1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 555 en->iv_len != TLS_AEAD_GCM_LEN) || 556 (en->tls_vminor == TLS_MINOR_VER_THREE && 557 en->iv_len != TLS_1_3_GCM_IV_LEN)) 558 return (EINVAL); 559 break; 560 case CRYPTO_AES_CBC: 561 switch (en->auth_algorithm) { 562 case CRYPTO_SHA1_HMAC: 563 /* 564 * TLS 1.0 requires an implicit IV. TLS 1.1+ 565 * all use explicit IVs. 566 */ 567 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 568 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 569 return (EINVAL); 570 break; 571 } 572 573 /* FALLTHROUGH */ 574 case CRYPTO_SHA2_256_HMAC: 575 case CRYPTO_SHA2_384_HMAC: 576 /* Ignore any supplied IV. */ 577 en->iv_len = 0; 578 break; 579 default: 580 return (EINVAL); 581 } 582 if (en->auth_key_len == 0) 583 return (EINVAL); 584 if (en->tls_vminor != TLS_MINOR_VER_ZERO && 585 en->tls_vminor != TLS_MINOR_VER_ONE && 586 en->tls_vminor != TLS_MINOR_VER_TWO) 587 return (EINVAL); 588 break; 589 case CRYPTO_CHACHA20_POLY1305: 590 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 591 return (EINVAL); 592 if (en->tls_vminor != TLS_MINOR_VER_TWO && 593 en->tls_vminor != TLS_MINOR_VER_THREE) 594 return (EINVAL); 595 if (en->iv_len != TLS_CHACHA20_IV_LEN) 596 return (EINVAL); 597 break; 598 default: 599 return (EINVAL); 600 } 601 602 error = ktls_start_kthreads(); 603 if (error != 0) 604 return (error); 605 606 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 607 608 counter_u64_add(ktls_offload_active, 1); 609 610 refcount_init(&tls->refcount, 1); 611 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 612 613 tls->wq_index = ktls_get_cpu(so); 614 615 tls->params.cipher_algorithm = en->cipher_algorithm; 616 tls->params.auth_algorithm = en->auth_algorithm; 617 tls->params.tls_vmajor = en->tls_vmajor; 618 tls->params.tls_vminor = en->tls_vminor; 619 tls->params.flags = en->flags; 620 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 621 622 /* Set the header and trailer lengths. */ 623 tls->params.tls_hlen = sizeof(struct tls_record_layer); 624 switch (en->cipher_algorithm) { 625 case CRYPTO_AES_NIST_GCM_16: 626 /* 627 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 628 * nonce. TLS 1.3 uses a 12 byte implicit IV. 629 */ 630 if (en->tls_vminor < TLS_MINOR_VER_THREE) 631 tls->params.tls_hlen += sizeof(uint64_t); 632 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 633 tls->params.tls_bs = 1; 634 break; 635 case CRYPTO_AES_CBC: 636 switch (en->auth_algorithm) { 637 case CRYPTO_SHA1_HMAC: 638 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 639 /* Implicit IV, no nonce. */ 640 tls->sequential_records = true; 641 tls->next_seqno = be64dec(en->rec_seq); 642 STAILQ_INIT(&tls->pending_records); 643 } else { 644 tls->params.tls_hlen += AES_BLOCK_LEN; 645 } 646 tls->params.tls_tlen = AES_BLOCK_LEN + 647 SHA1_HASH_LEN; 648 break; 649 case CRYPTO_SHA2_256_HMAC: 650 tls->params.tls_hlen += AES_BLOCK_LEN; 651 tls->params.tls_tlen = AES_BLOCK_LEN + 652 SHA2_256_HASH_LEN; 653 break; 654 case CRYPTO_SHA2_384_HMAC: 655 tls->params.tls_hlen += AES_BLOCK_LEN; 656 tls->params.tls_tlen = AES_BLOCK_LEN + 657 SHA2_384_HASH_LEN; 658 break; 659 default: 660 panic("invalid hmac"); 661 } 662 tls->params.tls_bs = AES_BLOCK_LEN; 663 break; 664 case CRYPTO_CHACHA20_POLY1305: 665 /* 666 * Chacha20 uses a 12 byte implicit IV. 667 */ 668 tls->params.tls_tlen = POLY1305_HASH_LEN; 669 tls->params.tls_bs = 1; 670 break; 671 default: 672 panic("invalid cipher"); 673 } 674 675 /* 676 * TLS 1.3 includes optional padding which we do not support, 677 * and also puts the "real" record type at the end of the 678 * encrypted data. 679 */ 680 if (en->tls_vminor == TLS_MINOR_VER_THREE) 681 tls->params.tls_tlen += sizeof(uint8_t); 682 683 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 684 ("TLS header length too long: %d", tls->params.tls_hlen)); 685 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 686 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 687 688 if (en->auth_key_len != 0) { 689 tls->params.auth_key_len = en->auth_key_len; 690 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 691 M_WAITOK); 692 error = copyin(en->auth_key, tls->params.auth_key, 693 en->auth_key_len); 694 if (error) 695 goto out; 696 } 697 698 tls->params.cipher_key_len = en->cipher_key_len; 699 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 700 error = copyin(en->cipher_key, tls->params.cipher_key, 701 en->cipher_key_len); 702 if (error) 703 goto out; 704 705 /* 706 * This holds the implicit portion of the nonce for AEAD 707 * ciphers and the initial implicit IV for TLS 1.0. The 708 * explicit portions of the IV are generated in ktls_frame(). 709 */ 710 if (en->iv_len != 0) { 711 tls->params.iv_len = en->iv_len; 712 error = copyin(en->iv, tls->params.iv, en->iv_len); 713 if (error) 714 goto out; 715 716 /* 717 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 718 * counter to generate unique explicit IVs. 719 * 720 * Store this counter in the last 8 bytes of the IV 721 * array so that it is 8-byte aligned. 722 */ 723 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 724 en->tls_vminor == TLS_MINOR_VER_TWO) 725 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 726 } 727 728 *tlsp = tls; 729 return (0); 730 731 out: 732 ktls_cleanup(tls); 733 return (error); 734 } 735 736 static struct ktls_session * 737 ktls_clone_session(struct ktls_session *tls) 738 { 739 struct ktls_session *tls_new; 740 741 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 742 743 counter_u64_add(ktls_offload_active, 1); 744 745 refcount_init(&tls_new->refcount, 1); 746 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 747 748 /* Copy fields from existing session. */ 749 tls_new->params = tls->params; 750 tls_new->wq_index = tls->wq_index; 751 752 /* Deep copy keys. */ 753 if (tls_new->params.auth_key != NULL) { 754 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 755 M_KTLS, M_WAITOK); 756 memcpy(tls_new->params.auth_key, tls->params.auth_key, 757 tls->params.auth_key_len); 758 } 759 760 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 761 M_WAITOK); 762 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 763 tls->params.cipher_key_len); 764 765 return (tls_new); 766 } 767 #endif 768 769 static void 770 ktls_cleanup(struct ktls_session *tls) 771 { 772 773 counter_u64_add(ktls_offload_active, -1); 774 switch (tls->mode) { 775 case TCP_TLS_MODE_SW: 776 switch (tls->params.cipher_algorithm) { 777 case CRYPTO_AES_CBC: 778 counter_u64_add(ktls_sw_cbc, -1); 779 break; 780 case CRYPTO_AES_NIST_GCM_16: 781 counter_u64_add(ktls_sw_gcm, -1); 782 break; 783 case CRYPTO_CHACHA20_POLY1305: 784 counter_u64_add(ktls_sw_chacha20, -1); 785 break; 786 } 787 break; 788 case TCP_TLS_MODE_IFNET: 789 switch (tls->params.cipher_algorithm) { 790 case CRYPTO_AES_CBC: 791 counter_u64_add(ktls_ifnet_cbc, -1); 792 break; 793 case CRYPTO_AES_NIST_GCM_16: 794 counter_u64_add(ktls_ifnet_gcm, -1); 795 break; 796 case CRYPTO_CHACHA20_POLY1305: 797 counter_u64_add(ktls_ifnet_chacha20, -1); 798 break; 799 } 800 if (tls->snd_tag != NULL) 801 m_snd_tag_rele(tls->snd_tag); 802 break; 803 #ifdef TCP_OFFLOAD 804 case TCP_TLS_MODE_TOE: 805 switch (tls->params.cipher_algorithm) { 806 case CRYPTO_AES_CBC: 807 counter_u64_add(ktls_toe_cbc, -1); 808 break; 809 case CRYPTO_AES_NIST_GCM_16: 810 counter_u64_add(ktls_toe_gcm, -1); 811 break; 812 case CRYPTO_CHACHA20_POLY1305: 813 counter_u64_add(ktls_toe_chacha20, -1); 814 break; 815 } 816 break; 817 #endif 818 } 819 if (tls->ocf_session != NULL) 820 ktls_ocf_free(tls); 821 if (tls->params.auth_key != NULL) { 822 zfree(tls->params.auth_key, M_KTLS); 823 tls->params.auth_key = NULL; 824 tls->params.auth_key_len = 0; 825 } 826 if (tls->params.cipher_key != NULL) { 827 zfree(tls->params.cipher_key, M_KTLS); 828 tls->params.cipher_key = NULL; 829 tls->params.cipher_key_len = 0; 830 } 831 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 832 } 833 834 #if defined(INET) || defined(INET6) 835 836 #ifdef TCP_OFFLOAD 837 static int 838 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 839 { 840 struct inpcb *inp; 841 struct tcpcb *tp; 842 int error; 843 844 inp = so->so_pcb; 845 INP_WLOCK(inp); 846 if (inp->inp_flags2 & INP_FREED) { 847 INP_WUNLOCK(inp); 848 return (ECONNRESET); 849 } 850 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 851 INP_WUNLOCK(inp); 852 return (ECONNRESET); 853 } 854 if (inp->inp_socket == NULL) { 855 INP_WUNLOCK(inp); 856 return (ECONNRESET); 857 } 858 tp = intotcpcb(inp); 859 if (!(tp->t_flags & TF_TOE)) { 860 INP_WUNLOCK(inp); 861 return (EOPNOTSUPP); 862 } 863 864 error = tcp_offload_alloc_tls_session(tp, tls, direction); 865 INP_WUNLOCK(inp); 866 if (error == 0) { 867 tls->mode = TCP_TLS_MODE_TOE; 868 switch (tls->params.cipher_algorithm) { 869 case CRYPTO_AES_CBC: 870 counter_u64_add(ktls_toe_cbc, 1); 871 break; 872 case CRYPTO_AES_NIST_GCM_16: 873 counter_u64_add(ktls_toe_gcm, 1); 874 break; 875 case CRYPTO_CHACHA20_POLY1305: 876 counter_u64_add(ktls_toe_chacha20, 1); 877 break; 878 } 879 } 880 return (error); 881 } 882 #endif 883 884 /* 885 * Common code used when first enabling ifnet TLS on a connection or 886 * when allocating a new ifnet TLS session due to a routing change. 887 * This function allocates a new TLS send tag on whatever interface 888 * the connection is currently routed over. 889 */ 890 static int 891 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 892 struct m_snd_tag **mstp) 893 { 894 union if_snd_tag_alloc_params params; 895 struct ifnet *ifp; 896 struct nhop_object *nh; 897 struct tcpcb *tp; 898 int error; 899 900 INP_RLOCK(inp); 901 if (inp->inp_flags2 & INP_FREED) { 902 INP_RUNLOCK(inp); 903 return (ECONNRESET); 904 } 905 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 906 INP_RUNLOCK(inp); 907 return (ECONNRESET); 908 } 909 if (inp->inp_socket == NULL) { 910 INP_RUNLOCK(inp); 911 return (ECONNRESET); 912 } 913 tp = intotcpcb(inp); 914 915 /* 916 * Check administrative controls on ifnet TLS to determine if 917 * ifnet TLS should be denied. 918 * 919 * - Always permit 'force' requests. 920 * - ktls_ifnet_permitted == 0: always deny. 921 */ 922 if (!force && ktls_ifnet_permitted == 0) { 923 INP_RUNLOCK(inp); 924 return (ENXIO); 925 } 926 927 /* 928 * XXX: Use the cached route in the inpcb to find the 929 * interface. This should perhaps instead use 930 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 931 * enabled after a connection has completed key negotiation in 932 * userland, the cached route will be present in practice. 933 */ 934 nh = inp->inp_route.ro_nh; 935 if (nh == NULL) { 936 INP_RUNLOCK(inp); 937 return (ENXIO); 938 } 939 ifp = nh->nh_ifp; 940 if_ref(ifp); 941 942 /* 943 * Allocate a TLS + ratelimit tag if the connection has an 944 * existing pacing rate. 945 */ 946 if (tp->t_pacing_rate != -1 && 947 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 948 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 949 params.tls_rate_limit.inp = inp; 950 params.tls_rate_limit.tls = tls; 951 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 952 } else { 953 params.hdr.type = IF_SND_TAG_TYPE_TLS; 954 params.tls.inp = inp; 955 params.tls.tls = tls; 956 } 957 params.hdr.flowid = inp->inp_flowid; 958 params.hdr.flowtype = inp->inp_flowtype; 959 params.hdr.numa_domain = inp->inp_numa_domain; 960 INP_RUNLOCK(inp); 961 962 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 963 error = EOPNOTSUPP; 964 goto out; 965 } 966 if (inp->inp_vflag & INP_IPV6) { 967 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 968 error = EOPNOTSUPP; 969 goto out; 970 } 971 } else { 972 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 973 error = EOPNOTSUPP; 974 goto out; 975 } 976 } 977 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 978 out: 979 if_rele(ifp); 980 return (error); 981 } 982 983 static int 984 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 985 { 986 struct m_snd_tag *mst; 987 int error; 988 989 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 990 if (error == 0) { 991 tls->mode = TCP_TLS_MODE_IFNET; 992 tls->snd_tag = mst; 993 switch (tls->params.cipher_algorithm) { 994 case CRYPTO_AES_CBC: 995 counter_u64_add(ktls_ifnet_cbc, 1); 996 break; 997 case CRYPTO_AES_NIST_GCM_16: 998 counter_u64_add(ktls_ifnet_gcm, 1); 999 break; 1000 case CRYPTO_CHACHA20_POLY1305: 1001 counter_u64_add(ktls_ifnet_chacha20, 1); 1002 break; 1003 } 1004 } 1005 return (error); 1006 } 1007 1008 static void 1009 ktls_use_sw(struct ktls_session *tls) 1010 { 1011 tls->mode = TCP_TLS_MODE_SW; 1012 switch (tls->params.cipher_algorithm) { 1013 case CRYPTO_AES_CBC: 1014 counter_u64_add(ktls_sw_cbc, 1); 1015 break; 1016 case CRYPTO_AES_NIST_GCM_16: 1017 counter_u64_add(ktls_sw_gcm, 1); 1018 break; 1019 case CRYPTO_CHACHA20_POLY1305: 1020 counter_u64_add(ktls_sw_chacha20, 1); 1021 break; 1022 } 1023 } 1024 1025 static int 1026 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1027 { 1028 int error; 1029 1030 error = ktls_ocf_try(so, tls, direction); 1031 if (error) 1032 return (error); 1033 ktls_use_sw(tls); 1034 return (0); 1035 } 1036 1037 /* 1038 * KTLS RX stores data in the socket buffer as a list of TLS records, 1039 * where each record is stored as a control message containg the TLS 1040 * header followed by data mbufs containing the decrypted data. This 1041 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1042 * both encrypted and decrypted data. TLS records decrypted by a NIC 1043 * should be queued to the socket buffer as records, but encrypted 1044 * data which needs to be decrypted by software arrives as a stream of 1045 * regular mbufs which need to be converted. In addition, there may 1046 * already be pending encrypted data in the socket buffer when KTLS RX 1047 * is enabled. 1048 * 1049 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1050 * is used: 1051 * 1052 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1053 * 1054 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1055 * from the first mbuf. Once all of the data for that TLS record is 1056 * queued, the socket is queued to a worker thread. 1057 * 1058 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1059 * the TLS chain. Each TLS record is detached from the TLS chain, 1060 * decrypted, and inserted into the regular socket buffer chain as 1061 * record starting with a control message holding the TLS header and 1062 * a chain of mbufs holding the encrypted data. 1063 */ 1064 1065 static void 1066 sb_mark_notready(struct sockbuf *sb) 1067 { 1068 struct mbuf *m; 1069 1070 m = sb->sb_mb; 1071 sb->sb_mtls = m; 1072 sb->sb_mb = NULL; 1073 sb->sb_mbtail = NULL; 1074 sb->sb_lastrecord = NULL; 1075 for (; m != NULL; m = m->m_next) { 1076 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1077 __func__)); 1078 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1079 __func__)); 1080 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1081 __func__)); 1082 m->m_flags |= M_NOTREADY; 1083 sb->sb_acc -= m->m_len; 1084 sb->sb_tlscc += m->m_len; 1085 sb->sb_mtlstail = m; 1086 } 1087 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1088 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1089 sb->sb_ccc)); 1090 } 1091 1092 /* 1093 * Return information about the pending TLS data in a socket 1094 * buffer. On return, 'seqno' is set to the sequence number 1095 * of the next TLS record to be received, 'resid' is set to 1096 * the amount of bytes still needed for the last pending 1097 * record. The function returns 'false' if the last pending 1098 * record contains a partial TLS header. In that case, 'resid' 1099 * is the number of bytes needed to complete the TLS header. 1100 */ 1101 bool 1102 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1103 { 1104 struct tls_record_layer hdr; 1105 struct mbuf *m; 1106 uint64_t seqno; 1107 size_t resid; 1108 u_int offset, record_len; 1109 1110 SOCKBUF_LOCK_ASSERT(sb); 1111 MPASS(sb->sb_flags & SB_TLS_RX); 1112 seqno = sb->sb_tls_seqno; 1113 resid = sb->sb_tlscc; 1114 m = sb->sb_mtls; 1115 offset = 0; 1116 1117 if (resid == 0) { 1118 *seqnop = seqno; 1119 *residp = 0; 1120 return (true); 1121 } 1122 1123 for (;;) { 1124 seqno++; 1125 1126 if (resid < sizeof(hdr)) { 1127 *seqnop = seqno; 1128 *residp = sizeof(hdr) - resid; 1129 return (false); 1130 } 1131 1132 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1133 1134 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1135 if (resid <= record_len) { 1136 *seqnop = seqno; 1137 *residp = record_len - resid; 1138 return (true); 1139 } 1140 resid -= record_len; 1141 1142 while (record_len != 0) { 1143 if (m->m_len - offset > record_len) { 1144 offset += record_len; 1145 break; 1146 } 1147 1148 record_len -= (m->m_len - offset); 1149 offset = 0; 1150 m = m->m_next; 1151 } 1152 } 1153 } 1154 1155 int 1156 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1157 { 1158 struct ktls_session *tls; 1159 int error; 1160 1161 if (!ktls_offload_enable) 1162 return (ENOTSUP); 1163 if (SOLISTENING(so)) 1164 return (EINVAL); 1165 1166 counter_u64_add(ktls_offload_enable_calls, 1); 1167 1168 /* 1169 * This should always be true since only the TCP socket option 1170 * invokes this function. 1171 */ 1172 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1173 return (EINVAL); 1174 1175 /* 1176 * XXX: Don't overwrite existing sessions. We should permit 1177 * this to support rekeying in the future. 1178 */ 1179 if (so->so_rcv.sb_tls_info != NULL) 1180 return (EALREADY); 1181 1182 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1183 return (ENOTSUP); 1184 1185 /* TLS 1.3 is not yet supported. */ 1186 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1187 en->tls_vminor == TLS_MINOR_VER_THREE) 1188 return (ENOTSUP); 1189 1190 error = ktls_create_session(so, en, &tls); 1191 if (error) 1192 return (error); 1193 1194 error = ktls_ocf_try(so, tls, KTLS_RX); 1195 if (error) { 1196 ktls_cleanup(tls); 1197 return (error); 1198 } 1199 1200 #ifdef TCP_OFFLOAD 1201 error = ktls_try_toe(so, tls, KTLS_RX); 1202 if (error) 1203 #endif 1204 ktls_use_sw(tls); 1205 1206 /* Mark the socket as using TLS offload. */ 1207 SOCKBUF_LOCK(&so->so_rcv); 1208 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1209 so->so_rcv.sb_tls_info = tls; 1210 so->so_rcv.sb_flags |= SB_TLS_RX; 1211 1212 /* Mark existing data as not ready until it can be decrypted. */ 1213 if (tls->mode != TCP_TLS_MODE_TOE) { 1214 sb_mark_notready(&so->so_rcv); 1215 ktls_check_rx(&so->so_rcv); 1216 } 1217 SOCKBUF_UNLOCK(&so->so_rcv); 1218 1219 counter_u64_add(ktls_offload_total, 1); 1220 1221 return (0); 1222 } 1223 1224 int 1225 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1226 { 1227 struct ktls_session *tls; 1228 struct inpcb *inp; 1229 int error; 1230 1231 if (!ktls_offload_enable) 1232 return (ENOTSUP); 1233 if (SOLISTENING(so)) 1234 return (EINVAL); 1235 1236 counter_u64_add(ktls_offload_enable_calls, 1); 1237 1238 /* 1239 * This should always be true since only the TCP socket option 1240 * invokes this function. 1241 */ 1242 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1243 return (EINVAL); 1244 1245 /* 1246 * XXX: Don't overwrite existing sessions. We should permit 1247 * this to support rekeying in the future. 1248 */ 1249 if (so->so_snd.sb_tls_info != NULL) 1250 return (EALREADY); 1251 1252 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1253 return (ENOTSUP); 1254 1255 /* TLS requires ext pgs */ 1256 if (mb_use_ext_pgs == 0) 1257 return (ENXIO); 1258 1259 error = ktls_create_session(so, en, &tls); 1260 if (error) 1261 return (error); 1262 1263 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1264 #ifdef TCP_OFFLOAD 1265 error = ktls_try_toe(so, tls, KTLS_TX); 1266 if (error) 1267 #endif 1268 error = ktls_try_ifnet(so, tls, false); 1269 if (error) 1270 error = ktls_try_sw(so, tls, KTLS_TX); 1271 1272 if (error) { 1273 ktls_cleanup(tls); 1274 return (error); 1275 } 1276 1277 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1278 if (error) { 1279 ktls_cleanup(tls); 1280 return (error); 1281 } 1282 1283 /* 1284 * Write lock the INP when setting sb_tls_info so that 1285 * routines in tcp_ratelimit.c can read sb_tls_info while 1286 * holding the INP lock. 1287 */ 1288 inp = so->so_pcb; 1289 INP_WLOCK(inp); 1290 SOCKBUF_LOCK(&so->so_snd); 1291 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1292 so->so_snd.sb_tls_info = tls; 1293 if (tls->mode != TCP_TLS_MODE_SW) 1294 so->so_snd.sb_flags |= SB_TLS_IFNET; 1295 SOCKBUF_UNLOCK(&so->so_snd); 1296 INP_WUNLOCK(inp); 1297 SOCK_IO_SEND_UNLOCK(so); 1298 1299 counter_u64_add(ktls_offload_total, 1); 1300 1301 return (0); 1302 } 1303 1304 int 1305 ktls_get_rx_mode(struct socket *so, int *modep) 1306 { 1307 struct ktls_session *tls; 1308 struct inpcb *inp; 1309 1310 if (SOLISTENING(so)) 1311 return (EINVAL); 1312 inp = so->so_pcb; 1313 INP_WLOCK_ASSERT(inp); 1314 SOCK_RECVBUF_LOCK(so); 1315 tls = so->so_rcv.sb_tls_info; 1316 if (tls == NULL) 1317 *modep = TCP_TLS_MODE_NONE; 1318 else 1319 *modep = tls->mode; 1320 SOCK_RECVBUF_UNLOCK(so); 1321 return (0); 1322 } 1323 1324 int 1325 ktls_get_tx_mode(struct socket *so, int *modep) 1326 { 1327 struct ktls_session *tls; 1328 struct inpcb *inp; 1329 1330 if (SOLISTENING(so)) 1331 return (EINVAL); 1332 inp = so->so_pcb; 1333 INP_WLOCK_ASSERT(inp); 1334 SOCK_SENDBUF_LOCK(so); 1335 tls = so->so_snd.sb_tls_info; 1336 if (tls == NULL) 1337 *modep = TCP_TLS_MODE_NONE; 1338 else 1339 *modep = tls->mode; 1340 SOCK_SENDBUF_UNLOCK(so); 1341 return (0); 1342 } 1343 1344 /* 1345 * Switch between SW and ifnet TLS sessions as requested. 1346 */ 1347 int 1348 ktls_set_tx_mode(struct socket *so, int mode) 1349 { 1350 struct ktls_session *tls, *tls_new; 1351 struct inpcb *inp; 1352 int error; 1353 1354 if (SOLISTENING(so)) 1355 return (EINVAL); 1356 switch (mode) { 1357 case TCP_TLS_MODE_SW: 1358 case TCP_TLS_MODE_IFNET: 1359 break; 1360 default: 1361 return (EINVAL); 1362 } 1363 1364 inp = so->so_pcb; 1365 INP_WLOCK_ASSERT(inp); 1366 SOCKBUF_LOCK(&so->so_snd); 1367 tls = so->so_snd.sb_tls_info; 1368 if (tls == NULL) { 1369 SOCKBUF_UNLOCK(&so->so_snd); 1370 return (0); 1371 } 1372 1373 if (tls->mode == mode) { 1374 SOCKBUF_UNLOCK(&so->so_snd); 1375 return (0); 1376 } 1377 1378 tls = ktls_hold(tls); 1379 SOCKBUF_UNLOCK(&so->so_snd); 1380 INP_WUNLOCK(inp); 1381 1382 tls_new = ktls_clone_session(tls); 1383 1384 if (mode == TCP_TLS_MODE_IFNET) 1385 error = ktls_try_ifnet(so, tls_new, true); 1386 else 1387 error = ktls_try_sw(so, tls_new, KTLS_TX); 1388 if (error) { 1389 counter_u64_add(ktls_switch_failed, 1); 1390 ktls_free(tls_new); 1391 ktls_free(tls); 1392 INP_WLOCK(inp); 1393 return (error); 1394 } 1395 1396 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1397 if (error) { 1398 counter_u64_add(ktls_switch_failed, 1); 1399 ktls_free(tls_new); 1400 ktls_free(tls); 1401 INP_WLOCK(inp); 1402 return (error); 1403 } 1404 1405 /* 1406 * If we raced with another session change, keep the existing 1407 * session. 1408 */ 1409 if (tls != so->so_snd.sb_tls_info) { 1410 counter_u64_add(ktls_switch_failed, 1); 1411 SOCK_IO_SEND_UNLOCK(so); 1412 ktls_free(tls_new); 1413 ktls_free(tls); 1414 INP_WLOCK(inp); 1415 return (EBUSY); 1416 } 1417 1418 SOCKBUF_LOCK(&so->so_snd); 1419 so->so_snd.sb_tls_info = tls_new; 1420 if (tls_new->mode != TCP_TLS_MODE_SW) 1421 so->so_snd.sb_flags |= SB_TLS_IFNET; 1422 SOCKBUF_UNLOCK(&so->so_snd); 1423 SOCK_IO_SEND_UNLOCK(so); 1424 1425 /* 1426 * Drop two references on 'tls'. The first is for the 1427 * ktls_hold() above. The second drops the reference from the 1428 * socket buffer. 1429 */ 1430 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1431 ktls_free(tls); 1432 ktls_free(tls); 1433 1434 if (mode == TCP_TLS_MODE_IFNET) 1435 counter_u64_add(ktls_switch_to_ifnet, 1); 1436 else 1437 counter_u64_add(ktls_switch_to_sw, 1); 1438 1439 INP_WLOCK(inp); 1440 return (0); 1441 } 1442 1443 /* 1444 * Try to allocate a new TLS send tag. This task is scheduled when 1445 * ip_output detects a route change while trying to transmit a packet 1446 * holding a TLS record. If a new tag is allocated, replace the tag 1447 * in the TLS session. Subsequent packets on the connection will use 1448 * the new tag. If a new tag cannot be allocated, drop the 1449 * connection. 1450 */ 1451 static void 1452 ktls_reset_send_tag(void *context, int pending) 1453 { 1454 struct epoch_tracker et; 1455 struct ktls_session *tls; 1456 struct m_snd_tag *old, *new; 1457 struct inpcb *inp; 1458 struct tcpcb *tp; 1459 int error; 1460 1461 MPASS(pending == 1); 1462 1463 tls = context; 1464 inp = tls->inp; 1465 1466 /* 1467 * Free the old tag first before allocating a new one. 1468 * ip[6]_output_send() will treat a NULL send tag the same as 1469 * an ifp mismatch and drop packets until a new tag is 1470 * allocated. 1471 * 1472 * Write-lock the INP when changing tls->snd_tag since 1473 * ip[6]_output_send() holds a read-lock when reading the 1474 * pointer. 1475 */ 1476 INP_WLOCK(inp); 1477 old = tls->snd_tag; 1478 tls->snd_tag = NULL; 1479 INP_WUNLOCK(inp); 1480 if (old != NULL) 1481 m_snd_tag_rele(old); 1482 1483 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1484 1485 if (error == 0) { 1486 INP_WLOCK(inp); 1487 tls->snd_tag = new; 1488 mtx_pool_lock(mtxpool_sleep, tls); 1489 tls->reset_pending = false; 1490 mtx_pool_unlock(mtxpool_sleep, tls); 1491 if (!in_pcbrele_wlocked(inp)) 1492 INP_WUNLOCK(inp); 1493 1494 counter_u64_add(ktls_ifnet_reset, 1); 1495 1496 /* 1497 * XXX: Should we kick tcp_output explicitly now that 1498 * the send tag is fixed or just rely on timers? 1499 */ 1500 } else { 1501 NET_EPOCH_ENTER(et); 1502 INP_WLOCK(inp); 1503 if (!in_pcbrele_wlocked(inp)) { 1504 if (!(inp->inp_flags & INP_TIMEWAIT) && 1505 !(inp->inp_flags & INP_DROPPED)) { 1506 tp = intotcpcb(inp); 1507 CURVNET_SET(tp->t_vnet); 1508 tp = tcp_drop(tp, ECONNABORTED); 1509 CURVNET_RESTORE(); 1510 if (tp != NULL) 1511 INP_WUNLOCK(inp); 1512 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1513 } else 1514 INP_WUNLOCK(inp); 1515 } 1516 NET_EPOCH_EXIT(et); 1517 1518 counter_u64_add(ktls_ifnet_reset_failed, 1); 1519 1520 /* 1521 * Leave reset_pending true to avoid future tasks while 1522 * the socket goes away. 1523 */ 1524 } 1525 1526 ktls_free(tls); 1527 } 1528 1529 int 1530 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1531 { 1532 1533 if (inp == NULL) 1534 return (ENOBUFS); 1535 1536 INP_LOCK_ASSERT(inp); 1537 1538 /* 1539 * See if we should schedule a task to update the send tag for 1540 * this session. 1541 */ 1542 mtx_pool_lock(mtxpool_sleep, tls); 1543 if (!tls->reset_pending) { 1544 (void) ktls_hold(tls); 1545 in_pcbref(inp); 1546 tls->inp = inp; 1547 tls->reset_pending = true; 1548 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1549 } 1550 mtx_pool_unlock(mtxpool_sleep, tls); 1551 return (ENOBUFS); 1552 } 1553 1554 #ifdef RATELIMIT 1555 int 1556 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1557 { 1558 union if_snd_tag_modify_params params = { 1559 .rate_limit.max_rate = max_pacing_rate, 1560 .rate_limit.flags = M_NOWAIT, 1561 }; 1562 struct m_snd_tag *mst; 1563 1564 /* Can't get to the inp, but it should be locked. */ 1565 /* INP_LOCK_ASSERT(inp); */ 1566 1567 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1568 1569 if (tls->snd_tag == NULL) { 1570 /* 1571 * Resetting send tag, ignore this change. The 1572 * pending reset may or may not see this updated rate 1573 * in the tcpcb. If it doesn't, we will just lose 1574 * this rate change. 1575 */ 1576 return (0); 1577 } 1578 1579 MPASS(tls->snd_tag != NULL); 1580 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1581 1582 mst = tls->snd_tag; 1583 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1584 } 1585 #endif 1586 #endif 1587 1588 void 1589 ktls_destroy(struct ktls_session *tls) 1590 { 1591 1592 if (tls->sequential_records) { 1593 struct mbuf *m, *n; 1594 int page_count; 1595 1596 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1597 page_count = m->m_epg_enc_cnt; 1598 while (page_count > 0) { 1599 KASSERT(page_count >= m->m_epg_nrdy, 1600 ("%s: too few pages", __func__)); 1601 page_count -= m->m_epg_nrdy; 1602 m = m_free(m); 1603 } 1604 } 1605 } 1606 ktls_cleanup(tls); 1607 uma_zfree(ktls_session_zone, tls); 1608 } 1609 1610 void 1611 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1612 { 1613 1614 for (; m != NULL; m = m->m_next) { 1615 KASSERT((m->m_flags & M_EXTPG) != 0, 1616 ("ktls_seq: mapped mbuf %p", m)); 1617 1618 m->m_epg_seqno = sb->sb_tls_seqno; 1619 sb->sb_tls_seqno++; 1620 } 1621 } 1622 1623 /* 1624 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1625 * mbuf in the chain must be an unmapped mbuf. The payload of the 1626 * mbuf must be populated with the payload of each TLS record. 1627 * 1628 * The record_type argument specifies the TLS record type used when 1629 * populating the TLS header. 1630 * 1631 * The enq_count argument on return is set to the number of pages of 1632 * payload data for this entire chain that need to be encrypted via SW 1633 * encryption. The returned value should be passed to ktls_enqueue 1634 * when scheduling encryption of this chain of mbufs. To handle the 1635 * special case of empty fragments for TLS 1.0 sessions, an empty 1636 * fragment counts as one page. 1637 */ 1638 void 1639 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1640 uint8_t record_type) 1641 { 1642 struct tls_record_layer *tlshdr; 1643 struct mbuf *m; 1644 uint64_t *noncep; 1645 uint16_t tls_len; 1646 int maxlen; 1647 1648 maxlen = tls->params.max_frame_len; 1649 *enq_cnt = 0; 1650 for (m = top; m != NULL; m = m->m_next) { 1651 /* 1652 * All mbufs in the chain should be TLS records whose 1653 * payload does not exceed the maximum frame length. 1654 * 1655 * Empty TLS records are permitted when using CBC. 1656 */ 1657 KASSERT(m->m_len <= maxlen && 1658 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1659 m->m_len >= 0 : m->m_len > 0), 1660 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1661 1662 /* 1663 * TLS frames require unmapped mbufs to store session 1664 * info. 1665 */ 1666 KASSERT((m->m_flags & M_EXTPG) != 0, 1667 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1668 1669 tls_len = m->m_len; 1670 1671 /* Save a reference to the session. */ 1672 m->m_epg_tls = ktls_hold(tls); 1673 1674 m->m_epg_hdrlen = tls->params.tls_hlen; 1675 m->m_epg_trllen = tls->params.tls_tlen; 1676 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1677 int bs, delta; 1678 1679 /* 1680 * AES-CBC pads messages to a multiple of the 1681 * block size. Note that the padding is 1682 * applied after the digest and the encryption 1683 * is done on the "plaintext || mac || padding". 1684 * At least one byte of padding is always 1685 * present. 1686 * 1687 * Compute the final trailer length assuming 1688 * at most one block of padding. 1689 * tls->params.tls_tlen is the maximum 1690 * possible trailer length (padding + digest). 1691 * delta holds the number of excess padding 1692 * bytes if the maximum were used. Those 1693 * extra bytes are removed. 1694 */ 1695 bs = tls->params.tls_bs; 1696 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1697 m->m_epg_trllen -= delta; 1698 } 1699 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1700 1701 /* Populate the TLS header. */ 1702 tlshdr = (void *)m->m_epg_hdr; 1703 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1704 1705 /* 1706 * TLS 1.3 masquarades as TLS 1.2 with a record type 1707 * of TLS_RLTYPE_APP. 1708 */ 1709 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1710 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1711 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1712 tlshdr->tls_type = TLS_RLTYPE_APP; 1713 /* save the real record type for later */ 1714 m->m_epg_record_type = record_type; 1715 m->m_epg_trail[0] = record_type; 1716 } else { 1717 tlshdr->tls_vminor = tls->params.tls_vminor; 1718 tlshdr->tls_type = record_type; 1719 } 1720 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1721 1722 /* 1723 * Store nonces / explicit IVs after the end of the 1724 * TLS header. 1725 * 1726 * For GCM with TLS 1.2, an 8 byte nonce is copied 1727 * from the end of the IV. The nonce is then 1728 * incremented for use by the next record. 1729 * 1730 * For CBC, a random nonce is inserted for TLS 1.1+. 1731 */ 1732 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1733 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1734 noncep = (uint64_t *)(tls->params.iv + 8); 1735 be64enc(tlshdr + 1, *noncep); 1736 (*noncep)++; 1737 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1738 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1739 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1740 1741 /* 1742 * When using SW encryption, mark the mbuf not ready. 1743 * It will be marked ready via sbready() after the 1744 * record has been encrypted. 1745 * 1746 * When using ifnet TLS, unencrypted TLS records are 1747 * sent down the stack to the NIC. 1748 */ 1749 if (tls->mode == TCP_TLS_MODE_SW) { 1750 m->m_flags |= M_NOTREADY; 1751 if (__predict_false(tls_len == 0)) { 1752 /* TLS 1.0 empty fragment. */ 1753 m->m_epg_nrdy = 1; 1754 } else 1755 m->m_epg_nrdy = m->m_epg_npgs; 1756 *enq_cnt += m->m_epg_nrdy; 1757 } 1758 } 1759 } 1760 1761 void 1762 ktls_check_rx(struct sockbuf *sb) 1763 { 1764 struct tls_record_layer hdr; 1765 struct ktls_wq *wq; 1766 struct socket *so; 1767 bool running; 1768 1769 SOCKBUF_LOCK_ASSERT(sb); 1770 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1771 __func__, sb)); 1772 so = __containerof(sb, struct socket, so_rcv); 1773 1774 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1775 return; 1776 1777 /* Is there enough queued for a TLS header? */ 1778 if (sb->sb_tlscc < sizeof(hdr)) { 1779 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1780 so->so_error = EMSGSIZE; 1781 return; 1782 } 1783 1784 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1785 1786 /* Is the entire record queued? */ 1787 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1788 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1789 so->so_error = EMSGSIZE; 1790 return; 1791 } 1792 1793 sb->sb_flags |= SB_TLS_RX_RUNNING; 1794 1795 soref(so); 1796 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1797 mtx_lock(&wq->mtx); 1798 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1799 running = wq->running; 1800 mtx_unlock(&wq->mtx); 1801 if (!running) 1802 wakeup(wq); 1803 counter_u64_add(ktls_cnt_rx_queued, 1); 1804 } 1805 1806 static struct mbuf * 1807 ktls_detach_record(struct sockbuf *sb, int len) 1808 { 1809 struct mbuf *m, *n, *top; 1810 int remain; 1811 1812 SOCKBUF_LOCK_ASSERT(sb); 1813 MPASS(len <= sb->sb_tlscc); 1814 1815 /* 1816 * If TLS chain is the exact size of the record, 1817 * just grab the whole record. 1818 */ 1819 top = sb->sb_mtls; 1820 if (sb->sb_tlscc == len) { 1821 sb->sb_mtls = NULL; 1822 sb->sb_mtlstail = NULL; 1823 goto out; 1824 } 1825 1826 /* 1827 * While it would be nice to use m_split() here, we need 1828 * to know exactly what m_split() allocates to update the 1829 * accounting, so do it inline instead. 1830 */ 1831 remain = len; 1832 for (m = top; remain > m->m_len; m = m->m_next) 1833 remain -= m->m_len; 1834 1835 /* Easy case: don't have to split 'm'. */ 1836 if (remain == m->m_len) { 1837 sb->sb_mtls = m->m_next; 1838 if (sb->sb_mtls == NULL) 1839 sb->sb_mtlstail = NULL; 1840 m->m_next = NULL; 1841 goto out; 1842 } 1843 1844 /* 1845 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1846 * with M_NOWAIT first. 1847 */ 1848 n = m_get(M_NOWAIT, MT_DATA); 1849 if (n == NULL) { 1850 /* 1851 * Use M_WAITOK with socket buffer unlocked. If 1852 * 'sb_mtls' changes while the lock is dropped, return 1853 * NULL to force the caller to retry. 1854 */ 1855 SOCKBUF_UNLOCK(sb); 1856 1857 n = m_get(M_WAITOK, MT_DATA); 1858 1859 SOCKBUF_LOCK(sb); 1860 if (sb->sb_mtls != top) { 1861 m_free(n); 1862 return (NULL); 1863 } 1864 } 1865 n->m_flags |= M_NOTREADY; 1866 1867 /* Store remainder in 'n'. */ 1868 n->m_len = m->m_len - remain; 1869 if (m->m_flags & M_EXT) { 1870 n->m_data = m->m_data + remain; 1871 mb_dupcl(n, m); 1872 } else { 1873 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1874 } 1875 1876 /* Trim 'm' and update accounting. */ 1877 m->m_len -= n->m_len; 1878 sb->sb_tlscc -= n->m_len; 1879 sb->sb_ccc -= n->m_len; 1880 1881 /* Account for 'n'. */ 1882 sballoc_ktls_rx(sb, n); 1883 1884 /* Insert 'n' into the TLS chain. */ 1885 sb->sb_mtls = n; 1886 n->m_next = m->m_next; 1887 if (sb->sb_mtlstail == m) 1888 sb->sb_mtlstail = n; 1889 1890 /* Detach the record from the TLS chain. */ 1891 m->m_next = NULL; 1892 1893 out: 1894 MPASS(m_length(top, NULL) == len); 1895 for (m = top; m != NULL; m = m->m_next) 1896 sbfree_ktls_rx(sb, m); 1897 sb->sb_tlsdcc = len; 1898 sb->sb_ccc += len; 1899 SBCHECK(sb); 1900 return (top); 1901 } 1902 1903 static void 1904 ktls_decrypt(struct socket *so) 1905 { 1906 char tls_header[MBUF_PEXT_HDR_LEN]; 1907 struct ktls_session *tls; 1908 struct sockbuf *sb; 1909 struct tls_record_layer *hdr; 1910 struct tls_get_record tgr; 1911 struct mbuf *control, *data, *m; 1912 uint64_t seqno; 1913 int error, remain, tls_len, trail_len; 1914 1915 hdr = (struct tls_record_layer *)tls_header; 1916 sb = &so->so_rcv; 1917 SOCKBUF_LOCK(sb); 1918 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1919 ("%s: socket %p not running", __func__, so)); 1920 1921 tls = sb->sb_tls_info; 1922 MPASS(tls != NULL); 1923 1924 for (;;) { 1925 /* Is there enough queued for a TLS header? */ 1926 if (sb->sb_tlscc < tls->params.tls_hlen) 1927 break; 1928 1929 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1930 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1931 1932 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1933 hdr->tls_vminor != tls->params.tls_vminor) 1934 error = EINVAL; 1935 else if (tls_len < tls->params.tls_hlen || tls_len > 1936 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1937 tls->params.tls_tlen) 1938 error = EMSGSIZE; 1939 else 1940 error = 0; 1941 if (__predict_false(error != 0)) { 1942 /* 1943 * We have a corrupted record and are likely 1944 * out of sync. The connection isn't 1945 * recoverable at this point, so abort it. 1946 */ 1947 SOCKBUF_UNLOCK(sb); 1948 counter_u64_add(ktls_offload_corrupted_records, 1); 1949 1950 CURVNET_SET(so->so_vnet); 1951 so->so_proto->pr_usrreqs->pru_abort(so); 1952 so->so_error = error; 1953 CURVNET_RESTORE(); 1954 goto deref; 1955 } 1956 1957 /* Is the entire record queued? */ 1958 if (sb->sb_tlscc < tls_len) 1959 break; 1960 1961 /* 1962 * Split out the portion of the mbuf chain containing 1963 * this TLS record. 1964 */ 1965 data = ktls_detach_record(sb, tls_len); 1966 if (data == NULL) 1967 continue; 1968 MPASS(sb->sb_tlsdcc == tls_len); 1969 1970 seqno = sb->sb_tls_seqno; 1971 sb->sb_tls_seqno++; 1972 SBCHECK(sb); 1973 SOCKBUF_UNLOCK(sb); 1974 1975 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1976 if (error) { 1977 counter_u64_add(ktls_offload_failed_crypto, 1); 1978 1979 SOCKBUF_LOCK(sb); 1980 if (sb->sb_tlsdcc == 0) { 1981 /* 1982 * sbcut/drop/flush discarded these 1983 * mbufs. 1984 */ 1985 m_freem(data); 1986 break; 1987 } 1988 1989 /* 1990 * Drop this TLS record's data, but keep 1991 * decrypting subsequent records. 1992 */ 1993 sb->sb_ccc -= tls_len; 1994 sb->sb_tlsdcc = 0; 1995 1996 CURVNET_SET(so->so_vnet); 1997 so->so_error = EBADMSG; 1998 sorwakeup_locked(so); 1999 CURVNET_RESTORE(); 2000 2001 m_freem(data); 2002 2003 SOCKBUF_LOCK(sb); 2004 continue; 2005 } 2006 2007 /* Allocate the control mbuf. */ 2008 tgr.tls_type = hdr->tls_type; 2009 tgr.tls_vmajor = hdr->tls_vmajor; 2010 tgr.tls_vminor = hdr->tls_vminor; 2011 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2012 trail_len); 2013 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 2014 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2015 2016 SOCKBUF_LOCK(sb); 2017 if (sb->sb_tlsdcc == 0) { 2018 /* sbcut/drop/flush discarded these mbufs. */ 2019 MPASS(sb->sb_tlscc == 0); 2020 m_freem(data); 2021 m_freem(control); 2022 break; 2023 } 2024 2025 /* 2026 * Clear the 'dcc' accounting in preparation for 2027 * adding the decrypted record. 2028 */ 2029 sb->sb_ccc -= tls_len; 2030 sb->sb_tlsdcc = 0; 2031 SBCHECK(sb); 2032 2033 /* If there is no payload, drop all of the data. */ 2034 if (tgr.tls_length == htobe16(0)) { 2035 m_freem(data); 2036 data = NULL; 2037 } else { 2038 /* Trim header. */ 2039 remain = tls->params.tls_hlen; 2040 while (remain > 0) { 2041 if (data->m_len > remain) { 2042 data->m_data += remain; 2043 data->m_len -= remain; 2044 break; 2045 } 2046 remain -= data->m_len; 2047 data = m_free(data); 2048 } 2049 2050 /* Trim trailer and clear M_NOTREADY. */ 2051 remain = be16toh(tgr.tls_length); 2052 m = data; 2053 for (m = data; remain > m->m_len; m = m->m_next) { 2054 m->m_flags &= ~M_NOTREADY; 2055 remain -= m->m_len; 2056 } 2057 m->m_len = remain; 2058 m_freem(m->m_next); 2059 m->m_next = NULL; 2060 m->m_flags &= ~M_NOTREADY; 2061 2062 /* Set EOR on the final mbuf. */ 2063 m->m_flags |= M_EOR; 2064 } 2065 2066 sbappendcontrol_locked(sb, data, control, 0); 2067 } 2068 2069 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2070 2071 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2072 so->so_error = EMSGSIZE; 2073 2074 sorwakeup_locked(so); 2075 2076 deref: 2077 SOCKBUF_UNLOCK_ASSERT(sb); 2078 2079 CURVNET_SET(so->so_vnet); 2080 sorele(so); 2081 CURVNET_RESTORE(); 2082 } 2083 2084 void 2085 ktls_enqueue_to_free(struct mbuf *m) 2086 { 2087 struct ktls_wq *wq; 2088 bool running; 2089 2090 /* Mark it for freeing. */ 2091 m->m_epg_flags |= EPG_FLAG_2FREE; 2092 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2093 mtx_lock(&wq->mtx); 2094 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2095 running = wq->running; 2096 mtx_unlock(&wq->mtx); 2097 if (!running) 2098 wakeup(wq); 2099 } 2100 2101 static void * 2102 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2103 { 2104 void *buf; 2105 int domain, running; 2106 2107 if (m->m_epg_npgs <= 2) 2108 return (NULL); 2109 if (ktls_buffer_zone == NULL) 2110 return (NULL); 2111 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2112 /* 2113 * Rate-limit allocation attempts after a failure. 2114 * ktls_buffer_import() will acquire a per-domain mutex to check 2115 * the free page queues and may fail consistently if memory is 2116 * fragmented. 2117 */ 2118 return (NULL); 2119 } 2120 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2121 if (buf == NULL) { 2122 domain = PCPU_GET(domain); 2123 wq->lastallocfail = ticks; 2124 2125 /* 2126 * Note that this check is "racy", but the races are 2127 * harmless, and are either a spurious wakeup if 2128 * multiple threads fail allocations before the alloc 2129 * thread wakes, or waiting an extra second in case we 2130 * see an old value of running == true. 2131 */ 2132 if (!VM_DOMAIN_EMPTY(domain)) { 2133 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2134 if (!running) 2135 wakeup(&ktls_domains[domain].alloc_td); 2136 } 2137 } 2138 return (buf); 2139 } 2140 2141 static int 2142 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2143 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2144 { 2145 vm_page_t pg; 2146 int error, i, len, off; 2147 2148 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2149 ("%p not unready & nomap mbuf\n", m)); 2150 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2151 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2152 ktls_maxlen)); 2153 2154 /* Anonymous mbufs are encrypted in place. */ 2155 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2156 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2157 2158 /* 2159 * For file-backed mbufs (from sendfile), anonymous wired 2160 * pages are allocated and used as the encryption destination. 2161 */ 2162 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2163 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2164 m->m_epg_1st_off; 2165 state->dst_iov[0].iov_base = (char *)state->cbuf + 2166 m->m_epg_1st_off; 2167 state->dst_iov[0].iov_len = len; 2168 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2169 i = 1; 2170 } else { 2171 off = m->m_epg_1st_off; 2172 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2173 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2174 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2175 len = m_epg_pagelen(m, i, off); 2176 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2177 state->dst_iov[i].iov_base = 2178 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2179 state->dst_iov[i].iov_len = len; 2180 } 2181 } 2182 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2183 state->dst_iov[i].iov_base = m->m_epg_trail; 2184 state->dst_iov[i].iov_len = m->m_epg_trllen; 2185 2186 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2187 2188 if (__predict_false(error != 0)) { 2189 /* Free the anonymous pages. */ 2190 if (state->cbuf != NULL) 2191 uma_zfree(ktls_buffer_zone, state->cbuf); 2192 else { 2193 for (i = 0; i < m->m_epg_npgs; i++) { 2194 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2195 (void)vm_page_unwire_noq(pg); 2196 vm_page_free(pg); 2197 } 2198 } 2199 } 2200 return (error); 2201 } 2202 2203 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2204 static u_int 2205 ktls_batched_records(struct mbuf *m) 2206 { 2207 int page_count, records; 2208 2209 records = 0; 2210 page_count = m->m_epg_enc_cnt; 2211 while (page_count > 0) { 2212 records++; 2213 page_count -= m->m_epg_nrdy; 2214 m = m->m_next; 2215 } 2216 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2217 return (records); 2218 } 2219 2220 void 2221 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2222 { 2223 struct ktls_session *tls; 2224 struct ktls_wq *wq; 2225 int queued; 2226 bool running; 2227 2228 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2229 (M_EXTPG | M_NOTREADY)), 2230 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2231 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2232 2233 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2234 2235 m->m_epg_enc_cnt = page_count; 2236 2237 /* 2238 * Save a pointer to the socket. The caller is responsible 2239 * for taking an additional reference via soref(). 2240 */ 2241 m->m_epg_so = so; 2242 2243 queued = 1; 2244 tls = m->m_epg_tls; 2245 wq = &ktls_wq[tls->wq_index]; 2246 mtx_lock(&wq->mtx); 2247 if (__predict_false(tls->sequential_records)) { 2248 /* 2249 * For TLS 1.0, records must be encrypted 2250 * sequentially. For a given connection, all records 2251 * queued to the associated work queue are processed 2252 * sequentially. However, sendfile(2) might complete 2253 * I/O requests spanning multiple TLS records out of 2254 * order. Here we ensure TLS records are enqueued to 2255 * the work queue in FIFO order. 2256 * 2257 * tls->next_seqno holds the sequence number of the 2258 * next TLS record that should be enqueued to the work 2259 * queue. If this next record is not tls->next_seqno, 2260 * it must be a future record, so insert it, sorted by 2261 * TLS sequence number, into tls->pending_records and 2262 * return. 2263 * 2264 * If this TLS record matches tls->next_seqno, place 2265 * it in the work queue and then check 2266 * tls->pending_records to see if any 2267 * previously-queued records are now ready for 2268 * encryption. 2269 */ 2270 if (m->m_epg_seqno != tls->next_seqno) { 2271 struct mbuf *n, *p; 2272 2273 p = NULL; 2274 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2275 if (n->m_epg_seqno > m->m_epg_seqno) 2276 break; 2277 p = n; 2278 } 2279 if (n == NULL) 2280 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2281 m_epg_stailq); 2282 else if (p == NULL) 2283 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2284 m_epg_stailq); 2285 else 2286 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2287 m_epg_stailq); 2288 mtx_unlock(&wq->mtx); 2289 counter_u64_add(ktls_cnt_tx_pending, 1); 2290 return; 2291 } 2292 2293 tls->next_seqno += ktls_batched_records(m); 2294 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2295 2296 while (!STAILQ_EMPTY(&tls->pending_records)) { 2297 struct mbuf *n; 2298 2299 n = STAILQ_FIRST(&tls->pending_records); 2300 if (n->m_epg_seqno != tls->next_seqno) 2301 break; 2302 2303 queued++; 2304 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2305 tls->next_seqno += ktls_batched_records(n); 2306 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2307 } 2308 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2309 } else 2310 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2311 2312 running = wq->running; 2313 mtx_unlock(&wq->mtx); 2314 if (!running) 2315 wakeup(wq); 2316 counter_u64_add(ktls_cnt_tx_queued, queued); 2317 } 2318 2319 /* 2320 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2321 * the pages from the file and replace them with the anonymous pages 2322 * allocated in ktls_encrypt_record(). 2323 */ 2324 static void 2325 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2326 { 2327 int i; 2328 2329 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2330 2331 /* Free the old pages. */ 2332 m->m_ext.ext_free(m); 2333 2334 /* Replace them with the new pages. */ 2335 if (state->cbuf != NULL) { 2336 for (i = 0; i < m->m_epg_npgs; i++) 2337 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2338 2339 /* Contig pages should go back to the cache. */ 2340 m->m_ext.ext_free = ktls_free_mext_contig; 2341 } else { 2342 for (i = 0; i < m->m_epg_npgs; i++) 2343 m->m_epg_pa[i] = state->parray[i]; 2344 2345 /* Use the basic free routine. */ 2346 m->m_ext.ext_free = mb_free_mext_pgs; 2347 } 2348 2349 /* Pages are now writable. */ 2350 m->m_epg_flags |= EPG_FLAG_ANON; 2351 } 2352 2353 static __noinline void 2354 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2355 { 2356 struct ktls_ocf_encrypt_state state; 2357 struct ktls_session *tls; 2358 struct socket *so; 2359 struct mbuf *m; 2360 int error, npages, total_pages; 2361 2362 so = top->m_epg_so; 2363 tls = top->m_epg_tls; 2364 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2365 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2366 #ifdef INVARIANTS 2367 top->m_epg_so = NULL; 2368 #endif 2369 total_pages = top->m_epg_enc_cnt; 2370 npages = 0; 2371 2372 /* 2373 * Encrypt the TLS records in the chain of mbufs starting with 2374 * 'top'. 'total_pages' gives us a total count of pages and is 2375 * used to know when we have finished encrypting the TLS 2376 * records originally queued with 'top'. 2377 * 2378 * NB: These mbufs are queued in the socket buffer and 2379 * 'm_next' is traversing the mbufs in the socket buffer. The 2380 * socket buffer lock is not held while traversing this chain. 2381 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2382 * pointers should be stable. However, the 'm_next' of the 2383 * last mbuf encrypted is not necessarily NULL. It can point 2384 * to other mbufs appended while 'top' was on the TLS work 2385 * queue. 2386 * 2387 * Each mbuf holds an entire TLS record. 2388 */ 2389 error = 0; 2390 for (m = top; npages != total_pages; m = m->m_next) { 2391 KASSERT(m->m_epg_tls == tls, 2392 ("different TLS sessions in a single mbuf chain: %p vs %p", 2393 tls, m->m_epg_tls)); 2394 KASSERT(npages + m->m_epg_npgs <= total_pages, 2395 ("page count mismatch: top %p, total_pages %d, m %p", top, 2396 total_pages, m)); 2397 2398 error = ktls_encrypt_record(wq, m, tls, &state); 2399 if (error) { 2400 counter_u64_add(ktls_offload_failed_crypto, 1); 2401 break; 2402 } 2403 2404 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2405 ktls_finish_nonanon(m, &state); 2406 2407 npages += m->m_epg_nrdy; 2408 2409 /* 2410 * Drop a reference to the session now that it is no 2411 * longer needed. Existing code depends on encrypted 2412 * records having no associated session vs 2413 * yet-to-be-encrypted records having an associated 2414 * session. 2415 */ 2416 m->m_epg_tls = NULL; 2417 ktls_free(tls); 2418 } 2419 2420 CURVNET_SET(so->so_vnet); 2421 if (error == 0) { 2422 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2423 } else { 2424 so->so_proto->pr_usrreqs->pru_abort(so); 2425 so->so_error = EIO; 2426 mb_free_notready(top, total_pages); 2427 } 2428 2429 sorele(so); 2430 CURVNET_RESTORE(); 2431 } 2432 2433 void 2434 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2435 { 2436 struct ktls_session *tls; 2437 struct socket *so; 2438 struct mbuf *m; 2439 int npages; 2440 2441 m = state->m; 2442 2443 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2444 ktls_finish_nonanon(m, state); 2445 2446 so = state->so; 2447 free(state, M_KTLS); 2448 2449 /* 2450 * Drop a reference to the session now that it is no longer 2451 * needed. Existing code depends on encrypted records having 2452 * no associated session vs yet-to-be-encrypted records having 2453 * an associated session. 2454 */ 2455 tls = m->m_epg_tls; 2456 m->m_epg_tls = NULL; 2457 ktls_free(tls); 2458 2459 if (error != 0) 2460 counter_u64_add(ktls_offload_failed_crypto, 1); 2461 2462 CURVNET_SET(so->so_vnet); 2463 npages = m->m_epg_nrdy; 2464 2465 if (error == 0) { 2466 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2467 } else { 2468 so->so_proto->pr_usrreqs->pru_abort(so); 2469 so->so_error = EIO; 2470 mb_free_notready(m, npages); 2471 } 2472 2473 sorele(so); 2474 CURVNET_RESTORE(); 2475 } 2476 2477 /* 2478 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2479 * (coprocessors) where encryption does not use host CPU resources and 2480 * it can be beneficial to queue more requests than CPUs. 2481 */ 2482 static __noinline void 2483 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2484 { 2485 struct ktls_ocf_encrypt_state *state; 2486 struct ktls_session *tls; 2487 struct socket *so; 2488 struct mbuf *m, *n; 2489 int error, mpages, npages, total_pages; 2490 2491 so = top->m_epg_so; 2492 tls = top->m_epg_tls; 2493 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2494 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2495 #ifdef INVARIANTS 2496 top->m_epg_so = NULL; 2497 #endif 2498 total_pages = top->m_epg_enc_cnt; 2499 npages = 0; 2500 2501 error = 0; 2502 for (m = top; npages != total_pages; m = n) { 2503 KASSERT(m->m_epg_tls == tls, 2504 ("different TLS sessions in a single mbuf chain: %p vs %p", 2505 tls, m->m_epg_tls)); 2506 KASSERT(npages + m->m_epg_npgs <= total_pages, 2507 ("page count mismatch: top %p, total_pages %d, m %p", top, 2508 total_pages, m)); 2509 2510 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2511 soref(so); 2512 state->so = so; 2513 state->m = m; 2514 2515 mpages = m->m_epg_nrdy; 2516 n = m->m_next; 2517 2518 error = ktls_encrypt_record(wq, m, tls, state); 2519 if (error) { 2520 counter_u64_add(ktls_offload_failed_crypto, 1); 2521 free(state, M_KTLS); 2522 CURVNET_SET(so->so_vnet); 2523 sorele(so); 2524 CURVNET_RESTORE(); 2525 break; 2526 } 2527 2528 npages += mpages; 2529 } 2530 2531 CURVNET_SET(so->so_vnet); 2532 if (error != 0) { 2533 so->so_proto->pr_usrreqs->pru_abort(so); 2534 so->so_error = EIO; 2535 mb_free_notready(m, total_pages - npages); 2536 } 2537 2538 sorele(so); 2539 CURVNET_RESTORE(); 2540 } 2541 2542 static int 2543 ktls_bind_domain(int domain) 2544 { 2545 int error; 2546 2547 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2548 if (error != 0) 2549 return (error); 2550 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2551 return (0); 2552 } 2553 2554 static void 2555 ktls_alloc_thread(void *ctx) 2556 { 2557 struct ktls_domain_info *ktls_domain = ctx; 2558 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2559 void **buf; 2560 struct sysctl_oid *oid; 2561 char name[80]; 2562 int domain, error, i, nbufs; 2563 2564 domain = ktls_domain - ktls_domains; 2565 if (bootverbose) 2566 printf("Starting KTLS alloc thread for domain %d\n", domain); 2567 error = ktls_bind_domain(domain); 2568 if (error) 2569 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2570 domain, error); 2571 snprintf(name, sizeof(name), "domain%d", domain); 2572 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2573 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2574 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2575 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2576 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2577 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2578 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2579 CTLFLAG_RD, &sc->running, 0, "thread running"); 2580 2581 buf = NULL; 2582 nbufs = 0; 2583 for (;;) { 2584 atomic_store_int(&sc->running, 0); 2585 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2586 atomic_store_int(&sc->running, 1); 2587 sc->wakeups++; 2588 if (nbufs != ktls_max_alloc) { 2589 free(buf, M_KTLS); 2590 nbufs = atomic_load_int(&ktls_max_alloc); 2591 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2592 M_WAITOK | M_ZERO); 2593 } 2594 /* 2595 * Below we allocate nbufs with different allocation 2596 * flags than we use when allocating normally during 2597 * encryption in the ktls worker thread. We specify 2598 * M_NORECLAIM in the worker thread. However, we omit 2599 * that flag here and add M_WAITOK so that the VM 2600 * system is permitted to perform expensive work to 2601 * defragment memory. We do this here, as it does not 2602 * matter if this thread blocks. If we block a ktls 2603 * worker thread, we risk developing backlogs of 2604 * buffers to be encrypted, leading to surges of 2605 * traffic and potential NIC output drops. 2606 */ 2607 for (i = 0; i < nbufs; i++) { 2608 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2609 sc->allocs++; 2610 } 2611 for (i = 0; i < nbufs; i++) { 2612 uma_zfree(ktls_buffer_zone, buf[i]); 2613 buf[i] = NULL; 2614 } 2615 } 2616 } 2617 2618 static void 2619 ktls_work_thread(void *ctx) 2620 { 2621 struct ktls_wq *wq = ctx; 2622 struct mbuf *m, *n; 2623 struct socket *so, *son; 2624 STAILQ_HEAD(, mbuf) local_m_head; 2625 STAILQ_HEAD(, socket) local_so_head; 2626 int cpu; 2627 2628 cpu = wq - ktls_wq; 2629 if (bootverbose) 2630 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2631 2632 /* 2633 * Bind to a core. If ktls_bind_threads is > 1, then 2634 * we bind to the NUMA domain instead. 2635 */ 2636 if (ktls_bind_threads) { 2637 int error; 2638 2639 if (ktls_bind_threads > 1) { 2640 struct pcpu *pc = pcpu_find(cpu); 2641 2642 error = ktls_bind_domain(pc->pc_domain); 2643 } else { 2644 cpuset_t mask; 2645 2646 CPU_SETOF(cpu, &mask); 2647 error = cpuset_setthread(curthread->td_tid, &mask); 2648 } 2649 if (error) 2650 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2651 cpu, error); 2652 } 2653 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2654 fpu_kern_thread(0); 2655 #endif 2656 for (;;) { 2657 mtx_lock(&wq->mtx); 2658 while (STAILQ_EMPTY(&wq->m_head) && 2659 STAILQ_EMPTY(&wq->so_head)) { 2660 wq->running = false; 2661 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2662 wq->running = true; 2663 } 2664 2665 STAILQ_INIT(&local_m_head); 2666 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2667 STAILQ_INIT(&local_so_head); 2668 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2669 mtx_unlock(&wq->mtx); 2670 2671 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2672 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2673 ktls_free(m->m_epg_tls); 2674 m_free_raw(m); 2675 } else { 2676 if (m->m_epg_tls->sync_dispatch) 2677 ktls_encrypt(wq, m); 2678 else 2679 ktls_encrypt_async(wq, m); 2680 counter_u64_add(ktls_cnt_tx_queued, -1); 2681 } 2682 } 2683 2684 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2685 ktls_decrypt(so); 2686 counter_u64_add(ktls_cnt_rx_queued, -1); 2687 } 2688 } 2689 } 2690 2691 #if defined(INET) || defined(INET6) 2692 static void 2693 ktls_disable_ifnet_help(void *context, int pending __unused) 2694 { 2695 struct ktls_session *tls; 2696 struct inpcb *inp; 2697 struct tcpcb *tp; 2698 struct socket *so; 2699 int err; 2700 2701 tls = context; 2702 inp = tls->inp; 2703 if (inp == NULL) 2704 return; 2705 INP_WLOCK(inp); 2706 so = inp->inp_socket; 2707 MPASS(so != NULL); 2708 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2709 (inp->inp_flags2 & INP_FREED)) { 2710 goto out; 2711 } 2712 2713 if (so->so_snd.sb_tls_info != NULL) 2714 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2715 else 2716 err = ENXIO; 2717 if (err == 0) { 2718 counter_u64_add(ktls_ifnet_disable_ok, 1); 2719 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2720 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2721 (inp->inp_flags2 & INP_FREED) == 0 && 2722 (tp = intotcpcb(inp)) != NULL && 2723 tp->t_fb->tfb_hwtls_change != NULL) 2724 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2725 } else { 2726 counter_u64_add(ktls_ifnet_disable_fail, 1); 2727 } 2728 2729 out: 2730 sorele(so); 2731 if (!in_pcbrele_wlocked(inp)) 2732 INP_WUNLOCK(inp); 2733 ktls_free(tls); 2734 } 2735 2736 /* 2737 * Called when re-transmits are becoming a substantial portion of the 2738 * sends on this connection. When this happens, we transition the 2739 * connection to software TLS. This is needed because most inline TLS 2740 * NICs keep crypto state only for in-order transmits. This means 2741 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2742 * re-DMA the entire TLS record up to and including the current 2743 * segment. This means that when re-transmitting the last ~1448 byte 2744 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2745 * of magnitude more data than we are sending. This can cause the 2746 * PCIe link to saturate well before the network, which can cause 2747 * output drops, and a general loss of capacity. 2748 */ 2749 void 2750 ktls_disable_ifnet(void *arg) 2751 { 2752 struct tcpcb *tp; 2753 struct inpcb *inp; 2754 struct socket *so; 2755 struct ktls_session *tls; 2756 2757 tp = arg; 2758 inp = tp->t_inpcb; 2759 INP_WLOCK_ASSERT(inp); 2760 so = inp->inp_socket; 2761 SOCK_LOCK(so); 2762 tls = so->so_snd.sb_tls_info; 2763 if (tls->disable_ifnet_pending) { 2764 SOCK_UNLOCK(so); 2765 return; 2766 } 2767 2768 /* 2769 * note that disable_ifnet_pending is never cleared; disabling 2770 * ifnet can only be done once per session, so we never want 2771 * to do it again 2772 */ 2773 2774 (void)ktls_hold(tls); 2775 in_pcbref(inp); 2776 soref(so); 2777 tls->disable_ifnet_pending = true; 2778 tls->inp = inp; 2779 SOCK_UNLOCK(so); 2780 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2781 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2782 } 2783 #endif 2784