1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/ktls.h> 41 #include <sys/lock.h> 42 #include <sys/mbuf.h> 43 #include <sys/mutex.h> 44 #include <sys/rmlock.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/refcount.h> 48 #include <sys/smp.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/taskqueue.h> 53 #include <sys/kthread.h> 54 #include <sys/uio.h> 55 #include <sys/vmmeter.h> 56 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 57 #include <machine/pcb.h> 58 #endif 59 #include <machine/vmparam.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #ifdef RSS 63 #include <net/netisr.h> 64 #include <net/rss_config.h> 65 #endif 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #if defined(INET) || defined(INET6) 69 #include <netinet/in.h> 70 #include <netinet/in_pcb.h> 71 #endif 72 #include <netinet/tcp_var.h> 73 #ifdef TCP_OFFLOAD 74 #include <netinet/tcp_offload.h> 75 #endif 76 #include <opencrypto/xform.h> 77 #include <vm/uma_dbg.h> 78 #include <vm/vm.h> 79 #include <vm/vm_pageout.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pagequeue.h> 82 83 struct ktls_wq { 84 struct mtx mtx; 85 STAILQ_HEAD(, mbuf) m_head; 86 STAILQ_HEAD(, socket) so_head; 87 bool running; 88 int lastallocfail; 89 } __aligned(CACHE_LINE_SIZE); 90 91 struct ktls_alloc_thread { 92 uint64_t wakeups; 93 uint64_t allocs; 94 struct thread *td; 95 int running; 96 }; 97 98 struct ktls_domain_info { 99 int count; 100 int cpu[MAXCPU]; 101 struct ktls_alloc_thread alloc_td; 102 }; 103 104 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 105 static struct ktls_wq *ktls_wq; 106 static struct proc *ktls_proc; 107 static uma_zone_t ktls_session_zone; 108 static uma_zone_t ktls_buffer_zone; 109 static uint16_t ktls_cpuid_lookup[MAXCPU]; 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable Support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_alloc = 128; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 156 &ktls_max_alloc, 128, 157 "Max number of 16k buffers to allocate in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 165 &ktls_cnt_tx_queued, 166 "Number of TLS records in queue to tasks for SW encryption"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_rx_queued, 171 "Number of TLS sockets in queue to tasks for SW decryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 175 CTLFLAG_RD, &ktls_offload_total, 176 "Total successful TLS setups (parameters set)"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 180 CTLFLAG_RD, &ktls_offload_enable_calls, 181 "Total number of TLS enable calls made"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 185 &ktls_offload_active, "Total Active TLS sessions"); 186 187 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 189 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 190 191 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 193 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 194 195 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 197 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 198 199 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 201 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 202 203 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 204 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 205 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 206 207 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 209 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 210 211 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 212 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 213 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 214 215 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 216 "Software TLS session stats"); 217 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 218 "Hardware (ifnet) TLS session stats"); 219 #ifdef TCP_OFFLOAD 220 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 221 "TOE TLS session stats"); 222 #endif 223 224 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 225 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 226 "Active number of software TLS sessions using AES-CBC"); 227 228 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 229 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 230 "Active number of software TLS sessions using AES-GCM"); 231 232 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 234 &ktls_sw_chacha20, 235 "Active number of software TLS sessions using Chacha20-Poly1305"); 236 237 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 239 &ktls_ifnet_cbc, 240 "Active number of ifnet TLS sessions using AES-CBC"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 244 &ktls_ifnet_gcm, 245 "Active number of ifnet TLS sessions using AES-GCM"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 249 &ktls_ifnet_chacha20, 250 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 254 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 255 256 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 257 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 258 &ktls_ifnet_reset_dropped, 259 "TLS sessions dropped after failing to update ifnet send tag"); 260 261 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 262 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 263 &ktls_ifnet_reset_failed, 264 "TLS sessions that failed to allocate a new ifnet send tag"); 265 266 static int ktls_ifnet_permitted; 267 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 268 &ktls_ifnet_permitted, 1, 269 "Whether to permit hardware (ifnet) TLS sessions"); 270 271 #ifdef TCP_OFFLOAD 272 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 273 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 274 &ktls_toe_cbc, 275 "Active number of TOE TLS sessions using AES-CBC"); 276 277 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 278 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 279 &ktls_toe_gcm, 280 "Active number of TOE TLS sessions using AES-GCM"); 281 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 284 &ktls_toe_chacha20, 285 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 286 #endif 287 288 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 289 290 static void ktls_cleanup(struct ktls_session *tls); 291 #if defined(INET) || defined(INET6) 292 static void ktls_reset_send_tag(void *context, int pending); 293 #endif 294 static void ktls_work_thread(void *ctx); 295 static void ktls_alloc_thread(void *ctx); 296 297 #if defined(INET) || defined(INET6) 298 static u_int 299 ktls_get_cpu(struct socket *so) 300 { 301 struct inpcb *inp; 302 #ifdef NUMA 303 struct ktls_domain_info *di; 304 #endif 305 u_int cpuid; 306 307 inp = sotoinpcb(so); 308 #ifdef RSS 309 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 310 if (cpuid != NETISR_CPUID_NONE) 311 return (cpuid); 312 #endif 313 /* 314 * Just use the flowid to shard connections in a repeatable 315 * fashion. Note that TLS 1.0 sessions rely on the 316 * serialization provided by having the same connection use 317 * the same queue. 318 */ 319 #ifdef NUMA 320 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 321 di = &ktls_domains[inp->inp_numa_domain]; 322 cpuid = di->cpu[inp->inp_flowid % di->count]; 323 } else 324 #endif 325 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 326 return (cpuid); 327 } 328 #endif 329 330 static int 331 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 332 { 333 vm_page_t m; 334 int i; 335 336 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 337 ("%s: ktls max length %d is not page size-aligned", 338 __func__, ktls_maxlen)); 339 340 for (i = 0; i < count; i++) { 341 m = vm_page_alloc_contig_domain(NULL, 0, domain, 342 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 343 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 344 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 345 VM_MEMATTR_DEFAULT); 346 if (m == NULL) 347 break; 348 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 349 } 350 return (i); 351 } 352 353 static void 354 ktls_buffer_release(void *arg __unused, void **store, int count) 355 { 356 vm_page_t m; 357 int i, j; 358 359 for (i = 0; i < count; i++) { 360 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 361 for (j = 0; j < atop(ktls_maxlen); j++) { 362 (void)vm_page_unwire_noq(m + j); 363 vm_page_free(m + j); 364 } 365 } 366 } 367 368 static void 369 ktls_free_mext_contig(struct mbuf *m) 370 { 371 M_ASSERTEXTPG(m); 372 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 373 } 374 375 static void 376 ktls_init(void *dummy __unused) 377 { 378 struct thread *td; 379 struct pcpu *pc; 380 cpuset_t mask; 381 int count, domain, error, i; 382 383 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 384 M_WAITOK | M_ZERO); 385 386 ktls_session_zone = uma_zcreate("ktls_session", 387 sizeof(struct ktls_session), 388 NULL, NULL, NULL, NULL, 389 UMA_ALIGN_CACHE, 0); 390 391 if (ktls_sw_buffer_cache) { 392 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 393 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 394 ktls_buffer_import, ktls_buffer_release, NULL, 395 UMA_ZONE_FIRSTTOUCH); 396 } 397 398 /* 399 * Initialize the workqueues to run the TLS work. We create a 400 * work queue for each CPU. 401 */ 402 CPU_FOREACH(i) { 403 STAILQ_INIT(&ktls_wq[i].m_head); 404 STAILQ_INIT(&ktls_wq[i].so_head); 405 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 406 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 407 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 408 if (error) 409 panic("Can't add KTLS thread %d error %d", i, error); 410 411 /* 412 * Bind threads to cores. If ktls_bind_threads is > 413 * 1, then we bind to the NUMA domain. 414 */ 415 if (ktls_bind_threads) { 416 if (ktls_bind_threads > 1) { 417 pc = pcpu_find(i); 418 domain = pc->pc_domain; 419 CPU_COPY(&cpuset_domain[domain], &mask); 420 count = ktls_domains[domain].count; 421 ktls_domains[domain].cpu[count] = i; 422 ktls_domains[domain].count++; 423 } else { 424 CPU_SETOF(i, &mask); 425 } 426 error = cpuset_setthread(td->td_tid, &mask); 427 if (error) 428 panic( 429 "Unable to bind KTLS thread for CPU %d error %d", 430 i, error); 431 } 432 ktls_cpuid_lookup[ktls_number_threads] = i; 433 ktls_number_threads++; 434 } 435 436 /* 437 * Start an allocation thread per-domain to perform blocking allocations 438 * of 16k physically contiguous TLS crypto destination buffers. 439 */ 440 if (ktls_sw_buffer_cache) { 441 for (domain = 0; domain < vm_ndomains; domain++) { 442 if (VM_DOMAIN_EMPTY(domain)) 443 continue; 444 if (CPU_EMPTY(&cpuset_domain[domain])) 445 continue; 446 error = kproc_kthread_add(ktls_alloc_thread, 447 &ktls_domains[domain], &ktls_proc, 448 &ktls_domains[domain].alloc_td.td, 449 0, 0, "KTLS", "alloc_%d", domain); 450 if (error) 451 panic("Can't add KTLS alloc thread %d error %d", 452 domain, error); 453 CPU_COPY(&cpuset_domain[domain], &mask); 454 error = cpuset_setthread(ktls_domains[domain].alloc_td.td->td_tid, 455 &mask); 456 if (error) 457 panic("Unable to bind KTLS alloc %d error %d", 458 domain, error); 459 } 460 } 461 462 /* 463 * If we somehow have an empty domain, fall back to choosing 464 * among all KTLS threads. 465 */ 466 if (ktls_bind_threads > 1) { 467 for (i = 0; i < vm_ndomains; i++) { 468 if (ktls_domains[i].count == 0) { 469 ktls_bind_threads = 1; 470 break; 471 } 472 } 473 } 474 475 if (bootverbose) 476 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 477 } 478 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 479 480 #if defined(INET) || defined(INET6) 481 static int 482 ktls_create_session(struct socket *so, struct tls_enable *en, 483 struct ktls_session **tlsp) 484 { 485 struct ktls_session *tls; 486 int error; 487 488 /* Only TLS 1.0 - 1.3 are supported. */ 489 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 490 return (EINVAL); 491 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 492 en->tls_vminor > TLS_MINOR_VER_THREE) 493 return (EINVAL); 494 495 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 496 return (EINVAL); 497 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 498 return (EINVAL); 499 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 500 return (EINVAL); 501 502 /* All supported algorithms require a cipher key. */ 503 if (en->cipher_key_len == 0) 504 return (EINVAL); 505 506 /* No flags are currently supported. */ 507 if (en->flags != 0) 508 return (EINVAL); 509 510 /* Common checks for supported algorithms. */ 511 switch (en->cipher_algorithm) { 512 case CRYPTO_AES_NIST_GCM_16: 513 /* 514 * auth_algorithm isn't used, but permit GMAC values 515 * for compatibility. 516 */ 517 switch (en->auth_algorithm) { 518 case 0: 519 #ifdef COMPAT_FREEBSD12 520 /* XXX: Really 13.0-current COMPAT. */ 521 case CRYPTO_AES_128_NIST_GMAC: 522 case CRYPTO_AES_192_NIST_GMAC: 523 case CRYPTO_AES_256_NIST_GMAC: 524 #endif 525 break; 526 default: 527 return (EINVAL); 528 } 529 if (en->auth_key_len != 0) 530 return (EINVAL); 531 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 532 en->iv_len != TLS_AEAD_GCM_LEN) || 533 (en->tls_vminor == TLS_MINOR_VER_THREE && 534 en->iv_len != TLS_1_3_GCM_IV_LEN)) 535 return (EINVAL); 536 break; 537 case CRYPTO_AES_CBC: 538 switch (en->auth_algorithm) { 539 case CRYPTO_SHA1_HMAC: 540 /* 541 * TLS 1.0 requires an implicit IV. TLS 1.1+ 542 * all use explicit IVs. 543 */ 544 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 545 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 546 return (EINVAL); 547 break; 548 } 549 550 /* FALLTHROUGH */ 551 case CRYPTO_SHA2_256_HMAC: 552 case CRYPTO_SHA2_384_HMAC: 553 /* Ignore any supplied IV. */ 554 en->iv_len = 0; 555 break; 556 default: 557 return (EINVAL); 558 } 559 if (en->auth_key_len == 0) 560 return (EINVAL); 561 break; 562 case CRYPTO_CHACHA20_POLY1305: 563 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 564 return (EINVAL); 565 if (en->tls_vminor != TLS_MINOR_VER_TWO && 566 en->tls_vminor != TLS_MINOR_VER_THREE) 567 return (EINVAL); 568 if (en->iv_len != TLS_CHACHA20_IV_LEN) 569 return (EINVAL); 570 break; 571 default: 572 return (EINVAL); 573 } 574 575 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 576 577 counter_u64_add(ktls_offload_active, 1); 578 579 refcount_init(&tls->refcount, 1); 580 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 581 582 tls->wq_index = ktls_get_cpu(so); 583 584 tls->params.cipher_algorithm = en->cipher_algorithm; 585 tls->params.auth_algorithm = en->auth_algorithm; 586 tls->params.tls_vmajor = en->tls_vmajor; 587 tls->params.tls_vminor = en->tls_vminor; 588 tls->params.flags = en->flags; 589 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 590 591 /* Set the header and trailer lengths. */ 592 tls->params.tls_hlen = sizeof(struct tls_record_layer); 593 switch (en->cipher_algorithm) { 594 case CRYPTO_AES_NIST_GCM_16: 595 /* 596 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 597 * nonce. TLS 1.3 uses a 12 byte implicit IV. 598 */ 599 if (en->tls_vminor < TLS_MINOR_VER_THREE) 600 tls->params.tls_hlen += sizeof(uint64_t); 601 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 602 tls->params.tls_bs = 1; 603 break; 604 case CRYPTO_AES_CBC: 605 switch (en->auth_algorithm) { 606 case CRYPTO_SHA1_HMAC: 607 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 608 /* Implicit IV, no nonce. */ 609 } else { 610 tls->params.tls_hlen += AES_BLOCK_LEN; 611 } 612 tls->params.tls_tlen = AES_BLOCK_LEN + 613 SHA1_HASH_LEN; 614 break; 615 case CRYPTO_SHA2_256_HMAC: 616 tls->params.tls_hlen += AES_BLOCK_LEN; 617 tls->params.tls_tlen = AES_BLOCK_LEN + 618 SHA2_256_HASH_LEN; 619 break; 620 case CRYPTO_SHA2_384_HMAC: 621 tls->params.tls_hlen += AES_BLOCK_LEN; 622 tls->params.tls_tlen = AES_BLOCK_LEN + 623 SHA2_384_HASH_LEN; 624 break; 625 default: 626 panic("invalid hmac"); 627 } 628 tls->params.tls_bs = AES_BLOCK_LEN; 629 break; 630 case CRYPTO_CHACHA20_POLY1305: 631 /* 632 * Chacha20 uses a 12 byte implicit IV. 633 */ 634 tls->params.tls_tlen = POLY1305_HASH_LEN; 635 tls->params.tls_bs = 1; 636 break; 637 default: 638 panic("invalid cipher"); 639 } 640 641 /* 642 * TLS 1.3 includes optional padding which we do not support, 643 * and also puts the "real" record type at the end of the 644 * encrypted data. 645 */ 646 if (en->tls_vminor == TLS_MINOR_VER_THREE) 647 tls->params.tls_tlen += sizeof(uint8_t); 648 649 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 650 ("TLS header length too long: %d", tls->params.tls_hlen)); 651 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 652 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 653 654 if (en->auth_key_len != 0) { 655 tls->params.auth_key_len = en->auth_key_len; 656 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 657 M_WAITOK); 658 error = copyin(en->auth_key, tls->params.auth_key, 659 en->auth_key_len); 660 if (error) 661 goto out; 662 } 663 664 tls->params.cipher_key_len = en->cipher_key_len; 665 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 666 error = copyin(en->cipher_key, tls->params.cipher_key, 667 en->cipher_key_len); 668 if (error) 669 goto out; 670 671 /* 672 * This holds the implicit portion of the nonce for AEAD 673 * ciphers and the initial implicit IV for TLS 1.0. The 674 * explicit portions of the IV are generated in ktls_frame(). 675 */ 676 if (en->iv_len != 0) { 677 tls->params.iv_len = en->iv_len; 678 error = copyin(en->iv, tls->params.iv, en->iv_len); 679 if (error) 680 goto out; 681 682 /* 683 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 684 * counter to generate unique explicit IVs. 685 * 686 * Store this counter in the last 8 bytes of the IV 687 * array so that it is 8-byte aligned. 688 */ 689 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 690 en->tls_vminor == TLS_MINOR_VER_TWO) 691 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 692 } 693 694 *tlsp = tls; 695 return (0); 696 697 out: 698 ktls_cleanup(tls); 699 return (error); 700 } 701 702 static struct ktls_session * 703 ktls_clone_session(struct ktls_session *tls) 704 { 705 struct ktls_session *tls_new; 706 707 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 708 709 counter_u64_add(ktls_offload_active, 1); 710 711 refcount_init(&tls_new->refcount, 1); 712 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 713 714 /* Copy fields from existing session. */ 715 tls_new->params = tls->params; 716 tls_new->wq_index = tls->wq_index; 717 718 /* Deep copy keys. */ 719 if (tls_new->params.auth_key != NULL) { 720 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 721 M_KTLS, M_WAITOK); 722 memcpy(tls_new->params.auth_key, tls->params.auth_key, 723 tls->params.auth_key_len); 724 } 725 726 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 727 M_WAITOK); 728 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 729 tls->params.cipher_key_len); 730 731 return (tls_new); 732 } 733 #endif 734 735 static void 736 ktls_cleanup(struct ktls_session *tls) 737 { 738 739 counter_u64_add(ktls_offload_active, -1); 740 switch (tls->mode) { 741 case TCP_TLS_MODE_SW: 742 switch (tls->params.cipher_algorithm) { 743 case CRYPTO_AES_CBC: 744 counter_u64_add(ktls_sw_cbc, -1); 745 break; 746 case CRYPTO_AES_NIST_GCM_16: 747 counter_u64_add(ktls_sw_gcm, -1); 748 break; 749 case CRYPTO_CHACHA20_POLY1305: 750 counter_u64_add(ktls_sw_chacha20, -1); 751 break; 752 } 753 ktls_ocf_free(tls); 754 break; 755 case TCP_TLS_MODE_IFNET: 756 switch (tls->params.cipher_algorithm) { 757 case CRYPTO_AES_CBC: 758 counter_u64_add(ktls_ifnet_cbc, -1); 759 break; 760 case CRYPTO_AES_NIST_GCM_16: 761 counter_u64_add(ktls_ifnet_gcm, -1); 762 break; 763 case CRYPTO_CHACHA20_POLY1305: 764 counter_u64_add(ktls_ifnet_chacha20, -1); 765 break; 766 } 767 if (tls->snd_tag != NULL) 768 m_snd_tag_rele(tls->snd_tag); 769 break; 770 #ifdef TCP_OFFLOAD 771 case TCP_TLS_MODE_TOE: 772 switch (tls->params.cipher_algorithm) { 773 case CRYPTO_AES_CBC: 774 counter_u64_add(ktls_toe_cbc, -1); 775 break; 776 case CRYPTO_AES_NIST_GCM_16: 777 counter_u64_add(ktls_toe_gcm, -1); 778 break; 779 case CRYPTO_CHACHA20_POLY1305: 780 counter_u64_add(ktls_toe_chacha20, -1); 781 break; 782 } 783 break; 784 #endif 785 } 786 if (tls->params.auth_key != NULL) { 787 zfree(tls->params.auth_key, M_KTLS); 788 tls->params.auth_key = NULL; 789 tls->params.auth_key_len = 0; 790 } 791 if (tls->params.cipher_key != NULL) { 792 zfree(tls->params.cipher_key, M_KTLS); 793 tls->params.cipher_key = NULL; 794 tls->params.cipher_key_len = 0; 795 } 796 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 797 } 798 799 #if defined(INET) || defined(INET6) 800 801 #ifdef TCP_OFFLOAD 802 static int 803 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 804 { 805 struct inpcb *inp; 806 struct tcpcb *tp; 807 int error; 808 809 inp = so->so_pcb; 810 INP_WLOCK(inp); 811 if (inp->inp_flags2 & INP_FREED) { 812 INP_WUNLOCK(inp); 813 return (ECONNRESET); 814 } 815 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 816 INP_WUNLOCK(inp); 817 return (ECONNRESET); 818 } 819 if (inp->inp_socket == NULL) { 820 INP_WUNLOCK(inp); 821 return (ECONNRESET); 822 } 823 tp = intotcpcb(inp); 824 if (!(tp->t_flags & TF_TOE)) { 825 INP_WUNLOCK(inp); 826 return (EOPNOTSUPP); 827 } 828 829 error = tcp_offload_alloc_tls_session(tp, tls, direction); 830 INP_WUNLOCK(inp); 831 if (error == 0) { 832 tls->mode = TCP_TLS_MODE_TOE; 833 switch (tls->params.cipher_algorithm) { 834 case CRYPTO_AES_CBC: 835 counter_u64_add(ktls_toe_cbc, 1); 836 break; 837 case CRYPTO_AES_NIST_GCM_16: 838 counter_u64_add(ktls_toe_gcm, 1); 839 break; 840 case CRYPTO_CHACHA20_POLY1305: 841 counter_u64_add(ktls_toe_chacha20, 1); 842 break; 843 } 844 } 845 return (error); 846 } 847 #endif 848 849 /* 850 * Common code used when first enabling ifnet TLS on a connection or 851 * when allocating a new ifnet TLS session due to a routing change. 852 * This function allocates a new TLS send tag on whatever interface 853 * the connection is currently routed over. 854 */ 855 static int 856 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 857 struct m_snd_tag **mstp) 858 { 859 union if_snd_tag_alloc_params params; 860 struct ifnet *ifp; 861 struct nhop_object *nh; 862 struct tcpcb *tp; 863 int error; 864 865 INP_RLOCK(inp); 866 if (inp->inp_flags2 & INP_FREED) { 867 INP_RUNLOCK(inp); 868 return (ECONNRESET); 869 } 870 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 871 INP_RUNLOCK(inp); 872 return (ECONNRESET); 873 } 874 if (inp->inp_socket == NULL) { 875 INP_RUNLOCK(inp); 876 return (ECONNRESET); 877 } 878 tp = intotcpcb(inp); 879 880 /* 881 * Check administrative controls on ifnet TLS to determine if 882 * ifnet TLS should be denied. 883 * 884 * - Always permit 'force' requests. 885 * - ktls_ifnet_permitted == 0: always deny. 886 */ 887 if (!force && ktls_ifnet_permitted == 0) { 888 INP_RUNLOCK(inp); 889 return (ENXIO); 890 } 891 892 /* 893 * XXX: Use the cached route in the inpcb to find the 894 * interface. This should perhaps instead use 895 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 896 * enabled after a connection has completed key negotiation in 897 * userland, the cached route will be present in practice. 898 */ 899 nh = inp->inp_route.ro_nh; 900 if (nh == NULL) { 901 INP_RUNLOCK(inp); 902 return (ENXIO); 903 } 904 ifp = nh->nh_ifp; 905 if_ref(ifp); 906 907 /* 908 * Allocate a TLS + ratelimit tag if the connection has an 909 * existing pacing rate. 910 */ 911 if (tp->t_pacing_rate != -1 && 912 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 913 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 914 params.tls_rate_limit.inp = inp; 915 params.tls_rate_limit.tls = tls; 916 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 917 } else { 918 params.hdr.type = IF_SND_TAG_TYPE_TLS; 919 params.tls.inp = inp; 920 params.tls.tls = tls; 921 } 922 params.hdr.flowid = inp->inp_flowid; 923 params.hdr.flowtype = inp->inp_flowtype; 924 params.hdr.numa_domain = inp->inp_numa_domain; 925 INP_RUNLOCK(inp); 926 927 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 928 error = EOPNOTSUPP; 929 goto out; 930 } 931 if (inp->inp_vflag & INP_IPV6) { 932 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 933 error = EOPNOTSUPP; 934 goto out; 935 } 936 } else { 937 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 938 error = EOPNOTSUPP; 939 goto out; 940 } 941 } 942 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 943 out: 944 if_rele(ifp); 945 return (error); 946 } 947 948 static int 949 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 950 { 951 struct m_snd_tag *mst; 952 int error; 953 954 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 955 if (error == 0) { 956 tls->mode = TCP_TLS_MODE_IFNET; 957 tls->snd_tag = mst; 958 switch (tls->params.cipher_algorithm) { 959 case CRYPTO_AES_CBC: 960 counter_u64_add(ktls_ifnet_cbc, 1); 961 break; 962 case CRYPTO_AES_NIST_GCM_16: 963 counter_u64_add(ktls_ifnet_gcm, 1); 964 break; 965 case CRYPTO_CHACHA20_POLY1305: 966 counter_u64_add(ktls_ifnet_chacha20, 1); 967 break; 968 } 969 } 970 return (error); 971 } 972 973 static int 974 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 975 { 976 int error; 977 978 error = ktls_ocf_try(so, tls, direction); 979 if (error) 980 return (error); 981 tls->mode = TCP_TLS_MODE_SW; 982 switch (tls->params.cipher_algorithm) { 983 case CRYPTO_AES_CBC: 984 counter_u64_add(ktls_sw_cbc, 1); 985 break; 986 case CRYPTO_AES_NIST_GCM_16: 987 counter_u64_add(ktls_sw_gcm, 1); 988 break; 989 case CRYPTO_CHACHA20_POLY1305: 990 counter_u64_add(ktls_sw_chacha20, 1); 991 break; 992 } 993 return (0); 994 } 995 996 /* 997 * KTLS RX stores data in the socket buffer as a list of TLS records, 998 * where each record is stored as a control message containg the TLS 999 * header followed by data mbufs containing the decrypted data. This 1000 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1001 * both encrypted and decrypted data. TLS records decrypted by a NIC 1002 * should be queued to the socket buffer as records, but encrypted 1003 * data which needs to be decrypted by software arrives as a stream of 1004 * regular mbufs which need to be converted. In addition, there may 1005 * already be pending encrypted data in the socket buffer when KTLS RX 1006 * is enabled. 1007 * 1008 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1009 * is used: 1010 * 1011 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1012 * 1013 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1014 * from the first mbuf. Once all of the data for that TLS record is 1015 * queued, the socket is queued to a worker thread. 1016 * 1017 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1018 * the TLS chain. Each TLS record is detached from the TLS chain, 1019 * decrypted, and inserted into the regular socket buffer chain as 1020 * record starting with a control message holding the TLS header and 1021 * a chain of mbufs holding the encrypted data. 1022 */ 1023 1024 static void 1025 sb_mark_notready(struct sockbuf *sb) 1026 { 1027 struct mbuf *m; 1028 1029 m = sb->sb_mb; 1030 sb->sb_mtls = m; 1031 sb->sb_mb = NULL; 1032 sb->sb_mbtail = NULL; 1033 sb->sb_lastrecord = NULL; 1034 for (; m != NULL; m = m->m_next) { 1035 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1036 __func__)); 1037 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1038 __func__)); 1039 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1040 __func__)); 1041 m->m_flags |= M_NOTREADY; 1042 sb->sb_acc -= m->m_len; 1043 sb->sb_tlscc += m->m_len; 1044 sb->sb_mtlstail = m; 1045 } 1046 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1047 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1048 sb->sb_ccc)); 1049 } 1050 1051 int 1052 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1053 { 1054 struct ktls_session *tls; 1055 int error; 1056 1057 if (!ktls_offload_enable) 1058 return (ENOTSUP); 1059 if (SOLISTENING(so)) 1060 return (EINVAL); 1061 1062 counter_u64_add(ktls_offload_enable_calls, 1); 1063 1064 /* 1065 * This should always be true since only the TCP socket option 1066 * invokes this function. 1067 */ 1068 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1069 return (EINVAL); 1070 1071 /* 1072 * XXX: Don't overwrite existing sessions. We should permit 1073 * this to support rekeying in the future. 1074 */ 1075 if (so->so_rcv.sb_tls_info != NULL) 1076 return (EALREADY); 1077 1078 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1079 return (ENOTSUP); 1080 1081 /* TLS 1.3 is not yet supported. */ 1082 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1083 en->tls_vminor == TLS_MINOR_VER_THREE) 1084 return (ENOTSUP); 1085 1086 error = ktls_create_session(so, en, &tls); 1087 if (error) 1088 return (error); 1089 1090 #ifdef TCP_OFFLOAD 1091 error = ktls_try_toe(so, tls, KTLS_RX); 1092 if (error) 1093 #endif 1094 error = ktls_try_sw(so, tls, KTLS_RX); 1095 1096 if (error) { 1097 ktls_cleanup(tls); 1098 return (error); 1099 } 1100 1101 /* Mark the socket as using TLS offload. */ 1102 SOCKBUF_LOCK(&so->so_rcv); 1103 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1104 so->so_rcv.sb_tls_info = tls; 1105 so->so_rcv.sb_flags |= SB_TLS_RX; 1106 1107 /* Mark existing data as not ready until it can be decrypted. */ 1108 if (tls->mode != TCP_TLS_MODE_TOE) { 1109 sb_mark_notready(&so->so_rcv); 1110 ktls_check_rx(&so->so_rcv); 1111 } 1112 SOCKBUF_UNLOCK(&so->so_rcv); 1113 1114 counter_u64_add(ktls_offload_total, 1); 1115 1116 return (0); 1117 } 1118 1119 int 1120 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1121 { 1122 struct ktls_session *tls; 1123 struct inpcb *inp; 1124 int error; 1125 1126 if (!ktls_offload_enable) 1127 return (ENOTSUP); 1128 if (SOLISTENING(so)) 1129 return (EINVAL); 1130 1131 counter_u64_add(ktls_offload_enable_calls, 1); 1132 1133 /* 1134 * This should always be true since only the TCP socket option 1135 * invokes this function. 1136 */ 1137 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1138 return (EINVAL); 1139 1140 /* 1141 * XXX: Don't overwrite existing sessions. We should permit 1142 * this to support rekeying in the future. 1143 */ 1144 if (so->so_snd.sb_tls_info != NULL) 1145 return (EALREADY); 1146 1147 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1148 return (ENOTSUP); 1149 1150 /* TLS requires ext pgs */ 1151 if (mb_use_ext_pgs == 0) 1152 return (ENXIO); 1153 1154 error = ktls_create_session(so, en, &tls); 1155 if (error) 1156 return (error); 1157 1158 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1159 #ifdef TCP_OFFLOAD 1160 error = ktls_try_toe(so, tls, KTLS_TX); 1161 if (error) 1162 #endif 1163 error = ktls_try_ifnet(so, tls, false); 1164 if (error) 1165 error = ktls_try_sw(so, tls, KTLS_TX); 1166 1167 if (error) { 1168 ktls_cleanup(tls); 1169 return (error); 1170 } 1171 1172 error = sblock(&so->so_snd, SBL_WAIT); 1173 if (error) { 1174 ktls_cleanup(tls); 1175 return (error); 1176 } 1177 1178 /* 1179 * Write lock the INP when setting sb_tls_info so that 1180 * routines in tcp_ratelimit.c can read sb_tls_info while 1181 * holding the INP lock. 1182 */ 1183 inp = so->so_pcb; 1184 INP_WLOCK(inp); 1185 SOCKBUF_LOCK(&so->so_snd); 1186 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1187 so->so_snd.sb_tls_info = tls; 1188 if (tls->mode != TCP_TLS_MODE_SW) 1189 so->so_snd.sb_flags |= SB_TLS_IFNET; 1190 SOCKBUF_UNLOCK(&so->so_snd); 1191 INP_WUNLOCK(inp); 1192 sbunlock(&so->so_snd); 1193 1194 counter_u64_add(ktls_offload_total, 1); 1195 1196 return (0); 1197 } 1198 1199 int 1200 ktls_get_rx_mode(struct socket *so) 1201 { 1202 struct ktls_session *tls; 1203 struct inpcb *inp; 1204 int mode; 1205 1206 if (SOLISTENING(so)) 1207 return (EINVAL); 1208 inp = so->so_pcb; 1209 INP_WLOCK_ASSERT(inp); 1210 SOCKBUF_LOCK(&so->so_rcv); 1211 tls = so->so_rcv.sb_tls_info; 1212 if (tls == NULL) 1213 mode = TCP_TLS_MODE_NONE; 1214 else 1215 mode = tls->mode; 1216 SOCKBUF_UNLOCK(&so->so_rcv); 1217 return (mode); 1218 } 1219 1220 int 1221 ktls_get_tx_mode(struct socket *so) 1222 { 1223 struct ktls_session *tls; 1224 struct inpcb *inp; 1225 int mode; 1226 1227 if (SOLISTENING(so)) 1228 return (EINVAL); 1229 inp = so->so_pcb; 1230 INP_WLOCK_ASSERT(inp); 1231 SOCKBUF_LOCK(&so->so_snd); 1232 tls = so->so_snd.sb_tls_info; 1233 if (tls == NULL) 1234 mode = TCP_TLS_MODE_NONE; 1235 else 1236 mode = tls->mode; 1237 SOCKBUF_UNLOCK(&so->so_snd); 1238 return (mode); 1239 } 1240 1241 /* 1242 * Switch between SW and ifnet TLS sessions as requested. 1243 */ 1244 int 1245 ktls_set_tx_mode(struct socket *so, int mode) 1246 { 1247 struct ktls_session *tls, *tls_new; 1248 struct inpcb *inp; 1249 int error; 1250 1251 if (SOLISTENING(so)) 1252 return (EINVAL); 1253 switch (mode) { 1254 case TCP_TLS_MODE_SW: 1255 case TCP_TLS_MODE_IFNET: 1256 break; 1257 default: 1258 return (EINVAL); 1259 } 1260 1261 inp = so->so_pcb; 1262 INP_WLOCK_ASSERT(inp); 1263 SOCKBUF_LOCK(&so->so_snd); 1264 tls = so->so_snd.sb_tls_info; 1265 if (tls == NULL) { 1266 SOCKBUF_UNLOCK(&so->so_snd); 1267 return (0); 1268 } 1269 1270 if (tls->mode == mode) { 1271 SOCKBUF_UNLOCK(&so->so_snd); 1272 return (0); 1273 } 1274 1275 tls = ktls_hold(tls); 1276 SOCKBUF_UNLOCK(&so->so_snd); 1277 INP_WUNLOCK(inp); 1278 1279 tls_new = ktls_clone_session(tls); 1280 1281 if (mode == TCP_TLS_MODE_IFNET) 1282 error = ktls_try_ifnet(so, tls_new, true); 1283 else 1284 error = ktls_try_sw(so, tls_new, KTLS_TX); 1285 if (error) { 1286 counter_u64_add(ktls_switch_failed, 1); 1287 ktls_free(tls_new); 1288 ktls_free(tls); 1289 INP_WLOCK(inp); 1290 return (error); 1291 } 1292 1293 error = sblock(&so->so_snd, SBL_WAIT); 1294 if (error) { 1295 counter_u64_add(ktls_switch_failed, 1); 1296 ktls_free(tls_new); 1297 ktls_free(tls); 1298 INP_WLOCK(inp); 1299 return (error); 1300 } 1301 1302 /* 1303 * If we raced with another session change, keep the existing 1304 * session. 1305 */ 1306 if (tls != so->so_snd.sb_tls_info) { 1307 counter_u64_add(ktls_switch_failed, 1); 1308 sbunlock(&so->so_snd); 1309 ktls_free(tls_new); 1310 ktls_free(tls); 1311 INP_WLOCK(inp); 1312 return (EBUSY); 1313 } 1314 1315 SOCKBUF_LOCK(&so->so_snd); 1316 so->so_snd.sb_tls_info = tls_new; 1317 if (tls_new->mode != TCP_TLS_MODE_SW) 1318 so->so_snd.sb_flags |= SB_TLS_IFNET; 1319 SOCKBUF_UNLOCK(&so->so_snd); 1320 sbunlock(&so->so_snd); 1321 1322 /* 1323 * Drop two references on 'tls'. The first is for the 1324 * ktls_hold() above. The second drops the reference from the 1325 * socket buffer. 1326 */ 1327 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1328 ktls_free(tls); 1329 ktls_free(tls); 1330 1331 if (mode == TCP_TLS_MODE_IFNET) 1332 counter_u64_add(ktls_switch_to_ifnet, 1); 1333 else 1334 counter_u64_add(ktls_switch_to_sw, 1); 1335 1336 INP_WLOCK(inp); 1337 return (0); 1338 } 1339 1340 /* 1341 * Try to allocate a new TLS send tag. This task is scheduled when 1342 * ip_output detects a route change while trying to transmit a packet 1343 * holding a TLS record. If a new tag is allocated, replace the tag 1344 * in the TLS session. Subsequent packets on the connection will use 1345 * the new tag. If a new tag cannot be allocated, drop the 1346 * connection. 1347 */ 1348 static void 1349 ktls_reset_send_tag(void *context, int pending) 1350 { 1351 struct epoch_tracker et; 1352 struct ktls_session *tls; 1353 struct m_snd_tag *old, *new; 1354 struct inpcb *inp; 1355 struct tcpcb *tp; 1356 int error; 1357 1358 MPASS(pending == 1); 1359 1360 tls = context; 1361 inp = tls->inp; 1362 1363 /* 1364 * Free the old tag first before allocating a new one. 1365 * ip[6]_output_send() will treat a NULL send tag the same as 1366 * an ifp mismatch and drop packets until a new tag is 1367 * allocated. 1368 * 1369 * Write-lock the INP when changing tls->snd_tag since 1370 * ip[6]_output_send() holds a read-lock when reading the 1371 * pointer. 1372 */ 1373 INP_WLOCK(inp); 1374 old = tls->snd_tag; 1375 tls->snd_tag = NULL; 1376 INP_WUNLOCK(inp); 1377 if (old != NULL) 1378 m_snd_tag_rele(old); 1379 1380 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1381 1382 if (error == 0) { 1383 INP_WLOCK(inp); 1384 tls->snd_tag = new; 1385 mtx_pool_lock(mtxpool_sleep, tls); 1386 tls->reset_pending = false; 1387 mtx_pool_unlock(mtxpool_sleep, tls); 1388 if (!in_pcbrele_wlocked(inp)) 1389 INP_WUNLOCK(inp); 1390 1391 counter_u64_add(ktls_ifnet_reset, 1); 1392 1393 /* 1394 * XXX: Should we kick tcp_output explicitly now that 1395 * the send tag is fixed or just rely on timers? 1396 */ 1397 } else { 1398 NET_EPOCH_ENTER(et); 1399 INP_WLOCK(inp); 1400 if (!in_pcbrele_wlocked(inp)) { 1401 if (!(inp->inp_flags & INP_TIMEWAIT) && 1402 !(inp->inp_flags & INP_DROPPED)) { 1403 tp = intotcpcb(inp); 1404 CURVNET_SET(tp->t_vnet); 1405 tp = tcp_drop(tp, ECONNABORTED); 1406 CURVNET_RESTORE(); 1407 if (tp != NULL) 1408 INP_WUNLOCK(inp); 1409 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1410 } else 1411 INP_WUNLOCK(inp); 1412 } 1413 NET_EPOCH_EXIT(et); 1414 1415 counter_u64_add(ktls_ifnet_reset_failed, 1); 1416 1417 /* 1418 * Leave reset_pending true to avoid future tasks while 1419 * the socket goes away. 1420 */ 1421 } 1422 1423 ktls_free(tls); 1424 } 1425 1426 int 1427 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1428 { 1429 1430 if (inp == NULL) 1431 return (ENOBUFS); 1432 1433 INP_LOCK_ASSERT(inp); 1434 1435 /* 1436 * See if we should schedule a task to update the send tag for 1437 * this session. 1438 */ 1439 mtx_pool_lock(mtxpool_sleep, tls); 1440 if (!tls->reset_pending) { 1441 (void) ktls_hold(tls); 1442 in_pcbref(inp); 1443 tls->inp = inp; 1444 tls->reset_pending = true; 1445 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1446 } 1447 mtx_pool_unlock(mtxpool_sleep, tls); 1448 return (ENOBUFS); 1449 } 1450 1451 #ifdef RATELIMIT 1452 int 1453 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1454 { 1455 union if_snd_tag_modify_params params = { 1456 .rate_limit.max_rate = max_pacing_rate, 1457 .rate_limit.flags = M_NOWAIT, 1458 }; 1459 struct m_snd_tag *mst; 1460 struct ifnet *ifp; 1461 1462 /* Can't get to the inp, but it should be locked. */ 1463 /* INP_LOCK_ASSERT(inp); */ 1464 1465 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1466 1467 if (tls->snd_tag == NULL) { 1468 /* 1469 * Resetting send tag, ignore this change. The 1470 * pending reset may or may not see this updated rate 1471 * in the tcpcb. If it doesn't, we will just lose 1472 * this rate change. 1473 */ 1474 return (0); 1475 } 1476 1477 MPASS(tls->snd_tag != NULL); 1478 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1479 1480 mst = tls->snd_tag; 1481 ifp = mst->ifp; 1482 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1483 } 1484 #endif 1485 #endif 1486 1487 void 1488 ktls_destroy(struct ktls_session *tls) 1489 { 1490 1491 ktls_cleanup(tls); 1492 uma_zfree(ktls_session_zone, tls); 1493 } 1494 1495 void 1496 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1497 { 1498 1499 for (; m != NULL; m = m->m_next) { 1500 KASSERT((m->m_flags & M_EXTPG) != 0, 1501 ("ktls_seq: mapped mbuf %p", m)); 1502 1503 m->m_epg_seqno = sb->sb_tls_seqno; 1504 sb->sb_tls_seqno++; 1505 } 1506 } 1507 1508 /* 1509 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1510 * mbuf in the chain must be an unmapped mbuf. The payload of the 1511 * mbuf must be populated with the payload of each TLS record. 1512 * 1513 * The record_type argument specifies the TLS record type used when 1514 * populating the TLS header. 1515 * 1516 * The enq_count argument on return is set to the number of pages of 1517 * payload data for this entire chain that need to be encrypted via SW 1518 * encryption. The returned value should be passed to ktls_enqueue 1519 * when scheduling encryption of this chain of mbufs. To handle the 1520 * special case of empty fragments for TLS 1.0 sessions, an empty 1521 * fragment counts as one page. 1522 */ 1523 void 1524 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1525 uint8_t record_type) 1526 { 1527 struct tls_record_layer *tlshdr; 1528 struct mbuf *m; 1529 uint64_t *noncep; 1530 uint16_t tls_len; 1531 int maxlen; 1532 1533 maxlen = tls->params.max_frame_len; 1534 *enq_cnt = 0; 1535 for (m = top; m != NULL; m = m->m_next) { 1536 /* 1537 * All mbufs in the chain should be TLS records whose 1538 * payload does not exceed the maximum frame length. 1539 * 1540 * Empty TLS records are permitted when using CBC. 1541 */ 1542 KASSERT(m->m_len <= maxlen && 1543 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1544 m->m_len >= 0 : m->m_len > 0), 1545 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1546 1547 /* 1548 * TLS frames require unmapped mbufs to store session 1549 * info. 1550 */ 1551 KASSERT((m->m_flags & M_EXTPG) != 0, 1552 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1553 1554 tls_len = m->m_len; 1555 1556 /* Save a reference to the session. */ 1557 m->m_epg_tls = ktls_hold(tls); 1558 1559 m->m_epg_hdrlen = tls->params.tls_hlen; 1560 m->m_epg_trllen = tls->params.tls_tlen; 1561 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1562 int bs, delta; 1563 1564 /* 1565 * AES-CBC pads messages to a multiple of the 1566 * block size. Note that the padding is 1567 * applied after the digest and the encryption 1568 * is done on the "plaintext || mac || padding". 1569 * At least one byte of padding is always 1570 * present. 1571 * 1572 * Compute the final trailer length assuming 1573 * at most one block of padding. 1574 * tls->params.tls_tlen is the maximum 1575 * possible trailer length (padding + digest). 1576 * delta holds the number of excess padding 1577 * bytes if the maximum were used. Those 1578 * extra bytes are removed. 1579 */ 1580 bs = tls->params.tls_bs; 1581 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1582 m->m_epg_trllen -= delta; 1583 } 1584 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1585 1586 /* Populate the TLS header. */ 1587 tlshdr = (void *)m->m_epg_hdr; 1588 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1589 1590 /* 1591 * TLS 1.3 masquarades as TLS 1.2 with a record type 1592 * of TLS_RLTYPE_APP. 1593 */ 1594 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1595 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1596 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1597 tlshdr->tls_type = TLS_RLTYPE_APP; 1598 /* save the real record type for later */ 1599 m->m_epg_record_type = record_type; 1600 m->m_epg_trail[0] = record_type; 1601 } else { 1602 tlshdr->tls_vminor = tls->params.tls_vminor; 1603 tlshdr->tls_type = record_type; 1604 } 1605 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1606 1607 /* 1608 * Store nonces / explicit IVs after the end of the 1609 * TLS header. 1610 * 1611 * For GCM with TLS 1.2, an 8 byte nonce is copied 1612 * from the end of the IV. The nonce is then 1613 * incremented for use by the next record. 1614 * 1615 * For CBC, a random nonce is inserted for TLS 1.1+. 1616 */ 1617 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1618 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1619 noncep = (uint64_t *)(tls->params.iv + 8); 1620 be64enc(tlshdr + 1, *noncep); 1621 (*noncep)++; 1622 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1623 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1624 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1625 1626 /* 1627 * When using SW encryption, mark the mbuf not ready. 1628 * It will be marked ready via sbready() after the 1629 * record has been encrypted. 1630 * 1631 * When using ifnet TLS, unencrypted TLS records are 1632 * sent down the stack to the NIC. 1633 */ 1634 if (tls->mode == TCP_TLS_MODE_SW) { 1635 m->m_flags |= M_NOTREADY; 1636 if (__predict_false(tls_len == 0)) { 1637 /* TLS 1.0 empty fragment. */ 1638 m->m_epg_nrdy = 1; 1639 } else 1640 m->m_epg_nrdy = m->m_epg_npgs; 1641 *enq_cnt += m->m_epg_nrdy; 1642 } 1643 } 1644 } 1645 1646 void 1647 ktls_check_rx(struct sockbuf *sb) 1648 { 1649 struct tls_record_layer hdr; 1650 struct ktls_wq *wq; 1651 struct socket *so; 1652 bool running; 1653 1654 SOCKBUF_LOCK_ASSERT(sb); 1655 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1656 __func__, sb)); 1657 so = __containerof(sb, struct socket, so_rcv); 1658 1659 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1660 return; 1661 1662 /* Is there enough queued for a TLS header? */ 1663 if (sb->sb_tlscc < sizeof(hdr)) { 1664 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1665 so->so_error = EMSGSIZE; 1666 return; 1667 } 1668 1669 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1670 1671 /* Is the entire record queued? */ 1672 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1673 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1674 so->so_error = EMSGSIZE; 1675 return; 1676 } 1677 1678 sb->sb_flags |= SB_TLS_RX_RUNNING; 1679 1680 soref(so); 1681 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1682 mtx_lock(&wq->mtx); 1683 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1684 running = wq->running; 1685 mtx_unlock(&wq->mtx); 1686 if (!running) 1687 wakeup(wq); 1688 counter_u64_add(ktls_cnt_rx_queued, 1); 1689 } 1690 1691 static struct mbuf * 1692 ktls_detach_record(struct sockbuf *sb, int len) 1693 { 1694 struct mbuf *m, *n, *top; 1695 int remain; 1696 1697 SOCKBUF_LOCK_ASSERT(sb); 1698 MPASS(len <= sb->sb_tlscc); 1699 1700 /* 1701 * If TLS chain is the exact size of the record, 1702 * just grab the whole record. 1703 */ 1704 top = sb->sb_mtls; 1705 if (sb->sb_tlscc == len) { 1706 sb->sb_mtls = NULL; 1707 sb->sb_mtlstail = NULL; 1708 goto out; 1709 } 1710 1711 /* 1712 * While it would be nice to use m_split() here, we need 1713 * to know exactly what m_split() allocates to update the 1714 * accounting, so do it inline instead. 1715 */ 1716 remain = len; 1717 for (m = top; remain > m->m_len; m = m->m_next) 1718 remain -= m->m_len; 1719 1720 /* Easy case: don't have to split 'm'. */ 1721 if (remain == m->m_len) { 1722 sb->sb_mtls = m->m_next; 1723 if (sb->sb_mtls == NULL) 1724 sb->sb_mtlstail = NULL; 1725 m->m_next = NULL; 1726 goto out; 1727 } 1728 1729 /* 1730 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1731 * with M_NOWAIT first. 1732 */ 1733 n = m_get(M_NOWAIT, MT_DATA); 1734 if (n == NULL) { 1735 /* 1736 * Use M_WAITOK with socket buffer unlocked. If 1737 * 'sb_mtls' changes while the lock is dropped, return 1738 * NULL to force the caller to retry. 1739 */ 1740 SOCKBUF_UNLOCK(sb); 1741 1742 n = m_get(M_WAITOK, MT_DATA); 1743 1744 SOCKBUF_LOCK(sb); 1745 if (sb->sb_mtls != top) { 1746 m_free(n); 1747 return (NULL); 1748 } 1749 } 1750 n->m_flags |= M_NOTREADY; 1751 1752 /* Store remainder in 'n'. */ 1753 n->m_len = m->m_len - remain; 1754 if (m->m_flags & M_EXT) { 1755 n->m_data = m->m_data + remain; 1756 mb_dupcl(n, m); 1757 } else { 1758 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1759 } 1760 1761 /* Trim 'm' and update accounting. */ 1762 m->m_len -= n->m_len; 1763 sb->sb_tlscc -= n->m_len; 1764 sb->sb_ccc -= n->m_len; 1765 1766 /* Account for 'n'. */ 1767 sballoc_ktls_rx(sb, n); 1768 1769 /* Insert 'n' into the TLS chain. */ 1770 sb->sb_mtls = n; 1771 n->m_next = m->m_next; 1772 if (sb->sb_mtlstail == m) 1773 sb->sb_mtlstail = n; 1774 1775 /* Detach the record from the TLS chain. */ 1776 m->m_next = NULL; 1777 1778 out: 1779 MPASS(m_length(top, NULL) == len); 1780 for (m = top; m != NULL; m = m->m_next) 1781 sbfree_ktls_rx(sb, m); 1782 sb->sb_tlsdcc = len; 1783 sb->sb_ccc += len; 1784 SBCHECK(sb); 1785 return (top); 1786 } 1787 1788 static void 1789 ktls_decrypt(struct socket *so) 1790 { 1791 char tls_header[MBUF_PEXT_HDR_LEN]; 1792 struct ktls_session *tls; 1793 struct sockbuf *sb; 1794 struct tls_record_layer *hdr; 1795 struct tls_get_record tgr; 1796 struct mbuf *control, *data, *m; 1797 uint64_t seqno; 1798 int error, remain, tls_len, trail_len; 1799 1800 hdr = (struct tls_record_layer *)tls_header; 1801 sb = &so->so_rcv; 1802 SOCKBUF_LOCK(sb); 1803 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1804 ("%s: socket %p not running", __func__, so)); 1805 1806 tls = sb->sb_tls_info; 1807 MPASS(tls != NULL); 1808 1809 for (;;) { 1810 /* Is there enough queued for a TLS header? */ 1811 if (sb->sb_tlscc < tls->params.tls_hlen) 1812 break; 1813 1814 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1815 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1816 1817 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1818 hdr->tls_vminor != tls->params.tls_vminor) 1819 error = EINVAL; 1820 else if (tls_len < tls->params.tls_hlen || tls_len > 1821 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1822 tls->params.tls_tlen) 1823 error = EMSGSIZE; 1824 else 1825 error = 0; 1826 if (__predict_false(error != 0)) { 1827 /* 1828 * We have a corrupted record and are likely 1829 * out of sync. The connection isn't 1830 * recoverable at this point, so abort it. 1831 */ 1832 SOCKBUF_UNLOCK(sb); 1833 counter_u64_add(ktls_offload_corrupted_records, 1); 1834 1835 CURVNET_SET(so->so_vnet); 1836 so->so_proto->pr_usrreqs->pru_abort(so); 1837 so->so_error = error; 1838 CURVNET_RESTORE(); 1839 goto deref; 1840 } 1841 1842 /* Is the entire record queued? */ 1843 if (sb->sb_tlscc < tls_len) 1844 break; 1845 1846 /* 1847 * Split out the portion of the mbuf chain containing 1848 * this TLS record. 1849 */ 1850 data = ktls_detach_record(sb, tls_len); 1851 if (data == NULL) 1852 continue; 1853 MPASS(sb->sb_tlsdcc == tls_len); 1854 1855 seqno = sb->sb_tls_seqno; 1856 sb->sb_tls_seqno++; 1857 SBCHECK(sb); 1858 SOCKBUF_UNLOCK(sb); 1859 1860 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1861 if (error) { 1862 counter_u64_add(ktls_offload_failed_crypto, 1); 1863 1864 SOCKBUF_LOCK(sb); 1865 if (sb->sb_tlsdcc == 0) { 1866 /* 1867 * sbcut/drop/flush discarded these 1868 * mbufs. 1869 */ 1870 m_freem(data); 1871 break; 1872 } 1873 1874 /* 1875 * Drop this TLS record's data, but keep 1876 * decrypting subsequent records. 1877 */ 1878 sb->sb_ccc -= tls_len; 1879 sb->sb_tlsdcc = 0; 1880 1881 CURVNET_SET(so->so_vnet); 1882 so->so_error = EBADMSG; 1883 sorwakeup_locked(so); 1884 CURVNET_RESTORE(); 1885 1886 m_freem(data); 1887 1888 SOCKBUF_LOCK(sb); 1889 continue; 1890 } 1891 1892 /* Allocate the control mbuf. */ 1893 tgr.tls_type = hdr->tls_type; 1894 tgr.tls_vmajor = hdr->tls_vmajor; 1895 tgr.tls_vminor = hdr->tls_vminor; 1896 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1897 trail_len); 1898 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1899 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1900 1901 SOCKBUF_LOCK(sb); 1902 if (sb->sb_tlsdcc == 0) { 1903 /* sbcut/drop/flush discarded these mbufs. */ 1904 MPASS(sb->sb_tlscc == 0); 1905 m_freem(data); 1906 m_freem(control); 1907 break; 1908 } 1909 1910 /* 1911 * Clear the 'dcc' accounting in preparation for 1912 * adding the decrypted record. 1913 */ 1914 sb->sb_ccc -= tls_len; 1915 sb->sb_tlsdcc = 0; 1916 SBCHECK(sb); 1917 1918 /* If there is no payload, drop all of the data. */ 1919 if (tgr.tls_length == htobe16(0)) { 1920 m_freem(data); 1921 data = NULL; 1922 } else { 1923 /* Trim header. */ 1924 remain = tls->params.tls_hlen; 1925 while (remain > 0) { 1926 if (data->m_len > remain) { 1927 data->m_data += remain; 1928 data->m_len -= remain; 1929 break; 1930 } 1931 remain -= data->m_len; 1932 data = m_free(data); 1933 } 1934 1935 /* Trim trailer and clear M_NOTREADY. */ 1936 remain = be16toh(tgr.tls_length); 1937 m = data; 1938 for (m = data; remain > m->m_len; m = m->m_next) { 1939 m->m_flags &= ~M_NOTREADY; 1940 remain -= m->m_len; 1941 } 1942 m->m_len = remain; 1943 m_freem(m->m_next); 1944 m->m_next = NULL; 1945 m->m_flags &= ~M_NOTREADY; 1946 1947 /* Set EOR on the final mbuf. */ 1948 m->m_flags |= M_EOR; 1949 } 1950 1951 sbappendcontrol_locked(sb, data, control, 0); 1952 } 1953 1954 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1955 1956 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1957 so->so_error = EMSGSIZE; 1958 1959 sorwakeup_locked(so); 1960 1961 deref: 1962 SOCKBUF_UNLOCK_ASSERT(sb); 1963 1964 CURVNET_SET(so->so_vnet); 1965 SOCK_LOCK(so); 1966 sorele(so); 1967 CURVNET_RESTORE(); 1968 } 1969 1970 void 1971 ktls_enqueue_to_free(struct mbuf *m) 1972 { 1973 struct ktls_wq *wq; 1974 bool running; 1975 1976 /* Mark it for freeing. */ 1977 m->m_epg_flags |= EPG_FLAG_2FREE; 1978 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1979 mtx_lock(&wq->mtx); 1980 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1981 running = wq->running; 1982 mtx_unlock(&wq->mtx); 1983 if (!running) 1984 wakeup(wq); 1985 } 1986 1987 static void * 1988 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 1989 { 1990 void *buf; 1991 int domain, running; 1992 1993 if (m->m_epg_npgs <= 2) 1994 return (NULL); 1995 if (ktls_buffer_zone == NULL) 1996 return (NULL); 1997 if ((u_int)(ticks - wq->lastallocfail) < hz) { 1998 /* 1999 * Rate-limit allocation attempts after a failure. 2000 * ktls_buffer_import() will acquire a per-domain mutex to check 2001 * the free page queues and may fail consistently if memory is 2002 * fragmented. 2003 */ 2004 return (NULL); 2005 } 2006 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2007 if (buf == NULL) { 2008 domain = PCPU_GET(domain); 2009 wq->lastallocfail = ticks; 2010 2011 /* 2012 * Note that this check is "racy", but the races are 2013 * harmless, and are either a spurious wakeup if 2014 * multiple threads fail allocations before the alloc 2015 * thread wakes, or waiting an extra second in case we 2016 * see an old value of running == true. 2017 */ 2018 if (!VM_DOMAIN_EMPTY(domain)) { 2019 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2020 if (!running) 2021 wakeup(&ktls_domains[domain].alloc_td); 2022 } 2023 } 2024 return (buf); 2025 } 2026 2027 void 2028 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2029 { 2030 struct ktls_wq *wq; 2031 bool running; 2032 2033 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2034 (M_EXTPG | M_NOTREADY)), 2035 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2036 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2037 2038 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2039 2040 m->m_epg_enc_cnt = page_count; 2041 2042 /* 2043 * Save a pointer to the socket. The caller is responsible 2044 * for taking an additional reference via soref(). 2045 */ 2046 m->m_epg_so = so; 2047 2048 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2049 mtx_lock(&wq->mtx); 2050 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2051 running = wq->running; 2052 mtx_unlock(&wq->mtx); 2053 if (!running) 2054 wakeup(wq); 2055 counter_u64_add(ktls_cnt_tx_queued, 1); 2056 } 2057 2058 #define MAX_TLS_PAGES (1 + btoc(TLS_MAX_MSG_SIZE_V10_2)) 2059 2060 static __noinline void 2061 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2062 { 2063 struct ktls_session *tls; 2064 struct socket *so; 2065 struct mbuf *m; 2066 vm_paddr_t parray[MAX_TLS_PAGES + 1]; 2067 struct iovec dst_iov[MAX_TLS_PAGES + 2]; 2068 vm_page_t pg; 2069 void *cbuf; 2070 int error, i, len, npages, off, total_pages; 2071 2072 so = top->m_epg_so; 2073 tls = top->m_epg_tls; 2074 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2075 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2076 #ifdef INVARIANTS 2077 top->m_epg_so = NULL; 2078 #endif 2079 total_pages = top->m_epg_enc_cnt; 2080 npages = 0; 2081 2082 /* 2083 * Encrypt the TLS records in the chain of mbufs starting with 2084 * 'top'. 'total_pages' gives us a total count of pages and is 2085 * used to know when we have finished encrypting the TLS 2086 * records originally queued with 'top'. 2087 * 2088 * NB: These mbufs are queued in the socket buffer and 2089 * 'm_next' is traversing the mbufs in the socket buffer. The 2090 * socket buffer lock is not held while traversing this chain. 2091 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2092 * pointers should be stable. However, the 'm_next' of the 2093 * last mbuf encrypted is not necessarily NULL. It can point 2094 * to other mbufs appended while 'top' was on the TLS work 2095 * queue. 2096 * 2097 * Each mbuf holds an entire TLS record. 2098 */ 2099 error = 0; 2100 for (m = top; npages != total_pages; m = m->m_next) { 2101 KASSERT(m->m_epg_tls == tls, 2102 ("different TLS sessions in a single mbuf chain: %p vs %p", 2103 tls, m->m_epg_tls)); 2104 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2105 (M_EXTPG | M_NOTREADY), 2106 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2107 KASSERT(npages + m->m_epg_npgs <= total_pages, 2108 ("page count mismatch: top %p, total_pages %d, m %p", top, 2109 total_pages, m)); 2110 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2111 ("page count %d larger than maximum frame length %d", 2112 m->m_epg_npgs, ktls_maxlen)); 2113 2114 /* 2115 * For anonymous mbufs, encryption is done in place. 2116 * For file-backed mbufs (from sendfile), anonymous 2117 * wired pages are allocated and used as the 2118 * encryption destination. 2119 */ 2120 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) { 2121 error = (*tls->sw_encrypt)(tls, m, NULL, 0); 2122 } else { 2123 if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2124 len = ptoa(m->m_epg_npgs - 1) + 2125 m->m_epg_last_len - m->m_epg_1st_off; 2126 dst_iov[0].iov_base = (char *)cbuf + 2127 m->m_epg_1st_off; 2128 dst_iov[0].iov_len = len; 2129 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2130 i = 1; 2131 } else { 2132 off = m->m_epg_1st_off; 2133 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2134 do { 2135 pg = vm_page_alloc(NULL, 0, 2136 VM_ALLOC_NORMAL | 2137 VM_ALLOC_NOOBJ | 2138 VM_ALLOC_NODUMP | 2139 VM_ALLOC_WIRED | 2140 VM_ALLOC_WAITFAIL); 2141 } while (pg == NULL); 2142 2143 len = m_epg_pagelen(m, i, off); 2144 parray[i] = VM_PAGE_TO_PHYS(pg); 2145 dst_iov[i].iov_base = 2146 (char *)(void *)PHYS_TO_DMAP( 2147 parray[i]) + off; 2148 dst_iov[i].iov_len = len; 2149 } 2150 } 2151 KASSERT(i + 1 <= nitems(dst_iov), 2152 ("dst_iov is too small")); 2153 dst_iov[i].iov_base = m->m_epg_trail; 2154 dst_iov[i].iov_len = m->m_epg_trllen; 2155 2156 error = (*tls->sw_encrypt)(tls, m, dst_iov, i + 1); 2157 2158 /* Free the old pages. */ 2159 m->m_ext.ext_free(m); 2160 2161 /* Replace them with the new pages. */ 2162 if (cbuf != NULL) { 2163 for (i = 0; i < m->m_epg_npgs; i++) 2164 m->m_epg_pa[i] = parray[0] + ptoa(i); 2165 2166 /* Contig pages should go back to the cache. */ 2167 m->m_ext.ext_free = ktls_free_mext_contig; 2168 } else { 2169 for (i = 0; i < m->m_epg_npgs; i++) 2170 m->m_epg_pa[i] = parray[i]; 2171 2172 /* Use the basic free routine. */ 2173 m->m_ext.ext_free = mb_free_mext_pgs; 2174 } 2175 2176 /* Pages are now writable. */ 2177 m->m_epg_flags |= EPG_FLAG_ANON; 2178 } 2179 if (error) { 2180 counter_u64_add(ktls_offload_failed_crypto, 1); 2181 break; 2182 } 2183 2184 npages += m->m_epg_nrdy; 2185 2186 /* 2187 * Drop a reference to the session now that it is no 2188 * longer needed. Existing code depends on encrypted 2189 * records having no associated session vs 2190 * yet-to-be-encrypted records having an associated 2191 * session. 2192 */ 2193 m->m_epg_tls = NULL; 2194 ktls_free(tls); 2195 } 2196 2197 CURVNET_SET(so->so_vnet); 2198 if (error == 0) { 2199 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2200 } else { 2201 so->so_proto->pr_usrreqs->pru_abort(so); 2202 so->so_error = EIO; 2203 mb_free_notready(top, total_pages); 2204 } 2205 2206 SOCK_LOCK(so); 2207 sorele(so); 2208 CURVNET_RESTORE(); 2209 } 2210 2211 static void 2212 ktls_alloc_thread(void *ctx) 2213 { 2214 struct ktls_domain_info *ktls_domain = ctx; 2215 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2216 void **buf; 2217 struct sysctl_oid *oid; 2218 char name[80]; 2219 int i, nbufs; 2220 2221 curthread->td_domain.dr_policy = 2222 DOMAINSET_PREF(PCPU_GET(domain)); 2223 snprintf(name, sizeof(name), "domain%d", PCPU_GET(domain)); 2224 if (bootverbose) 2225 printf("Starting KTLS alloc thread for domain %d\n", 2226 PCPU_GET(domain)); 2227 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2228 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2229 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2230 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2231 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2232 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2233 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2234 CTLFLAG_RD, &sc->running, 0, "thread running"); 2235 2236 buf = NULL; 2237 nbufs = 0; 2238 for (;;) { 2239 atomic_store_int(&sc->running, 0); 2240 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2241 atomic_store_int(&sc->running, 1); 2242 sc->wakeups++; 2243 if (nbufs != ktls_max_alloc) { 2244 free(buf, M_KTLS); 2245 nbufs = atomic_load_int(&ktls_max_alloc); 2246 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2247 M_WAITOK | M_ZERO); 2248 } 2249 /* 2250 * Below we allocate nbufs with different allocation 2251 * flags than we use when allocating normally during 2252 * encryption in the ktls worker thread. We specify 2253 * M_NORECLAIM in the worker thread. However, we omit 2254 * that flag here and add M_WAITOK so that the VM 2255 * system is permitted to perform expensive work to 2256 * defragment memory. We do this here, as it does not 2257 * matter if this thread blocks. If we block a ktls 2258 * worker thread, we risk developing backlogs of 2259 * buffers to be encrypted, leading to surges of 2260 * traffic and potential NIC output drops. 2261 */ 2262 for (i = 0; i < nbufs; i++) { 2263 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2264 sc->allocs++; 2265 } 2266 for (i = 0; i < nbufs; i++) { 2267 uma_zfree(ktls_buffer_zone, buf[i]); 2268 buf[i] = NULL; 2269 } 2270 } 2271 } 2272 2273 static void 2274 ktls_work_thread(void *ctx) 2275 { 2276 struct ktls_wq *wq = ctx; 2277 struct mbuf *m, *n; 2278 struct socket *so, *son; 2279 STAILQ_HEAD(, mbuf) local_m_head; 2280 STAILQ_HEAD(, socket) local_so_head; 2281 2282 if (ktls_bind_threads > 1) { 2283 curthread->td_domain.dr_policy = 2284 DOMAINSET_PREF(PCPU_GET(domain)); 2285 } 2286 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2287 fpu_kern_thread(0); 2288 #endif 2289 for (;;) { 2290 mtx_lock(&wq->mtx); 2291 while (STAILQ_EMPTY(&wq->m_head) && 2292 STAILQ_EMPTY(&wq->so_head)) { 2293 wq->running = false; 2294 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2295 wq->running = true; 2296 } 2297 2298 STAILQ_INIT(&local_m_head); 2299 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2300 STAILQ_INIT(&local_so_head); 2301 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2302 mtx_unlock(&wq->mtx); 2303 2304 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2305 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2306 ktls_free(m->m_epg_tls); 2307 m_free_raw(m); 2308 } else { 2309 ktls_encrypt(wq, m); 2310 counter_u64_add(ktls_cnt_tx_queued, -1); 2311 } 2312 } 2313 2314 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2315 ktls_decrypt(so); 2316 counter_u64_add(ktls_cnt_rx_queued, -1); 2317 } 2318 } 2319 } 2320 2321 #if defined(INET) || defined(INET6) 2322 static void 2323 ktls_disable_ifnet_help(void *context, int pending __unused) 2324 { 2325 struct ktls_session *tls; 2326 struct inpcb *inp; 2327 struct tcpcb *tp; 2328 struct socket *so; 2329 int err; 2330 2331 tls = context; 2332 inp = tls->inp; 2333 if (inp == NULL) 2334 return; 2335 INP_WLOCK(inp); 2336 so = inp->inp_socket; 2337 MPASS(so != NULL); 2338 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2339 (inp->inp_flags2 & INP_FREED)) { 2340 goto out; 2341 } 2342 2343 if (so->so_snd.sb_tls_info != NULL) 2344 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2345 else 2346 err = ENXIO; 2347 if (err == 0) { 2348 counter_u64_add(ktls_ifnet_disable_ok, 1); 2349 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2350 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2351 (inp->inp_flags2 & INP_FREED) == 0 && 2352 (tp = intotcpcb(inp)) != NULL && 2353 tp->t_fb->tfb_hwtls_change != NULL) 2354 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2355 } else { 2356 counter_u64_add(ktls_ifnet_disable_fail, 1); 2357 } 2358 2359 out: 2360 SOCK_LOCK(so); 2361 sorele(so); 2362 if (!in_pcbrele_wlocked(inp)) 2363 INP_WUNLOCK(inp); 2364 ktls_free(tls); 2365 } 2366 2367 /* 2368 * Called when re-transmits are becoming a substantial portion of the 2369 * sends on this connection. When this happens, we transition the 2370 * connection to software TLS. This is needed because most inline TLS 2371 * NICs keep crypto state only for in-order transmits. This means 2372 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2373 * re-DMA the entire TLS record up to and including the current 2374 * segment. This means that when re-transmitting the last ~1448 byte 2375 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2376 * of magnitude more data than we are sending. This can cause the 2377 * PCIe link to saturate well before the network, which can cause 2378 * output drops, and a general loss of capacity. 2379 */ 2380 void 2381 ktls_disable_ifnet(void *arg) 2382 { 2383 struct tcpcb *tp; 2384 struct inpcb *inp; 2385 struct socket *so; 2386 struct ktls_session *tls; 2387 2388 tp = arg; 2389 inp = tp->t_inpcb; 2390 INP_WLOCK_ASSERT(inp); 2391 so = inp->inp_socket; 2392 SOCK_LOCK(so); 2393 tls = so->so_snd.sb_tls_info; 2394 if (tls->disable_ifnet_pending) { 2395 SOCK_UNLOCK(so); 2396 return; 2397 } 2398 2399 /* 2400 * note that disable_ifnet_pending is never cleared; disabling 2401 * ifnet can only be done once per session, so we never want 2402 * to do it again 2403 */ 2404 2405 (void)ktls_hold(tls); 2406 in_pcbref(inp); 2407 soref(so); 2408 tls->disable_ifnet_pending = true; 2409 tls->inp = inp; 2410 SOCK_UNLOCK(so); 2411 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2412 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2413 } 2414 #endif 2415