limit.max_rate = max_pacing_rate, 1892 .rate_limit.flags = M_NOWAIT, 1893 }; 1894 struct m_snd_tag *mst; 1895 1896 /* Can't get to the inp, but it should be locked. */ 1897 /* INP_LOCK_ASSERT(inp); */ 1898 1899 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1900 1901 if (tls->snd_tag == NULL) { 1902 /* 1903 * Resetting send tag, ignore this change. The 1904 * pending reset may or may not see this updated rate 1905 * in the tcpcb. If it doesn't, we will just lose 1906 * this rate change. 1907 */ 1908 return (0); 1909 } 1910 1911 mst = tls->snd_tag; 1912 1913 MPASS(mst != NULL); 1914 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1915 1916 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1917 } 1918 #endif 1919 1920 static void 1921 ktls_destroy_help(void *context, int pending __unused) 1922 { 1923 ktls_destroy(context); 1924 } 1925 1926 void 1927 ktls_destroy(struct ktls_session *tls) 1928 { 1929 struct inpcb *inp; 1930 struct tcpcb *tp; 1931 bool wlocked; 1932 1933 MPASS(tls->refcount == 0); 1934 1935 inp = tls->inp; 1936 if (tls->tx) { 1937 wlocked = INP_WLOCKED(inp); 1938 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1939 /* 1940 * rwlocks read locks are anonymous, and there 1941 * is no way to know if our current thread 1942 * holds an rlock on the inp. As a rough 1943 * estimate, check to see if the thread holds 1944 * *any* rlocks at all. If it does not, then we 1945 * know that we don't hold the inp rlock, and 1946 * can safely take the wlock 1947 */ 1948 if (curthread->td_rw_rlocks == 0) { 1949 INP_WLOCK(inp); 1950 } else { 1951 /* 1952 * We might hold the rlock, so let's 1953 * do the destroy in a taskqueue 1954 * context to avoid a potential 1955 * deadlock. This should be very 1956 * rare. 1957 */ 1958 counter_u64_add(ktls_destroy_task, 1); 1959 TASK_INIT(&tls->destroy_task, 0, 1960 ktls_destroy_help, tls); 1961 (void)taskqueue_enqueue(taskqueue_thread, 1962 &tls->destroy_task); 1963 return; 1964 } 1965 } 1966 } 1967 1968 if (tls->sequential_records) { 1969 struct mbuf *m, *n; 1970 int page_count; 1971 1972 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1973 page_count = m->m_epg_enc_cnt; 1974 while (page_count > 0) { 1975 KASSERT(page_count >= m->m_epg_nrdy, 1976 ("%s: too few pages", __func__)); 1977 page_count -= m->m_epg_nrdy; 1978 m = m_free(m); 1979 } 1980 } 1981 } 1982 1983 counter_u64_add(ktls_offload_active, -1); 1984 switch (tls->mode) { 1985 case TCP_TLS_MODE_SW: 1986 switch (tls->params.cipher_algorithm) { 1987 case CRYPTO_AES_CBC: 1988 counter_u64_add(ktls_sw_cbc, -1); 1989 break; 1990 case CRYPTO_AES_NIST_GCM_16: 1991 counter_u64_add(ktls_sw_gcm, -1); 1992 break; 1993 case CRYPTO_CHACHA20_POLY1305: 1994 counter_u64_add(ktls_sw_chacha20, -1); 1995 break; 1996 } 1997 break; 1998 case TCP_TLS_MODE_IFNET: 1999 switch (tls->params.cipher_algorithm) { 2000 case CRYPTO_AES_CBC: 2001 counter_u64_add(ktls_ifnet_cbc, -1); 2002 break; 2003 case CRYPTO_AES_NIST_GCM_16: 2004 counter_u64_add(ktls_ifnet_gcm, -1); 2005 break; 2006 case CRYPTO_CHACHA20_POLY1305: 2007 counter_u64_add(ktls_ifnet_chacha20, -1); 2008 break; 2009 } 2010 if (tls->snd_tag != NULL) 2011 m_snd_tag_rele(tls->snd_tag); 2012 if (tls->rx_ifp != NULL) 2013 if_rele(tls->rx_ifp); 2014 if (tls->tx) { 2015 INP_WLOCK_ASSERT(inp); 2016 tp = intotcpcb(inp); 2017 MPASS(tp->t_nic_ktls_xmit == 1); 2018 tp->t_nic_ktls_xmit = 0; 2019 } 2020 break; 2021 #ifdef TCP_OFFLOAD 2022 case TCP_TLS_MODE_TOE: 2023 switch (tls->params.cipher_algorithm) { 2024 case CRYPTO_AES_CBC: 2025 counter_u64_add(ktls_toe_cbc, -1); 2026 break; 2027 case CRYPTO_AES_NIST_GCM_16: 2028 counter_u64_add(ktls_toe_gcm, -1); 2029 break; 2030 case CRYPTO_CHACHA20_POLY1305: 2031 counter_u64_add(ktls_toe_chacha20, -1); 2032 break; 2033 } 2034 break; 2035 #endif 2036 } 2037 if (tls->ocf_session != NULL) 2038 ktls_ocf_free(tls); 2039 if (tls->params.auth_key != NULL) { 2040 zfree(tls->params.auth_key, M_KTLS); 2041 tls->params.auth_key = NULL; 2042 tls->params.auth_key_len = 0; 2043 } 2044 if (tls->params.cipher_key != NULL) { 2045 zfree(tls->params.cipher_key, M_KTLS); 2046 tls->params.cipher_key = NULL; 2047 tls->params.cipher_key_len = 0; 2048 } 2049 if (tls->tx) { 2050 INP_WLOCK_ASSERT(inp); 2051 if (!in_pcbrele_wlocked(inp) && !wlocked) 2052 INP_WUNLOCK(inp); 2053 } 2054 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 2055 2056 uma_zfree(ktls_session_zone, tls); 2057 } 2058 2059 void 2060 ktls_seq(struct sockbuf *sb, struct mbuf *m) 2061 { 2062 2063 for (; m != NULL; m = m->m_next) { 2064 KASSERT((m->m_flags & M_EXTPG) != 0, 2065 ("ktls_seq: mapped mbuf %p", m)); 2066 2067 m->m_epg_seqno = sb->sb_tls_seqno; 2068 sb->sb_tls_seqno++; 2069 } 2070 } 2071 2072 /* 2073 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 2074 * mbuf in the chain must be an unmapped mbuf. The payload of the 2075 * mbuf must be populated with the payload of each TLS record. 2076 * 2077 * The record_type argument specifies the TLS record type used when 2078 * populating the TLS header. 2079 * 2080 * The enq_count argument on return is set to the number of pages of 2081 * payload data for this entire chain that need to be encrypted via SW 2082 * encryption. The returned value should be passed to ktls_enqueue 2083 * when scheduling encryption of this chain of mbufs. To handle the 2084 * special case of empty fragments for TLS 1.0 sessions, an empty 2085 * fragment counts as one page. 2086 */ 2087 void 2088 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2089 uint8_t record_type) 2090 { 2091 struct tls_record_layer *tlshdr; 2092 struct mbuf *m; 2093 uint64_t *noncep; 2094 uint16_t tls_len; 2095 int maxlen __diagused; 2096 2097 maxlen = tls->params.max_frame_len; 2098 *enq_cnt = 0; 2099 for (m = top; m != NULL; m = m->m_next) { 2100 /* 2101 * All mbufs in the chain should be TLS records whose 2102 * payload does not exceed the maximum frame length. 2103 * 2104 * Empty TLS 1.0 records are permitted when using CBC. 2105 */ 2106 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2107 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2108 ("ktls_frame: m %p len %d", m, m->m_len)); 2109 2110 /* 2111 * TLS frames require unmapped mbufs to store session 2112 * info. 2113 */ 2114 KASSERT((m->m_flags & M_EXTPG) != 0, 2115 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2116 2117 tls_len = m->m_len; 2118 2119 /* Save a reference to the session. */ 2120 m->m_epg_tls = ktls_hold(tls); 2121 2122 m->m_epg_hdrlen = tls->params.tls_hlen; 2123 m->m_epg_trllen = tls->params.tls_tlen; 2124 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2125 int bs, delta; 2126 2127 /* 2128 * AES-CBC pads messages to a multiple of the 2129 * block size. Note that the padding is 2130 * applied after the digest and the encryption 2131 * is done on the "plaintext || mac || padding". 2132 * At least one byte of padding is always 2133 * present. 2134 * 2135 * Compute the final trailer length assuming 2136 * at most one block of padding. 2137 * tls->params.tls_tlen is the maximum 2138 * possible trailer length (padding + digest). 2139 * delta holds the number of excess padding 2140 * bytes if the maximum were used. Those 2141 * extra bytes are removed. 2142 */ 2143 bs = tls->params.tls_bs; 2144 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2145 m->m_epg_trllen -= delta; 2146 } 2147 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2148 2149 /* Populate the TLS header. */ 2150 tlshdr = (void *)m->m_epg_hdr; 2151 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2152 2153 /* 2154 * TLS 1.3 masquarades as TLS 1.2 with a record type 2155 * of TLS_RLTYPE_APP. 2156 */ 2157 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2158 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2159 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2160 tlshdr->tls_type = TLS_RLTYPE_APP; 2161 /* save the real record type for later */ 2162 m->m_epg_record_type = record_type; 2163 m->m_epg_trail[0] = record_type; 2164 } else { 2165 tlshdr->tls_vminor = tls->params.tls_vminor; 2166 tlshdr->tls_type = record_type; 2167 } 2168 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2169 2170 /* 2171 * Store nonces / explicit IVs after the end of the 2172 * TLS header. 2173 * 2174 * For GCM with TLS 1.2, an 8 byte nonce is copied 2175 * from the end of the IV. The nonce is then 2176 * incremented for use by the next record. 2177 * 2178 * For CBC, a random nonce is inserted for TLS 1.1+. 2179 */ 2180 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2181 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2182 noncep = (uint64_t *)(tls->params.iv + 8); 2183 be64enc(tlshdr + 1, *noncep); 2184 (*noncep)++; 2185 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2186 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2187 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2188 2189 /* 2190 * When using SW encryption, mark the mbuf not ready. 2191 * It will be marked ready via sbready() after the 2192 * record has been encrypted. 2193 * 2194 * When using ifnet TLS, unencrypted TLS records are 2195 * sent down the stack to the NIC. 2196 */ 2197 if (tls->mode == TCP_TLS_MODE_SW) { 2198 m->m_flags |= M_NOTREADY; 2199 if (__predict_false(tls_len == 0)) { 2200 /* TLS 1.0 empty fragment. */ 2201 m->m_epg_nrdy = 1; 2202 } else 2203 m->m_epg_nrdy = m->m_epg_npgs; 2204 *enq_cnt += m->m_epg_nrdy; 2205 } 2206 } 2207 } 2208 2209 bool 2210 ktls_permit_empty_frames(struct ktls_session *tls) 2211 { 2212 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2213 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2214 } 2215 2216 void 2217 ktls_check_rx(struct sockbuf *sb) 2218 { 2219 struct tls_record_layer hdr; 2220 struct ktls_wq *wq; 2221 struct socket *so; 2222 bool running; 2223 2224 SOCKBUF_LOCK_ASSERT(sb); 2225 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2226 __func__, sb)); 2227 so = __containerof(sb, struct socket, so_rcv); 2228 2229 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2230 return; 2231 2232 /* Is there enough queued for a TLS header? */ 2233 if (sb->sb_tlscc < sizeof(hdr)) { 2234 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2235 so->so_error = EMSGSIZE; 2236 return; 2237 } 2238 2239 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2240 2241 /* Is the entire record queued? */ 2242 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2243 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2244 so->so_error = EMSGSIZE; 2245 return; 2246 } 2247 2248 sb->sb_flags |= SB_TLS_RX_RUNNING; 2249 2250 soref(so); 2251 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2252 mtx_lock(&wq->mtx); 2253 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2254 running = wq->running; 2255 mtx_unlock(&wq->mtx); 2256 if (!running) 2257 wakeup(wq); 2258 counter_u64_add(ktls_cnt_rx_queued, 1); 2259 } 2260 2261 static struct mbuf * 2262 ktls_detach_record(struct sockbuf *sb, int len) 2263 { 2264 struct mbuf *m, *n, *top; 2265 int remain; 2266 2267 SOCKBUF_LOCK_ASSERT(sb); 2268 MPASS(len <= sb->sb_tlscc); 2269 2270 /* 2271 * If TLS chain is the exact size of the record, 2272 * just grab the whole record. 2273 */ 2274 top = sb->sb_mtls; 2275 if (sb->sb_tlscc == len) { 2276 sb->sb_mtls = NULL; 2277 sb->sb_mtlstail = NULL; 2278 goto out; 2279 } 2280 2281 /* 2282 * While it would be nice to use m_split() here, we need 2283 * to know exactly what m_split() allocates to update the 2284 * accounting, so do it inline instead. 2285 */ 2286 remain = len; 2287 for (m = top; remain > m->m_len; m = m->m_next) 2288 remain -= m->m_len; 2289 2290 /* Easy case: don't have to split 'm'. */ 2291 if (remain == m->m_len) { 2292 sb->sb_mtls = m->m_next; 2293 if (sb->sb_mtls == NULL) 2294 sb->sb_mtlstail = NULL; 2295 m->m_next = NULL; 2296 goto out; 2297 } 2298 2299 /* 2300 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2301 * with M_NOWAIT first. 2302 */ 2303 n = m_get(M_NOWAIT, MT_DATA); 2304 if (n == NULL) { 2305 /* 2306 * Use M_WAITOK with socket buffer unlocked. If 2307 * 'sb_mtls' changes while the lock is dropped, return 2308 * NULL to force the caller to retry. 2309 */ 2310 SOCKBUF_UNLOCK(sb); 2311 2312 n = m_get(M_WAITOK, MT_DATA); 2313 2314 SOCKBUF_LOCK(sb); 2315 if (sb->sb_mtls != top) { 2316 m_free(n); 2317 return (NULL); 2318 } 2319 } 2320 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2321 2322 /* Store remainder in 'n'. */ 2323 n->m_len = m->m_len - remain; 2324 if (m->m_flags & M_EXT) { 2325 n->m_data = m->m_data + remain; 2326 mb_dupcl(n, m); 2327 } else { 2328 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2329 } 2330 2331 /* Trim 'm' and update accounting. */ 2332 m->m_len -= n->m_len; 2333 sb->sb_tlscc -= n->m_len; 2334 sb->sb_ccc -= n->m_len; 2335 2336 /* Account for 'n'. */ 2337 sballoc_ktls_rx(sb, n); 2338 2339 /* Insert 'n' into the TLS chain. */ 2340 sb->sb_mtls = n; 2341 n->m_next = m->m_next; 2342 if (sb->sb_mtlstail == m) 2343 sb->sb_mtlstail = n; 2344 2345 /* Detach the record from the TLS chain. */ 2346 m->m_next = NULL; 2347 2348 out: 2349 MPASS(m_length(top, NULL) == len); 2350 for (m = top; m != NULL; m = m->m_next) 2351 sbfree_ktls_rx(sb, m); 2352 sb->sb_tlsdcc = len; 2353 sb->sb_ccc += len; 2354 SBCHECK(sb); 2355 return (top); 2356 } 2357 2358 /* 2359 * Determine the length of the trailing zero padding and find the real 2360 * record type in the byte before the padding. 2361 * 2362 * Walking the mbuf chain backwards is clumsy, so another option would 2363 * be to scan forwards remembering the last non-zero byte before the 2364 * trailer. However, it would be expensive to scan the entire record. 2365 * Instead, find the last non-zero byte of each mbuf in the chain 2366 * keeping track of the relative offset of that nonzero byte. 2367 * 2368 * trail_len is the size of the MAC/tag on input and is set to the 2369 * size of the full trailer including padding and the record type on 2370 * return. 2371 */ 2372 static int 2373 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2374 int *trailer_len, uint8_t *record_typep) 2375 { 2376 char *cp; 2377 u_int digest_start, last_offset, m_len, offset; 2378 uint8_t record_type; 2379 2380 digest_start = tls_len - *trailer_len; 2381 last_offset = 0; 2382 offset = 0; 2383 for (; m != NULL && offset < digest_start; 2384 offset += m->m_len, m = m->m_next) { 2385 /* Don't look for padding in the tag. */ 2386 m_len = min(digest_start - offset, m->m_len); 2387 cp = mtod(m, char *); 2388 2389 /* Find last non-zero byte in this mbuf. */ 2390 while (m_len > 0 && cp[m_len - 1] == 0) 2391 m_len--; 2392 if (m_len > 0) { 2393 record_type = cp[m_len - 1]; 2394 last_offset = offset + m_len; 2395 } 2396 } 2397 if (last_offset < tls->params.tls_hlen) 2398 return (EBADMSG); 2399 2400 *record_typep = record_type; 2401 *trailer_len = tls_len - last_offset + 1; 2402 return (0); 2403 } 2404 2405 /* 2406 * Check if a mbuf chain is fully decrypted at the given offset and 2407 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2408 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2409 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2410 * is encrypted. 2411 */ 2412 ktls_mbuf_crypto_st_t 2413 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2414 { 2415 int m_flags_ored = 0; 2416 int m_flags_anded = -1; 2417 2418 for (; mb != NULL; mb = mb->m_next) { 2419 if (offset < mb->m_len) 2420 break; 2421 offset -= mb->m_len; 2422 } 2423 offset += len; 2424 2425 for (; mb != NULL; mb = mb->m_next) { 2426 m_flags_ored |= mb->m_flags; 2427 m_flags_anded &= mb->m_flags; 2428 2429 if (offset <= mb->m_len) 2430 break; 2431 offset -= mb->m_len; 2432 } 2433 MPASS(mb != NULL || offset == 0); 2434 2435 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2436 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2437 else 2438 return ((m_flags_ored & M_DECRYPTED) ? 2439 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2440 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2441 } 2442 2443 /* 2444 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2445 */ 2446 static int 2447 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2448 { 2449 union if_snd_tag_modify_params params; 2450 struct m_snd_tag *mst; 2451 struct inpcb *inp; 2452 struct tcpcb *tp; 2453 2454 mst = so->so_rcv.sb_tls_info->snd_tag; 2455 if (__predict_false(mst == NULL)) 2456 return (EINVAL); 2457 2458 inp = sotoinpcb(so); 2459 if (__predict_false(inp == NULL)) 2460 return (EINVAL); 2461 2462 INP_RLOCK(inp); 2463 if (inp->inp_flags & INP_DROPPED) { 2464 INP_RUNLOCK(inp); 2465 return (ECONNRESET); 2466 } 2467 2468 tp = intotcpcb(inp); 2469 MPASS(tp != NULL); 2470 2471 /* Get the TCP sequence number of the next valid TLS header. */ 2472 SOCKBUF_LOCK(&so->so_rcv); 2473 params.tls_rx.tls_hdr_tcp_sn = 2474 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2475 params.tls_rx.tls_rec_length = tls_len; 2476 params.tls_rx.tls_seq_number = tls_rcd_num; 2477 SOCKBUF_UNLOCK(&so->so_rcv); 2478 2479 INP_RUNLOCK(inp); 2480 2481 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2482 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2483 } 2484 2485 static void 2486 ktls_drop(struct socket *so, int error) 2487 { 2488 struct epoch_tracker et; 2489 struct inpcb *inp = sotoinpcb(so); 2490 struct tcpcb *tp; 2491 2492 NET_EPOCH_ENTER(et); 2493 INP_WLOCK(inp); 2494 if (!(inp->inp_flags & INP_DROPPED)) { 2495 tp = intotcpcb(inp); 2496 CURVNET_SET(inp->inp_vnet); 2497 tp = tcp_drop(tp, error); 2498 CURVNET_RESTORE(); 2499 if (tp != NULL) 2500 INP_WUNLOCK(inp); 2501 } else { 2502 so->so_error = error; 2503 SOCK_RECVBUF_LOCK(so); 2504 sorwakeup_locked(so); 2505 INP_WUNLOCK(inp); 2506 } 2507 NET_EPOCH_EXIT(et); 2508 } 2509 2510 static void 2511 ktls_decrypt(struct socket *so) 2512 { 2513 char tls_header[MBUF_PEXT_HDR_LEN]; 2514 struct ktls_session *tls; 2515 struct sockbuf *sb; 2516 struct tls_record_layer *hdr; 2517 struct tls_get_record tgr; 2518 struct mbuf *control, *data, *m; 2519 ktls_mbuf_crypto_st_t state; 2520 uint64_t seqno; 2521 int error, remain, tls_len, trail_len; 2522 bool tls13; 2523 uint8_t vminor, record_type; 2524 2525 hdr = (struct tls_record_layer *)tls_header; 2526 sb = &so->so_rcv; 2527 SOCKBUF_LOCK(sb); 2528 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2529 ("%s: socket %p not running", __func__, so)); 2530 2531 tls = sb->sb_tls_info; 2532 MPASS(tls != NULL); 2533 2534 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2535 if (tls13) 2536 vminor = TLS_MINOR_VER_TWO; 2537 else 2538 vminor = tls->params.tls_vminor; 2539 for (;;) { 2540 /* Is there enough queued for a TLS header? */ 2541 if (sb->sb_tlscc < tls->params.tls_hlen) 2542 break; 2543 2544 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2545 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2546 2547 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2548 hdr->tls_vminor != vminor) 2549 error = EINVAL; 2550 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2551 error = EINVAL; 2552 else if (tls_len < tls->params.tls_hlen || tls_len > 2553 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2554 tls->params.tls_tlen) 2555 error = EMSGSIZE; 2556 else 2557 error = 0; 2558 if (__predict_false(error != 0)) { 2559 /* 2560 * We have a corrupted record and are likely 2561 * out of sync. The connection isn't 2562 * recoverable at this point, so abort it. 2563 */ 2564 SOCKBUF_UNLOCK(sb); 2565 counter_u64_add(ktls_offload_corrupted_records, 1); 2566 2567 ktls_drop(so, error); 2568 goto deref; 2569 } 2570 2571 /* Is the entire record queued? */ 2572 if (sb->sb_tlscc < tls_len) 2573 break; 2574 2575 /* 2576 * Split out the portion of the mbuf chain containing 2577 * this TLS record. 2578 */ 2579 data = ktls_detach_record(sb, tls_len); 2580 if (data == NULL) 2581 continue; 2582 MPASS(sb->sb_tlsdcc == tls_len); 2583 2584 seqno = sb->sb_tls_seqno; 2585 sb->sb_tls_seqno++; 2586 SBCHECK(sb); 2587 SOCKBUF_UNLOCK(sb); 2588 2589 /* get crypto state for this TLS record */ 2590 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2591 2592 switch (state) { 2593 case KTLS_MBUF_CRYPTO_ST_MIXED: 2594 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2595 if (error) 2596 break; 2597 /* FALLTHROUGH */ 2598 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2599 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2600 &trail_len); 2601 if (__predict_true(error == 0)) { 2602 if (tls13) { 2603 error = tls13_find_record_type(tls, data, 2604 tls_len, &trail_len, &record_type); 2605 } else { 2606 record_type = hdr->tls_type; 2607 } 2608 } 2609 break; 2610 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2611 /* 2612 * NIC TLS is only supported for AEAD 2613 * ciphersuites which used a fixed sized 2614 * trailer. 2615 */ 2616 if (tls13) { 2617 trail_len = tls->params.tls_tlen - 1; 2618 error = tls13_find_record_type(tls, data, 2619 tls_len, &trail_len, &record_type); 2620 } else { 2621 trail_len = tls->params.tls_tlen; 2622 error = 0; 2623 record_type = hdr->tls_type; 2624 } 2625 break; 2626 default: 2627 error = EINVAL; 2628 break; 2629 } 2630 if (error) { 2631 counter_u64_add(ktls_offload_failed_crypto, 1); 2632 2633 SOCKBUF_LOCK(sb); 2634 if (sb->sb_tlsdcc == 0) { 2635 /* 2636 * sbcut/drop/flush discarded these 2637 * mbufs. 2638 */ 2639 m_freem(data); 2640 break; 2641 } 2642 2643 /* 2644 * Drop this TLS record's data, but keep 2645 * decrypting subsequent records. 2646 */ 2647 sb->sb_ccc -= tls_len; 2648 sb->sb_tlsdcc = 0; 2649 2650 if (error != EMSGSIZE) 2651 error = EBADMSG; 2652 CURVNET_SET(so->so_vnet); 2653 so->so_error = error; 2654 sorwakeup_locked(so); 2655 CURVNET_RESTORE(); 2656 2657 m_freem(data); 2658 2659 SOCKBUF_LOCK(sb); 2660 continue; 2661 } 2662 2663 /* Allocate the control mbuf. */ 2664 memset(&tgr, 0, sizeof(tgr)); 2665 tgr.tls_type = record_type; 2666 tgr.tls_vmajor = hdr->tls_vmajor; 2667 tgr.tls_vminor = hdr->tls_vminor; 2668 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2669 trail_len); 2670 control = sbcreatecontrol(&tgr, sizeof(tgr), 2671 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2672 2673 SOCKBUF_LOCK(sb); 2674 if (sb->sb_tlsdcc == 0) { 2675 /* sbcut/drop/flush discarded these mbufs. */ 2676 MPASS(sb->sb_tlscc == 0); 2677 m_freem(data); 2678 m_freem(control); 2679 break; 2680 } 2681 2682 /* 2683 * Clear the 'dcc' accounting in preparation for 2684 * adding the decrypted record. 2685 */ 2686 sb->sb_ccc -= tls_len; 2687 sb->sb_tlsdcc = 0; 2688 SBCHECK(sb); 2689 2690 /* If there is no payload, drop all of the data. */ 2691 if (tgr.tls_length == htobe16(0)) { 2692 m_freem(data); 2693 data = NULL; 2694 } else { 2695 /* Trim header. */ 2696 remain = tls->params.tls_hlen; 2697 while (remain > 0) { 2698 if (data->m_len > remain) { 2699 data->m_data += remain; 2700 data->m_len -= remain; 2701 break; 2702 } 2703 remain -= data->m_len; 2704 data = m_free(data); 2705 } 2706 2707 /* Trim trailer and clear M_NOTREADY. */ 2708 remain = be16toh(tgr.tls_length); 2709 m = data; 2710 for (m = data; remain > m->m_len; m = m->m_next) { 2711 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2712 remain -= m->m_len; 2713 } 2714 m->m_len = remain; 2715 m_freem(m->m_next); 2716 m->m_next = NULL; 2717 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2718 2719 /* Set EOR on the final mbuf. */ 2720 m->m_flags |= M_EOR; 2721 } 2722 2723 sbappendcontrol_locked(sb, data, control, 0); 2724 2725 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2726 sb->sb_flags |= SB_TLS_RX_RESYNC; 2727 SOCKBUF_UNLOCK(sb); 2728 ktls_resync_ifnet(so, tls_len, seqno); 2729 SOCKBUF_LOCK(sb); 2730 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2731 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2732 SOCKBUF_UNLOCK(sb); 2733 ktls_resync_ifnet(so, 0, seqno); 2734 SOCKBUF_LOCK(sb); 2735 } 2736 } 2737 2738 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2739 2740 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2741 so->so_error = EMSGSIZE; 2742 2743 sorwakeup_locked(so); 2744 2745 deref: 2746 SOCKBUF_UNLOCK_ASSERT(sb); 2747 2748 CURVNET_SET(so->so_vnet); 2749 sorele(so); 2750 CURVNET_RESTORE(); 2751 } 2752 2753 void 2754 ktls_enqueue_to_free(struct mbuf *m) 2755 { 2756 struct ktls_wq *wq; 2757 bool running; 2758 2759 /* Mark it for freeing. */ 2760 m->m_epg_flags |= EPG_FLAG_2FREE; 2761 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2762 mtx_lock(&wq->mtx); 2763 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2764 running = wq->running; 2765 mtx_unlock(&wq->mtx); 2766 if (!running) 2767 wakeup(wq); 2768 } 2769 2770 static void * 2771 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2772 { 2773 void *buf; 2774 int domain, running; 2775 2776 if (m->m_epg_npgs <= 2) 2777 return (NULL); 2778 if (ktls_buffer_zone == NULL) 2779 return (NULL); 2780 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2781 /* 2782 * Rate-limit allocation attempts after a failure. 2783 * ktls_buffer_import() will acquire a per-domain mutex to check 2784 * the free page queues and may fail consistently if memory is 2785 * fragmented. 2786 */ 2787 return (NULL); 2788 } 2789 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2790 if (buf == NULL) { 2791 domain = PCPU_GET(domain); 2792 wq->lastallocfail = ticks; 2793 2794 /* 2795 * Note that this check is "racy", but the races are 2796 * harmless, and are either a spurious wakeup if 2797 * multiple threads fail allocations before the alloc 2798 * thread wakes, or waiting an extra second in case we 2799 * see an old value of running == true. 2800 */ 2801 if (!VM_DOMAIN_EMPTY(domain)) { 2802 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2803 if (!running) 2804 wakeup(&ktls_domains[domain].reclaim_td); 2805 } 2806 } 2807 return (buf); 2808 } 2809 2810 static int 2811 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2812 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2813 { 2814 vm_page_t pg; 2815 int error, i, len, off; 2816 2817 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2818 ("%p not unready & nomap mbuf\n", m)); 2819 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2820 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2821 ktls_maxlen)); 2822 2823 /* Anonymous mbufs are encrypted in place. */ 2824 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2825 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2826 2827 /* 2828 * For file-backed mbufs (from sendfile), anonymous wired 2829 * pages are allocated and used as the encryption destination. 2830 */ 2831 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2832 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2833 m->m_epg_1st_off; 2834 state->dst_iov[0].iov_base = (char *)state->cbuf + 2835 m->m_epg_1st_off; 2836 state->dst_iov[0].iov_len = len; 2837 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2838 i = 1; 2839 } else { 2840 off = m->m_epg_1st_off; 2841 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2842 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2843 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2844 len = m_epg_pagelen(m, i, off); 2845 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2846 state->dst_iov[i].iov_base = 2847 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2848 state->dst_iov[i].iov_len = len; 2849 } 2850 } 2851 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2852 state->dst_iov[i].iov_base = m->m_epg_trail; 2853 state->dst_iov[i].iov_len = m->m_epg_trllen; 2854 2855 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2856 2857 if (__predict_false(error != 0)) { 2858 /* Free the anonymous pages. */ 2859 if (state->cbuf != NULL) 2860 uma_zfree(ktls_buffer_zone, state->cbuf); 2861 else { 2862 for (i = 0; i < m->m_epg_npgs; i++) { 2863 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2864 (void)vm_page_unwire_noq(pg); 2865 vm_page_free(pg); 2866 } 2867 } 2868 } 2869 return (error); 2870 } 2871 2872 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2873 static u_int 2874 ktls_batched_records(struct mbuf *m) 2875 { 2876 int page_count, records; 2877 2878 records = 0; 2879 page_count = m->m_epg_enc_cnt; 2880 while (page_count > 0) { 2881 records++; 2882 page_count -= m->m_epg_nrdy; 2883 m = m->m_next; 2884 } 2885 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2886 return (records); 2887 } 2888 2889 void 2890 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2891 { 2892 struct ktls_session *tls; 2893 struct ktls_wq *wq; 2894 int queued; 2895 bool running; 2896 2897 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2898 (M_EXTPG | M_NOTREADY)), 2899 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2900 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2901 2902 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2903 2904 m->m_epg_enc_cnt = page_count; 2905 2906 /* 2907 * Save a pointer to the socket. The caller is responsible 2908 * for taking an additional reference via soref(). 2909 */ 2910 m->m_epg_so = so; 2911 2912 queued = 1; 2913 tls = m->m_epg_tls; 2914 wq = &ktls_wq[tls->wq_index]; 2915 mtx_lock(&wq->mtx); 2916 if (__predict_false(tls->sequential_records)) { 2917 /* 2918 * For TLS 1.0, records must be encrypted 2919 * sequentially. For a given connection, all records 2920 * queued to the associated work queue are processed 2921 * sequentially. However, sendfile(2) might complete 2922 * I/O requests spanning multiple TLS records out of 2923 * order. Here we ensure TLS records are enqueued to 2924 * the work queue in FIFO order. 2925 * 2926 * tls->next_seqno holds the sequence number of the 2927 * next TLS record that should be enqueued to the work 2928 * queue. If this next record is not tls->next_seqno, 2929 * it must be a future record, so insert it, sorted by 2930 * TLS sequence number, into tls->pending_records and 2931 * return. 2932 * 2933 * If this TLS record matches tls->next_seqno, place 2934 * it in the work queue and then check 2935 * tls->pending_records to see if any 2936 * previously-queued records are now ready for 2937 * encryption. 2938 */ 2939 if (m->m_epg_seqno != tls->next_seqno) { 2940 struct mbuf *n, *p; 2941 2942 p = NULL; 2943 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2944 if (n->m_epg_seqno > m->m_epg_seqno) 2945 break; 2946 p = n; 2947 } 2948 if (n == NULL) 2949 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2950 m_epg_stailq); 2951 else if (p == NULL) 2952 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2953 m_epg_stailq); 2954 else 2955 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2956 m_epg_stailq); 2957 mtx_unlock(&wq->mtx); 2958 counter_u64_add(ktls_cnt_tx_pending, 1); 2959 return; 2960 } 2961 2962 tls->next_seqno += ktls_batched_records(m); 2963 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2964 2965 while (!STAILQ_EMPTY(&tls->pending_records)) { 2966 struct mbuf *n; 2967 2968 n = STAILQ_FIRST(&tls->pending_records); 2969 if (n->m_epg_seqno != tls->next_seqno) 2970 break; 2971 2972 queued++; 2973 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2974 tls->next_seqno += ktls_batched_records(n); 2975 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2976 } 2977 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2978 } else 2979 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2980 2981 running = wq->running; 2982 mtx_unlock(&wq->mtx); 2983 if (!running) 2984 wakeup(wq); 2985 counter_u64_add(ktls_cnt_tx_queued, queued); 2986 } 2987 2988 /* 2989 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2990 * the pages from the file and replace them with the anonymous pages 2991 * allocated in ktls_encrypt_record(). 2992 */ 2993 static void 2994 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2995 { 2996 int i; 2997 2998 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2999 3000 /* Free the old pages. */ 3001 m->m_ext.ext_free(m); 3002 3003 /* Replace them with the new pages. */ 3004 if (state->cbuf != NULL) { 3005 for (i = 0; i < m->m_epg_npgs; i++) 3006 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 3007 3008 /* Contig pages should go back to the cache. */ 3009 m->m_ext.ext_free = ktls_free_mext_contig; 3010 } else { 3011 for (i = 0; i < m->m_epg_npgs; i++) 3012 m->m_epg_pa[i] = state->parray[i]; 3013 3014 /* Use the basic free routine. */ 3015 m->m_ext.ext_free = mb_free_mext_pgs; 3016 } 3017 3018 /* Pages are now writable. */ 3019 m->m_epg_flags |= EPG_FLAG_ANON; 3020 } 3021 3022 static __noinline void 3023 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 3024 { 3025 struct ktls_ocf_encrypt_state state; 3026 struct ktls_session *tls; 3027 struct socket *so; 3028 struct mbuf *m; 3029 int error, npages, total_pages; 3030 3031 so = top->m_epg_so; 3032 tls = top->m_epg_tls; 3033 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3034 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3035 #ifdef INVARIANTS 3036 top->m_epg_so = NULL; 3037 #endif 3038 total_pages = top->m_epg_enc_cnt; 3039 npages = 0; 3040 3041 /* 3042 * Encrypt the TLS records in the chain of mbufs starting with 3043 * 'top'. 'total_pages' gives us a total count of pages and is 3044 * used to know when we have finished encrypting the TLS 3045 * records originally queued with 'top'. 3046 * 3047 * NB: These mbufs are queued in the socket buffer and 3048 * 'm_next' is traversing the mbufs in the socket buffer. The 3049 * socket buffer lock is not held while traversing this chain. 3050 * Since the mbufs are all marked M_NOTREADY their 'm_next' 3051 * pointers should be stable. However, the 'm_next' of the 3052 * last mbuf encrypted is not necessarily NULL. It can point 3053 * to other mbufs appended while 'top' was on the TLS work 3054 * queue. 3055 * 3056 * Each mbuf holds an entire TLS record. 3057 */ 3058 error = 0; 3059 for (m = top; npages != total_pages; m = m->m_next) { 3060 KASSERT(m->m_epg_tls == tls, 3061 ("different TLS sessions in a single mbuf chain: %p vs %p", 3062 tls, m->m_epg_tls)); 3063 KASSERT(npages + m->m_epg_npgs <= total_pages, 3064 ("page count mismatch: top %p, total_pages %d, m %p", top, 3065 total_pages, m)); 3066 3067 error = ktls_encrypt_record(wq, m, tls, &state); 3068 if (error) { 3069 counter_u64_add(ktls_offload_failed_crypto, 1); 3070 break; 3071 } 3072 3073 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3074 ktls_finish_nonanon(m, &state); 3075 m->m_flags |= M_RDONLY; 3076 3077 npages += m->m_epg_nrdy; 3078 3079 /* 3080 * Drop a reference to the session now that it is no 3081 * longer needed. Existing code depends on encrypted 3082 * records having no associated session vs 3083 * yet-to-be-encrypted records having an associated 3084 * session. 3085 */ 3086 m->m_epg_tls = NULL; 3087 ktls_free(tls); 3088 } 3089 3090 CURVNET_SET(so->so_vnet); 3091 if (error == 0) { 3092 (void)so->so_proto->pr_ready(so, top, npages); 3093 } else { 3094 ktls_drop(so, EIO); 3095 mb_free_notready(top, total_pages); 3096 } 3097 3098 sorele(so); 3099 CURVNET_RESTORE(); 3100 } 3101 3102 void 3103 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3104 { 3105 struct ktls_session *tls; 3106 struct socket *so; 3107 struct mbuf *m; 3108 int npages; 3109 3110 m = state->m; 3111 3112 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3113 ktls_finish_nonanon(m, state); 3114 m->m_flags |= M_RDONLY; 3115 3116 so = state->so; 3117 free(state, M_KTLS); 3118 3119 /* 3120 * Drop a reference to the session now that it is no longer 3121 * needed. Existing code depends on encrypted records having 3122 * no associated session vs yet-to-be-encrypted records having 3123 * an associated session. 3124 */ 3125 tls = m->m_epg_tls; 3126 m->m_epg_tls = NULL; 3127 ktls_free(tls); 3128 3129 if (error != 0) 3130 counter_u64_add(ktls_offload_failed_crypto, 1); 3131 3132 CURVNET_SET(so->so_vnet); 3133 npages = m->m_epg_nrdy; 3134 3135 if (error == 0) { 3136 (void)so->so_proto->pr_ready(so, m, npages); 3137 } else { 3138 ktls_drop(so, EIO); 3139 mb_free_notready(m, npages); 3140 } 3141 3142 sorele(so); 3143 CURVNET_RESTORE(); 3144 } 3145 3146 /* 3147 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3148 * (coprocessors) where encryption does not use host CPU resources and 3149 * it can be beneficial to queue more requests than CPUs. 3150 */ 3151 static __noinline void 3152 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3153 { 3154 struct ktls_ocf_encrypt_state *state; 3155 struct ktls_session *tls; 3156 struct socket *so; 3157 struct mbuf *m, *n; 3158 int error, mpages, npages, total_pages; 3159 3160 so = top->m_epg_so; 3161 tls = top->m_epg_tls; 3162 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3163 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3164 #ifdef INVARIANTS 3165 top->m_epg_so = NULL; 3166 #endif 3167 total_pages = top->m_epg_enc_cnt; 3168 npages = 0; 3169 3170 error = 0; 3171 for (m = top; npages != total_pages; m = n) { 3172 KASSERT(m->m_epg_tls == tls, 3173 ("different TLS sessions in a single mbuf chain: %p vs %p", 3174 tls, m->m_epg_tls)); 3175 KASSERT(npages + m->m_epg_npgs <= total_pages, 3176 ("page count mismatch: top %p, total_pages %d, m %p", top, 3177 total_pages, m)); 3178 3179 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3180 soref(so); 3181 state->so = so; 3182 state->m = m; 3183 3184 mpages = m->m_epg_nrdy; 3185 n = m->m_next; 3186 3187 error = ktls_encrypt_record(wq, m, tls, state); 3188 if (error) { 3189 counter_u64_add(ktls_offload_failed_crypto, 1); 3190 free(state, M_KTLS); 3191 CURVNET_SET(so->so_vnet); 3192 sorele(so); 3193 CURVNET_RESTORE(); 3194 break; 3195 } 3196 3197 npages += mpages; 3198 } 3199 3200 CURVNET_SET(so->so_vnet); 3201 if (error != 0) { 3202 ktls_drop(so, EIO); 3203 mb_free_notready(m, total_pages - npages); 3204 } 3205 3206 sorele(so); 3207 CURVNET_RESTORE(); 3208 } 3209 3210 static int 3211 ktls_bind_domain(int domain) 3212 { 3213 int error; 3214 3215 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3216 if (error != 0) 3217 return (error); 3218 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3219 return (0); 3220 } 3221 3222 static void 3223 ktls_reclaim_thread(void *ctx) 3224 { 3225 struct ktls_domain_info *ktls_domain = ctx; 3226 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3227 struct sysctl_oid *oid; 3228 char name[80]; 3229 int error, domain; 3230 3231 domain = ktls_domain - ktls_domains; 3232 if (bootverbose) 3233 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3234 error = ktls_bind_domain(domain); 3235 if (error) 3236 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3237 domain, error); 3238 snprintf(name, sizeof(name), "domain%d", domain); 3239 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3240 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3241 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3242 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3243 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3244 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3245 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3246 CTLFLAG_RD, &sc->running, 0, "thread running"); 3247 3248 for (;;) { 3249 atomic_store_int(&sc->running, 0); 3250 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3251 atomic_store_int(&sc->running, 1); 3252 sc->wakeups++; 3253 /* 3254 * Below we attempt to reclaim ktls_max_reclaim 3255 * buffers using vm_page_reclaim_contig_domain_ext(). 3256 * We do this here, as this function can take several 3257 * seconds to scan all of memory and it does not 3258 * matter if this thread pauses for a while. If we 3259 * block a ktls worker thread, we risk developing 3260 * backlogs of buffers to be encrypted, leading to 3261 * surges of traffic and potential NIC output drops. 3262 */ 3263 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3264 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 3265 ktls_max_reclaim) != 0) { 3266 vm_wait_domain(domain); 3267 } else { 3268 sc->reclaims += ktls_max_reclaim; 3269 } 3270 } 3271 } 3272 3273 static void 3274 ktls_work_thread(void *ctx) 3275 { 3276 struct ktls_wq *wq = ctx; 3277 struct mbuf *m, *n; 3278 struct socket *so, *son; 3279 STAILQ_HEAD(, mbuf) local_m_head; 3280 STAILQ_HEAD(, socket) local_so_head; 3281 int cpu; 3282 3283 cpu = wq - ktls_wq; 3284 if (bootverbose) 3285 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3286 3287 /* 3288 * Bind to a core. If ktls_bind_threads is > 1, then 3289 * we bind to the NUMA domain instead. 3290 */ 3291 if (ktls_bind_threads) { 3292 int error; 3293 3294 if (ktls_bind_threads > 1) { 3295 struct pcpu *pc = pcpu_find(cpu); 3296 3297 error = ktls_bind_domain(pc->pc_domain); 3298 } else { 3299 cpuset_t mask; 3300 3301 CPU_SETOF(cpu, &mask); 3302 error = cpuset_setthread(curthread->td_tid, &mask); 3303 } 3304 if (error) 3305 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3306 cpu, error); 3307 } 3308 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3309 fpu_kern_thread(0); 3310 #endif 3311 for (;;) { 3312 mtx_lock(&wq->mtx); 3313 while (STAILQ_EMPTY(&wq->m_head) && 3314 STAILQ_EMPTY(&wq->so_head)) { 3315 wq->running = false; 3316 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3317 wq->running = true; 3318 } 3319 3320 STAILQ_INIT(&local_m_head); 3321 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3322 STAILQ_INIT(&local_so_head); 3323 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3324 mtx_unlock(&wq->mtx); 3325 3326 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3327 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3328 ktls_free(m->m_epg_tls); 3329 m_free_raw(m); 3330 } else { 3331 if (m->m_epg_tls->sync_dispatch) 3332 ktls_encrypt(wq, m); 3333 else 3334 ktls_encrypt_async(wq, m); 3335 counter_u64_add(ktls_cnt_tx_queued, -1); 3336 } 3337 } 3338 3339 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3340 ktls_decrypt(so); 3341 counter_u64_add(ktls_cnt_rx_queued, -1); 3342 } 3343 } 3344 } 3345 3346 static void 3347 ktls_disable_ifnet_help(void *context, int pending __unused) 3348 { 3349 struct ktls_session *tls; 3350 struct inpcb *inp; 3351 struct tcpcb *tp; 3352 struct socket *so; 3353 int err; 3354 3355 tls = context; 3356 inp = tls->inp; 3357 if (inp == NULL) 3358 return; 3359 INP_WLOCK(inp); 3360 so = inp->inp_socket; 3361 MPASS(so != NULL); 3362 if (inp->inp_flags & INP_DROPPED) { 3363 goto out; 3364 } 3365 3366 if (so->so_snd.sb_tls_info != NULL) 3367 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3368 else 3369 err = ENXIO; 3370 if (err == 0) { 3371 counter_u64_add(ktls_ifnet_disable_ok, 1); 3372 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3373 if ((inp->inp_flags & INP_DROPPED) == 0 && 3374 (tp = intotcpcb(inp)) != NULL && 3375 tp->t_fb->tfb_hwtls_change != NULL) 3376 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3377 } else { 3378 counter_u64_add(ktls_ifnet_disable_fail, 1); 3379 } 3380 3381 out: 3382 CURVNET_SET(so->so_vnet); 3383 sorele(so); 3384 CURVNET_RESTORE(); 3385 INP_WUNLOCK(inp); 3386 ktls_free(tls); 3387 } 3388 3389 /* 3390 * Called when re-transmits are becoming a substantial portion of the 3391 * sends on this connection. When this happens, we transition the 3392 * connection to software TLS. This is needed because most inline TLS 3393 * NICs keep crypto state only for in-order transmits. This means 3394 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3395 * re-DMA the entire TLS record up to and including the current 3396 * segment. This means that when re-transmitting the last ~1448 byte 3397 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3398 * of magnitude more data than we are sending. This can cause the 3399 * PCIe link to saturate well before the network, which can cause 3400 * output drops, and a general loss of capacity. 3401 */ 3402 void 3403 ktls_disable_ifnet(void *arg) 3404 { 3405 struct tcpcb *tp; 3406 struct inpcb *inp; 3407 struct socket *so; 3408 struct ktls_session *tls; 3409 3410 tp = arg; 3411 inp = tptoinpcb(tp); 3412 INP_WLOCK_ASSERT(inp); 3413 so = inp->inp_socket; 3414 SOCK_LOCK(so); 3415 tls = so->so_snd.sb_tls_info; 3416 if (tp->t_nic_ktls_xmit_dis == 1) { 3417 SOCK_UNLOCK(so); 3418 return; 3419 } 3420 3421 /* 3422 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3423 * ifnet can only be done once per connection, so we never want 3424 * to do it again 3425 */ 3426 3427 (void)ktls_hold(tls); 3428 soref(so); 3429 tp->t_nic_ktls_xmit_dis = 1; 3430 SOCK_UNLOCK(so); 3431 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3432 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3433 } 3434