1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_domain_info { 89 int count; 90 int cpu[MAXCPU]; 91 }; 92 93 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 94 static struct ktls_wq *ktls_wq; 95 static struct proc *ktls_proc; 96 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 97 static struct rmlock ktls_backends_lock; 98 static uma_zone_t ktls_session_zone; 99 static uma_zone_t ktls_buffer_zone; 100 static uint16_t ktls_cpuid_lookup[MAXCPU]; 101 102 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload"); 104 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 105 "Kernel TLS offload stats"); 106 107 static int ktls_allow_unload; 108 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 109 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 110 111 #ifdef RSS 112 static int ktls_bind_threads = 1; 113 #else 114 static int ktls_bind_threads; 115 #endif 116 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 117 &ktls_bind_threads, 0, 118 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 119 120 static u_int ktls_maxlen = 16384; 121 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 122 &ktls_maxlen, 0, "Maximum TLS record size"); 123 124 static int ktls_number_threads; 125 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 126 &ktls_number_threads, 0, 127 "Number of TLS threads in thread-pool"); 128 129 static bool ktls_offload_enable; 130 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 131 &ktls_offload_enable, 0, 132 "Enable support for kernel TLS offload"); 133 134 static bool ktls_cbc_enable = true; 135 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 136 &ktls_cbc_enable, 1, 137 "Enable Support of AES-CBC crypto for kernel TLS"); 138 139 static bool ktls_sw_buffer_cache = true; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 141 &ktls_sw_buffer_cache, 1, 142 "Enable caching of output buffers for SW encryption"); 143 144 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 145 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 146 &ktls_tasks_active, "Number of active tasks"); 147 148 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 149 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 150 &ktls_cnt_tx_queued, 151 "Number of TLS records in queue to tasks for SW encryption"); 152 153 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 154 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 155 &ktls_cnt_rx_queued, 156 "Number of TLS sockets in queue to tasks for SW decryption"); 157 158 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 160 CTLFLAG_RD, &ktls_offload_total, 161 "Total successful TLS setups (parameters set)"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 165 CTLFLAG_RD, &ktls_offload_enable_calls, 166 "Total number of TLS enable calls made"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 170 &ktls_offload_active, "Total Active TLS sessions"); 171 172 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 173 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 174 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 175 176 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 178 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 179 180 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 181 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 182 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 183 184 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 185 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 186 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 190 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 191 192 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 193 "Software TLS session stats"); 194 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 195 "Hardware (ifnet) TLS session stats"); 196 #ifdef TCP_OFFLOAD 197 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 198 "TOE TLS session stats"); 199 #endif 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 203 "Active number of software TLS sessions using AES-CBC"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 207 "Active number of software TLS sessions using AES-GCM"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 211 &ktls_sw_chacha20, 212 "Active number of software TLS sessions using Chacha20-Poly1305"); 213 214 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 216 &ktls_ifnet_cbc, 217 "Active number of ifnet TLS sessions using AES-CBC"); 218 219 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 220 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 221 &ktls_ifnet_gcm, 222 "Active number of ifnet TLS sessions using AES-GCM"); 223 224 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 225 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 226 &ktls_ifnet_chacha20, 227 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 228 229 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 230 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 231 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 232 233 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 234 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 235 &ktls_ifnet_reset_dropped, 236 "TLS sessions dropped after failing to update ifnet send tag"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 240 &ktls_ifnet_reset_failed, 241 "TLS sessions that failed to allocate a new ifnet send tag"); 242 243 static int ktls_ifnet_permitted; 244 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 245 &ktls_ifnet_permitted, 1, 246 "Whether to permit hardware (ifnet) TLS sessions"); 247 248 #ifdef TCP_OFFLOAD 249 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 250 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 251 &ktls_toe_cbc, 252 "Active number of TOE TLS sessions using AES-CBC"); 253 254 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 255 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 256 &ktls_toe_gcm, 257 "Active number of TOE TLS sessions using AES-GCM"); 258 259 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 260 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 261 &ktls_toe_chacha20, 262 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 263 #endif 264 265 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 266 267 static void ktls_cleanup(struct ktls_session *tls); 268 #if defined(INET) || defined(INET6) 269 static void ktls_reset_send_tag(void *context, int pending); 270 #endif 271 static void ktls_work_thread(void *ctx); 272 273 int 274 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 275 { 276 struct ktls_crypto_backend *curr_be, *tmp; 277 278 if (be->api_version != KTLS_API_VERSION) { 279 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 280 be->api_version, KTLS_API_VERSION, 281 be->name); 282 return (EINVAL); 283 } 284 285 rm_wlock(&ktls_backends_lock); 286 printf("KTLS: Registering crypto method %s with prio %d\n", 287 be->name, be->prio); 288 if (LIST_EMPTY(&ktls_backends)) { 289 LIST_INSERT_HEAD(&ktls_backends, be, next); 290 } else { 291 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 292 if (curr_be->prio < be->prio) { 293 LIST_INSERT_BEFORE(curr_be, be, next); 294 break; 295 } 296 if (LIST_NEXT(curr_be, next) == NULL) { 297 LIST_INSERT_AFTER(curr_be, be, next); 298 break; 299 } 300 } 301 } 302 rm_wunlock(&ktls_backends_lock); 303 return (0); 304 } 305 306 int 307 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 308 { 309 struct ktls_crypto_backend *tmp; 310 311 /* 312 * Don't error if the backend isn't registered. This permits 313 * MOD_UNLOAD handlers to use this function unconditionally. 314 */ 315 rm_wlock(&ktls_backends_lock); 316 LIST_FOREACH(tmp, &ktls_backends, next) { 317 if (tmp == be) 318 break; 319 } 320 if (tmp == NULL) { 321 rm_wunlock(&ktls_backends_lock); 322 return (0); 323 } 324 325 if (!ktls_allow_unload) { 326 rm_wunlock(&ktls_backends_lock); 327 printf( 328 "KTLS: Deregistering crypto method %s is not supported\n", 329 be->name); 330 return (EBUSY); 331 } 332 333 if (be->use_count) { 334 rm_wunlock(&ktls_backends_lock); 335 return (EBUSY); 336 } 337 338 LIST_REMOVE(be, next); 339 rm_wunlock(&ktls_backends_lock); 340 return (0); 341 } 342 343 #if defined(INET) || defined(INET6) 344 static u_int 345 ktls_get_cpu(struct socket *so) 346 { 347 struct inpcb *inp; 348 #ifdef NUMA 349 struct ktls_domain_info *di; 350 #endif 351 u_int cpuid; 352 353 inp = sotoinpcb(so); 354 #ifdef RSS 355 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 356 if (cpuid != NETISR_CPUID_NONE) 357 return (cpuid); 358 #endif 359 /* 360 * Just use the flowid to shard connections in a repeatable 361 * fashion. Note that some crypto backends rely on the 362 * serialization provided by having the same connection use 363 * the same queue. 364 */ 365 #ifdef NUMA 366 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 367 di = &ktls_domains[inp->inp_numa_domain]; 368 cpuid = di->cpu[inp->inp_flowid % di->count]; 369 } else 370 #endif 371 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 372 return (cpuid); 373 } 374 #endif 375 376 static int 377 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 378 { 379 vm_page_t m; 380 int i; 381 382 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 383 ("%s: ktls max length %d is not page size-aligned", 384 __func__, ktls_maxlen)); 385 386 for (i = 0; i < count; i++) { 387 m = vm_page_alloc_contig_domain(NULL, 0, domain, 388 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 389 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 390 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 391 VM_MEMATTR_DEFAULT); 392 if (m == NULL) 393 break; 394 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 395 } 396 return (i); 397 } 398 399 static void 400 ktls_buffer_release(void *arg __unused, void **store, int count) 401 { 402 vm_page_t m; 403 int i, j; 404 405 for (i = 0; i < count; i++) { 406 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 407 for (j = 0; j < atop(ktls_maxlen); j++) { 408 (void)vm_page_unwire_noq(m + j); 409 vm_page_free(m + j); 410 } 411 } 412 } 413 414 static void 415 ktls_free_mext_contig(struct mbuf *m) 416 { 417 M_ASSERTEXTPG(m); 418 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 419 } 420 421 static void 422 ktls_init(void *dummy __unused) 423 { 424 struct thread *td; 425 struct pcpu *pc; 426 cpuset_t mask; 427 int count, domain, error, i; 428 429 rm_init(&ktls_backends_lock, "ktls backends"); 430 LIST_INIT(&ktls_backends); 431 432 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 433 M_WAITOK | M_ZERO); 434 435 ktls_session_zone = uma_zcreate("ktls_session", 436 sizeof(struct ktls_session), 437 NULL, NULL, NULL, NULL, 438 UMA_ALIGN_CACHE, 0); 439 440 if (ktls_sw_buffer_cache) { 441 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 442 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 443 ktls_buffer_import, ktls_buffer_release, NULL, 444 UMA_ZONE_FIRSTTOUCH); 445 } 446 447 /* 448 * Initialize the workqueues to run the TLS work. We create a 449 * work queue for each CPU. 450 */ 451 CPU_FOREACH(i) { 452 STAILQ_INIT(&ktls_wq[i].m_head); 453 STAILQ_INIT(&ktls_wq[i].so_head); 454 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 455 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 456 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 457 if (error) 458 panic("Can't add KTLS thread %d error %d", i, error); 459 460 /* 461 * Bind threads to cores. If ktls_bind_threads is > 462 * 1, then we bind to the NUMA domain. 463 */ 464 if (ktls_bind_threads) { 465 if (ktls_bind_threads > 1) { 466 pc = pcpu_find(i); 467 domain = pc->pc_domain; 468 CPU_COPY(&cpuset_domain[domain], &mask); 469 count = ktls_domains[domain].count; 470 ktls_domains[domain].cpu[count] = i; 471 ktls_domains[domain].count++; 472 } else { 473 CPU_SETOF(i, &mask); 474 } 475 error = cpuset_setthread(td->td_tid, &mask); 476 if (error) 477 panic( 478 "Unable to bind KTLS thread for CPU %d error %d", 479 i, error); 480 } 481 ktls_cpuid_lookup[ktls_number_threads] = i; 482 ktls_number_threads++; 483 } 484 485 /* 486 * If we somehow have an empty domain, fall back to choosing 487 * among all KTLS threads. 488 */ 489 if (ktls_bind_threads > 1) { 490 for (i = 0; i < vm_ndomains; i++) { 491 if (ktls_domains[i].count == 0) { 492 ktls_bind_threads = 1; 493 break; 494 } 495 } 496 } 497 498 if (bootverbose) 499 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 500 } 501 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 555 en->iv_len != TLS_AEAD_GCM_LEN) || 556 (en->tls_vminor == TLS_MINOR_VER_THREE && 557 en->iv_len != TLS_1_3_GCM_IV_LEN)) 558 return (EINVAL); 559 break; 560 case CRYPTO_AES_CBC: 561 switch (en->auth_algorithm) { 562 case CRYPTO_SHA1_HMAC: 563 /* 564 * TLS 1.0 requires an implicit IV. TLS 1.1+ 565 * all use explicit IVs. 566 */ 567 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 568 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 569 return (EINVAL); 570 break; 571 } 572 573 /* FALLTHROUGH */ 574 case CRYPTO_SHA2_256_HMAC: 575 case CRYPTO_SHA2_384_HMAC: 576 /* Ignore any supplied IV. */ 577 en->iv_len = 0; 578 break; 579 default: 580 return (EINVAL); 581 } 582 if (en->auth_key_len == 0) 583 return (EINVAL); 584 break; 585 case CRYPTO_CHACHA20_POLY1305: 586 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 587 return (EINVAL); 588 if (en->tls_vminor != TLS_MINOR_VER_TWO && 589 en->tls_vminor != TLS_MINOR_VER_THREE) 590 return (EINVAL); 591 if (en->iv_len != TLS_CHACHA20_IV_LEN) 592 return (EINVAL); 593 break; 594 default: 595 return (EINVAL); 596 } 597 598 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 599 600 counter_u64_add(ktls_offload_active, 1); 601 602 refcount_init(&tls->refcount, 1); 603 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 604 605 tls->wq_index = ktls_get_cpu(so); 606 607 tls->params.cipher_algorithm = en->cipher_algorithm; 608 tls->params.auth_algorithm = en->auth_algorithm; 609 tls->params.tls_vmajor = en->tls_vmajor; 610 tls->params.tls_vminor = en->tls_vminor; 611 tls->params.flags = en->flags; 612 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 613 614 /* Set the header and trailer lengths. */ 615 tls->params.tls_hlen = sizeof(struct tls_record_layer); 616 switch (en->cipher_algorithm) { 617 case CRYPTO_AES_NIST_GCM_16: 618 /* 619 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 620 * nonce. TLS 1.3 uses a 12 byte implicit IV. 621 */ 622 if (en->tls_vminor < TLS_MINOR_VER_THREE) 623 tls->params.tls_hlen += sizeof(uint64_t); 624 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 625 tls->params.tls_bs = 1; 626 break; 627 case CRYPTO_AES_CBC: 628 switch (en->auth_algorithm) { 629 case CRYPTO_SHA1_HMAC: 630 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 631 /* Implicit IV, no nonce. */ 632 } else { 633 tls->params.tls_hlen += AES_BLOCK_LEN; 634 } 635 tls->params.tls_tlen = AES_BLOCK_LEN + 636 SHA1_HASH_LEN; 637 break; 638 case CRYPTO_SHA2_256_HMAC: 639 tls->params.tls_hlen += AES_BLOCK_LEN; 640 tls->params.tls_tlen = AES_BLOCK_LEN + 641 SHA2_256_HASH_LEN; 642 break; 643 case CRYPTO_SHA2_384_HMAC: 644 tls->params.tls_hlen += AES_BLOCK_LEN; 645 tls->params.tls_tlen = AES_BLOCK_LEN + 646 SHA2_384_HASH_LEN; 647 break; 648 default: 649 panic("invalid hmac"); 650 } 651 tls->params.tls_bs = AES_BLOCK_LEN; 652 break; 653 case CRYPTO_CHACHA20_POLY1305: 654 /* 655 * Chacha20 uses a 12 byte implicit IV. 656 */ 657 tls->params.tls_tlen = POLY1305_HASH_LEN; 658 tls->params.tls_bs = 1; 659 break; 660 default: 661 panic("invalid cipher"); 662 } 663 664 /* 665 * TLS 1.3 includes optional padding which we do not support, 666 * and also puts the "real" record type at the end of the 667 * encrypted data. 668 */ 669 if (en->tls_vminor == TLS_MINOR_VER_THREE) 670 tls->params.tls_tlen += sizeof(uint8_t); 671 672 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 673 ("TLS header length too long: %d", tls->params.tls_hlen)); 674 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 675 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 676 677 if (en->auth_key_len != 0) { 678 tls->params.auth_key_len = en->auth_key_len; 679 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 680 M_WAITOK); 681 error = copyin(en->auth_key, tls->params.auth_key, 682 en->auth_key_len); 683 if (error) 684 goto out; 685 } 686 687 tls->params.cipher_key_len = en->cipher_key_len; 688 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 689 error = copyin(en->cipher_key, tls->params.cipher_key, 690 en->cipher_key_len); 691 if (error) 692 goto out; 693 694 /* 695 * This holds the implicit portion of the nonce for AEAD 696 * ciphers and the initial implicit IV for TLS 1.0. The 697 * explicit portions of the IV are generated in ktls_frame(). 698 */ 699 if (en->iv_len != 0) { 700 tls->params.iv_len = en->iv_len; 701 error = copyin(en->iv, tls->params.iv, en->iv_len); 702 if (error) 703 goto out; 704 705 /* 706 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 707 * counter to generate unique explicit IVs. 708 * 709 * Store this counter in the last 8 bytes of the IV 710 * array so that it is 8-byte aligned. 711 */ 712 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 713 en->tls_vminor == TLS_MINOR_VER_TWO) 714 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 715 } 716 717 *tlsp = tls; 718 return (0); 719 720 out: 721 ktls_cleanup(tls); 722 return (error); 723 } 724 725 static struct ktls_session * 726 ktls_clone_session(struct ktls_session *tls) 727 { 728 struct ktls_session *tls_new; 729 730 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 731 732 counter_u64_add(ktls_offload_active, 1); 733 734 refcount_init(&tls_new->refcount, 1); 735 736 /* Copy fields from existing session. */ 737 tls_new->params = tls->params; 738 tls_new->wq_index = tls->wq_index; 739 740 /* Deep copy keys. */ 741 if (tls_new->params.auth_key != NULL) { 742 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 743 M_KTLS, M_WAITOK); 744 memcpy(tls_new->params.auth_key, tls->params.auth_key, 745 tls->params.auth_key_len); 746 } 747 748 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 749 M_WAITOK); 750 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 751 tls->params.cipher_key_len); 752 753 return (tls_new); 754 } 755 #endif 756 757 static void 758 ktls_cleanup(struct ktls_session *tls) 759 { 760 761 counter_u64_add(ktls_offload_active, -1); 762 switch (tls->mode) { 763 case TCP_TLS_MODE_SW: 764 MPASS(tls->be != NULL); 765 switch (tls->params.cipher_algorithm) { 766 case CRYPTO_AES_CBC: 767 counter_u64_add(ktls_sw_cbc, -1); 768 break; 769 case CRYPTO_AES_NIST_GCM_16: 770 counter_u64_add(ktls_sw_gcm, -1); 771 break; 772 case CRYPTO_CHACHA20_POLY1305: 773 counter_u64_add(ktls_sw_chacha20, -1); 774 break; 775 } 776 tls->free(tls); 777 break; 778 case TCP_TLS_MODE_IFNET: 779 switch (tls->params.cipher_algorithm) { 780 case CRYPTO_AES_CBC: 781 counter_u64_add(ktls_ifnet_cbc, -1); 782 break; 783 case CRYPTO_AES_NIST_GCM_16: 784 counter_u64_add(ktls_ifnet_gcm, -1); 785 break; 786 case CRYPTO_CHACHA20_POLY1305: 787 counter_u64_add(ktls_ifnet_chacha20, -1); 788 break; 789 } 790 if (tls->snd_tag != NULL) 791 m_snd_tag_rele(tls->snd_tag); 792 break; 793 #ifdef TCP_OFFLOAD 794 case TCP_TLS_MODE_TOE: 795 switch (tls->params.cipher_algorithm) { 796 case CRYPTO_AES_CBC: 797 counter_u64_add(ktls_toe_cbc, -1); 798 break; 799 case CRYPTO_AES_NIST_GCM_16: 800 counter_u64_add(ktls_toe_gcm, -1); 801 break; 802 case CRYPTO_CHACHA20_POLY1305: 803 counter_u64_add(ktls_toe_chacha20, -1); 804 break; 805 } 806 break; 807 #endif 808 } 809 if (tls->params.auth_key != NULL) { 810 zfree(tls->params.auth_key, M_KTLS); 811 tls->params.auth_key = NULL; 812 tls->params.auth_key_len = 0; 813 } 814 if (tls->params.cipher_key != NULL) { 815 zfree(tls->params.cipher_key, M_KTLS); 816 tls->params.cipher_key = NULL; 817 tls->params.cipher_key_len = 0; 818 } 819 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 820 } 821 822 #if defined(INET) || defined(INET6) 823 824 #ifdef TCP_OFFLOAD 825 static int 826 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 827 { 828 struct inpcb *inp; 829 struct tcpcb *tp; 830 int error; 831 832 inp = so->so_pcb; 833 INP_WLOCK(inp); 834 if (inp->inp_flags2 & INP_FREED) { 835 INP_WUNLOCK(inp); 836 return (ECONNRESET); 837 } 838 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 839 INP_WUNLOCK(inp); 840 return (ECONNRESET); 841 } 842 if (inp->inp_socket == NULL) { 843 INP_WUNLOCK(inp); 844 return (ECONNRESET); 845 } 846 tp = intotcpcb(inp); 847 if (!(tp->t_flags & TF_TOE)) { 848 INP_WUNLOCK(inp); 849 return (EOPNOTSUPP); 850 } 851 852 error = tcp_offload_alloc_tls_session(tp, tls, direction); 853 INP_WUNLOCK(inp); 854 if (error == 0) { 855 tls->mode = TCP_TLS_MODE_TOE; 856 switch (tls->params.cipher_algorithm) { 857 case CRYPTO_AES_CBC: 858 counter_u64_add(ktls_toe_cbc, 1); 859 break; 860 case CRYPTO_AES_NIST_GCM_16: 861 counter_u64_add(ktls_toe_gcm, 1); 862 break; 863 case CRYPTO_CHACHA20_POLY1305: 864 counter_u64_add(ktls_toe_chacha20, 1); 865 break; 866 } 867 } 868 return (error); 869 } 870 #endif 871 872 /* 873 * Common code used when first enabling ifnet TLS on a connection or 874 * when allocating a new ifnet TLS session due to a routing change. 875 * This function allocates a new TLS send tag on whatever interface 876 * the connection is currently routed over. 877 */ 878 static int 879 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 880 struct m_snd_tag **mstp) 881 { 882 union if_snd_tag_alloc_params params; 883 struct ifnet *ifp; 884 struct nhop_object *nh; 885 struct tcpcb *tp; 886 int error; 887 888 INP_RLOCK(inp); 889 if (inp->inp_flags2 & INP_FREED) { 890 INP_RUNLOCK(inp); 891 return (ECONNRESET); 892 } 893 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 894 INP_RUNLOCK(inp); 895 return (ECONNRESET); 896 } 897 if (inp->inp_socket == NULL) { 898 INP_RUNLOCK(inp); 899 return (ECONNRESET); 900 } 901 tp = intotcpcb(inp); 902 903 /* 904 * Check administrative controls on ifnet TLS to determine if 905 * ifnet TLS should be denied. 906 * 907 * - Always permit 'force' requests. 908 * - ktls_ifnet_permitted == 0: always deny. 909 */ 910 if (!force && ktls_ifnet_permitted == 0) { 911 INP_RUNLOCK(inp); 912 return (ENXIO); 913 } 914 915 /* 916 * XXX: Use the cached route in the inpcb to find the 917 * interface. This should perhaps instead use 918 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 919 * enabled after a connection has completed key negotiation in 920 * userland, the cached route will be present in practice. 921 */ 922 nh = inp->inp_route.ro_nh; 923 if (nh == NULL) { 924 INP_RUNLOCK(inp); 925 return (ENXIO); 926 } 927 ifp = nh->nh_ifp; 928 if_ref(ifp); 929 930 /* 931 * Allocate a TLS + ratelimit tag if the connection has an 932 * existing pacing rate. 933 */ 934 if (tp->t_pacing_rate != -1 && 935 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 936 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 937 params.tls_rate_limit.inp = inp; 938 params.tls_rate_limit.tls = tls; 939 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 940 } else { 941 params.hdr.type = IF_SND_TAG_TYPE_TLS; 942 params.tls.inp = inp; 943 params.tls.tls = tls; 944 } 945 params.hdr.flowid = inp->inp_flowid; 946 params.hdr.flowtype = inp->inp_flowtype; 947 params.hdr.numa_domain = inp->inp_numa_domain; 948 INP_RUNLOCK(inp); 949 950 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 951 error = EOPNOTSUPP; 952 goto out; 953 } 954 if (inp->inp_vflag & INP_IPV6) { 955 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 956 error = EOPNOTSUPP; 957 goto out; 958 } 959 } else { 960 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 961 error = EOPNOTSUPP; 962 goto out; 963 } 964 } 965 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 966 out: 967 if_rele(ifp); 968 return (error); 969 } 970 971 static int 972 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 973 { 974 struct m_snd_tag *mst; 975 int error; 976 977 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 978 if (error == 0) { 979 tls->mode = TCP_TLS_MODE_IFNET; 980 tls->snd_tag = mst; 981 switch (tls->params.cipher_algorithm) { 982 case CRYPTO_AES_CBC: 983 counter_u64_add(ktls_ifnet_cbc, 1); 984 break; 985 case CRYPTO_AES_NIST_GCM_16: 986 counter_u64_add(ktls_ifnet_gcm, 1); 987 break; 988 case CRYPTO_CHACHA20_POLY1305: 989 counter_u64_add(ktls_ifnet_chacha20, 1); 990 break; 991 } 992 } 993 return (error); 994 } 995 996 static int 997 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 998 { 999 struct rm_priotracker prio; 1000 struct ktls_crypto_backend *be; 1001 1002 /* 1003 * Choose the best software crypto backend. Backends are 1004 * stored in sorted priority order (larget value == most 1005 * important at the head of the list), so this just stops on 1006 * the first backend that claims the session by returning 1007 * success. 1008 */ 1009 if (ktls_allow_unload) 1010 rm_rlock(&ktls_backends_lock, &prio); 1011 LIST_FOREACH(be, &ktls_backends, next) { 1012 if (be->try(so, tls, direction) == 0) 1013 break; 1014 KASSERT(tls->cipher == NULL, 1015 ("ktls backend leaked a cipher pointer")); 1016 } 1017 if (be != NULL) { 1018 if (ktls_allow_unload) 1019 be->use_count++; 1020 tls->be = be; 1021 } 1022 if (ktls_allow_unload) 1023 rm_runlock(&ktls_backends_lock, &prio); 1024 if (be == NULL) 1025 return (EOPNOTSUPP); 1026 tls->mode = TCP_TLS_MODE_SW; 1027 switch (tls->params.cipher_algorithm) { 1028 case CRYPTO_AES_CBC: 1029 counter_u64_add(ktls_sw_cbc, 1); 1030 break; 1031 case CRYPTO_AES_NIST_GCM_16: 1032 counter_u64_add(ktls_sw_gcm, 1); 1033 break; 1034 case CRYPTO_CHACHA20_POLY1305: 1035 counter_u64_add(ktls_sw_chacha20, 1); 1036 break; 1037 } 1038 return (0); 1039 } 1040 1041 /* 1042 * KTLS RX stores data in the socket buffer as a list of TLS records, 1043 * where each record is stored as a control message containg the TLS 1044 * header followed by data mbufs containing the decrypted data. This 1045 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1046 * both encrypted and decrypted data. TLS records decrypted by a NIC 1047 * should be queued to the socket buffer as records, but encrypted 1048 * data which needs to be decrypted by software arrives as a stream of 1049 * regular mbufs which need to be converted. In addition, there may 1050 * already be pending encrypted data in the socket buffer when KTLS RX 1051 * is enabled. 1052 * 1053 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1054 * is used: 1055 * 1056 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1057 * 1058 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1059 * from the first mbuf. Once all of the data for that TLS record is 1060 * queued, the socket is queued to a worker thread. 1061 * 1062 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1063 * the TLS chain. Each TLS record is detached from the TLS chain, 1064 * decrypted, and inserted into the regular socket buffer chain as 1065 * record starting with a control message holding the TLS header and 1066 * a chain of mbufs holding the encrypted data. 1067 */ 1068 1069 static void 1070 sb_mark_notready(struct sockbuf *sb) 1071 { 1072 struct mbuf *m; 1073 1074 m = sb->sb_mb; 1075 sb->sb_mtls = m; 1076 sb->sb_mb = NULL; 1077 sb->sb_mbtail = NULL; 1078 sb->sb_lastrecord = NULL; 1079 for (; m != NULL; m = m->m_next) { 1080 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1081 __func__)); 1082 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1083 __func__)); 1084 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1085 __func__)); 1086 m->m_flags |= M_NOTREADY; 1087 sb->sb_acc -= m->m_len; 1088 sb->sb_tlscc += m->m_len; 1089 sb->sb_mtlstail = m; 1090 } 1091 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1092 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1093 sb->sb_ccc)); 1094 } 1095 1096 int 1097 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1098 { 1099 struct ktls_session *tls; 1100 int error; 1101 1102 if (!ktls_offload_enable) 1103 return (ENOTSUP); 1104 if (SOLISTENING(so)) 1105 return (EINVAL); 1106 1107 counter_u64_add(ktls_offload_enable_calls, 1); 1108 1109 /* 1110 * This should always be true since only the TCP socket option 1111 * invokes this function. 1112 */ 1113 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1114 return (EINVAL); 1115 1116 /* 1117 * XXX: Don't overwrite existing sessions. We should permit 1118 * this to support rekeying in the future. 1119 */ 1120 if (so->so_rcv.sb_tls_info != NULL) 1121 return (EALREADY); 1122 1123 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1124 return (ENOTSUP); 1125 1126 /* TLS 1.3 is not yet supported. */ 1127 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1128 en->tls_vminor == TLS_MINOR_VER_THREE) 1129 return (ENOTSUP); 1130 1131 error = ktls_create_session(so, en, &tls); 1132 if (error) 1133 return (error); 1134 1135 #ifdef TCP_OFFLOAD 1136 error = ktls_try_toe(so, tls, KTLS_RX); 1137 if (error) 1138 #endif 1139 error = ktls_try_sw(so, tls, KTLS_RX); 1140 1141 if (error) { 1142 ktls_cleanup(tls); 1143 return (error); 1144 } 1145 1146 /* Mark the socket as using TLS offload. */ 1147 SOCKBUF_LOCK(&so->so_rcv); 1148 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1149 so->so_rcv.sb_tls_info = tls; 1150 so->so_rcv.sb_flags |= SB_TLS_RX; 1151 1152 /* Mark existing data as not ready until it can be decrypted. */ 1153 sb_mark_notready(&so->so_rcv); 1154 ktls_check_rx(&so->so_rcv); 1155 SOCKBUF_UNLOCK(&so->so_rcv); 1156 1157 counter_u64_add(ktls_offload_total, 1); 1158 1159 return (0); 1160 } 1161 1162 int 1163 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1164 { 1165 struct ktls_session *tls; 1166 struct inpcb *inp; 1167 int error; 1168 1169 if (!ktls_offload_enable) 1170 return (ENOTSUP); 1171 if (SOLISTENING(so)) 1172 return (EINVAL); 1173 1174 counter_u64_add(ktls_offload_enable_calls, 1); 1175 1176 /* 1177 * This should always be true since only the TCP socket option 1178 * invokes this function. 1179 */ 1180 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1181 return (EINVAL); 1182 1183 /* 1184 * XXX: Don't overwrite existing sessions. We should permit 1185 * this to support rekeying in the future. 1186 */ 1187 if (so->so_snd.sb_tls_info != NULL) 1188 return (EALREADY); 1189 1190 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1191 return (ENOTSUP); 1192 1193 /* TLS requires ext pgs */ 1194 if (mb_use_ext_pgs == 0) 1195 return (ENXIO); 1196 1197 error = ktls_create_session(so, en, &tls); 1198 if (error) 1199 return (error); 1200 1201 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1202 #ifdef TCP_OFFLOAD 1203 error = ktls_try_toe(so, tls, KTLS_TX); 1204 if (error) 1205 #endif 1206 error = ktls_try_ifnet(so, tls, false); 1207 if (error) 1208 error = ktls_try_sw(so, tls, KTLS_TX); 1209 1210 if (error) { 1211 ktls_cleanup(tls); 1212 return (error); 1213 } 1214 1215 error = sblock(&so->so_snd, SBL_WAIT); 1216 if (error) { 1217 ktls_cleanup(tls); 1218 return (error); 1219 } 1220 1221 /* 1222 * Write lock the INP when setting sb_tls_info so that 1223 * routines in tcp_ratelimit.c can read sb_tls_info while 1224 * holding the INP lock. 1225 */ 1226 inp = so->so_pcb; 1227 INP_WLOCK(inp); 1228 SOCKBUF_LOCK(&so->so_snd); 1229 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1230 so->so_snd.sb_tls_info = tls; 1231 if (tls->mode != TCP_TLS_MODE_SW) 1232 so->so_snd.sb_flags |= SB_TLS_IFNET; 1233 SOCKBUF_UNLOCK(&so->so_snd); 1234 INP_WUNLOCK(inp); 1235 sbunlock(&so->so_snd); 1236 1237 counter_u64_add(ktls_offload_total, 1); 1238 1239 return (0); 1240 } 1241 1242 int 1243 ktls_get_rx_mode(struct socket *so) 1244 { 1245 struct ktls_session *tls; 1246 struct inpcb *inp; 1247 int mode; 1248 1249 if (SOLISTENING(so)) 1250 return (EINVAL); 1251 inp = so->so_pcb; 1252 INP_WLOCK_ASSERT(inp); 1253 SOCKBUF_LOCK(&so->so_rcv); 1254 tls = so->so_rcv.sb_tls_info; 1255 if (tls == NULL) 1256 mode = TCP_TLS_MODE_NONE; 1257 else 1258 mode = tls->mode; 1259 SOCKBUF_UNLOCK(&so->so_rcv); 1260 return (mode); 1261 } 1262 1263 int 1264 ktls_get_tx_mode(struct socket *so) 1265 { 1266 struct ktls_session *tls; 1267 struct inpcb *inp; 1268 int mode; 1269 1270 if (SOLISTENING(so)) 1271 return (EINVAL); 1272 inp = so->so_pcb; 1273 INP_WLOCK_ASSERT(inp); 1274 SOCKBUF_LOCK(&so->so_snd); 1275 tls = so->so_snd.sb_tls_info; 1276 if (tls == NULL) 1277 mode = TCP_TLS_MODE_NONE; 1278 else 1279 mode = tls->mode; 1280 SOCKBUF_UNLOCK(&so->so_snd); 1281 return (mode); 1282 } 1283 1284 /* 1285 * Switch between SW and ifnet TLS sessions as requested. 1286 */ 1287 int 1288 ktls_set_tx_mode(struct socket *so, int mode) 1289 { 1290 struct ktls_session *tls, *tls_new; 1291 struct inpcb *inp; 1292 int error; 1293 1294 if (SOLISTENING(so)) 1295 return (EINVAL); 1296 switch (mode) { 1297 case TCP_TLS_MODE_SW: 1298 case TCP_TLS_MODE_IFNET: 1299 break; 1300 default: 1301 return (EINVAL); 1302 } 1303 1304 inp = so->so_pcb; 1305 INP_WLOCK_ASSERT(inp); 1306 SOCKBUF_LOCK(&so->so_snd); 1307 tls = so->so_snd.sb_tls_info; 1308 if (tls == NULL) { 1309 SOCKBUF_UNLOCK(&so->so_snd); 1310 return (0); 1311 } 1312 1313 if (tls->mode == mode) { 1314 SOCKBUF_UNLOCK(&so->so_snd); 1315 return (0); 1316 } 1317 1318 tls = ktls_hold(tls); 1319 SOCKBUF_UNLOCK(&so->so_snd); 1320 INP_WUNLOCK(inp); 1321 1322 tls_new = ktls_clone_session(tls); 1323 1324 if (mode == TCP_TLS_MODE_IFNET) 1325 error = ktls_try_ifnet(so, tls_new, true); 1326 else 1327 error = ktls_try_sw(so, tls_new, KTLS_TX); 1328 if (error) { 1329 counter_u64_add(ktls_switch_failed, 1); 1330 ktls_free(tls_new); 1331 ktls_free(tls); 1332 INP_WLOCK(inp); 1333 return (error); 1334 } 1335 1336 error = sblock(&so->so_snd, SBL_WAIT); 1337 if (error) { 1338 counter_u64_add(ktls_switch_failed, 1); 1339 ktls_free(tls_new); 1340 ktls_free(tls); 1341 INP_WLOCK(inp); 1342 return (error); 1343 } 1344 1345 /* 1346 * If we raced with another session change, keep the existing 1347 * session. 1348 */ 1349 if (tls != so->so_snd.sb_tls_info) { 1350 counter_u64_add(ktls_switch_failed, 1); 1351 sbunlock(&so->so_snd); 1352 ktls_free(tls_new); 1353 ktls_free(tls); 1354 INP_WLOCK(inp); 1355 return (EBUSY); 1356 } 1357 1358 SOCKBUF_LOCK(&so->so_snd); 1359 so->so_snd.sb_tls_info = tls_new; 1360 if (tls_new->mode != TCP_TLS_MODE_SW) 1361 so->so_snd.sb_flags |= SB_TLS_IFNET; 1362 SOCKBUF_UNLOCK(&so->so_snd); 1363 sbunlock(&so->so_snd); 1364 1365 /* 1366 * Drop two references on 'tls'. The first is for the 1367 * ktls_hold() above. The second drops the reference from the 1368 * socket buffer. 1369 */ 1370 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1371 ktls_free(tls); 1372 ktls_free(tls); 1373 1374 if (mode == TCP_TLS_MODE_IFNET) 1375 counter_u64_add(ktls_switch_to_ifnet, 1); 1376 else 1377 counter_u64_add(ktls_switch_to_sw, 1); 1378 1379 INP_WLOCK(inp); 1380 return (0); 1381 } 1382 1383 /* 1384 * Try to allocate a new TLS send tag. This task is scheduled when 1385 * ip_output detects a route change while trying to transmit a packet 1386 * holding a TLS record. If a new tag is allocated, replace the tag 1387 * in the TLS session. Subsequent packets on the connection will use 1388 * the new tag. If a new tag cannot be allocated, drop the 1389 * connection. 1390 */ 1391 static void 1392 ktls_reset_send_tag(void *context, int pending) 1393 { 1394 struct epoch_tracker et; 1395 struct ktls_session *tls; 1396 struct m_snd_tag *old, *new; 1397 struct inpcb *inp; 1398 struct tcpcb *tp; 1399 int error; 1400 1401 MPASS(pending == 1); 1402 1403 tls = context; 1404 inp = tls->inp; 1405 1406 /* 1407 * Free the old tag first before allocating a new one. 1408 * ip[6]_output_send() will treat a NULL send tag the same as 1409 * an ifp mismatch and drop packets until a new tag is 1410 * allocated. 1411 * 1412 * Write-lock the INP when changing tls->snd_tag since 1413 * ip[6]_output_send() holds a read-lock when reading the 1414 * pointer. 1415 */ 1416 INP_WLOCK(inp); 1417 old = tls->snd_tag; 1418 tls->snd_tag = NULL; 1419 INP_WUNLOCK(inp); 1420 if (old != NULL) 1421 m_snd_tag_rele(old); 1422 1423 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1424 1425 if (error == 0) { 1426 INP_WLOCK(inp); 1427 tls->snd_tag = new; 1428 mtx_pool_lock(mtxpool_sleep, tls); 1429 tls->reset_pending = false; 1430 mtx_pool_unlock(mtxpool_sleep, tls); 1431 if (!in_pcbrele_wlocked(inp)) 1432 INP_WUNLOCK(inp); 1433 1434 counter_u64_add(ktls_ifnet_reset, 1); 1435 1436 /* 1437 * XXX: Should we kick tcp_output explicitly now that 1438 * the send tag is fixed or just rely on timers? 1439 */ 1440 } else { 1441 NET_EPOCH_ENTER(et); 1442 INP_WLOCK(inp); 1443 if (!in_pcbrele_wlocked(inp)) { 1444 if (!(inp->inp_flags & INP_TIMEWAIT) && 1445 !(inp->inp_flags & INP_DROPPED)) { 1446 tp = intotcpcb(inp); 1447 CURVNET_SET(tp->t_vnet); 1448 tp = tcp_drop(tp, ECONNABORTED); 1449 CURVNET_RESTORE(); 1450 if (tp != NULL) 1451 INP_WUNLOCK(inp); 1452 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1453 } else 1454 INP_WUNLOCK(inp); 1455 } 1456 NET_EPOCH_EXIT(et); 1457 1458 counter_u64_add(ktls_ifnet_reset_failed, 1); 1459 1460 /* 1461 * Leave reset_pending true to avoid future tasks while 1462 * the socket goes away. 1463 */ 1464 } 1465 1466 ktls_free(tls); 1467 } 1468 1469 int 1470 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1471 { 1472 1473 if (inp == NULL) 1474 return (ENOBUFS); 1475 1476 INP_LOCK_ASSERT(inp); 1477 1478 /* 1479 * See if we should schedule a task to update the send tag for 1480 * this session. 1481 */ 1482 mtx_pool_lock(mtxpool_sleep, tls); 1483 if (!tls->reset_pending) { 1484 (void) ktls_hold(tls); 1485 in_pcbref(inp); 1486 tls->inp = inp; 1487 tls->reset_pending = true; 1488 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1489 } 1490 mtx_pool_unlock(mtxpool_sleep, tls); 1491 return (ENOBUFS); 1492 } 1493 1494 #ifdef RATELIMIT 1495 int 1496 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1497 { 1498 union if_snd_tag_modify_params params = { 1499 .rate_limit.max_rate = max_pacing_rate, 1500 .rate_limit.flags = M_NOWAIT, 1501 }; 1502 struct m_snd_tag *mst; 1503 struct ifnet *ifp; 1504 int error; 1505 1506 /* Can't get to the inp, but it should be locked. */ 1507 /* INP_LOCK_ASSERT(inp); */ 1508 1509 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1510 1511 if (tls->snd_tag == NULL) { 1512 /* 1513 * Resetting send tag, ignore this change. The 1514 * pending reset may or may not see this updated rate 1515 * in the tcpcb. If it doesn't, we will just lose 1516 * this rate change. 1517 */ 1518 return (0); 1519 } 1520 1521 MPASS(tls->snd_tag != NULL); 1522 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1523 1524 mst = tls->snd_tag; 1525 ifp = mst->ifp; 1526 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1527 } 1528 #endif 1529 #endif 1530 1531 void 1532 ktls_destroy(struct ktls_session *tls) 1533 { 1534 struct rm_priotracker prio; 1535 1536 ktls_cleanup(tls); 1537 if (tls->be != NULL && ktls_allow_unload) { 1538 rm_rlock(&ktls_backends_lock, &prio); 1539 tls->be->use_count--; 1540 rm_runlock(&ktls_backends_lock, &prio); 1541 } 1542 uma_zfree(ktls_session_zone, tls); 1543 } 1544 1545 void 1546 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1547 { 1548 1549 for (; m != NULL; m = m->m_next) { 1550 KASSERT((m->m_flags & M_EXTPG) != 0, 1551 ("ktls_seq: mapped mbuf %p", m)); 1552 1553 m->m_epg_seqno = sb->sb_tls_seqno; 1554 sb->sb_tls_seqno++; 1555 } 1556 } 1557 1558 /* 1559 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1560 * mbuf in the chain must be an unmapped mbuf. The payload of the 1561 * mbuf must be populated with the payload of each TLS record. 1562 * 1563 * The record_type argument specifies the TLS record type used when 1564 * populating the TLS header. 1565 * 1566 * The enq_count argument on return is set to the number of pages of 1567 * payload data for this entire chain that need to be encrypted via SW 1568 * encryption. The returned value should be passed to ktls_enqueue 1569 * when scheduling encryption of this chain of mbufs. To handle the 1570 * special case of empty fragments for TLS 1.0 sessions, an empty 1571 * fragment counts as one page. 1572 */ 1573 void 1574 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1575 uint8_t record_type) 1576 { 1577 struct tls_record_layer *tlshdr; 1578 struct mbuf *m; 1579 uint64_t *noncep; 1580 uint16_t tls_len; 1581 int maxlen; 1582 1583 maxlen = tls->params.max_frame_len; 1584 *enq_cnt = 0; 1585 for (m = top; m != NULL; m = m->m_next) { 1586 /* 1587 * All mbufs in the chain should be TLS records whose 1588 * payload does not exceed the maximum frame length. 1589 * 1590 * Empty TLS records are permitted when using CBC. 1591 */ 1592 KASSERT(m->m_len <= maxlen && 1593 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1594 m->m_len >= 0 : m->m_len > 0), 1595 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1596 1597 /* 1598 * TLS frames require unmapped mbufs to store session 1599 * info. 1600 */ 1601 KASSERT((m->m_flags & M_EXTPG) != 0, 1602 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1603 1604 tls_len = m->m_len; 1605 1606 /* Save a reference to the session. */ 1607 m->m_epg_tls = ktls_hold(tls); 1608 1609 m->m_epg_hdrlen = tls->params.tls_hlen; 1610 m->m_epg_trllen = tls->params.tls_tlen; 1611 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1612 int bs, delta; 1613 1614 /* 1615 * AES-CBC pads messages to a multiple of the 1616 * block size. Note that the padding is 1617 * applied after the digest and the encryption 1618 * is done on the "plaintext || mac || padding". 1619 * At least one byte of padding is always 1620 * present. 1621 * 1622 * Compute the final trailer length assuming 1623 * at most one block of padding. 1624 * tls->params.sb_tls_tlen is the maximum 1625 * possible trailer length (padding + digest). 1626 * delta holds the number of excess padding 1627 * bytes if the maximum were used. Those 1628 * extra bytes are removed. 1629 */ 1630 bs = tls->params.tls_bs; 1631 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1632 m->m_epg_trllen -= delta; 1633 } 1634 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1635 1636 /* Populate the TLS header. */ 1637 tlshdr = (void *)m->m_epg_hdr; 1638 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1639 1640 /* 1641 * TLS 1.3 masquarades as TLS 1.2 with a record type 1642 * of TLS_RLTYPE_APP. 1643 */ 1644 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1645 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1646 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1647 tlshdr->tls_type = TLS_RLTYPE_APP; 1648 /* save the real record type for later */ 1649 m->m_epg_record_type = record_type; 1650 m->m_epg_trail[0] = record_type; 1651 } else { 1652 tlshdr->tls_vminor = tls->params.tls_vminor; 1653 tlshdr->tls_type = record_type; 1654 } 1655 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1656 1657 /* 1658 * Store nonces / explicit IVs after the end of the 1659 * TLS header. 1660 * 1661 * For GCM with TLS 1.2, an 8 byte nonce is copied 1662 * from the end of the IV. The nonce is then 1663 * incremented for use by the next record. 1664 * 1665 * For CBC, a random nonce is inserted for TLS 1.1+. 1666 */ 1667 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1668 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1669 noncep = (uint64_t *)(tls->params.iv + 8); 1670 be64enc(tlshdr + 1, *noncep); 1671 (*noncep)++; 1672 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1673 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1674 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1675 1676 /* 1677 * When using SW encryption, mark the mbuf not ready. 1678 * It will be marked ready via sbready() after the 1679 * record has been encrypted. 1680 * 1681 * When using ifnet TLS, unencrypted TLS records are 1682 * sent down the stack to the NIC. 1683 */ 1684 if (tls->mode == TCP_TLS_MODE_SW) { 1685 m->m_flags |= M_NOTREADY; 1686 m->m_epg_nrdy = m->m_epg_npgs; 1687 if (__predict_false(tls_len == 0)) { 1688 /* TLS 1.0 empty fragment. */ 1689 *enq_cnt += 1; 1690 } else 1691 *enq_cnt += m->m_epg_npgs; 1692 } 1693 } 1694 } 1695 1696 void 1697 ktls_check_rx(struct sockbuf *sb) 1698 { 1699 struct tls_record_layer hdr; 1700 struct ktls_wq *wq; 1701 struct socket *so; 1702 bool running; 1703 1704 SOCKBUF_LOCK_ASSERT(sb); 1705 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1706 __func__, sb)); 1707 so = __containerof(sb, struct socket, so_rcv); 1708 1709 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1710 return; 1711 1712 /* Is there enough queued for a TLS header? */ 1713 if (sb->sb_tlscc < sizeof(hdr)) { 1714 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1715 so->so_error = EMSGSIZE; 1716 return; 1717 } 1718 1719 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1720 1721 /* Is the entire record queued? */ 1722 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1723 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1724 so->so_error = EMSGSIZE; 1725 return; 1726 } 1727 1728 sb->sb_flags |= SB_TLS_RX_RUNNING; 1729 1730 soref(so); 1731 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1732 mtx_lock(&wq->mtx); 1733 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1734 running = wq->running; 1735 mtx_unlock(&wq->mtx); 1736 if (!running) 1737 wakeup(wq); 1738 counter_u64_add(ktls_cnt_rx_queued, 1); 1739 } 1740 1741 static struct mbuf * 1742 ktls_detach_record(struct sockbuf *sb, int len) 1743 { 1744 struct mbuf *m, *n, *top; 1745 int remain; 1746 1747 SOCKBUF_LOCK_ASSERT(sb); 1748 MPASS(len <= sb->sb_tlscc); 1749 1750 /* 1751 * If TLS chain is the exact size of the record, 1752 * just grab the whole record. 1753 */ 1754 top = sb->sb_mtls; 1755 if (sb->sb_tlscc == len) { 1756 sb->sb_mtls = NULL; 1757 sb->sb_mtlstail = NULL; 1758 goto out; 1759 } 1760 1761 /* 1762 * While it would be nice to use m_split() here, we need 1763 * to know exactly what m_split() allocates to update the 1764 * accounting, so do it inline instead. 1765 */ 1766 remain = len; 1767 for (m = top; remain > m->m_len; m = m->m_next) 1768 remain -= m->m_len; 1769 1770 /* Easy case: don't have to split 'm'. */ 1771 if (remain == m->m_len) { 1772 sb->sb_mtls = m->m_next; 1773 if (sb->sb_mtls == NULL) 1774 sb->sb_mtlstail = NULL; 1775 m->m_next = NULL; 1776 goto out; 1777 } 1778 1779 /* 1780 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1781 * with M_NOWAIT first. 1782 */ 1783 n = m_get(M_NOWAIT, MT_DATA); 1784 if (n == NULL) { 1785 /* 1786 * Use M_WAITOK with socket buffer unlocked. If 1787 * 'sb_mtls' changes while the lock is dropped, return 1788 * NULL to force the caller to retry. 1789 */ 1790 SOCKBUF_UNLOCK(sb); 1791 1792 n = m_get(M_WAITOK, MT_DATA); 1793 1794 SOCKBUF_LOCK(sb); 1795 if (sb->sb_mtls != top) { 1796 m_free(n); 1797 return (NULL); 1798 } 1799 } 1800 n->m_flags |= M_NOTREADY; 1801 1802 /* Store remainder in 'n'. */ 1803 n->m_len = m->m_len - remain; 1804 if (m->m_flags & M_EXT) { 1805 n->m_data = m->m_data + remain; 1806 mb_dupcl(n, m); 1807 } else { 1808 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1809 } 1810 1811 /* Trim 'm' and update accounting. */ 1812 m->m_len -= n->m_len; 1813 sb->sb_tlscc -= n->m_len; 1814 sb->sb_ccc -= n->m_len; 1815 1816 /* Account for 'n'. */ 1817 sballoc_ktls_rx(sb, n); 1818 1819 /* Insert 'n' into the TLS chain. */ 1820 sb->sb_mtls = n; 1821 n->m_next = m->m_next; 1822 if (sb->sb_mtlstail == m) 1823 sb->sb_mtlstail = n; 1824 1825 /* Detach the record from the TLS chain. */ 1826 m->m_next = NULL; 1827 1828 out: 1829 MPASS(m_length(top, NULL) == len); 1830 for (m = top; m != NULL; m = m->m_next) 1831 sbfree_ktls_rx(sb, m); 1832 sb->sb_tlsdcc = len; 1833 sb->sb_ccc += len; 1834 SBCHECK(sb); 1835 return (top); 1836 } 1837 1838 static void 1839 ktls_decrypt(struct socket *so) 1840 { 1841 char tls_header[MBUF_PEXT_HDR_LEN]; 1842 struct ktls_session *tls; 1843 struct sockbuf *sb; 1844 struct tls_record_layer *hdr; 1845 struct tls_get_record tgr; 1846 struct mbuf *control, *data, *m; 1847 uint64_t seqno; 1848 int error, remain, tls_len, trail_len; 1849 1850 hdr = (struct tls_record_layer *)tls_header; 1851 sb = &so->so_rcv; 1852 SOCKBUF_LOCK(sb); 1853 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1854 ("%s: socket %p not running", __func__, so)); 1855 1856 tls = sb->sb_tls_info; 1857 MPASS(tls != NULL); 1858 1859 for (;;) { 1860 /* Is there enough queued for a TLS header? */ 1861 if (sb->sb_tlscc < tls->params.tls_hlen) 1862 break; 1863 1864 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1865 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1866 1867 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1868 hdr->tls_vminor != tls->params.tls_vminor) 1869 error = EINVAL; 1870 else if (tls_len < tls->params.tls_hlen || tls_len > 1871 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1872 tls->params.tls_tlen) 1873 error = EMSGSIZE; 1874 else 1875 error = 0; 1876 if (__predict_false(error != 0)) { 1877 /* 1878 * We have a corrupted record and are likely 1879 * out of sync. The connection isn't 1880 * recoverable at this point, so abort it. 1881 */ 1882 SOCKBUF_UNLOCK(sb); 1883 counter_u64_add(ktls_offload_corrupted_records, 1); 1884 1885 CURVNET_SET(so->so_vnet); 1886 so->so_proto->pr_usrreqs->pru_abort(so); 1887 so->so_error = error; 1888 CURVNET_RESTORE(); 1889 goto deref; 1890 } 1891 1892 /* Is the entire record queued? */ 1893 if (sb->sb_tlscc < tls_len) 1894 break; 1895 1896 /* 1897 * Split out the portion of the mbuf chain containing 1898 * this TLS record. 1899 */ 1900 data = ktls_detach_record(sb, tls_len); 1901 if (data == NULL) 1902 continue; 1903 MPASS(sb->sb_tlsdcc == tls_len); 1904 1905 seqno = sb->sb_tls_seqno; 1906 sb->sb_tls_seqno++; 1907 SBCHECK(sb); 1908 SOCKBUF_UNLOCK(sb); 1909 1910 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1911 if (error) { 1912 counter_u64_add(ktls_offload_failed_crypto, 1); 1913 1914 SOCKBUF_LOCK(sb); 1915 if (sb->sb_tlsdcc == 0) { 1916 /* 1917 * sbcut/drop/flush discarded these 1918 * mbufs. 1919 */ 1920 m_freem(data); 1921 break; 1922 } 1923 1924 /* 1925 * Drop this TLS record's data, but keep 1926 * decrypting subsequent records. 1927 */ 1928 sb->sb_ccc -= tls_len; 1929 sb->sb_tlsdcc = 0; 1930 1931 CURVNET_SET(so->so_vnet); 1932 so->so_error = EBADMSG; 1933 sorwakeup_locked(so); 1934 CURVNET_RESTORE(); 1935 1936 m_freem(data); 1937 1938 SOCKBUF_LOCK(sb); 1939 continue; 1940 } 1941 1942 /* Allocate the control mbuf. */ 1943 tgr.tls_type = hdr->tls_type; 1944 tgr.tls_vmajor = hdr->tls_vmajor; 1945 tgr.tls_vminor = hdr->tls_vminor; 1946 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1947 trail_len); 1948 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1949 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1950 1951 SOCKBUF_LOCK(sb); 1952 if (sb->sb_tlsdcc == 0) { 1953 /* sbcut/drop/flush discarded these mbufs. */ 1954 MPASS(sb->sb_tlscc == 0); 1955 m_freem(data); 1956 m_freem(control); 1957 break; 1958 } 1959 1960 /* 1961 * Clear the 'dcc' accounting in preparation for 1962 * adding the decrypted record. 1963 */ 1964 sb->sb_ccc -= tls_len; 1965 sb->sb_tlsdcc = 0; 1966 SBCHECK(sb); 1967 1968 /* If there is no payload, drop all of the data. */ 1969 if (tgr.tls_length == htobe16(0)) { 1970 m_freem(data); 1971 data = NULL; 1972 } else { 1973 /* Trim header. */ 1974 remain = tls->params.tls_hlen; 1975 while (remain > 0) { 1976 if (data->m_len > remain) { 1977 data->m_data += remain; 1978 data->m_len -= remain; 1979 break; 1980 } 1981 remain -= data->m_len; 1982 data = m_free(data); 1983 } 1984 1985 /* Trim trailer and clear M_NOTREADY. */ 1986 remain = be16toh(tgr.tls_length); 1987 m = data; 1988 for (m = data; remain > m->m_len; m = m->m_next) { 1989 m->m_flags &= ~M_NOTREADY; 1990 remain -= m->m_len; 1991 } 1992 m->m_len = remain; 1993 m_freem(m->m_next); 1994 m->m_next = NULL; 1995 m->m_flags &= ~M_NOTREADY; 1996 1997 /* Set EOR on the final mbuf. */ 1998 m->m_flags |= M_EOR; 1999 } 2000 2001 sbappendcontrol_locked(sb, data, control, 0); 2002 } 2003 2004 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2005 2006 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2007 so->so_error = EMSGSIZE; 2008 2009 sorwakeup_locked(so); 2010 2011 deref: 2012 SOCKBUF_UNLOCK_ASSERT(sb); 2013 2014 CURVNET_SET(so->so_vnet); 2015 SOCK_LOCK(so); 2016 sorele(so); 2017 CURVNET_RESTORE(); 2018 } 2019 2020 void 2021 ktls_enqueue_to_free(struct mbuf *m) 2022 { 2023 struct ktls_wq *wq; 2024 bool running; 2025 2026 /* Mark it for freeing. */ 2027 m->m_epg_flags |= EPG_FLAG_2FREE; 2028 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2029 mtx_lock(&wq->mtx); 2030 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2031 running = wq->running; 2032 mtx_unlock(&wq->mtx); 2033 if (!running) 2034 wakeup(wq); 2035 } 2036 2037 static void * 2038 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2039 { 2040 void *buf; 2041 2042 if (m->m_epg_npgs <= 2) 2043 return (NULL); 2044 if (ktls_buffer_zone == NULL) 2045 return (NULL); 2046 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2047 /* 2048 * Rate-limit allocation attempts after a failure. 2049 * ktls_buffer_import() will acquire a per-domain mutex to check 2050 * the free page queues and may fail consistently if memory is 2051 * fragmented. 2052 */ 2053 return (NULL); 2054 } 2055 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2056 if (buf == NULL) 2057 wq->lastallocfail = ticks; 2058 return (buf); 2059 } 2060 2061 void 2062 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2063 { 2064 struct ktls_wq *wq; 2065 bool running; 2066 2067 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2068 (M_EXTPG | M_NOTREADY)), 2069 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2070 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2071 2072 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2073 2074 m->m_epg_enc_cnt = page_count; 2075 2076 /* 2077 * Save a pointer to the socket. The caller is responsible 2078 * for taking an additional reference via soref(). 2079 */ 2080 m->m_epg_so = so; 2081 2082 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2083 mtx_lock(&wq->mtx); 2084 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2085 running = wq->running; 2086 mtx_unlock(&wq->mtx); 2087 if (!running) 2088 wakeup(wq); 2089 counter_u64_add(ktls_cnt_tx_queued, 1); 2090 } 2091 2092 static __noinline void 2093 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2094 { 2095 struct ktls_session *tls; 2096 struct socket *so; 2097 struct mbuf *m; 2098 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2099 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2100 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2101 vm_page_t pg; 2102 void *cbuf; 2103 int error, i, len, npages, off, total_pages; 2104 bool is_anon; 2105 2106 so = top->m_epg_so; 2107 tls = top->m_epg_tls; 2108 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2109 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2110 #ifdef INVARIANTS 2111 top->m_epg_so = NULL; 2112 #endif 2113 total_pages = top->m_epg_enc_cnt; 2114 npages = 0; 2115 2116 /* 2117 * Encrypt the TLS records in the chain of mbufs starting with 2118 * 'top'. 'total_pages' gives us a total count of pages and is 2119 * used to know when we have finished encrypting the TLS 2120 * records originally queued with 'top'. 2121 * 2122 * NB: These mbufs are queued in the socket buffer and 2123 * 'm_next' is traversing the mbufs in the socket buffer. The 2124 * socket buffer lock is not held while traversing this chain. 2125 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2126 * pointers should be stable. However, the 'm_next' of the 2127 * last mbuf encrypted is not necessarily NULL. It can point 2128 * to other mbufs appended while 'top' was on the TLS work 2129 * queue. 2130 * 2131 * Each mbuf holds an entire TLS record. 2132 */ 2133 error = 0; 2134 for (m = top; npages != total_pages; m = m->m_next) { 2135 KASSERT(m->m_epg_tls == tls, 2136 ("different TLS sessions in a single mbuf chain: %p vs %p", 2137 tls, m->m_epg_tls)); 2138 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2139 (M_EXTPG | M_NOTREADY), 2140 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2141 KASSERT(npages + m->m_epg_npgs <= total_pages, 2142 ("page count mismatch: top %p, total_pages %d, m %p", top, 2143 total_pages, m)); 2144 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2145 ("page count %d larger than maximum frame length %d", 2146 m->m_epg_npgs, ktls_maxlen)); 2147 2148 /* 2149 * Generate source and destination ivoecs to pass to 2150 * the SW encryption backend. For writable mbufs, the 2151 * destination iovec is a copy of the source and 2152 * encryption is done in place. For file-backed mbufs 2153 * (from sendfile), anonymous wired pages are 2154 * allocated and assigned to the destination iovec. 2155 */ 2156 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2157 2158 off = m->m_epg_1st_off; 2159 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2160 len = m_epg_pagelen(m, i, off); 2161 src_iov[i].iov_len = len; 2162 src_iov[i].iov_base = 2163 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + off; 2164 } 2165 2166 if (is_anon) { 2167 memcpy(dst_iov, src_iov, i * sizeof(struct iovec)); 2168 } else if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2169 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2170 m->m_epg_1st_off; 2171 dst_iov[0].iov_base = (char *)cbuf + m->m_epg_1st_off; 2172 dst_iov[0].iov_len = len; 2173 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2174 i = 1; 2175 } else { 2176 cbuf = NULL; 2177 off = m->m_epg_1st_off; 2178 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2179 do { 2180 pg = vm_page_alloc(NULL, 0, 2181 VM_ALLOC_NORMAL | 2182 VM_ALLOC_NOOBJ | 2183 VM_ALLOC_NODUMP | 2184 VM_ALLOC_WIRED | 2185 VM_ALLOC_WAITFAIL); 2186 } while (pg == NULL); 2187 2188 len = m_epg_pagelen(m, i, off); 2189 parray[i] = VM_PAGE_TO_PHYS(pg); 2190 dst_iov[i].iov_base = 2191 (char *)(void *)PHYS_TO_DMAP( 2192 parray[i]) + off; 2193 dst_iov[i].iov_len = len; 2194 } 2195 } 2196 2197 if (__predict_false(m->m_epg_npgs == 0)) { 2198 /* TLS 1.0 empty fragment. */ 2199 npages++; 2200 } else 2201 npages += m->m_epg_npgs; 2202 2203 error = (*tls->sw_encrypt)(tls, 2204 (const struct tls_record_layer *)m->m_epg_hdr, 2205 m->m_epg_trail, src_iov, dst_iov, m->m_epg_npgs, i, 2206 m->m_epg_seqno, m->m_epg_record_type); 2207 if (error) { 2208 counter_u64_add(ktls_offload_failed_crypto, 1); 2209 break; 2210 } 2211 2212 /* 2213 * For file-backed mbufs, release the file-backed 2214 * pages and replace them in the ext_pgs array with 2215 * the anonymous wired pages allocated above. 2216 */ 2217 if (!is_anon) { 2218 /* Free the old pages. */ 2219 m->m_ext.ext_free(m); 2220 2221 /* Replace them with the new pages. */ 2222 if (cbuf != NULL) { 2223 for (i = 0; i < m->m_epg_npgs; i++) 2224 m->m_epg_pa[i] = parray[0] + ptoa(i); 2225 2226 /* Contig pages should go back to the cache. */ 2227 m->m_ext.ext_free = ktls_free_mext_contig; 2228 } else { 2229 for (i = 0; i < m->m_epg_npgs; i++) 2230 m->m_epg_pa[i] = parray[i]; 2231 2232 /* Use the basic free routine. */ 2233 m->m_ext.ext_free = mb_free_mext_pgs; 2234 } 2235 2236 /* Pages are now writable. */ 2237 m->m_epg_flags |= EPG_FLAG_ANON; 2238 } 2239 2240 /* 2241 * Drop a reference to the session now that it is no 2242 * longer needed. Existing code depends on encrypted 2243 * records having no associated session vs 2244 * yet-to-be-encrypted records having an associated 2245 * session. 2246 */ 2247 m->m_epg_tls = NULL; 2248 ktls_free(tls); 2249 } 2250 2251 CURVNET_SET(so->so_vnet); 2252 if (error == 0) { 2253 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2254 } else { 2255 so->so_proto->pr_usrreqs->pru_abort(so); 2256 so->so_error = EIO; 2257 mb_free_notready(top, total_pages); 2258 } 2259 2260 SOCK_LOCK(so); 2261 sorele(so); 2262 CURVNET_RESTORE(); 2263 } 2264 2265 static void 2266 ktls_work_thread(void *ctx) 2267 { 2268 struct ktls_wq *wq = ctx; 2269 struct mbuf *m, *n; 2270 struct socket *so, *son; 2271 STAILQ_HEAD(, mbuf) local_m_head; 2272 STAILQ_HEAD(, socket) local_so_head; 2273 2274 if (ktls_bind_threads > 1) { 2275 curthread->td_domain.dr_policy = 2276 DOMAINSET_PREF(PCPU_GET(domain)); 2277 } 2278 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2279 fpu_kern_thread(0); 2280 #endif 2281 for (;;) { 2282 mtx_lock(&wq->mtx); 2283 while (STAILQ_EMPTY(&wq->m_head) && 2284 STAILQ_EMPTY(&wq->so_head)) { 2285 wq->running = false; 2286 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2287 wq->running = true; 2288 } 2289 2290 STAILQ_INIT(&local_m_head); 2291 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2292 STAILQ_INIT(&local_so_head); 2293 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2294 mtx_unlock(&wq->mtx); 2295 2296 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2297 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2298 ktls_free(m->m_epg_tls); 2299 uma_zfree(zone_mbuf, m); 2300 } else { 2301 ktls_encrypt(wq, m); 2302 counter_u64_add(ktls_cnt_tx_queued, -1); 2303 } 2304 } 2305 2306 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2307 ktls_decrypt(so); 2308 counter_u64_add(ktls_cnt_rx_queued, -1); 2309 } 2310 } 2311 } 2312