1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/ktls.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/rmlock.h> 42 #include <sys/proc.h> 43 #include <sys/protosw.h> 44 #include <sys/refcount.h> 45 #include <sys/smp.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/sysctl.h> 49 #include <sys/taskqueue.h> 50 #include <sys/kthread.h> 51 #include <sys/uio.h> 52 #include <sys/vmmeter.h> 53 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 54 #include <machine/pcb.h> 55 #endif 56 #include <machine/vmparam.h> 57 #ifdef RSS 58 #include <net/netisr.h> 59 #include <net/rss_config.h> 60 #endif 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #include <netinet/in_pcb.h> 64 #endif 65 #include <netinet/tcp_var.h> 66 #ifdef TCP_OFFLOAD 67 #include <netinet/tcp_offload.h> 68 #endif 69 #include <opencrypto/xform.h> 70 #include <vm/uma_dbg.h> 71 #include <vm/vm.h> 72 #include <vm/vm_pageout.h> 73 #include <vm/vm_page.h> 74 75 struct ktls_wq { 76 struct mtx mtx; 77 STAILQ_HEAD(, mbuf_ext_pgs) head; 78 bool running; 79 } __aligned(CACHE_LINE_SIZE); 80 81 static struct ktls_wq *ktls_wq; 82 static struct proc *ktls_proc; 83 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 84 static struct rmlock ktls_backends_lock; 85 static uma_zone_t ktls_session_zone; 86 static uint16_t ktls_cpuid_lookup[MAXCPU]; 87 88 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW, 0, 89 "Kernel TLS offload"); 90 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW, 0, 91 "Kernel TLS offload stats"); 92 93 static int ktls_allow_unload; 94 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 95 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 96 97 #ifdef RSS 98 static int ktls_bind_threads = 1; 99 #else 100 static int ktls_bind_threads; 101 #endif 102 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 103 &ktls_bind_threads, 0, 104 "Bind crypto threads to cores or domains at boot"); 105 106 static u_int ktls_maxlen = 16384; 107 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RWTUN, 108 &ktls_maxlen, 0, "Maximum TLS record size"); 109 110 static int ktls_number_threads; 111 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 112 &ktls_number_threads, 0, 113 "Number of TLS threads in thread-pool"); 114 115 static bool ktls_offload_enable; 116 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RW, 117 &ktls_offload_enable, 0, 118 "Enable support for kernel TLS offload"); 119 120 static bool ktls_cbc_enable = true; 121 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RW, 122 &ktls_cbc_enable, 1, 123 "Enable Support of AES-CBC crypto for kernel TLS"); 124 125 static counter_u64_t ktls_tasks_active; 126 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 127 &ktls_tasks_active, "Number of active tasks"); 128 129 static counter_u64_t ktls_cnt_on; 130 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, so_inqueue, CTLFLAG_RD, 131 &ktls_cnt_on, "Number of TLS records in queue to tasks for SW crypto"); 132 133 static counter_u64_t ktls_offload_total; 134 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 135 CTLFLAG_RD, &ktls_offload_total, 136 "Total successful TLS setups (parameters set)"); 137 138 static counter_u64_t ktls_offload_enable_calls; 139 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 140 CTLFLAG_RD, &ktls_offload_enable_calls, 141 "Total number of TLS enable calls made"); 142 143 static counter_u64_t ktls_offload_active; 144 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 145 &ktls_offload_active, "Total Active TLS sessions"); 146 147 static counter_u64_t ktls_offload_failed_crypto; 148 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 149 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 150 151 static counter_u64_t ktls_switch_to_ifnet; 152 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 153 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 154 155 static counter_u64_t ktls_switch_to_sw; 156 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 157 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 158 159 static counter_u64_t ktls_switch_failed; 160 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 161 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 162 163 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD, 0, 164 "Software TLS session stats"); 165 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD, 0, 166 "Hardware (ifnet) TLS session stats"); 167 #ifdef TCP_OFFLOAD 168 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD, 0, 169 "TOE TLS session stats"); 170 #endif 171 172 static counter_u64_t ktls_sw_cbc; 173 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 174 "Active number of software TLS sessions using AES-CBC"); 175 176 static counter_u64_t ktls_sw_gcm; 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 178 "Active number of software TLS sessions using AES-GCM"); 179 180 static counter_u64_t ktls_ifnet_cbc; 181 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 182 &ktls_ifnet_cbc, 183 "Active number of ifnet TLS sessions using AES-CBC"); 184 185 static counter_u64_t ktls_ifnet_gcm; 186 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 187 &ktls_ifnet_gcm, 188 "Active number of ifnet TLS sessions using AES-GCM"); 189 190 static counter_u64_t ktls_ifnet_reset; 191 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 192 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 193 194 static counter_u64_t ktls_ifnet_reset_dropped; 195 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 196 &ktls_ifnet_reset_dropped, 197 "TLS sessions dropped after failing to update ifnet send tag"); 198 199 static counter_u64_t ktls_ifnet_reset_failed; 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 201 &ktls_ifnet_reset_failed, 202 "TLS sessions that failed to allocate a new ifnet send tag"); 203 204 static int ktls_ifnet_permitted; 205 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 206 &ktls_ifnet_permitted, 1, 207 "Whether to permit hardware (ifnet) TLS sessions"); 208 209 #ifdef TCP_OFFLOAD 210 static counter_u64_t ktls_toe_cbc; 211 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 212 &ktls_toe_cbc, 213 "Active number of TOE TLS sessions using AES-CBC"); 214 215 static counter_u64_t ktls_toe_gcm; 216 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 217 &ktls_toe_gcm, 218 "Active number of TOE TLS sessions using AES-GCM"); 219 #endif 220 221 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 222 223 static void ktls_cleanup(struct ktls_session *tls); 224 #if defined(INET) || defined(INET6) 225 static void ktls_reset_send_tag(void *context, int pending); 226 #endif 227 static void ktls_work_thread(void *ctx); 228 229 int 230 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 231 { 232 struct ktls_crypto_backend *curr_be, *tmp; 233 234 if (be->api_version != KTLS_API_VERSION) { 235 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 236 be->api_version, KTLS_API_VERSION, 237 be->name); 238 return (EINVAL); 239 } 240 241 rm_wlock(&ktls_backends_lock); 242 printf("KTLS: Registering crypto method %s with prio %d\n", 243 be->name, be->prio); 244 if (LIST_EMPTY(&ktls_backends)) { 245 LIST_INSERT_HEAD(&ktls_backends, be, next); 246 } else { 247 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 248 if (curr_be->prio < be->prio) { 249 LIST_INSERT_BEFORE(curr_be, be, next); 250 break; 251 } 252 if (LIST_NEXT(curr_be, next) == NULL) { 253 LIST_INSERT_AFTER(curr_be, be, next); 254 break; 255 } 256 } 257 } 258 rm_wunlock(&ktls_backends_lock); 259 return (0); 260 } 261 262 int 263 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 264 { 265 struct ktls_crypto_backend *tmp; 266 267 /* 268 * Don't error if the backend isn't registered. This permits 269 * MOD_UNLOAD handlers to use this function unconditionally. 270 */ 271 rm_wlock(&ktls_backends_lock); 272 LIST_FOREACH(tmp, &ktls_backends, next) { 273 if (tmp == be) 274 break; 275 } 276 if (tmp == NULL) { 277 rm_wunlock(&ktls_backends_lock); 278 return (0); 279 } 280 281 if (!ktls_allow_unload) { 282 rm_wunlock(&ktls_backends_lock); 283 printf( 284 "KTLS: Deregistering crypto method %s is not supported\n", 285 be->name); 286 return (EBUSY); 287 } 288 289 if (be->use_count) { 290 rm_wunlock(&ktls_backends_lock); 291 return (EBUSY); 292 } 293 294 LIST_REMOVE(be, next); 295 rm_wunlock(&ktls_backends_lock); 296 return (0); 297 } 298 299 #if defined(INET) || defined(INET6) 300 static uint16_t 301 ktls_get_cpu(struct socket *so) 302 { 303 struct inpcb *inp; 304 uint16_t cpuid; 305 306 inp = sotoinpcb(so); 307 #ifdef RSS 308 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 309 if (cpuid != NETISR_CPUID_NONE) 310 return (cpuid); 311 #endif 312 /* 313 * Just use the flowid to shard connections in a repeatable 314 * fashion. Note that some crypto backends rely on the 315 * serialization provided by having the same connection use 316 * the same queue. 317 */ 318 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 319 return (cpuid); 320 } 321 #endif 322 323 static void 324 ktls_init(void *dummy __unused) 325 { 326 struct thread *td; 327 struct pcpu *pc; 328 cpuset_t mask; 329 int error, i; 330 331 ktls_tasks_active = counter_u64_alloc(M_WAITOK); 332 ktls_cnt_on = counter_u64_alloc(M_WAITOK); 333 ktls_offload_total = counter_u64_alloc(M_WAITOK); 334 ktls_offload_enable_calls = counter_u64_alloc(M_WAITOK); 335 ktls_offload_active = counter_u64_alloc(M_WAITOK); 336 ktls_offload_failed_crypto = counter_u64_alloc(M_WAITOK); 337 ktls_switch_to_ifnet = counter_u64_alloc(M_WAITOK); 338 ktls_switch_to_sw = counter_u64_alloc(M_WAITOK); 339 ktls_switch_failed = counter_u64_alloc(M_WAITOK); 340 ktls_sw_cbc = counter_u64_alloc(M_WAITOK); 341 ktls_sw_gcm = counter_u64_alloc(M_WAITOK); 342 ktls_ifnet_cbc = counter_u64_alloc(M_WAITOK); 343 ktls_ifnet_gcm = counter_u64_alloc(M_WAITOK); 344 ktls_ifnet_reset = counter_u64_alloc(M_WAITOK); 345 ktls_ifnet_reset_dropped = counter_u64_alloc(M_WAITOK); 346 ktls_ifnet_reset_failed = counter_u64_alloc(M_WAITOK); 347 #ifdef TCP_OFFLOAD 348 ktls_toe_cbc = counter_u64_alloc(M_WAITOK); 349 ktls_toe_gcm = counter_u64_alloc(M_WAITOK); 350 #endif 351 352 rm_init(&ktls_backends_lock, "ktls backends"); 353 LIST_INIT(&ktls_backends); 354 355 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 356 M_WAITOK | M_ZERO); 357 358 ktls_session_zone = uma_zcreate("ktls_session", 359 sizeof(struct ktls_session), 360 NULL, NULL, NULL, NULL, 361 UMA_ALIGN_CACHE, 0); 362 363 /* 364 * Initialize the workqueues to run the TLS work. We create a 365 * work queue for each CPU. 366 */ 367 CPU_FOREACH(i) { 368 STAILQ_INIT(&ktls_wq[i].head); 369 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 370 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 371 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 372 if (error) 373 panic("Can't add KTLS thread %d error %d", i, error); 374 375 /* 376 * Bind threads to cores. If ktls_bind_threads is > 377 * 1, then we bind to the NUMA domain. 378 */ 379 if (ktls_bind_threads) { 380 if (ktls_bind_threads > 1) { 381 pc = pcpu_find(i); 382 CPU_COPY(&cpuset_domain[pc->pc_domain], &mask); 383 } else { 384 CPU_SETOF(i, &mask); 385 } 386 error = cpuset_setthread(td->td_tid, &mask); 387 if (error) 388 panic( 389 "Unable to bind KTLS thread for CPU %d error %d", 390 i, error); 391 } 392 ktls_cpuid_lookup[ktls_number_threads] = i; 393 ktls_number_threads++; 394 } 395 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 396 } 397 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 398 399 #if defined(INET) || defined(INET6) 400 static int 401 ktls_create_session(struct socket *so, struct tls_enable *en, 402 struct ktls_session **tlsp) 403 { 404 struct ktls_session *tls; 405 int error; 406 407 /* Only TLS 1.0 - 1.3 are supported. */ 408 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 409 return (EINVAL); 410 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 411 en->tls_vminor > TLS_MINOR_VER_THREE) 412 return (EINVAL); 413 414 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 415 return (EINVAL); 416 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 417 return (EINVAL); 418 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 419 return (EINVAL); 420 421 /* All supported algorithms require a cipher key. */ 422 if (en->cipher_key_len == 0) 423 return (EINVAL); 424 425 /* No flags are currently supported. */ 426 if (en->flags != 0) 427 return (EINVAL); 428 429 /* Common checks for supported algorithms. */ 430 switch (en->cipher_algorithm) { 431 case CRYPTO_AES_NIST_GCM_16: 432 /* 433 * auth_algorithm isn't used, but permit GMAC values 434 * for compatibility. 435 */ 436 switch (en->auth_algorithm) { 437 case 0: 438 case CRYPTO_AES_128_NIST_GMAC: 439 case CRYPTO_AES_192_NIST_GMAC: 440 case CRYPTO_AES_256_NIST_GMAC: 441 break; 442 default: 443 return (EINVAL); 444 } 445 if (en->auth_key_len != 0) 446 return (EINVAL); 447 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 448 en->iv_len != TLS_AEAD_GCM_LEN) || 449 (en->tls_vminor == TLS_MINOR_VER_THREE && 450 en->iv_len != TLS_1_3_GCM_IV_LEN)) 451 return (EINVAL); 452 break; 453 case CRYPTO_AES_CBC: 454 switch (en->auth_algorithm) { 455 case CRYPTO_SHA1_HMAC: 456 /* 457 * TLS 1.0 requires an implicit IV. TLS 1.1+ 458 * all use explicit IVs. 459 */ 460 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 461 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 462 return (EINVAL); 463 break; 464 } 465 466 /* FALLTHROUGH */ 467 case CRYPTO_SHA2_256_HMAC: 468 case CRYPTO_SHA2_384_HMAC: 469 /* Ignore any supplied IV. */ 470 en->iv_len = 0; 471 break; 472 default: 473 return (EINVAL); 474 } 475 if (en->auth_key_len == 0) 476 return (EINVAL); 477 break; 478 default: 479 return (EINVAL); 480 } 481 482 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 483 484 counter_u64_add(ktls_offload_active, 1); 485 486 refcount_init(&tls->refcount, 1); 487 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 488 489 tls->wq_index = ktls_get_cpu(so); 490 491 tls->params.cipher_algorithm = en->cipher_algorithm; 492 tls->params.auth_algorithm = en->auth_algorithm; 493 tls->params.tls_vmajor = en->tls_vmajor; 494 tls->params.tls_vminor = en->tls_vminor; 495 tls->params.flags = en->flags; 496 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 497 498 /* Set the header and trailer lengths. */ 499 tls->params.tls_hlen = sizeof(struct tls_record_layer); 500 switch (en->cipher_algorithm) { 501 case CRYPTO_AES_NIST_GCM_16: 502 /* 503 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 504 * nonce. TLS 1.3 uses a 12 byte implicit IV. 505 */ 506 if (en->tls_vminor < TLS_MINOR_VER_THREE) 507 tls->params.tls_hlen += sizeof(uint64_t); 508 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 509 510 /* 511 * TLS 1.3 includes optional padding which we 512 * do not support, and also puts the "real" record 513 * type at the end of the encrypted data. 514 */ 515 if (en->tls_vminor == TLS_MINOR_VER_THREE) 516 tls->params.tls_tlen += sizeof(uint8_t); 517 518 tls->params.tls_bs = 1; 519 break; 520 case CRYPTO_AES_CBC: 521 switch (en->auth_algorithm) { 522 case CRYPTO_SHA1_HMAC: 523 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 524 /* Implicit IV, no nonce. */ 525 } else { 526 tls->params.tls_hlen += AES_BLOCK_LEN; 527 } 528 tls->params.tls_tlen = AES_BLOCK_LEN + 529 SHA1_HASH_LEN; 530 break; 531 case CRYPTO_SHA2_256_HMAC: 532 tls->params.tls_hlen += AES_BLOCK_LEN; 533 tls->params.tls_tlen = AES_BLOCK_LEN + 534 SHA2_256_HASH_LEN; 535 break; 536 case CRYPTO_SHA2_384_HMAC: 537 tls->params.tls_hlen += AES_BLOCK_LEN; 538 tls->params.tls_tlen = AES_BLOCK_LEN + 539 SHA2_384_HASH_LEN; 540 break; 541 default: 542 panic("invalid hmac"); 543 } 544 tls->params.tls_bs = AES_BLOCK_LEN; 545 break; 546 default: 547 panic("invalid cipher"); 548 } 549 550 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 551 ("TLS header length too long: %d", tls->params.tls_hlen)); 552 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 553 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 554 555 if (en->auth_key_len != 0) { 556 tls->params.auth_key_len = en->auth_key_len; 557 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 558 M_WAITOK); 559 error = copyin(en->auth_key, tls->params.auth_key, 560 en->auth_key_len); 561 if (error) 562 goto out; 563 } 564 565 tls->params.cipher_key_len = en->cipher_key_len; 566 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 567 error = copyin(en->cipher_key, tls->params.cipher_key, 568 en->cipher_key_len); 569 if (error) 570 goto out; 571 572 /* 573 * This holds the implicit portion of the nonce for GCM and 574 * the initial implicit IV for TLS 1.0. The explicit portions 575 * of the IV are generated in ktls_frame(). 576 */ 577 if (en->iv_len != 0) { 578 tls->params.iv_len = en->iv_len; 579 error = copyin(en->iv, tls->params.iv, en->iv_len); 580 if (error) 581 goto out; 582 583 /* 584 * For TLS 1.2, generate an 8-byte nonce as a counter 585 * to generate unique explicit IVs. 586 * 587 * Store this counter in the last 8 bytes of the IV 588 * array so that it is 8-byte aligned. 589 */ 590 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 591 en->tls_vminor == TLS_MINOR_VER_TWO) 592 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 593 } 594 595 *tlsp = tls; 596 return (0); 597 598 out: 599 ktls_cleanup(tls); 600 return (error); 601 } 602 603 static struct ktls_session * 604 ktls_clone_session(struct ktls_session *tls) 605 { 606 struct ktls_session *tls_new; 607 608 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 609 610 counter_u64_add(ktls_offload_active, 1); 611 612 refcount_init(&tls_new->refcount, 1); 613 614 /* Copy fields from existing session. */ 615 tls_new->params = tls->params; 616 tls_new->wq_index = tls->wq_index; 617 618 /* Deep copy keys. */ 619 if (tls_new->params.auth_key != NULL) { 620 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 621 M_KTLS, M_WAITOK); 622 memcpy(tls_new->params.auth_key, tls->params.auth_key, 623 tls->params.auth_key_len); 624 } 625 626 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 627 M_WAITOK); 628 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 629 tls->params.cipher_key_len); 630 631 return (tls_new); 632 } 633 #endif 634 635 static void 636 ktls_cleanup(struct ktls_session *tls) 637 { 638 639 counter_u64_add(ktls_offload_active, -1); 640 switch (tls->mode) { 641 case TCP_TLS_MODE_SW: 642 MPASS(tls->be != NULL); 643 switch (tls->params.cipher_algorithm) { 644 case CRYPTO_AES_CBC: 645 counter_u64_add(ktls_sw_cbc, -1); 646 break; 647 case CRYPTO_AES_NIST_GCM_16: 648 counter_u64_add(ktls_sw_gcm, -1); 649 break; 650 } 651 tls->free(tls); 652 break; 653 case TCP_TLS_MODE_IFNET: 654 switch (tls->params.cipher_algorithm) { 655 case CRYPTO_AES_CBC: 656 counter_u64_add(ktls_ifnet_cbc, -1); 657 break; 658 case CRYPTO_AES_NIST_GCM_16: 659 counter_u64_add(ktls_ifnet_gcm, -1); 660 break; 661 } 662 m_snd_tag_rele(tls->snd_tag); 663 break; 664 #ifdef TCP_OFFLOAD 665 case TCP_TLS_MODE_TOE: 666 switch (tls->params.cipher_algorithm) { 667 case CRYPTO_AES_CBC: 668 counter_u64_add(ktls_toe_cbc, -1); 669 break; 670 case CRYPTO_AES_NIST_GCM_16: 671 counter_u64_add(ktls_toe_gcm, -1); 672 break; 673 } 674 break; 675 #endif 676 } 677 if (tls->params.auth_key != NULL) { 678 explicit_bzero(tls->params.auth_key, tls->params.auth_key_len); 679 free(tls->params.auth_key, M_KTLS); 680 tls->params.auth_key = NULL; 681 tls->params.auth_key_len = 0; 682 } 683 if (tls->params.cipher_key != NULL) { 684 explicit_bzero(tls->params.cipher_key, 685 tls->params.cipher_key_len); 686 free(tls->params.cipher_key, M_KTLS); 687 tls->params.cipher_key = NULL; 688 tls->params.cipher_key_len = 0; 689 } 690 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 691 } 692 693 #if defined(INET) || defined(INET6) 694 695 #ifdef TCP_OFFLOAD 696 static int 697 ktls_try_toe(struct socket *so, struct ktls_session *tls) 698 { 699 struct inpcb *inp; 700 struct tcpcb *tp; 701 int error; 702 703 inp = so->so_pcb; 704 INP_WLOCK(inp); 705 if (inp->inp_flags2 & INP_FREED) { 706 INP_WUNLOCK(inp); 707 return (ECONNRESET); 708 } 709 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 710 INP_WUNLOCK(inp); 711 return (ECONNRESET); 712 } 713 if (inp->inp_socket == NULL) { 714 INP_WUNLOCK(inp); 715 return (ECONNRESET); 716 } 717 tp = intotcpcb(inp); 718 if (tp->tod == NULL) { 719 INP_WUNLOCK(inp); 720 return (EOPNOTSUPP); 721 } 722 723 error = tcp_offload_alloc_tls_session(tp, tls); 724 INP_WUNLOCK(inp); 725 if (error == 0) { 726 tls->mode = TCP_TLS_MODE_TOE; 727 switch (tls->params.cipher_algorithm) { 728 case CRYPTO_AES_CBC: 729 counter_u64_add(ktls_toe_cbc, 1); 730 break; 731 case CRYPTO_AES_NIST_GCM_16: 732 counter_u64_add(ktls_toe_gcm, 1); 733 break; 734 } 735 } 736 return (error); 737 } 738 #endif 739 740 /* 741 * Common code used when first enabling ifnet TLS on a connection or 742 * when allocating a new ifnet TLS session due to a routing change. 743 * This function allocates a new TLS send tag on whatever interface 744 * the connection is currently routed over. 745 */ 746 static int 747 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 748 struct m_snd_tag **mstp) 749 { 750 union if_snd_tag_alloc_params params; 751 struct ifnet *ifp; 752 struct rtentry *rt; 753 struct tcpcb *tp; 754 int error; 755 756 INP_RLOCK(inp); 757 if (inp->inp_flags2 & INP_FREED) { 758 INP_RUNLOCK(inp); 759 return (ECONNRESET); 760 } 761 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 762 INP_RUNLOCK(inp); 763 return (ECONNRESET); 764 } 765 if (inp->inp_socket == NULL) { 766 INP_RUNLOCK(inp); 767 return (ECONNRESET); 768 } 769 tp = intotcpcb(inp); 770 771 /* 772 * Check administrative controls on ifnet TLS to determine if 773 * ifnet TLS should be denied. 774 * 775 * - Always permit 'force' requests. 776 * - ktls_ifnet_permitted == 0: always deny. 777 */ 778 if (!force && ktls_ifnet_permitted == 0) { 779 INP_RUNLOCK(inp); 780 return (ENXIO); 781 } 782 783 /* 784 * XXX: Use the cached route in the inpcb to find the 785 * interface. This should perhaps instead use 786 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 787 * enabled after a connection has completed key negotiation in 788 * userland, the cached route will be present in practice. 789 */ 790 rt = inp->inp_route.ro_rt; 791 if (rt == NULL || rt->rt_ifp == NULL) { 792 INP_RUNLOCK(inp); 793 return (ENXIO); 794 } 795 ifp = rt->rt_ifp; 796 if_ref(ifp); 797 798 params.hdr.type = IF_SND_TAG_TYPE_TLS; 799 params.hdr.flowid = inp->inp_flowid; 800 params.hdr.flowtype = inp->inp_flowtype; 801 params.tls.inp = inp; 802 params.tls.tls = tls; 803 INP_RUNLOCK(inp); 804 805 if (ifp->if_snd_tag_alloc == NULL) { 806 error = EOPNOTSUPP; 807 goto out; 808 } 809 if ((ifp->if_capenable & IFCAP_NOMAP) == 0) { 810 error = EOPNOTSUPP; 811 goto out; 812 } 813 if (inp->inp_vflag & INP_IPV6) { 814 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 815 error = EOPNOTSUPP; 816 goto out; 817 } 818 } else { 819 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 820 error = EOPNOTSUPP; 821 goto out; 822 } 823 } 824 error = ifp->if_snd_tag_alloc(ifp, ¶ms, mstp); 825 out: 826 if_rele(ifp); 827 return (error); 828 } 829 830 static int 831 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 832 { 833 struct m_snd_tag *mst; 834 int error; 835 836 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 837 if (error == 0) { 838 tls->mode = TCP_TLS_MODE_IFNET; 839 tls->snd_tag = mst; 840 switch (tls->params.cipher_algorithm) { 841 case CRYPTO_AES_CBC: 842 counter_u64_add(ktls_ifnet_cbc, 1); 843 break; 844 case CRYPTO_AES_NIST_GCM_16: 845 counter_u64_add(ktls_ifnet_gcm, 1); 846 break; 847 } 848 } 849 return (error); 850 } 851 852 static int 853 ktls_try_sw(struct socket *so, struct ktls_session *tls) 854 { 855 struct rm_priotracker prio; 856 struct ktls_crypto_backend *be; 857 858 /* 859 * Choose the best software crypto backend. Backends are 860 * stored in sorted priority order (larget value == most 861 * important at the head of the list), so this just stops on 862 * the first backend that claims the session by returning 863 * success. 864 */ 865 if (ktls_allow_unload) 866 rm_rlock(&ktls_backends_lock, &prio); 867 LIST_FOREACH(be, &ktls_backends, next) { 868 if (be->try(so, tls) == 0) 869 break; 870 KASSERT(tls->cipher == NULL, 871 ("ktls backend leaked a cipher pointer")); 872 } 873 if (be != NULL) { 874 if (ktls_allow_unload) 875 be->use_count++; 876 tls->be = be; 877 } 878 if (ktls_allow_unload) 879 rm_runlock(&ktls_backends_lock, &prio); 880 if (be == NULL) 881 return (EOPNOTSUPP); 882 tls->mode = TCP_TLS_MODE_SW; 883 switch (tls->params.cipher_algorithm) { 884 case CRYPTO_AES_CBC: 885 counter_u64_add(ktls_sw_cbc, 1); 886 break; 887 case CRYPTO_AES_NIST_GCM_16: 888 counter_u64_add(ktls_sw_gcm, 1); 889 break; 890 } 891 return (0); 892 } 893 894 int 895 ktls_enable_tx(struct socket *so, struct tls_enable *en) 896 { 897 struct ktls_session *tls; 898 int error; 899 900 if (!ktls_offload_enable) 901 return (ENOTSUP); 902 903 counter_u64_add(ktls_offload_enable_calls, 1); 904 905 /* 906 * This should always be true since only the TCP socket option 907 * invokes this function. 908 */ 909 if (so->so_proto->pr_protocol != IPPROTO_TCP) 910 return (EINVAL); 911 912 /* 913 * XXX: Don't overwrite existing sessions. We should permit 914 * this to support rekeying in the future. 915 */ 916 if (so->so_snd.sb_tls_info != NULL) 917 return (EALREADY); 918 919 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 920 return (ENOTSUP); 921 922 /* TLS requires ext pgs */ 923 if (mb_use_ext_pgs == 0) 924 return (ENXIO); 925 926 error = ktls_create_session(so, en, &tls); 927 if (error) 928 return (error); 929 930 /* Prefer TOE -> ifnet TLS -> software TLS. */ 931 #ifdef TCP_OFFLOAD 932 error = ktls_try_toe(so, tls); 933 if (error) 934 #endif 935 error = ktls_try_ifnet(so, tls, false); 936 if (error) 937 error = ktls_try_sw(so, tls); 938 939 if (error) { 940 ktls_cleanup(tls); 941 return (error); 942 } 943 944 error = sblock(&so->so_snd, SBL_WAIT); 945 if (error) { 946 ktls_cleanup(tls); 947 return (error); 948 } 949 950 SOCKBUF_LOCK(&so->so_snd); 951 so->so_snd.sb_tls_info = tls; 952 if (tls->mode != TCP_TLS_MODE_SW) 953 so->so_snd.sb_flags |= SB_TLS_IFNET; 954 SOCKBUF_UNLOCK(&so->so_snd); 955 sbunlock(&so->so_snd); 956 957 counter_u64_add(ktls_offload_total, 1); 958 959 return (0); 960 } 961 962 int 963 ktls_get_tx_mode(struct socket *so) 964 { 965 struct ktls_session *tls; 966 struct inpcb *inp; 967 int mode; 968 969 inp = so->so_pcb; 970 INP_WLOCK_ASSERT(inp); 971 SOCKBUF_LOCK(&so->so_snd); 972 tls = so->so_snd.sb_tls_info; 973 if (tls == NULL) 974 mode = TCP_TLS_MODE_NONE; 975 else 976 mode = tls->mode; 977 SOCKBUF_UNLOCK(&so->so_snd); 978 return (mode); 979 } 980 981 /* 982 * Switch between SW and ifnet TLS sessions as requested. 983 */ 984 int 985 ktls_set_tx_mode(struct socket *so, int mode) 986 { 987 struct ktls_session *tls, *tls_new; 988 struct inpcb *inp; 989 int error; 990 991 switch (mode) { 992 case TCP_TLS_MODE_SW: 993 case TCP_TLS_MODE_IFNET: 994 break; 995 default: 996 return (EINVAL); 997 } 998 999 inp = so->so_pcb; 1000 INP_WLOCK_ASSERT(inp); 1001 SOCKBUF_LOCK(&so->so_snd); 1002 tls = so->so_snd.sb_tls_info; 1003 if (tls == NULL) { 1004 SOCKBUF_UNLOCK(&so->so_snd); 1005 return (0); 1006 } 1007 1008 if (tls->mode == mode) { 1009 SOCKBUF_UNLOCK(&so->so_snd); 1010 return (0); 1011 } 1012 1013 tls = ktls_hold(tls); 1014 SOCKBUF_UNLOCK(&so->so_snd); 1015 INP_WUNLOCK(inp); 1016 1017 tls_new = ktls_clone_session(tls); 1018 1019 if (mode == TCP_TLS_MODE_IFNET) 1020 error = ktls_try_ifnet(so, tls_new, true); 1021 else 1022 error = ktls_try_sw(so, tls_new); 1023 if (error) { 1024 counter_u64_add(ktls_switch_failed, 1); 1025 ktls_free(tls_new); 1026 ktls_free(tls); 1027 INP_WLOCK(inp); 1028 return (error); 1029 } 1030 1031 error = sblock(&so->so_snd, SBL_WAIT); 1032 if (error) { 1033 counter_u64_add(ktls_switch_failed, 1); 1034 ktls_free(tls_new); 1035 ktls_free(tls); 1036 INP_WLOCK(inp); 1037 return (error); 1038 } 1039 1040 /* 1041 * If we raced with another session change, keep the existing 1042 * session. 1043 */ 1044 if (tls != so->so_snd.sb_tls_info) { 1045 counter_u64_add(ktls_switch_failed, 1); 1046 sbunlock(&so->so_snd); 1047 ktls_free(tls_new); 1048 ktls_free(tls); 1049 INP_WLOCK(inp); 1050 return (EBUSY); 1051 } 1052 1053 SOCKBUF_LOCK(&so->so_snd); 1054 so->so_snd.sb_tls_info = tls_new; 1055 if (tls_new->mode != TCP_TLS_MODE_SW) 1056 so->so_snd.sb_flags |= SB_TLS_IFNET; 1057 SOCKBUF_UNLOCK(&so->so_snd); 1058 sbunlock(&so->so_snd); 1059 1060 /* 1061 * Drop two references on 'tls'. The first is for the 1062 * ktls_hold() above. The second drops the reference from the 1063 * socket buffer. 1064 */ 1065 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1066 ktls_free(tls); 1067 ktls_free(tls); 1068 1069 if (mode == TCP_TLS_MODE_IFNET) 1070 counter_u64_add(ktls_switch_to_ifnet, 1); 1071 else 1072 counter_u64_add(ktls_switch_to_sw, 1); 1073 1074 INP_WLOCK(inp); 1075 return (0); 1076 } 1077 1078 /* 1079 * Try to allocate a new TLS send tag. This task is scheduled when 1080 * ip_output detects a route change while trying to transmit a packet 1081 * holding a TLS record. If a new tag is allocated, replace the tag 1082 * in the TLS session. Subsequent packets on the connection will use 1083 * the new tag. If a new tag cannot be allocated, drop the 1084 * connection. 1085 */ 1086 static void 1087 ktls_reset_send_tag(void *context, int pending) 1088 { 1089 struct epoch_tracker et; 1090 struct ktls_session *tls; 1091 struct m_snd_tag *old, *new; 1092 struct inpcb *inp; 1093 struct tcpcb *tp; 1094 int error; 1095 1096 MPASS(pending == 1); 1097 1098 tls = context; 1099 inp = tls->inp; 1100 1101 /* 1102 * Free the old tag first before allocating a new one. 1103 * ip[6]_output_send() will treat a NULL send tag the same as 1104 * an ifp mismatch and drop packets until a new tag is 1105 * allocated. 1106 * 1107 * Write-lock the INP when changing tls->snd_tag since 1108 * ip[6]_output_send() holds a read-lock when reading the 1109 * pointer. 1110 */ 1111 INP_WLOCK(inp); 1112 old = tls->snd_tag; 1113 tls->snd_tag = NULL; 1114 INP_WUNLOCK(inp); 1115 if (old != NULL) 1116 m_snd_tag_rele(old); 1117 1118 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1119 1120 if (error == 0) { 1121 INP_WLOCK(inp); 1122 tls->snd_tag = new; 1123 mtx_pool_lock(mtxpool_sleep, tls); 1124 tls->reset_pending = false; 1125 mtx_pool_unlock(mtxpool_sleep, tls); 1126 if (!in_pcbrele_wlocked(inp)) 1127 INP_WUNLOCK(inp); 1128 1129 counter_u64_add(ktls_ifnet_reset, 1); 1130 1131 /* 1132 * XXX: Should we kick tcp_output explicitly now that 1133 * the send tag is fixed or just rely on timers? 1134 */ 1135 } else { 1136 NET_EPOCH_ENTER(et); 1137 INP_WLOCK(inp); 1138 if (!in_pcbrele_wlocked(inp)) { 1139 if (!(inp->inp_flags & INP_TIMEWAIT) && 1140 !(inp->inp_flags & INP_DROPPED)) { 1141 tp = intotcpcb(inp); 1142 tp = tcp_drop(tp, ECONNABORTED); 1143 if (tp != NULL) 1144 INP_WUNLOCK(inp); 1145 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1146 } else 1147 INP_WUNLOCK(inp); 1148 } 1149 NET_EPOCH_EXIT(et); 1150 1151 counter_u64_add(ktls_ifnet_reset_failed, 1); 1152 1153 /* 1154 * Leave reset_pending true to avoid future tasks while 1155 * the socket goes away. 1156 */ 1157 } 1158 1159 ktls_free(tls); 1160 } 1161 1162 int 1163 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1164 { 1165 1166 if (inp == NULL) 1167 return (ENOBUFS); 1168 1169 INP_LOCK_ASSERT(inp); 1170 1171 /* 1172 * See if we should schedule a task to update the send tag for 1173 * this session. 1174 */ 1175 mtx_pool_lock(mtxpool_sleep, tls); 1176 if (!tls->reset_pending) { 1177 (void) ktls_hold(tls); 1178 in_pcbref(inp); 1179 tls->inp = inp; 1180 tls->reset_pending = true; 1181 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1182 } 1183 mtx_pool_unlock(mtxpool_sleep, tls); 1184 return (ENOBUFS); 1185 } 1186 #endif 1187 1188 void 1189 ktls_destroy(struct ktls_session *tls) 1190 { 1191 struct rm_priotracker prio; 1192 1193 ktls_cleanup(tls); 1194 if (tls->be != NULL && ktls_allow_unload) { 1195 rm_rlock(&ktls_backends_lock, &prio); 1196 tls->be->use_count--; 1197 rm_runlock(&ktls_backends_lock, &prio); 1198 } 1199 uma_zfree(ktls_session_zone, tls); 1200 } 1201 1202 void 1203 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1204 { 1205 struct mbuf_ext_pgs *pgs; 1206 1207 for (; m != NULL; m = m->m_next) { 1208 KASSERT((m->m_flags & M_NOMAP) != 0, 1209 ("ktls_seq: mapped mbuf %p", m)); 1210 1211 pgs = m->m_ext.ext_pgs; 1212 pgs->seqno = sb->sb_tls_seqno; 1213 sb->sb_tls_seqno++; 1214 } 1215 } 1216 1217 /* 1218 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1219 * mbuf in the chain must be an unmapped mbuf. The payload of the 1220 * mbuf must be populated with the payload of each TLS record. 1221 * 1222 * The record_type argument specifies the TLS record type used when 1223 * populating the TLS header. 1224 * 1225 * The enq_count argument on return is set to the number of pages of 1226 * payload data for this entire chain that need to be encrypted via SW 1227 * encryption. The returned value should be passed to ktls_enqueue 1228 * when scheduling encryption of this chain of mbufs. 1229 */ 1230 int 1231 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1232 uint8_t record_type) 1233 { 1234 struct tls_record_layer *tlshdr; 1235 struct mbuf *m; 1236 struct mbuf_ext_pgs *pgs; 1237 uint64_t *noncep; 1238 uint16_t tls_len; 1239 int maxlen; 1240 1241 maxlen = tls->params.max_frame_len; 1242 *enq_cnt = 0; 1243 for (m = top; m != NULL; m = m->m_next) { 1244 /* 1245 * All mbufs in the chain should be non-empty TLS 1246 * records whose payload does not exceed the maximum 1247 * frame length. 1248 */ 1249 if (m->m_len > maxlen || m->m_len == 0) 1250 return (EINVAL); 1251 tls_len = m->m_len; 1252 1253 /* 1254 * TLS frames require unmapped mbufs to store session 1255 * info. 1256 */ 1257 KASSERT((m->m_flags & M_NOMAP) != 0, 1258 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1259 1260 pgs = m->m_ext.ext_pgs; 1261 1262 /* Save a reference to the session. */ 1263 pgs->tls = ktls_hold(tls); 1264 1265 pgs->hdr_len = tls->params.tls_hlen; 1266 pgs->trail_len = tls->params.tls_tlen; 1267 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1268 int bs, delta; 1269 1270 /* 1271 * AES-CBC pads messages to a multiple of the 1272 * block size. Note that the padding is 1273 * applied after the digest and the encryption 1274 * is done on the "plaintext || mac || padding". 1275 * At least one byte of padding is always 1276 * present. 1277 * 1278 * Compute the final trailer length assuming 1279 * at most one block of padding. 1280 * tls->params.sb_tls_tlen is the maximum 1281 * possible trailer length (padding + digest). 1282 * delta holds the number of excess padding 1283 * bytes if the maximum were used. Those 1284 * extra bytes are removed. 1285 */ 1286 bs = tls->params.tls_bs; 1287 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1288 pgs->trail_len -= delta; 1289 } 1290 m->m_len += pgs->hdr_len + pgs->trail_len; 1291 1292 /* Populate the TLS header. */ 1293 tlshdr = (void *)pgs->hdr; 1294 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1295 1296 /* 1297 * TLS 1.3 masquarades as TLS 1.2 with a record type 1298 * of TLS_RLTYPE_APP. 1299 */ 1300 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1301 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1302 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1303 tlshdr->tls_type = TLS_RLTYPE_APP; 1304 /* save the real record type for later */ 1305 pgs->record_type = record_type; 1306 } else { 1307 tlshdr->tls_vminor = tls->params.tls_vminor; 1308 tlshdr->tls_type = record_type; 1309 } 1310 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1311 1312 /* 1313 * Store nonces / explicit IVs after the end of the 1314 * TLS header. 1315 * 1316 * For GCM with TLS 1.2, an 8 byte nonce is copied 1317 * from the end of the IV. The nonce is then 1318 * incremented for use by the next record. 1319 * 1320 * For CBC, a random nonce is inserted for TLS 1.1+. 1321 */ 1322 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1323 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1324 noncep = (uint64_t *)(tls->params.iv + 8); 1325 be64enc(tlshdr + 1, *noncep); 1326 (*noncep)++; 1327 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1328 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1329 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1330 1331 /* 1332 * When using SW encryption, mark the mbuf not ready. 1333 * It will be marked ready via sbready() after the 1334 * record has been encrypted. 1335 * 1336 * When using ifnet TLS, unencrypted TLS records are 1337 * sent down the stack to the NIC. 1338 */ 1339 if (tls->mode == TCP_TLS_MODE_SW) { 1340 m->m_flags |= M_NOTREADY; 1341 pgs->nrdy = pgs->npgs; 1342 *enq_cnt += pgs->npgs; 1343 } 1344 } 1345 return (0); 1346 } 1347 1348 void 1349 ktls_enqueue_to_free(struct mbuf_ext_pgs *pgs) 1350 { 1351 struct ktls_wq *wq; 1352 bool running; 1353 1354 /* Mark it for freeing. */ 1355 pgs->mbuf = NULL; 1356 wq = &ktls_wq[pgs->tls->wq_index]; 1357 mtx_lock(&wq->mtx); 1358 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1359 running = wq->running; 1360 mtx_unlock(&wq->mtx); 1361 if (!running) 1362 wakeup(wq); 1363 } 1364 1365 void 1366 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1367 { 1368 struct mbuf_ext_pgs *pgs; 1369 struct ktls_wq *wq; 1370 bool running; 1371 1372 KASSERT(((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1373 (M_NOMAP | M_NOTREADY)), 1374 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1375 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1376 1377 pgs = m->m_ext.ext_pgs; 1378 1379 KASSERT(pgs->tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1380 1381 pgs->enc_cnt = page_count; 1382 pgs->mbuf = m; 1383 1384 /* 1385 * Save a pointer to the socket. The caller is responsible 1386 * for taking an additional reference via soref(). 1387 */ 1388 pgs->so = so; 1389 1390 wq = &ktls_wq[pgs->tls->wq_index]; 1391 mtx_lock(&wq->mtx); 1392 STAILQ_INSERT_TAIL(&wq->head, pgs, stailq); 1393 running = wq->running; 1394 mtx_unlock(&wq->mtx); 1395 if (!running) 1396 wakeup(wq); 1397 counter_u64_add(ktls_cnt_on, 1); 1398 } 1399 1400 static __noinline void 1401 ktls_encrypt(struct mbuf_ext_pgs *pgs) 1402 { 1403 struct ktls_session *tls; 1404 struct socket *so; 1405 struct mbuf *m, *top; 1406 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1407 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1408 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 1409 vm_page_t pg; 1410 int error, i, len, npages, off, total_pages; 1411 bool is_anon; 1412 1413 so = pgs->so; 1414 tls = pgs->tls; 1415 top = pgs->mbuf; 1416 KASSERT(tls != NULL, ("tls = NULL, top = %p, pgs = %p\n", top, pgs)); 1417 KASSERT(so != NULL, ("so = NULL, top = %p, pgs = %p\n", top, pgs)); 1418 #ifdef INVARIANTS 1419 pgs->so = NULL; 1420 pgs->mbuf = NULL; 1421 #endif 1422 total_pages = pgs->enc_cnt; 1423 npages = 0; 1424 1425 /* 1426 * Encrypt the TLS records in the chain of mbufs starting with 1427 * 'top'. 'total_pages' gives us a total count of pages and is 1428 * used to know when we have finished encrypting the TLS 1429 * records originally queued with 'top'. 1430 * 1431 * NB: These mbufs are queued in the socket buffer and 1432 * 'm_next' is traversing the mbufs in the socket buffer. The 1433 * socket buffer lock is not held while traversing this chain. 1434 * Since the mbufs are all marked M_NOTREADY their 'm_next' 1435 * pointers should be stable. However, the 'm_next' of the 1436 * last mbuf encrypted is not necessarily NULL. It can point 1437 * to other mbufs appended while 'top' was on the TLS work 1438 * queue. 1439 * 1440 * Each mbuf holds an entire TLS record. 1441 */ 1442 error = 0; 1443 for (m = top; npages != total_pages; m = m->m_next) { 1444 pgs = m->m_ext.ext_pgs; 1445 1446 KASSERT(pgs->tls == tls, 1447 ("different TLS sessions in a single mbuf chain: %p vs %p", 1448 tls, pgs->tls)); 1449 KASSERT((m->m_flags & (M_NOMAP | M_NOTREADY)) == 1450 (M_NOMAP | M_NOTREADY), 1451 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 1452 KASSERT(npages + pgs->npgs <= total_pages, 1453 ("page count mismatch: top %p, total_pages %d, m %p", top, 1454 total_pages, m)); 1455 1456 /* 1457 * Generate source and destination ivoecs to pass to 1458 * the SW encryption backend. For writable mbufs, the 1459 * destination iovec is a copy of the source and 1460 * encryption is done in place. For file-backed mbufs 1461 * (from sendfile), anonymous wired pages are 1462 * allocated and assigned to the destination iovec. 1463 */ 1464 is_anon = (pgs->flags & MBUF_PEXT_FLAG_ANON) != 0; 1465 1466 off = pgs->first_pg_off; 1467 for (i = 0; i < pgs->npgs; i++, off = 0) { 1468 len = mbuf_ext_pg_len(pgs, i, off); 1469 src_iov[i].iov_len = len; 1470 src_iov[i].iov_base = 1471 (char *)(void *)PHYS_TO_DMAP(pgs->pa[i]) + off; 1472 1473 if (is_anon) { 1474 dst_iov[i].iov_base = src_iov[i].iov_base; 1475 dst_iov[i].iov_len = src_iov[i].iov_len; 1476 continue; 1477 } 1478 retry_page: 1479 pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | 1480 VM_ALLOC_NOOBJ | VM_ALLOC_NODUMP | VM_ALLOC_WIRED); 1481 if (pg == NULL) { 1482 vm_wait(NULL); 1483 goto retry_page; 1484 } 1485 parray[i] = VM_PAGE_TO_PHYS(pg); 1486 dst_iov[i].iov_base = 1487 (char *)(void *)PHYS_TO_DMAP(parray[i]) + off; 1488 dst_iov[i].iov_len = len; 1489 } 1490 1491 npages += i; 1492 1493 error = (*tls->sw_encrypt)(tls, 1494 (const struct tls_record_layer *)pgs->hdr, 1495 pgs->trail, src_iov, dst_iov, i, pgs->seqno, 1496 pgs->record_type); 1497 if (error) { 1498 counter_u64_add(ktls_offload_failed_crypto, 1); 1499 break; 1500 } 1501 1502 /* 1503 * For file-backed mbufs, release the file-backed 1504 * pages and replace them in the ext_pgs array with 1505 * the anonymous wired pages allocated above. 1506 */ 1507 if (!is_anon) { 1508 /* Free the old pages. */ 1509 m->m_ext.ext_free(m); 1510 1511 /* Replace them with the new pages. */ 1512 for (i = 0; i < pgs->npgs; i++) 1513 pgs->pa[i] = parray[i]; 1514 1515 /* Use the basic free routine. */ 1516 m->m_ext.ext_free = mb_free_mext_pgs; 1517 1518 /* Pages are now writable. */ 1519 pgs->flags |= MBUF_PEXT_FLAG_ANON; 1520 } 1521 1522 /* 1523 * Drop a reference to the session now that it is no 1524 * longer needed. Existing code depends on encrypted 1525 * records having no associated session vs 1526 * yet-to-be-encrypted records having an associated 1527 * session. 1528 */ 1529 pgs->tls = NULL; 1530 ktls_free(tls); 1531 } 1532 1533 CURVNET_SET(so->so_vnet); 1534 if (error == 0) { 1535 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 1536 } else { 1537 so->so_proto->pr_usrreqs->pru_abort(so); 1538 so->so_error = EIO; 1539 mb_free_notready(top, total_pages); 1540 } 1541 1542 SOCK_LOCK(so); 1543 sorele(so); 1544 CURVNET_RESTORE(); 1545 } 1546 1547 static void 1548 ktls_work_thread(void *ctx) 1549 { 1550 struct ktls_wq *wq = ctx; 1551 struct mbuf_ext_pgs *p, *n; 1552 struct ktls_session *tls; 1553 STAILQ_HEAD(, mbuf_ext_pgs) local_head; 1554 1555 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 1556 fpu_kern_thread(0); 1557 #endif 1558 for (;;) { 1559 mtx_lock(&wq->mtx); 1560 while (STAILQ_EMPTY(&wq->head)) { 1561 wq->running = false; 1562 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 1563 wq->running = true; 1564 } 1565 1566 STAILQ_INIT(&local_head); 1567 STAILQ_CONCAT(&local_head, &wq->head); 1568 mtx_unlock(&wq->mtx); 1569 1570 STAILQ_FOREACH_SAFE(p, &local_head, stailq, n) { 1571 if (p->mbuf != NULL) { 1572 ktls_encrypt(p); 1573 counter_u64_add(ktls_cnt_on, -1); 1574 } else { 1575 tls = p->tls; 1576 ktls_free(tls); 1577 uma_zfree(zone_extpgs, p); 1578 } 1579 } 1580 } 1581 } 1582