1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #ifdef RSS 58 #include <net/netisr.h> 59 #include <net/rss_config.h> 60 #endif 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #include <netinet/in_pcb.h> 64 #endif 65 #include <netinet/tcp_var.h> 66 #ifdef TCP_OFFLOAD 67 #include <netinet/tcp_offload.h> 68 #endif 69 #include <opencrypto/xform.h> 70 #include <vm/uma_dbg.h> 71 #include <vm/vm.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_page.h> 74 75 struct ktls_wq { 76 struct mtx mtx; 77 STAILQ_HEAD(, mbuf_ext_pgs) head; 78 bool running; 79 } __aligned(CACHE_LINE_SIZE); 80 81 static struct ktls_wq *ktls_wq; 82 static struct proc *ktls_proc; 83 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 84 static struct rmlock ktls_backends_lock; 85 static uma_zone_t ktls_session_zone; 86 static uint16_t ktls_cpuid_lookup[MAXCPU]; 87 88 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW, 0, 89 "Kernel TLS offload"); 90 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW, 0, 91 "Kernel TLS offload stats"); 92 93 static int ktls_allow_unload; 94 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 95 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 96 97 #ifdef RSS 98 static int ktls_bind_threads = 1; 99 #else 100 static int ktls_bind_threads; 101 #endif 102 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 103 &ktls_bind_threads, 0, 104 "Bind crypto threads to cores or domains at boot"); 105 106 static u_int ktls_maxlen = 16384; 107 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 108 &ktls_maxlen, 0, "Maximum TLS record size"); 109 110 static int ktls_number_threads; 111 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 112 &ktls_number_threads, 0, 113 "Number of TLS threads in thread-pool"); 114 115 static bool ktls_offload_enable; 116 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 117 &ktls_offload_enable, 0, 118 "Enable support for kernel TLS offload"); 119 120 static bool ktls_cbc_enable = true; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 122 &ktls_cbc_enable, 1, 123 "Enable Support of AES-CBC crypto for kernel TLS"); 124 125 static counter_u64_t ktls_tasks_active; 126 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 127 &ktls_tasks_active, "Number of active tasks"); 128 129 static counter_u64_t ktls_cnt_on; 130 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD, 131 &ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto"); 132 133 static counter_u64_t ktls_offload_total; 134 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 135 CTLFLAG_RD, &ktls_offload_total, 136 "Total successful TLS setups (parameters set)"); 137 138 static counter_u64_t ktls_offload_enable_calls; 139 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 140 CTLFLAG_RD, &ktls_offload_enable_calls, 141 "Total number of TLS enable calls made"); 142 143 static counter_u64_t ktls_offload_active; 144 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 145 &ktls_offload_active, "Total Active TLS sessions"); 146 147 static counter_u64_t ktls_offload_failed_crypto; 148 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 149 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 150 151 static counter_u64_t ktls_switch_to_ifnet; 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 153 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 154 155 static counter_u64_t ktls_switch_to_sw; 156 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 157 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 158 159 static counter_u64_t ktls_switch_failed; 160 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 161 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 162 163 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD, 0, 164 "Software TLS session stats"); 165 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD, 0, 166 "Hardware (ifnet) TLS session stats"); 167 #ifdef TCP_OFFLOAD 168 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD, 0, 169 "TOE TLS session stats"); 170 #endif 171 172 static counter_u64_t ktls_sw_cbc; 173 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 174 "Active number of software TLS sessions using AES-CBC"); 175 176 static counter_u64_t ktls_sw_gcm; 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 178 "Active number of software TLS sessions using AES-GCM"); 179 180 static counter_u64_t ktls_ifnet_cbc; 181 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 182 &ktls_ifnet_cbc, 183 "Active number of ifnet TLS sessions using AES-CBC"); 184 185 static counter_u64_t ktls_ifnet_gcm; 186 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 187 &ktls_ifnet_gcm, 188 "Active number of ifnet TLS sessions using AES-GCM"); 189 190 static counter_u64_t ktls_ifnet_reset; 191 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 192 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 193 194 static counter_u64_t ktls_ifnet_reset_dropped; 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 196 &ktls_ifnet_reset_dropped, 197 "TLS sessions dropped after failing to update ifnet send tag"); 198 199 static counter_u64_t ktls_ifnet_reset_failed; 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 201 &ktls_ifnet_reset_failed, 202 "TLS sessions that failed to allocate a new ifnet send tag"); 203 204 static int ktls_ifnet_permitted; 205 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 206 &ktls_ifnet_permitted, 1, 207 "Whether to permit hardware (ifnet) TLS sessions"); 208 209 #ifdef TCP_OFFLOAD 210 static counter_u64_t ktls_toe_cbc; 211 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 212 &ktls_toe_cbc, 213 "Active number of TOE TLS sessions using AES-CBC"); 214 215 static counter_u64_t ktls_toe_gcm; 216 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 217 &ktls_toe_gcm, 218 "Active number of TOE TLS sessions using AES-GCM"); 219 #endif 220 221 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 222 223 static void ktls_cleanup(struct ktls_session *tls); 224 #if defined(INET) || defined(INET6) 225 static void ktls_reset_send_tag(void *context, int pending); 226 #endif 227 static void ktls_work_thread(void *ctx); 228 229 int 230 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 231 { 232 struct ktls_crypto_backend *curr_be, *tmp; 233 234 if (be->api_version != KTLS_API_VERSION) { 235 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 236 be->api_version, KTLS_API_VERSION, 237 be->name); 238 return (EINVAL); 239 } 240 241 rm_wlock(&ktls_backends_lock); 242 printf("KTLS: Registering crypto method %s with prio %d\n", 243 be->name, be->prio); 244 if (LIST_EMPTY(&ktls_backends)) { 245 LIST_INSERT_HEAD(&ktls_backends, be, next); 246 } else { 247 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 248 if (curr_be->prio < be->prio) { 249 LIST_INSERT_BEFORE(curr_be, be, next); 250 break; 251 } 252 if (LIST_NEXT(curr_be, next) == NULL) { 253 LIST_INSERT_AFTER(curr_be, be, next); 254 break; 255 } 256 } 257 } 258 rm_wunlock(&ktls_backends_lock); 259 return (0); 260 } 261 262 int 263 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 264 { 265 struct ktls_crypto_backend *tmp; 266 267 /* 268 * Don't error if the backend isn't registered. This permits 269 * MOD_UNLOAD handlers to use this function unconditionally. 270 */ 271 rm_wlock(&ktls_backends_lock); 272 LIST_FOREACH(tmp, &ktls_backends, next) { 273 if (tmp == be) 274 break; 275 } 276 if (tmp == NULL) { 277 rm_wunlock(&ktls_backends_lock); 278 return (0); 279 } 280 281 if (!ktls_allow_unload) { 282 rm_wunlock(&ktls_backends_lock); 283 printf( 284 "KTLS: Deregistering crypto method %s is not supported\n", 285 be->name); 286 return (EBUSY); 287 } 288 289 if (be->use_count) { 290 rm_wunlock(&ktls_backends_lock); 291 return (EBUSY); 292 } 293 294 LIST_REMOVE(be, next); 295 rm_wunlock(&ktls_backends_lock); 296 return (0); 297 } 298 299 #if defined(INET) || defined(INET6) 300 static uint16_t 301 ktls_get_cpu(struct socket *so) 302 { 303 struct inpcb *inp; 304 uint16_t cpuid; 305 306 inp = sotoinpcb(so); 307 #ifdef RSS 308 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 309 if (cpuid != NETISR_CPUID_NONE) 310 return (cpuid); 311 #endif 312 /* 313 * Just use the flowid to shard connections in a repeatable 314 * fashion. Note that some crypto backends rely on the 315 * serialization provided by having the same connection use 316 * the same queue. 317 */ 318 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 319 return (cpuid); 320 } 321 #endif 322 323 static void 324 ktls_init(void *dummy __unused) 325 { 326 struct thread *td; 327 struct pcpu *pc; 328 cpuset_t mask; 329 int error, i; 330 331 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 332 ktls_cnt_on = counter_u64_alloc(M_WAITOK); 333 ktls_offload_total = counter_u64_alloc(M_WAITOK); 334 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 335 ktls_offload_active = counter_u64_alloc(M_WAITOK); 336 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 337 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 338 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 339 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 340 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 341 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 342 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 343 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 344 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 345 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 346 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 347 #ifdef TCP_OFFLOAD 348 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 349 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 350 #endif 351 352 rm_init(&ktls_backends_lock, "ktls backends"); 353 LIST_INIT(&ktls_backends); 354 355 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 356 M_WAITOK | M_ZERO); 357 358 ktls_session_zone = uma_zcreate("ktls_session", 359 sizeof(struct ktls_session), 360 #ifdef INVARIANTS 361 trash_ctor, trash_dtor, trash_init, trash_fini, 362 #else 363 NULL, NULL, NULL, NULL, 364 #endif 365 UMA_ALIGN_CACHE, 0); 366 367 /* 368 * Initialize the workqueues to run the TLS work. We create a 369 * work queue for each CPU. 370 */ 371 CPU_FOREACH(i) { 372 STAILQ_INIT(&ktls_wq[i].head); 373 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 374 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 375 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 376 if (error) 377 panic("Can't add KTLS thread %d error %d", i, error); 378 379 /* 380 * Bind threads to cores. If ktls_bind_threads is > 381 * 1, then we bind to the NUMA domain. 382 */ 383 if (ktls_bind_threads) { 384 if (ktls_bind_threads > 1) { 385 pc = pcpu_find(i); 386 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 387 } else { 388 CPU_SETOF(i, &mask); 389 } 390 error = cpuset_setthread(td->td_tid, &mask); 391 if (error) 392 panic( 393 "Unable to bind KTLS thread for CPU %d error %d", 394 i, error); 395 } 396 ktls_cpuid_lookup[ktls_number_threads] = i; 397 ktls_number_threads++; 398 } 399 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 400 } 401 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 402 403 #if defined(INET) || defined(INET6) 404 static int 405 ktls_create_session(struct socket *so, struct tls_enable *en, 406 struct ktls_session **tlsp) 407 { 408 struct ktls_session *tls; 409 int error; 410 411 /* Only TLS 1.0 - 1.3 are supported. */ 412 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 413 return (EINVAL); 414 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 415 en->tls_vminor > TLS_MINOR_VER_THREE) 416 return (EINVAL); 417 418 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 419 return (EINVAL); 420 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 421 return (EINVAL); 422 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 423 return (EINVAL); 424 425 /* All supported algorithms require a cipher key. */ 426 if (en->cipher_key_len == 0) 427 return (EINVAL); 428 429 /* No flags are currently supported. */ 430 if (en->flags != 0) 431 return (EINVAL); 432 433 /* Common checks for supported algorithms. */ 434 switch (en->cipher_algorithm) { 435 case CRYPTO_AES_NIST_GCM_16: 436 /* 437 * auth_algorithm isn't used, but permit GMAC values 438 * for compatibility. 439 */ 440 switch (en->auth_algorithm) { 441 case 0: 442 case CRYPTO_AES_128_NIST_GMAC: 443 case CRYPTO_AES_192_NIST_GMAC: 444 case CRYPTO_AES_256_NIST_GMAC: 445 break; 446 default: 447 return (EINVAL); 448 } 449 if (en->auth_key_len != 0) 450 return (EINVAL); 451 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 452 en->iv_len != TLS_AEAD_GCM_LEN) || 453 (en->tls_vminor == TLS_MINOR_VER_THREE && 454 en->iv_len != TLS_1_3_GCM_IV_LEN)) 455 return (EINVAL); 456 break; 457 case CRYPTO_AES_CBC: 458 switch (en->auth_algorithm) { 459 case CRYPTO_SHA1_HMAC: 460 /* 461 * TLS 1.0 requires an implicit IV. TLS 1.1+ 462 * all use explicit IVs. 463 */ 464 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 465 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 466 return (EINVAL); 467 break; 468 } 469 470 /* FALLTHROUGH */ 471 case CRYPTO_SHA2_256_HMAC: 472 case CRYPTO_SHA2_384_HMAC: 473 /* Ignore any supplied IV. */ 474 en->iv_len = 0; 475 break; 476 default: 477 return (EINVAL); 478 } 479 if (en->auth_key_len == 0) 480 return (EINVAL); 481 break; 482 default: 483 return (EINVAL); 484 } 485 486 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 487 488 counter_u64_add(ktls_offload_active, 1); 489 490 refcount_init(&tls->refcount, 1); 491 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 492 493 tls->wq_index = ktls_get_cpu(so); 494 495 tls->params.cipher_algorithm = en->cipher_algorithm; 496 tls->params.auth_algorithm = en->auth_algorithm; 497 tls->params.tls_vmajor = en->tls_vmajor; 498 tls->params.tls_vminor = en->tls_vminor; 499 tls->params.flags = en->flags; 500 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 501 502 /* Set the header and trailer lengths. */ 503 tls->params.tls_hlen = sizeof(struct tls_record_layer); 504 switch (en->cipher_algorithm) { 505 case CRYPTO_AES_NIST_GCM_16: 506 /* 507 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 508 * nonce. TLS 1.3 uses a 12 byte implicit IV. 509 */ 510 if (en->tls_vminor < TLS_MINOR_VER_THREE) 511 tls->params.tls_hlen += sizeof(uint64_t); 512 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 513 514 /* 515 * TLS 1.3 includes optional padding which we 516 * do not support, and also puts the "real" record 517 * type at the end of the encrypted data. 518 */ 519 if (en->tls_vminor == TLS_MINOR_VER_THREE) 520 tls->params.tls_tlen += sizeof(uint8_t); 521 522 tls->params.tls_bs = 1; 523 break; 524 case CRYPTO_AES_CBC: 525 switch (en->auth_algorithm) { 526 case CRYPTO_SHA1_HMAC: 527 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 528 /* Implicit IV, no nonce. */ 529 } else { 530 tls->params.tls_hlen += AES_BLOCK_LEN; 531 } 532 tls->params.tls_tlen = AES_BLOCK_LEN + 533 SHA1_HASH_LEN; 534 break; 535 case CRYPTO_SHA2_256_HMAC: 536 tls->params.tls_hlen += AES_BLOCK_LEN; 537 tls->params.tls_tlen = AES_BLOCK_LEN + 538 SHA2_256_HASH_LEN; 539 break; 540 case CRYPTO_SHA2_384_HMAC: 541 tls->params.tls_hlen += AES_BLOCK_LEN; 542 tls->params.tls_tlen = AES_BLOCK_LEN + 543 SHA2_384_HASH_LEN; 544 break; 545 default: 546 panic("invalid hmac"); 547 } 548 tls->params.tls_bs = AES_BLOCK_LEN; 549 break; 550 default: 551 panic("invalid cipher"); 552 } 553 554 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 555 ("TLS header length too long: %d", tls->params.tls_hlen)); 556 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 557 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 558 559 if (en->auth_key_len != 0) { 560 tls->params.auth_key_len = en->auth_key_len; 561 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 562 M_WAITOK); 563 error = copyin(en->auth_key, tls->params.auth_key, 564 en->auth_key_len); 565 if (error) 566 goto out; 567 } 568 569 tls->params.cipher_key_len = en->cipher_key_len; 570 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 571 error = copyin(en->cipher_key, tls->params.cipher_key, 572 en->cipher_key_len); 573 if (error) 574 goto out; 575 576 /* 577 * This holds the implicit portion of the nonce for GCM and 578 * the initial implicit IV for TLS 1.0. The explicit portions 579 * of the IV are generated in ktls_frame(). 580 */ 581 if (en->iv_len != 0) { 582 tls->params.iv_len = en->iv_len; 583 error = copyin(en->iv, tls->params.iv, en->iv_len); 584 if (error) 585 goto out; 586 587 /* 588 * For TLS 1.2, generate an 8-byte nonce as a counter 589 * to generate unique explicit IVs. 590 * 591 * Store this counter in the last 8 bytes of the IV 592 * array so that it is 8-byte aligned. 593 */ 594 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 595 en->tls_vminor == TLS_MINOR_VER_TWO) 596 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 597 } 598 599 *tlsp = tls; 600 return (0); 601 602 out: 603 ktls_cleanup(tls); 604 return (error); 605 } 606 607 static struct ktls_session * 608 ktls_clone_session(struct ktls_session *tls) 609 { 610 struct ktls_session *tls_new; 611 612 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 613 614 counter_u64_add(ktls_offload_active, 1); 615 616 refcount_init(&tls_new->refcount, 1); 617 618 /* Copy fields from existing session. */ 619 tls_new->params = tls->params; 620 tls_new->wq_index = tls->wq_index; 621 622 /* Deep copy keys. */ 623 if (tls_new->params.auth_key != NULL) { 624 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 625 M_KTLS, M_WAITOK); 626 memcpy(tls_new->params.auth_key, tls->params.auth_key, 627 tls->params.auth_key_len); 628 } 629 630 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 631 M_WAITOK); 632 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 633 tls->params.cipher_key_len); 634 635 return (tls_new); 636 } 637 #endif 638 639 static void 640 ktls_cleanup(struct ktls_session *tls) 641 { 642 643 counter_u64_add(ktls_offload_active, -1); 644 switch (tls->mode) { 645 case TCP_TLS_MODE_SW: 646 MPASS(tls->be != NULL); 647 switch (tls->params.cipher_algorithm) { 648 case CRYPTO_AES_CBC: 649 counter_u64_add(ktls_sw_cbc, -1); 650 break; 651 case CRYPTO_AES_NIST_GCM_16: 652 counter_u64_add(ktls_sw_gcm, -1); 653 break; 654 } 655 tls->free(tls); 656 break; 657 case TCP_TLS_MODE_IFNET: 658 switch (tls->params.cipher_algorithm) { 659 case CRYPTO_AES_CBC: 660 counter_u64_add(ktls_ifnet_cbc, -1); 661 break; 662 case CRYPTO_AES_NIST_GCM_16: 663 counter_u64_add(ktls_ifnet_gcm, -1); 664 break; 665 } 666 m_snd_tag_rele(tls->snd_tag); 667 break; 668 #ifdef TCP_OFFLOAD 669 case TCP_TLS_MODE_TOE: 670 switch (tls->params.cipher_algorithm) { 671 case CRYPTO_AES_CBC: 672 counter_u64_add(ktls_toe_cbc, -1); 673 break; 674 case CRYPTO_AES_NIST_GCM_16: 675 counter_u64_add(ktls_toe_gcm, -1); 676 break; 677 } 678 break; 679 #endif 680 } 681 if (tls->params.auth_key != NULL) { 682 explicit_bzero(tls->params.auth_key, tls->params.auth_key_len); 683 free(tls->params.auth_key, M_KTLS); 684 tls->params.auth_key = NULL; 685 tls->params.auth_key_len = 0; 686 } 687 if (tls->params.cipher_key != NULL) { 688 explicit_bzero(tls->params.cipher_key, 689 tls->params.cipher_key_len); 690 free(tls->params.cipher_key, M_KTLS); 691 tls->params.cipher_key = NULL; 692 tls->params.cipher_key_len = 0; 693 } 694 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 695 } 696 697 #if defined(INET) || defined(INET6) 698 699 #ifdef TCP_OFFLOAD 700 static int 701 ktls_try_toe(struct socket *so, struct ktls_session *tls) 702 { 703 struct inpcb *inp; 704 struct tcpcb *tp; 705 int error; 706 707 inp = so->so_pcb; 708 INP_WLOCK(inp); 709 if (inp->inp_flags2 & INP_FREED) { 710 INP_WUNLOCK(inp); 711 return (ECONNRESET); 712 } 713 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 714 INP_WUNLOCK(inp); 715 return (ECONNRESET); 716 } 717 if (inp->inp_socket == NULL) { 718 INP_WUNLOCK(inp); 719 return (ECONNRESET); 720 } 721 tp = intotcpcb(inp); 722 if (tp->tod == NULL) { 723 INP_WUNLOCK(inp); 724 return (EOPNOTSUPP); 725 } 726 727 error = tcp_offload_alloc_tls_session(tp, tls); 728 INP_WUNLOCK(inp); 729 if (error == 0) { 730 tls->mode = TCP_TLS_MODE_TOE; 731 switch (tls->params.cipher_algorithm) { 732 case CRYPTO_AES_CBC: 733 counter_u64_add(ktls_toe_cbc, 1); 734 break; 735 case CRYPTO_AES_NIST_GCM_16: 736 counter_u64_add(ktls_toe_gcm, 1); 737 break; 738 } 739 } 740 return (error); 741 } 742 #endif 743 744 /* 745 * Common code used when first enabling ifnet TLS on a connection or 746 * when allocating a new ifnet TLS session due to a routing change. 747 * This function allocates a new TLS send tag on whatever interface 748 * the connection is currently routed over. 749 */ 750 static int 751 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 752 struct m_snd_tag **mstp) 753 { 754 union if_snd_tag_alloc_params params; 755 struct ifnet *ifp; 756 struct rtentry *rt; 757 struct tcpcb *tp; 758 int error; 759 760 INP_RLOCK(inp); 761 if (inp->inp_flags2 & INP_FREED) { 762 INP_RUNLOCK(inp); 763 return (ECONNRESET); 764 } 765 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 766 INP_RUNLOCK(inp); 767 return (ECONNRESET); 768 } 769 if (inp->inp_socket == NULL) { 770 INP_RUNLOCK(inp); 771 return (ECONNRESET); 772 } 773 tp = intotcpcb(inp); 774 775 /* 776 * Check administrative controls on ifnet TLS to determine if 777 * ifnet TLS should be denied. 778 * 779 * - Always permit 'force' requests. 780 * - ktls_ifnet_permitted == 0: always deny. 781 */ 782 if (!force && ktls_ifnet_permitted == 0) { 783 INP_RUNLOCK(inp); 784 return (ENXIO); 785 } 786 787 /* 788 * XXX: Use the cached route in the inpcb to find the 789 * interface. This should perhaps instead use 790 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 791 * enabled after a connection has completed key negotiation in 792 * userland, the cached route will be present in practice. 793 */ 794 rt = inp->inp_route.ro_rt; 795 if (rt == NULL || rt->rt_ifp == NULL) { 796 INP_RUNLOCK(inp); 797 return (ENXIO); 798 } 799 ifp = rt->rt_ifp; 800 if_ref(ifp); 801 802 params.hdr.type = IF_SND_TAG_TYPE_TLS; 803 params.hdr.flowid = inp->inp_flowid; 804 params.hdr.flowtype = inp->inp_flowtype; 805 params.tls.inp = inp; 806 params.tls.tls = tls; 807 INP_RUNLOCK(inp); 808 809 if (ifp->if_snd_tag_alloc == NULL) { 810 error = EOPNOTSUPP; 811 goto out; 812 } 813 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 814 error = EOPNOTSUPP; 815 goto out; 816 } 817 if (inp->inp_vflag & INP_IPV6) { 818 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 819 error = EOPNOTSUPP; 820 goto out; 821 } 822 } else { 823 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 824 error = EOPNOTSUPP; 825 goto out; 826 } 827 } 828 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 829 out: 830 if_rele(ifp); 831 return (error); 832 } 833 834 static int 835 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 836 { 837 struct m_snd_tag *mst; 838 int error; 839 840 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 841 if (error == 0) { 842 tls->mode = TCP_TLS_MODE_IFNET; 843 tls->snd_tag = mst; 844 switch (tls->params.cipher_algorithm) { 845 case CRYPTO_AES_CBC: 846 counter_u64_add(ktls_ifnet_cbc, 1); 847 break; 848 case CRYPTO_AES_NIST_GCM_16: 849 counter_u64_add(ktls_ifnet_gcm, 1); 850 break; 851 } 852 } 853 return (error); 854 } 855 856 static int 857 ktls_try_sw(struct socket *so, struct ktls_session *tls) 858 { 859 struct rm_priotracker prio; 860 struct ktls_crypto_backend *be; 861 862 /* 863 * Choose the best software crypto backend. Backends are 864 * stored in sorted priority order (larget value == most 865 * important at the head of the list), so this just stops on 866 * the first backend that claims the session by returning 867 * success. 868 */ 869 if (ktls_allow_unload) 870 rm_rlock(&ktls_backends_lock, &prio); 871 LIST_FOREACH(be, &ktls_backends, next) { 872 if (be->try(so, tls) == 0) 873 break; 874 KASSERT(tls->cipher == NULL, 875 ("ktls backend leaked a cipher pointer")); 876 } 877 if (be != NULL) { 878 if (ktls_allow_unload) 879 be->use_count++; 880 tls->be = be; 881 } 882 if (ktls_allow_unload) 883 rm_runlock(&ktls_backends_lock, &prio); 884 if (be == NULL) 885 return (EOPNOTSUPP); 886 tls->mode = TCP_TLS_MODE_SW; 887 switch (tls->params.cipher_algorithm) { 888 case CRYPTO_AES_CBC: 889 counter_u64_add(ktls_sw_cbc, 1); 890 break; 891 case CRYPTO_AES_NIST_GCM_16: 892 counter_u64_add(ktls_sw_gcm, 1); 893 break; 894 } 895 return (0); 896 } 897 898 int 899 ktls_enable_tx(struct socket *so, struct tls_enable *en) 900 { 901 struct ktls_session *tls; 902 int error; 903 904 if (!ktls_offload_enable) 905 return (ENOTSUP); 906 907 counter_u64_add(ktls_offload_enable_calls, 1); 908 909 /* 910 * This should always be true since only the TCP socket option 911 * invokes this function. 912 */ 913 if (so->so_proto->pr_protocol != IPPROTO_TCP) 914 return (EINVAL); 915 916 /* 917 * XXX: Don't overwrite existing sessions. We should permit 918 * this to support rekeying in the future. 919 */ 920 if (so->so_snd.sb_tls_info != NULL) 921 return (EALREADY); 922 923 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 924 return (ENOTSUP); 925 926 /* TLS requires ext pgs */ 927 if (mb_use_ext_pgs == 0) 928 return (ENXIO); 929 930 error = ktls_create_session(so, en, &tls); 931 if (error) 932 return (error); 933 934 /* Prefer TOE -> ifnet TLS -> software TLS. */ 935 #ifdef TCP_OFFLOAD 936 error = ktls_try_toe(so, tls); 937 if (error) 938 #endif 939 error = ktls_try_ifnet(so, tls, false); 940 if (error) 941 error = ktls_try_sw(so, tls); 942 943 if (error) { 944 ktls_cleanup(tls); 945 return (error); 946 } 947 948 error = sblock(&so->so_snd, SBL_WAIT); 949 if (error) { 950 ktls_cleanup(tls); 951 return (error); 952 } 953 954 SOCKBUF_LOCK(&so->so_snd); 955 so->so_snd.sb_tls_info = tls; 956 if (tls->mode != TCP_TLS_MODE_SW) 957 so->so_snd.sb_flags |= SB_TLS_IFNET; 958 SOCKBUF_UNLOCK(&so->so_snd); 959 sbunlock(&so->so_snd); 960 961 counter_u64_add(ktls_offload_total, 1); 962 963 return (0); 964 } 965 966 int 967 ktls_get_tx_mode(struct socket *so) 968 { 969 struct ktls_session *tls; 970 struct inpcb *inp; 971 int mode; 972 973 inp = so->so_pcb; 974 INP_WLOCK_ASSERT(inp); 975 SOCKBUF_LOCK(&so->so_snd); 976 tls = so->so_snd.sb_tls_info; 977 if (tls == NULL) 978 mode = TCP_TLS_MODE_NONE; 979 else 980 mode = tls->mode; 981 SOCKBUF_UNLOCK(&so->so_snd); 982 return (mode); 983 } 984 985 /* 986 * Switch between SW and ifnet TLS sessions as requested. 987 */ 988 int 989 ktls_set_tx_mode(struct socket *so, int mode) 990 { 991 struct ktls_session *tls, *tls_new; 992 struct inpcb *inp; 993 int error; 994 995 switch (mode) { 996 case TCP_TLS_MODE_SW: 997 case TCP_TLS_MODE_IFNET: 998 break; 999 default: 1000 return (EINVAL); 1001 } 1002 1003 inp = so->so_pcb; 1004 INP_WLOCK_ASSERT(inp); 1005 SOCKBUF_LOCK(&so->so_snd); 1006 tls = so->so_snd.sb_tls_info; 1007 if (tls == NULL) { 1008 SOCKBUF_UNLOCK(&so->so_snd); 1009 return (0); 1010 } 1011 1012 if (tls->mode == mode) { 1013 SOCKBUF_UNLOCK(&so->so_snd); 1014 return (0); 1015 } 1016 1017 tls = ktls_hold(tls); 1018 SOCKBUF_UNLOCK(&so->so_snd); 1019 INP_WUNLOCK(inp); 1020 1021 tls_new = ktls_clone_session(tls); 1022 1023 if (mode == TCP_TLS_MODE_IFNET) 1024 error = ktls_try_ifnet(so, tls_new, true); 1025 else 1026 error = ktls_try_sw(so, tls_new); 1027 if (error) { 1028 counter_u64_add(ktls_switch_failed, 1); 1029 ktls_free(tls_new); 1030 ktls_free(tls); 1031 INP_WLOCK(inp); 1032 return (error); 1033 } 1034 1035 error = sblock(&so->so_snd, SBL_WAIT); 1036 if (error) { 1037 counter_u64_add(ktls_switch_failed, 1); 1038 ktls_free(tls_new); 1039 ktls_free(tls); 1040 INP_WLOCK(inp); 1041 return (error); 1042 } 1043 1044 /* 1045 * If we raced with another session change, keep the existing 1046 * session. 1047 */ 1048 if (tls != so->so_snd.sb_tls_info) { 1049 counter_u64_add(ktls_switch_failed, 1); 1050 sbunlock(&so->so_snd); 1051 ktls_free(tls_new); 1052 ktls_free(tls); 1053 INP_WLOCK(inp); 1054 return (EBUSY); 1055 } 1056 1057 SOCKBUF_LOCK(&so->so_snd); 1058 so->so_snd.sb_tls_info = tls_new; 1059 if (tls_new->mode != TCP_TLS_MODE_SW) 1060 so->so_snd.sb_flags |= SB_TLS_IFNET; 1061 SOCKBUF_UNLOCK(&so->so_snd); 1062 sbunlock(&so->so_snd); 1063 1064 /* 1065 * Drop two references on 'tls'. The first is for the 1066 * ktls_hold() above. The second drops the reference from the 1067 * socket buffer. 1068 */ 1069 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1070 ktls_free(tls); 1071 ktls_free(tls); 1072 1073 if (mode == TCP_TLS_MODE_IFNET) 1074 counter_u64_add(ktls_switch_to_ifnet, 1); 1075 else 1076 counter_u64_add(ktls_switch_to_sw, 1); 1077 1078 INP_WLOCK(inp); 1079 return (0); 1080 } 1081 1082 /* 1083 * Try to allocate a new TLS send tag. This task is scheduled when 1084 * ip_output detects a route change while trying to transmit a packet 1085 * holding a TLS record. If a new tag is allocated, replace the tag 1086 * in the TLS session. Subsequent packets on the connection will use 1087 * the new tag. If a new tag cannot be allocated, drop the 1088 * connection. 1089 */ 1090 static void 1091 ktls_reset_send_tag(void *context, int pending) 1092 { 1093 struct epoch_tracker et; 1094 struct ktls_session *tls; 1095 struct m_snd_tag *old, *new; 1096 struct inpcb *inp; 1097 struct tcpcb *tp; 1098 int error; 1099 1100 MPASS(pending == 1); 1101 1102 tls = context; 1103 inp = tls->inp; 1104 1105 /* 1106 * Free the old tag first before allocating a new one. 1107 * ip[6]_output_send() will treat a NULL send tag the same as 1108 * an ifp mismatch and drop packets until a new tag is 1109 * allocated. 1110 * 1111 * Write-lock the INP when changing tls->snd_tag since 1112 * ip[6]_output_send() holds a read-lock when reading the 1113 * pointer. 1114 */ 1115 INP_WLOCK(inp); 1116 old = tls->snd_tag; 1117 tls->snd_tag = NULL; 1118 INP_WUNLOCK(inp); 1119 if (old != NULL) 1120 m_snd_tag_rele(old); 1121 1122 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1123 1124 if (error == 0) { 1125 INP_WLOCK(inp); 1126 tls->snd_tag = new; 1127 mtx_pool_lock(mtxpool_sleep, tls); 1128 tls->reset_pending = false; 1129 mtx_pool_unlock(mtxpool_sleep, tls); 1130 if (!in_pcbrele_wlocked(inp)) 1131 INP_WUNLOCK(inp); 1132 1133 counter_u64_add(ktls_ifnet_reset, 1); 1134 1135 /* 1136 * XXX: Should we kick tcp_output explicitly now that 1137 * the send tag is fixed or just rely on timers? 1138 */ 1139 } else { 1140 NET_EPOCH_ENTER(et); 1141 INP_WLOCK(inp); 1142 if (!in_pcbrele_wlocked(inp)) { 1143 if (!(inp->inp_flags & INP_TIMEWAIT) && 1144 !(inp->inp_flags & INP_DROPPED)) { 1145 tp = intotcpcb(inp); 1146 tp = tcp_drop(tp, ECONNABORTED); 1147 if (tp != NULL) 1148 INP_WUNLOCK(inp); 1149 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1150 } else 1151 INP_WUNLOCK(inp); 1152 } 1153 NET_EPOCH_EXIT(et); 1154 1155 counter_u64_add(ktls_ifnet_reset_failed, 1); 1156 1157 /* 1158 * Leave reset_pending true to avoid future tasks while 1159 * the socket goes away. 1160 */ 1161 } 1162 1163 ktls_free(tls); 1164 } 1165 1166 int 1167 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1168 { 1169 1170 if (inp == NULL) 1171 return (ENOBUFS); 1172 1173 INP_LOCK_ASSERT(inp); 1174 1175 /* 1176 * See if we should schedule a task to update the send tag for 1177 * this session. 1178 */ 1179 mtx_pool_lock(mtxpool_sleep, tls); 1180 if (!tls->reset_pending) { 1181 (void) ktls_hold(tls); 1182 in_pcbref(inp); 1183 tls->inp = inp; 1184 tls->reset_pending = true; 1185 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1186 } 1187 mtx_pool_unlock(mtxpool_sleep, tls); 1188 return (ENOBUFS); 1189 } 1190 #endif 1191 1192 void 1193 ktls_destroy(struct ktls_session *tls) 1194 { 1195 struct rm_priotracker prio; 1196 1197 ktls_cleanup(tls); 1198 if (tls->be != NULL && ktls_allow_unload) { 1199 rm_rlock(&ktls_backends_lock, &prio); 1200 tls->be->use_count--; 1201 rm_runlock(&ktls_backends_lock, &prio); 1202 } 1203 uma_zfree(ktls_session_zone, tls); 1204 } 1205 1206 void 1207 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1208 { 1209 struct mbuf_ext_pgs *pgs; 1210 1211 for (; m != NULL; m = m->m_next) { 1212 KASSERT((m->m_flags & M_NOMAP) != 0, 1213 ("ktls_seq: mapped mbuf %p", m)); 1214 1215 pgs = m->m_ext.ext_pgs; 1216 pgs->seqno = sb->sb_tls_seqno; 1217 sb->sb_tls_seqno++; 1218 } 1219 } 1220 1221 /* 1222 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1223 * mbuf in the chain must be an unmapped mbuf. The payload of the 1224 * mbuf must be populated with the payload of each TLS record. 1225 * 1226 * The record_type argument specifies the TLS record type used when 1227 * populating the TLS header. 1228 * 1229 * The enq_count argument on return is set to the number of pages of 1230 * payload data for this entire chain that need to be encrypted via SW 1231 * encryption. The returned value should be passed to ktls_enqueue 1232 * when scheduling encryption of this chain of mbufs. 1233 */ 1234 int 1235 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1236 uint8_t record_type) 1237 { 1238 struct tls_record_layer *tlshdr; 1239 struct mbuf *m; 1240 struct mbuf_ext_pgs *pgs; 1241 uint64_t *noncep; 1242 uint16_t tls_len; 1243 int maxlen; 1244 1245 maxlen = tls->params.max_frame_len; 1246 *enq_cnt = 0; 1247 for (m = top; m != NULL; m = m->m_next) { 1248 /* 1249 * All mbufs in the chain should be non-empty TLS 1250 * records whose payload does not exceed the maximum 1251 * frame length. 1252 */ 1253 if (m->m_len > maxlen || m->m_len == 0) 1254 return (EINVAL); 1255 tls_len = m->m_len; 1256 1257 /* 1258 * TLS frames require unmapped mbufs to store session 1259 * info. 1260 */ 1261 KASSERT((m->m_flags & M_NOMAP) != 0, 1262 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1263 1264 pgs = m->m_ext.ext_pgs; 1265 1266 /* Save a reference to the session. */ 1267 pgs->tls = ktls_hold(tls); 1268 1269 pgs->hdr_len = tls->params.tls_hlen; 1270 pgs->trail_len = tls->params.tls_tlen; 1271 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1272 int bs, delta; 1273 1274 /* 1275 * AES-CBC pads messages to a multiple of the 1276 * block size. Note that the padding is 1277 * applied after the digest and the encryption 1278 * is done on the "plaintext || mac || padding". 1279 * At least one byte of padding is always 1280 * present. 1281 * 1282 * Compute the final trailer length assuming 1283 * at most one block of padding. 1284 * tls->params.sb_tls_tlen is the maximum 1285 * possible trailer length (padding + digest). 1286 * delta holds the number of excess padding 1287 * bytes if the maximum were used. Those 1288 * extra bytes are removed. 1289 */ 1290 bs = tls->params.tls_bs; 1291 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1292 pgs->trail_len -= delta; 1293 } 1294 m->m_len += pgs->hdr_len + pgs->trail_len; 1295 1296 /* Populate the TLS header. */ 1297 tlshdr = (void *)pgs->hdr; 1298 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1299 1300 /* 1301 * TLS 1.3 masquarades as TLS 1.2 with a record type 1302 * of TLS_RLTYPE_APP. 1303 */ 1304 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1305 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1306 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1307 tlshdr->tls_type = TLS_RLTYPE_APP; 1308 /* save the real record type for later */ 1309 pgs->record_type = record_type; 1310 } else { 1311 tlshdr->tls_vminor = tls->params.tls_vminor; 1312 tlshdr->tls_type = record_type; 1313 } 1314 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1315 1316 /* 1317 * Store nonces / explicit IVs after the end of the 1318 * TLS header. 1319 * 1320 * For GCM with TLS 1.2, an 8 byte nonce is copied 1321 * from the end of the IV. The nonce is then 1322 * incremented for use by the next record. 1323 * 1324 * For CBC, a random nonce is inserted for TLS 1.1+. 1325 */ 1326 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1327 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1328 noncep = (uint64_t *)(tls->params.iv + 8); 1329 be64enc(tlshdr + 1, *noncep); 1330 (*noncep)++; 1331 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1332 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1333 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1334 1335 /* 1336 * When using SW encryption, mark the mbuf not ready. 1337 * It will be marked ready via sbready() after the 1338 * record has been encrypted. 1339 * 1340 * When using ifnet TLS, unencrypted TLS records are 1341 * sent down the stack to the NIC. 1342 */ 1343 if (tls->mode == TCP_TLS_MODE_SW) { 1344 m->m_flags |= M_NOTREADY; 1345 pgs->nrdy = pgs->npgs; 1346 *enq_cnt += pgs->npgs; 1347 } 1348 } 1349 return (0); 1350 } 1351 1352 void 1353 ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs) 1354 { 1355 struct ktls_wq *wq; 1356 bool running; 1357 1358 /* Mark it for freeing. */ 1359 pgs->mbuf = NULL; 1360 wq = &ktls_wq[pgs->tls->wq_index]; 1361 mtx_lock(&wq->mtx); 1362 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1363 running = wq->running; 1364 mtx_unlock(&wq->mtx); 1365 if (!running) 1366 wakeup(wq); 1367 } 1368 1369 void 1370 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1371 { 1372 struct mbuf_ext_pgs *pgs; 1373 struct ktls_wq *wq; 1374 bool running; 1375 1376 KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1377 (M_NOMAP | M_NOTREADY)), 1378 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1379 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1380 1381 pgs = m->m_ext.ext_pgs; 1382 1383 KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1384 1385 pgs->enc_cnt = page_count; 1386 pgs->mbuf = m; 1387 1388 /* 1389 * Save a pointer to the socket. The caller is responsible 1390 * for taking an additional reference via soref(). 1391 */ 1392 pgs->so = so; 1393 1394 wq = &ktls_wq[pgs->tls->wq_index]; 1395 mtx_lock(&wq->mtx); 1396 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1397 running = wq->running; 1398 mtx_unlock(&wq->mtx); 1399 if (!running) 1400 wakeup(wq); 1401 counter_u64_add(ktls_cnt_on, 1); 1402 } 1403 1404 static __noinline void 1405 ktls_encrypt(struct mbuf_ext_pgs *pgs) 1406 { 1407 struct ktls_session *tls; 1408 struct socket *so; 1409 struct mbuf *m, *top; 1410 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1411 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1412 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1413 vm_page_t pg; 1414 int error, i, len, npages, off, total_pages; 1415 bool is_anon; 1416 1417 so = pgs->so; 1418 tls = pgs->tls; 1419 top = pgs->mbuf; 1420 KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs)); 1421 KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs)); 1422 #ifdef INVARIANTS 1423 pgs->so = NULL; 1424 pgs->mbuf = NULL; 1425 #endif 1426 total_pages = pgs->enc_cnt; 1427 npages = 0; 1428 1429 /* 1430 * Encrypt the TLS records in the chain of mbufs starting with 1431 * 'top'. 'total_pages' gives us a total count of pages and is 1432 * used to know when we have finished encrypting the TLS 1433 * records originally queued with 'top'. 1434 * 1435 * NB: These mbufs are queued in the socket buffer and 1436 * 'm_next' is traversing the mbufs in the socket buffer. The 1437 * socket buffer lock is not held while traversing this chain. 1438 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1439 * pointers should be stable. However, the 'm_next' of the 1440 * last mbuf encrypted is not necessarily NULL. It can point 1441 * to other mbufs appended while 'top' was on the TLS work 1442 * queue. 1443 * 1444 * Each mbuf holds an entire TLS record. 1445 */ 1446 error = 0; 1447 for (m = top; npages != total_pages; m = m->m_next) { 1448 pgs = m->m_ext.ext_pgs; 1449 1450 KASSERT(pgs->tls == tls, 1451 ("different TLS sessions in a single mbuf chain: %p vs %p", 1452 tls, pgs->tls)); 1453 KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1454 (M_NOMAP | M_NOTREADY), 1455 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1456 KASSERT(npages + pgs->npgs <= total_pages, 1457 ("page count mismatch: top %p, total_pages %d, m %p", top, 1458 total_pages, m)); 1459 1460 /* 1461 * Generate source and destination ivoecs to pass to 1462 * the SW encryption backend. For writable mbufs, the 1463 * destination iovec is a copy of the source and 1464 * encryption is done in place. For file-backed mbufs 1465 * (from sendfile), anonymous wired pages are 1466 * allocated and assigned to the destination iovec. 1467 */ 1468 is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0; 1469 1470 off = pgs->first_pg_off; 1471 for (i = 0; i < pgs->npgs; i++, off = 0) { 1472 len = mbuf_ext_pg_len(pgs, i, off); 1473 src_iov[i].iov_len = len; 1474 src_iov[i].iov_base = 1475 (char *)(void *)PHYS_TO_DMAP(pgs->pa[i]) + off; 1476 1477 if (is_anon) { 1478 dst_iov[i].iov_base = src_iov[i].iov_base; 1479 dst_iov[i].iov_len = src_iov[i].iov_len; 1480 continue; 1481 } 1482 retry_page: 1483 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1484 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1485 if (pg == NULL) { 1486 vm_wait(NULL); 1487 goto retry_page; 1488 } 1489 parray[i] = VM_PAGE_TO_PHYS(pg); 1490 dst_iov[i].iov_base = 1491 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1492 dst_iov[i].iov_len = len; 1493 } 1494 1495 npages += i; 1496 1497 error = (*tls->sw_encrypt)(tls, 1498 (const struct tls_record_layer *)pgs->hdr, 1499 pgs->trail, src_iov, dst_iov, i, pgs->seqno, 1500 pgs->record_type); 1501 if (error) { 1502 counter_u64_add(ktls_offload_failed_crypto, 1); 1503 break; 1504 } 1505 1506 /* 1507 * For file-backed mbufs, release the file-backed 1508 * pages and replace them in the ext_pgs array with 1509 * the anonymous wired pages allocated above. 1510 */ 1511 if (!is_anon) { 1512 /* Free the old pages. */ 1513 m->m_ext.ext_free(m); 1514 1515 /* Replace them with the new pages. */ 1516 for (i = 0; i < pgs->npgs; i++) 1517 pgs->pa[i] = parray[i]; 1518 1519 /* Use the basic free routine. */ 1520 m->m_ext.ext_free = mb_free_mext_pgs; 1521 1522 /* Pages are now writable. */ 1523 pgs->flags |= MBUF_PEXT_FLAG_ANON; 1524 } 1525 1526 /* 1527 * Drop a reference to the session now that it is no 1528 * longer needed. Existing code depends on encrypted 1529 * records having no associated session vs 1530 * yet-to-be-encrypted records having an associated 1531 * session. 1532 */ 1533 pgs->tls = NULL; 1534 ktls_free(tls); 1535 } 1536 1537 CURVNET_SET(so->so_vnet); 1538 if (error == 0) { 1539 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 1540 } else { 1541 so->so_proto->pr_usrreqs->pru_abort(so); 1542 so->so_error = EIO; 1543 mb_free_notready(top, total_pages); 1544 } 1545 1546 SOCK_LOCK(so); 1547 sorele(so); 1548 CURVNET_RESTORE(); 1549 } 1550 1551 static void 1552 ktls_work_thread(void *ctx) 1553 { 1554 struct ktls_wq *wq = ctx; 1555 struct mbuf_ext_pgs *p, *n; 1556 struct ktls_session *tls; 1557 STAILQ_HEAD(, mbuf_ext_pgs) local_head; 1558 1559 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 1560 fpu_kern_thread(0); 1561 #endif 1562 for (;;) { 1563 mtx_lock(&wq->mtx); 1564 while (STAILQ_EMPTY(&wq->head)) { 1565 wq->running = false; 1566 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 1567 wq->running = true; 1568 } 1569 1570 STAILQ_INIT(&local_head); 1571 STAILQ_CONCAT(&local_head, &wq->head); 1572 mtx_unlock(&wq->mtx); 1573 1574 STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) { 1575 if (p->mbuf != NULL) { 1576 ktls_encrypt(p); 1577 counter_u64_add(ktls_cnt_on, -1); 1578 } else { 1579 tls = p->tls; 1580 ktls_free(tls); 1581 uma_zfree(zone_extpgs, p); 1582 } 1583 } 1584 } 1585 } 1586