1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 switch (en->tls_vminor) { 555 case TLS_MINOR_VER_TWO: 556 if (en->iv_len != TLS_AEAD_GCM_LEN) 557 return (EINVAL); 558 break; 559 case TLS_MINOR_VER_THREE: 560 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 561 return (EINVAL); 562 break; 563 default: 564 return (EINVAL); 565 } 566 break; 567 case CRYPTO_AES_CBC: 568 switch (en->auth_algorithm) { 569 case CRYPTO_SHA1_HMAC: 570 break; 571 case CRYPTO_SHA2_256_HMAC: 572 case CRYPTO_SHA2_384_HMAC: 573 if (en->tls_vminor != TLS_MINOR_VER_TWO) 574 return (EINVAL); 575 break; 576 default: 577 return (EINVAL); 578 } 579 if (en->auth_key_len == 0) 580 return (EINVAL); 581 582 /* 583 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 584 * use explicit IVs. 585 */ 586 switch (en->tls_vminor) { 587 case TLS_MINOR_VER_ZERO: 588 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 589 return (EINVAL); 590 break; 591 case TLS_MINOR_VER_ONE: 592 case TLS_MINOR_VER_TWO: 593 /* Ignore any supplied IV. */ 594 en->iv_len = 0; 595 break; 596 default: 597 return (EINVAL); 598 } 599 break; 600 case CRYPTO_CHACHA20_POLY1305: 601 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 602 return (EINVAL); 603 if (en->tls_vminor != TLS_MINOR_VER_TWO && 604 en->tls_vminor != TLS_MINOR_VER_THREE) 605 return (EINVAL); 606 if (en->iv_len != TLS_CHACHA20_IV_LEN) 607 return (EINVAL); 608 break; 609 default: 610 return (EINVAL); 611 } 612 613 error = ktls_start_kthreads(); 614 if (error != 0) 615 return (error); 616 617 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 618 619 counter_u64_add(ktls_offload_active, 1); 620 621 refcount_init(&tls->refcount, 1); 622 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 623 624 tls->wq_index = ktls_get_cpu(so); 625 626 tls->params.cipher_algorithm = en->cipher_algorithm; 627 tls->params.auth_algorithm = en->auth_algorithm; 628 tls->params.tls_vmajor = en->tls_vmajor; 629 tls->params.tls_vminor = en->tls_vminor; 630 tls->params.flags = en->flags; 631 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 632 633 /* Set the header and trailer lengths. */ 634 tls->params.tls_hlen = sizeof(struct tls_record_layer); 635 switch (en->cipher_algorithm) { 636 case CRYPTO_AES_NIST_GCM_16: 637 /* 638 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 639 * nonce. TLS 1.3 uses a 12 byte implicit IV. 640 */ 641 if (en->tls_vminor < TLS_MINOR_VER_THREE) 642 tls->params.tls_hlen += sizeof(uint64_t); 643 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 644 tls->params.tls_bs = 1; 645 break; 646 case CRYPTO_AES_CBC: 647 switch (en->auth_algorithm) { 648 case CRYPTO_SHA1_HMAC: 649 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 650 /* Implicit IV, no nonce. */ 651 tls->sequential_records = true; 652 tls->next_seqno = be64dec(en->rec_seq); 653 STAILQ_INIT(&tls->pending_records); 654 } else { 655 tls->params.tls_hlen += AES_BLOCK_LEN; 656 } 657 tls->params.tls_tlen = AES_BLOCK_LEN + 658 SHA1_HASH_LEN; 659 break; 660 case CRYPTO_SHA2_256_HMAC: 661 tls->params.tls_hlen += AES_BLOCK_LEN; 662 tls->params.tls_tlen = AES_BLOCK_LEN + 663 SHA2_256_HASH_LEN; 664 break; 665 case CRYPTO_SHA2_384_HMAC: 666 tls->params.tls_hlen += AES_BLOCK_LEN; 667 tls->params.tls_tlen = AES_BLOCK_LEN + 668 SHA2_384_HASH_LEN; 669 break; 670 default: 671 panic("invalid hmac"); 672 } 673 tls->params.tls_bs = AES_BLOCK_LEN; 674 break; 675 case CRYPTO_CHACHA20_POLY1305: 676 /* 677 * Chacha20 uses a 12 byte implicit IV. 678 */ 679 tls->params.tls_tlen = POLY1305_HASH_LEN; 680 tls->params.tls_bs = 1; 681 break; 682 default: 683 panic("invalid cipher"); 684 } 685 686 /* 687 * TLS 1.3 includes optional padding which we do not support, 688 * and also puts the "real" record type at the end of the 689 * encrypted data. 690 */ 691 if (en->tls_vminor == TLS_MINOR_VER_THREE) 692 tls->params.tls_tlen += sizeof(uint8_t); 693 694 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 695 ("TLS header length too long: %d", tls->params.tls_hlen)); 696 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 697 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 698 699 if (en->auth_key_len != 0) { 700 tls->params.auth_key_len = en->auth_key_len; 701 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 702 M_WAITOK); 703 error = copyin(en->auth_key, tls->params.auth_key, 704 en->auth_key_len); 705 if (error) 706 goto out; 707 } 708 709 tls->params.cipher_key_len = en->cipher_key_len; 710 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 711 error = copyin(en->cipher_key, tls->params.cipher_key, 712 en->cipher_key_len); 713 if (error) 714 goto out; 715 716 /* 717 * This holds the implicit portion of the nonce for AEAD 718 * ciphers and the initial implicit IV for TLS 1.0. The 719 * explicit portions of the IV are generated in ktls_frame(). 720 */ 721 if (en->iv_len != 0) { 722 tls->params.iv_len = en->iv_len; 723 error = copyin(en->iv, tls->params.iv, en->iv_len); 724 if (error) 725 goto out; 726 727 /* 728 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 729 * counter to generate unique explicit IVs. 730 * 731 * Store this counter in the last 8 bytes of the IV 732 * array so that it is 8-byte aligned. 733 */ 734 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 735 en->tls_vminor == TLS_MINOR_VER_TWO) 736 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 737 } 738 739 *tlsp = tls; 740 return (0); 741 742 out: 743 ktls_cleanup(tls); 744 return (error); 745 } 746 747 static struct ktls_session * 748 ktls_clone_session(struct ktls_session *tls) 749 { 750 struct ktls_session *tls_new; 751 752 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 753 754 counter_u64_add(ktls_offload_active, 1); 755 756 refcount_init(&tls_new->refcount, 1); 757 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 758 759 /* Copy fields from existing session. */ 760 tls_new->params = tls->params; 761 tls_new->wq_index = tls->wq_index; 762 763 /* Deep copy keys. */ 764 if (tls_new->params.auth_key != NULL) { 765 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 766 M_KTLS, M_WAITOK); 767 memcpy(tls_new->params.auth_key, tls->params.auth_key, 768 tls->params.auth_key_len); 769 } 770 771 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 772 M_WAITOK); 773 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 774 tls->params.cipher_key_len); 775 776 return (tls_new); 777 } 778 #endif 779 780 static void 781 ktls_cleanup(struct ktls_session *tls) 782 { 783 784 counter_u64_add(ktls_offload_active, -1); 785 switch (tls->mode) { 786 case TCP_TLS_MODE_SW: 787 switch (tls->params.cipher_algorithm) { 788 case CRYPTO_AES_CBC: 789 counter_u64_add(ktls_sw_cbc, -1); 790 break; 791 case CRYPTO_AES_NIST_GCM_16: 792 counter_u64_add(ktls_sw_gcm, -1); 793 break; 794 case CRYPTO_CHACHA20_POLY1305: 795 counter_u64_add(ktls_sw_chacha20, -1); 796 break; 797 } 798 break; 799 case TCP_TLS_MODE_IFNET: 800 switch (tls->params.cipher_algorithm) { 801 case CRYPTO_AES_CBC: 802 counter_u64_add(ktls_ifnet_cbc, -1); 803 break; 804 case CRYPTO_AES_NIST_GCM_16: 805 counter_u64_add(ktls_ifnet_gcm, -1); 806 break; 807 case CRYPTO_CHACHA20_POLY1305: 808 counter_u64_add(ktls_ifnet_chacha20, -1); 809 break; 810 } 811 if (tls->snd_tag != NULL) 812 m_snd_tag_rele(tls->snd_tag); 813 break; 814 #ifdef TCP_OFFLOAD 815 case TCP_TLS_MODE_TOE: 816 switch (tls->params.cipher_algorithm) { 817 case CRYPTO_AES_CBC: 818 counter_u64_add(ktls_toe_cbc, -1); 819 break; 820 case CRYPTO_AES_NIST_GCM_16: 821 counter_u64_add(ktls_toe_gcm, -1); 822 break; 823 case CRYPTO_CHACHA20_POLY1305: 824 counter_u64_add(ktls_toe_chacha20, -1); 825 break; 826 } 827 break; 828 #endif 829 } 830 if (tls->ocf_session != NULL) 831 ktls_ocf_free(tls); 832 if (tls->params.auth_key != NULL) { 833 zfree(tls->params.auth_key, M_KTLS); 834 tls->params.auth_key = NULL; 835 tls->params.auth_key_len = 0; 836 } 837 if (tls->params.cipher_key != NULL) { 838 zfree(tls->params.cipher_key, M_KTLS); 839 tls->params.cipher_key = NULL; 840 tls->params.cipher_key_len = 0; 841 } 842 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 843 } 844 845 #if defined(INET) || defined(INET6) 846 847 #ifdef TCP_OFFLOAD 848 static int 849 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 850 { 851 struct inpcb *inp; 852 struct tcpcb *tp; 853 int error; 854 855 inp = so->so_pcb; 856 INP_WLOCK(inp); 857 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 858 INP_WUNLOCK(inp); 859 return (ECONNRESET); 860 } 861 if (inp->inp_socket == NULL) { 862 INP_WUNLOCK(inp); 863 return (ECONNRESET); 864 } 865 tp = intotcpcb(inp); 866 if (!(tp->t_flags & TF_TOE)) { 867 INP_WUNLOCK(inp); 868 return (EOPNOTSUPP); 869 } 870 871 error = tcp_offload_alloc_tls_session(tp, tls, direction); 872 INP_WUNLOCK(inp); 873 if (error == 0) { 874 tls->mode = TCP_TLS_MODE_TOE; 875 switch (tls->params.cipher_algorithm) { 876 case CRYPTO_AES_CBC: 877 counter_u64_add(ktls_toe_cbc, 1); 878 break; 879 case CRYPTO_AES_NIST_GCM_16: 880 counter_u64_add(ktls_toe_gcm, 1); 881 break; 882 case CRYPTO_CHACHA20_POLY1305: 883 counter_u64_add(ktls_toe_chacha20, 1); 884 break; 885 } 886 } 887 return (error); 888 } 889 #endif 890 891 /* 892 * Common code used when first enabling ifnet TLS on a connection or 893 * when allocating a new ifnet TLS session due to a routing change. 894 * This function allocates a new TLS send tag on whatever interface 895 * the connection is currently routed over. 896 */ 897 static int 898 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 899 struct m_snd_tag **mstp) 900 { 901 union if_snd_tag_alloc_params params; 902 struct ifnet *ifp; 903 struct nhop_object *nh; 904 struct tcpcb *tp; 905 int error; 906 907 INP_RLOCK(inp); 908 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 909 INP_RUNLOCK(inp); 910 return (ECONNRESET); 911 } 912 if (inp->inp_socket == NULL) { 913 INP_RUNLOCK(inp); 914 return (ECONNRESET); 915 } 916 tp = intotcpcb(inp); 917 918 /* 919 * Check administrative controls on ifnet TLS to determine if 920 * ifnet TLS should be denied. 921 * 922 * - Always permit 'force' requests. 923 * - ktls_ifnet_permitted == 0: always deny. 924 */ 925 if (!force && ktls_ifnet_permitted == 0) { 926 INP_RUNLOCK(inp); 927 return (ENXIO); 928 } 929 930 /* 931 * XXX: Use the cached route in the inpcb to find the 932 * interface. This should perhaps instead use 933 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 934 * enabled after a connection has completed key negotiation in 935 * userland, the cached route will be present in practice. 936 */ 937 nh = inp->inp_route.ro_nh; 938 if (nh == NULL) { 939 INP_RUNLOCK(inp); 940 return (ENXIO); 941 } 942 ifp = nh->nh_ifp; 943 if_ref(ifp); 944 945 /* 946 * Allocate a TLS + ratelimit tag if the connection has an 947 * existing pacing rate. 948 */ 949 if (tp->t_pacing_rate != -1 && 950 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 951 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 952 params.tls_rate_limit.inp = inp; 953 params.tls_rate_limit.tls = tls; 954 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 955 } else { 956 params.hdr.type = IF_SND_TAG_TYPE_TLS; 957 params.tls.inp = inp; 958 params.tls.tls = tls; 959 } 960 params.hdr.flowid = inp->inp_flowid; 961 params.hdr.flowtype = inp->inp_flowtype; 962 params.hdr.numa_domain = inp->inp_numa_domain; 963 INP_RUNLOCK(inp); 964 965 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 966 error = EOPNOTSUPP; 967 goto out; 968 } 969 if (inp->inp_vflag & INP_IPV6) { 970 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 971 error = EOPNOTSUPP; 972 goto out; 973 } 974 } else { 975 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 976 error = EOPNOTSUPP; 977 goto out; 978 } 979 } 980 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 981 out: 982 if_rele(ifp); 983 return (error); 984 } 985 986 static int 987 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 988 { 989 struct m_snd_tag *mst; 990 int error; 991 992 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 993 if (error == 0) { 994 tls->mode = TCP_TLS_MODE_IFNET; 995 tls->snd_tag = mst; 996 switch (tls->params.cipher_algorithm) { 997 case CRYPTO_AES_CBC: 998 counter_u64_add(ktls_ifnet_cbc, 1); 999 break; 1000 case CRYPTO_AES_NIST_GCM_16: 1001 counter_u64_add(ktls_ifnet_gcm, 1); 1002 break; 1003 case CRYPTO_CHACHA20_POLY1305: 1004 counter_u64_add(ktls_ifnet_chacha20, 1); 1005 break; 1006 } 1007 } 1008 return (error); 1009 } 1010 1011 static void 1012 ktls_use_sw(struct ktls_session *tls) 1013 { 1014 tls->mode = TCP_TLS_MODE_SW; 1015 switch (tls->params.cipher_algorithm) { 1016 case CRYPTO_AES_CBC: 1017 counter_u64_add(ktls_sw_cbc, 1); 1018 break; 1019 case CRYPTO_AES_NIST_GCM_16: 1020 counter_u64_add(ktls_sw_gcm, 1); 1021 break; 1022 case CRYPTO_CHACHA20_POLY1305: 1023 counter_u64_add(ktls_sw_chacha20, 1); 1024 break; 1025 } 1026 } 1027 1028 static int 1029 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1030 { 1031 int error; 1032 1033 error = ktls_ocf_try(so, tls, direction); 1034 if (error) 1035 return (error); 1036 ktls_use_sw(tls); 1037 return (0); 1038 } 1039 1040 /* 1041 * KTLS RX stores data in the socket buffer as a list of TLS records, 1042 * where each record is stored as a control message containg the TLS 1043 * header followed by data mbufs containing the decrypted data. This 1044 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1045 * both encrypted and decrypted data. TLS records decrypted by a NIC 1046 * should be queued to the socket buffer as records, but encrypted 1047 * data which needs to be decrypted by software arrives as a stream of 1048 * regular mbufs which need to be converted. In addition, there may 1049 * already be pending encrypted data in the socket buffer when KTLS RX 1050 * is enabled. 1051 * 1052 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1053 * is used: 1054 * 1055 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1056 * 1057 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1058 * from the first mbuf. Once all of the data for that TLS record is 1059 * queued, the socket is queued to a worker thread. 1060 * 1061 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1062 * the TLS chain. Each TLS record is detached from the TLS chain, 1063 * decrypted, and inserted into the regular socket buffer chain as 1064 * record starting with a control message holding the TLS header and 1065 * a chain of mbufs holding the encrypted data. 1066 */ 1067 1068 static void 1069 sb_mark_notready(struct sockbuf *sb) 1070 { 1071 struct mbuf *m; 1072 1073 m = sb->sb_mb; 1074 sb->sb_mtls = m; 1075 sb->sb_mb = NULL; 1076 sb->sb_mbtail = NULL; 1077 sb->sb_lastrecord = NULL; 1078 for (; m != NULL; m = m->m_next) { 1079 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1080 __func__)); 1081 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1082 __func__)); 1083 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1084 __func__)); 1085 m->m_flags |= M_NOTREADY; 1086 sb->sb_acc -= m->m_len; 1087 sb->sb_tlscc += m->m_len; 1088 sb->sb_mtlstail = m; 1089 } 1090 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1091 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1092 sb->sb_ccc)); 1093 } 1094 1095 /* 1096 * Return information about the pending TLS data in a socket 1097 * buffer. On return, 'seqno' is set to the sequence number 1098 * of the next TLS record to be received, 'resid' is set to 1099 * the amount of bytes still needed for the last pending 1100 * record. The function returns 'false' if the last pending 1101 * record contains a partial TLS header. In that case, 'resid' 1102 * is the number of bytes needed to complete the TLS header. 1103 */ 1104 bool 1105 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1106 { 1107 struct tls_record_layer hdr; 1108 struct mbuf *m; 1109 uint64_t seqno; 1110 size_t resid; 1111 u_int offset, record_len; 1112 1113 SOCKBUF_LOCK_ASSERT(sb); 1114 MPASS(sb->sb_flags & SB_TLS_RX); 1115 seqno = sb->sb_tls_seqno; 1116 resid = sb->sb_tlscc; 1117 m = sb->sb_mtls; 1118 offset = 0; 1119 1120 if (resid == 0) { 1121 *seqnop = seqno; 1122 *residp = 0; 1123 return (true); 1124 } 1125 1126 for (;;) { 1127 seqno++; 1128 1129 if (resid < sizeof(hdr)) { 1130 *seqnop = seqno; 1131 *residp = sizeof(hdr) - resid; 1132 return (false); 1133 } 1134 1135 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1136 1137 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1138 if (resid <= record_len) { 1139 *seqnop = seqno; 1140 *residp = record_len - resid; 1141 return (true); 1142 } 1143 resid -= record_len; 1144 1145 while (record_len != 0) { 1146 if (m->m_len - offset > record_len) { 1147 offset += record_len; 1148 break; 1149 } 1150 1151 record_len -= (m->m_len - offset); 1152 offset = 0; 1153 m = m->m_next; 1154 } 1155 } 1156 } 1157 1158 int 1159 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1160 { 1161 struct ktls_session *tls; 1162 int error; 1163 1164 if (!ktls_offload_enable) 1165 return (ENOTSUP); 1166 if (SOLISTENING(so)) 1167 return (EINVAL); 1168 1169 counter_u64_add(ktls_offload_enable_calls, 1); 1170 1171 /* 1172 * This should always be true since only the TCP socket option 1173 * invokes this function. 1174 */ 1175 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1176 return (EINVAL); 1177 1178 /* 1179 * XXX: Don't overwrite existing sessions. We should permit 1180 * this to support rekeying in the future. 1181 */ 1182 if (so->so_rcv.sb_tls_info != NULL) 1183 return (EALREADY); 1184 1185 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1186 return (ENOTSUP); 1187 1188 error = ktls_create_session(so, en, &tls); 1189 if (error) 1190 return (error); 1191 1192 error = ktls_ocf_try(so, tls, KTLS_RX); 1193 if (error) { 1194 ktls_cleanup(tls); 1195 return (error); 1196 } 1197 1198 /* Mark the socket as using TLS offload. */ 1199 SOCKBUF_LOCK(&so->so_rcv); 1200 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1201 so->so_rcv.sb_tls_info = tls; 1202 so->so_rcv.sb_flags |= SB_TLS_RX; 1203 1204 /* Mark existing data as not ready until it can be decrypted. */ 1205 sb_mark_notready(&so->so_rcv); 1206 ktls_check_rx(&so->so_rcv); 1207 SOCKBUF_UNLOCK(&so->so_rcv); 1208 1209 #ifdef TCP_OFFLOAD 1210 error = ktls_try_toe(so, tls, KTLS_RX); 1211 if (error) 1212 #endif 1213 ktls_use_sw(tls); 1214 1215 counter_u64_add(ktls_offload_total, 1); 1216 1217 return (0); 1218 } 1219 1220 int 1221 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1222 { 1223 struct ktls_session *tls; 1224 struct inpcb *inp; 1225 int error; 1226 1227 if (!ktls_offload_enable) 1228 return (ENOTSUP); 1229 if (SOLISTENING(so)) 1230 return (EINVAL); 1231 1232 counter_u64_add(ktls_offload_enable_calls, 1); 1233 1234 /* 1235 * This should always be true since only the TCP socket option 1236 * invokes this function. 1237 */ 1238 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1239 return (EINVAL); 1240 1241 /* 1242 * XXX: Don't overwrite existing sessions. We should permit 1243 * this to support rekeying in the future. 1244 */ 1245 if (so->so_snd.sb_tls_info != NULL) 1246 return (EALREADY); 1247 1248 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1249 return (ENOTSUP); 1250 1251 /* TLS requires ext pgs */ 1252 if (mb_use_ext_pgs == 0) 1253 return (ENXIO); 1254 1255 error = ktls_create_session(so, en, &tls); 1256 if (error) 1257 return (error); 1258 1259 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1260 #ifdef TCP_OFFLOAD 1261 error = ktls_try_toe(so, tls, KTLS_TX); 1262 if (error) 1263 #endif 1264 error = ktls_try_ifnet(so, tls, false); 1265 if (error) 1266 error = ktls_try_sw(so, tls, KTLS_TX); 1267 1268 if (error) { 1269 ktls_cleanup(tls); 1270 return (error); 1271 } 1272 1273 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1274 if (error) { 1275 ktls_cleanup(tls); 1276 return (error); 1277 } 1278 1279 /* 1280 * Write lock the INP when setting sb_tls_info so that 1281 * routines in tcp_ratelimit.c can read sb_tls_info while 1282 * holding the INP lock. 1283 */ 1284 inp = so->so_pcb; 1285 INP_WLOCK(inp); 1286 SOCKBUF_LOCK(&so->so_snd); 1287 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1288 so->so_snd.sb_tls_info = tls; 1289 if (tls->mode != TCP_TLS_MODE_SW) 1290 so->so_snd.sb_flags |= SB_TLS_IFNET; 1291 SOCKBUF_UNLOCK(&so->so_snd); 1292 INP_WUNLOCK(inp); 1293 SOCK_IO_SEND_UNLOCK(so); 1294 1295 counter_u64_add(ktls_offload_total, 1); 1296 1297 return (0); 1298 } 1299 1300 int 1301 ktls_get_rx_mode(struct socket *so, int *modep) 1302 { 1303 struct ktls_session *tls; 1304 struct inpcb *inp __diagused; 1305 1306 if (SOLISTENING(so)) 1307 return (EINVAL); 1308 inp = so->so_pcb; 1309 INP_WLOCK_ASSERT(inp); 1310 SOCK_RECVBUF_LOCK(so); 1311 tls = so->so_rcv.sb_tls_info; 1312 if (tls == NULL) 1313 *modep = TCP_TLS_MODE_NONE; 1314 else 1315 *modep = tls->mode; 1316 SOCK_RECVBUF_UNLOCK(so); 1317 return (0); 1318 } 1319 1320 /* 1321 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1322 * 1323 * This function gets information about the next TCP- and TLS- 1324 * sequence number to be processed by the TLS receive worker 1325 * thread. The information is extracted from the given "inpcb" 1326 * structure. The values are stored in host endian format at the two 1327 * given output pointer locations. The TCP sequence number points to 1328 * the beginning of the TLS header. 1329 * 1330 * This function returns zero on success, else a non-zero error code 1331 * is returned. 1332 */ 1333 int 1334 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1335 { 1336 struct socket *so; 1337 struct tcpcb *tp; 1338 1339 INP_RLOCK(inp); 1340 so = inp->inp_socket; 1341 if (__predict_false(so == NULL)) { 1342 INP_RUNLOCK(inp); 1343 return (EINVAL); 1344 } 1345 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1346 INP_RUNLOCK(inp); 1347 return (ECONNRESET); 1348 } 1349 1350 tp = intotcpcb(inp); 1351 MPASS(tp != NULL); 1352 1353 SOCKBUF_LOCK(&so->so_rcv); 1354 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1355 *tlsseq = so->so_rcv.sb_tls_seqno; 1356 SOCKBUF_UNLOCK(&so->so_rcv); 1357 1358 INP_RUNLOCK(inp); 1359 1360 return (0); 1361 } 1362 1363 int 1364 ktls_get_tx_mode(struct socket *so, int *modep) 1365 { 1366 struct ktls_session *tls; 1367 struct inpcb *inp __diagused; 1368 1369 if (SOLISTENING(so)) 1370 return (EINVAL); 1371 inp = so->so_pcb; 1372 INP_WLOCK_ASSERT(inp); 1373 SOCK_SENDBUF_LOCK(so); 1374 tls = so->so_snd.sb_tls_info; 1375 if (tls == NULL) 1376 *modep = TCP_TLS_MODE_NONE; 1377 else 1378 *modep = tls->mode; 1379 SOCK_SENDBUF_UNLOCK(so); 1380 return (0); 1381 } 1382 1383 /* 1384 * Switch between SW and ifnet TLS sessions as requested. 1385 */ 1386 int 1387 ktls_set_tx_mode(struct socket *so, int mode) 1388 { 1389 struct ktls_session *tls, *tls_new; 1390 struct inpcb *inp; 1391 int error; 1392 1393 if (SOLISTENING(so)) 1394 return (EINVAL); 1395 switch (mode) { 1396 case TCP_TLS_MODE_SW: 1397 case TCP_TLS_MODE_IFNET: 1398 break; 1399 default: 1400 return (EINVAL); 1401 } 1402 1403 inp = so->so_pcb; 1404 INP_WLOCK_ASSERT(inp); 1405 SOCKBUF_LOCK(&so->so_snd); 1406 tls = so->so_snd.sb_tls_info; 1407 if (tls == NULL) { 1408 SOCKBUF_UNLOCK(&so->so_snd); 1409 return (0); 1410 } 1411 1412 if (tls->mode == mode) { 1413 SOCKBUF_UNLOCK(&so->so_snd); 1414 return (0); 1415 } 1416 1417 tls = ktls_hold(tls); 1418 SOCKBUF_UNLOCK(&so->so_snd); 1419 INP_WUNLOCK(inp); 1420 1421 tls_new = ktls_clone_session(tls); 1422 1423 if (mode == TCP_TLS_MODE_IFNET) 1424 error = ktls_try_ifnet(so, tls_new, true); 1425 else 1426 error = ktls_try_sw(so, tls_new, KTLS_TX); 1427 if (error) { 1428 counter_u64_add(ktls_switch_failed, 1); 1429 ktls_free(tls_new); 1430 ktls_free(tls); 1431 INP_WLOCK(inp); 1432 return (error); 1433 } 1434 1435 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1436 if (error) { 1437 counter_u64_add(ktls_switch_failed, 1); 1438 ktls_free(tls_new); 1439 ktls_free(tls); 1440 INP_WLOCK(inp); 1441 return (error); 1442 } 1443 1444 /* 1445 * If we raced with another session change, keep the existing 1446 * session. 1447 */ 1448 if (tls != so->so_snd.sb_tls_info) { 1449 counter_u64_add(ktls_switch_failed, 1); 1450 SOCK_IO_SEND_UNLOCK(so); 1451 ktls_free(tls_new); 1452 ktls_free(tls); 1453 INP_WLOCK(inp); 1454 return (EBUSY); 1455 } 1456 1457 INP_WLOCK(inp); 1458 SOCKBUF_LOCK(&so->so_snd); 1459 so->so_snd.sb_tls_info = tls_new; 1460 if (tls_new->mode != TCP_TLS_MODE_SW) 1461 so->so_snd.sb_flags |= SB_TLS_IFNET; 1462 SOCKBUF_UNLOCK(&so->so_snd); 1463 SOCK_IO_SEND_UNLOCK(so); 1464 1465 /* 1466 * Drop two references on 'tls'. The first is for the 1467 * ktls_hold() above. The second drops the reference from the 1468 * socket buffer. 1469 */ 1470 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1471 ktls_free(tls); 1472 ktls_free(tls); 1473 1474 if (mode == TCP_TLS_MODE_IFNET) 1475 counter_u64_add(ktls_switch_to_ifnet, 1); 1476 else 1477 counter_u64_add(ktls_switch_to_sw, 1); 1478 1479 return (0); 1480 } 1481 1482 /* 1483 * Try to allocate a new TLS send tag. This task is scheduled when 1484 * ip_output detects a route change while trying to transmit a packet 1485 * holding a TLS record. If a new tag is allocated, replace the tag 1486 * in the TLS session. Subsequent packets on the connection will use 1487 * the new tag. If a new tag cannot be allocated, drop the 1488 * connection. 1489 */ 1490 static void 1491 ktls_reset_send_tag(void *context, int pending) 1492 { 1493 struct epoch_tracker et; 1494 struct ktls_session *tls; 1495 struct m_snd_tag *old, *new; 1496 struct inpcb *inp; 1497 struct tcpcb *tp; 1498 int error; 1499 1500 MPASS(pending == 1); 1501 1502 tls = context; 1503 inp = tls->inp; 1504 1505 /* 1506 * Free the old tag first before allocating a new one. 1507 * ip[6]_output_send() will treat a NULL send tag the same as 1508 * an ifp mismatch and drop packets until a new tag is 1509 * allocated. 1510 * 1511 * Write-lock the INP when changing tls->snd_tag since 1512 * ip[6]_output_send() holds a read-lock when reading the 1513 * pointer. 1514 */ 1515 INP_WLOCK(inp); 1516 old = tls->snd_tag; 1517 tls->snd_tag = NULL; 1518 INP_WUNLOCK(inp); 1519 if (old != NULL) 1520 m_snd_tag_rele(old); 1521 1522 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1523 1524 if (error == 0) { 1525 INP_WLOCK(inp); 1526 tls->snd_tag = new; 1527 mtx_pool_lock(mtxpool_sleep, tls); 1528 tls->reset_pending = false; 1529 mtx_pool_unlock(mtxpool_sleep, tls); 1530 if (!in_pcbrele_wlocked(inp)) 1531 INP_WUNLOCK(inp); 1532 1533 counter_u64_add(ktls_ifnet_reset, 1); 1534 1535 /* 1536 * XXX: Should we kick tcp_output explicitly now that 1537 * the send tag is fixed or just rely on timers? 1538 */ 1539 } else { 1540 NET_EPOCH_ENTER(et); 1541 INP_WLOCK(inp); 1542 if (!in_pcbrele_wlocked(inp)) { 1543 if (!(inp->inp_flags & INP_TIMEWAIT) && 1544 !(inp->inp_flags & INP_DROPPED)) { 1545 tp = intotcpcb(inp); 1546 CURVNET_SET(tp->t_vnet); 1547 tp = tcp_drop(tp, ECONNABORTED); 1548 CURVNET_RESTORE(); 1549 if (tp != NULL) 1550 INP_WUNLOCK(inp); 1551 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1552 } else 1553 INP_WUNLOCK(inp); 1554 } 1555 NET_EPOCH_EXIT(et); 1556 1557 counter_u64_add(ktls_ifnet_reset_failed, 1); 1558 1559 /* 1560 * Leave reset_pending true to avoid future tasks while 1561 * the socket goes away. 1562 */ 1563 } 1564 1565 ktls_free(tls); 1566 } 1567 1568 int 1569 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1570 { 1571 1572 if (inp == NULL) 1573 return (ENOBUFS); 1574 1575 INP_LOCK_ASSERT(inp); 1576 1577 /* 1578 * See if we should schedule a task to update the send tag for 1579 * this session. 1580 */ 1581 mtx_pool_lock(mtxpool_sleep, tls); 1582 if (!tls->reset_pending) { 1583 (void) ktls_hold(tls); 1584 in_pcbref(inp); 1585 tls->inp = inp; 1586 tls->reset_pending = true; 1587 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1588 } 1589 mtx_pool_unlock(mtxpool_sleep, tls); 1590 return (ENOBUFS); 1591 } 1592 1593 #ifdef RATELIMIT 1594 int 1595 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1596 { 1597 union if_snd_tag_modify_params params = { 1598 .rate_limit.max_rate = max_pacing_rate, 1599 .rate_limit.flags = M_NOWAIT, 1600 }; 1601 struct m_snd_tag *mst; 1602 1603 /* Can't get to the inp, but it should be locked. */ 1604 /* INP_LOCK_ASSERT(inp); */ 1605 1606 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1607 1608 if (tls->snd_tag == NULL) { 1609 /* 1610 * Resetting send tag, ignore this change. The 1611 * pending reset may or may not see this updated rate 1612 * in the tcpcb. If it doesn't, we will just lose 1613 * this rate change. 1614 */ 1615 return (0); 1616 } 1617 1618 MPASS(tls->snd_tag != NULL); 1619 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1620 1621 mst = tls->snd_tag; 1622 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1623 } 1624 #endif 1625 #endif 1626 1627 void 1628 ktls_destroy(struct ktls_session *tls) 1629 { 1630 1631 if (tls->sequential_records) { 1632 struct mbuf *m, *n; 1633 int page_count; 1634 1635 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1636 page_count = m->m_epg_enc_cnt; 1637 while (page_count > 0) { 1638 KASSERT(page_count >= m->m_epg_nrdy, 1639 ("%s: too few pages", __func__)); 1640 page_count -= m->m_epg_nrdy; 1641 m = m_free(m); 1642 } 1643 } 1644 } 1645 ktls_cleanup(tls); 1646 uma_zfree(ktls_session_zone, tls); 1647 } 1648 1649 void 1650 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1651 { 1652 1653 for (; m != NULL; m = m->m_next) { 1654 KASSERT((m->m_flags & M_EXTPG) != 0, 1655 ("ktls_seq: mapped mbuf %p", m)); 1656 1657 m->m_epg_seqno = sb->sb_tls_seqno; 1658 sb->sb_tls_seqno++; 1659 } 1660 } 1661 1662 /* 1663 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1664 * mbuf in the chain must be an unmapped mbuf. The payload of the 1665 * mbuf must be populated with the payload of each TLS record. 1666 * 1667 * The record_type argument specifies the TLS record type used when 1668 * populating the TLS header. 1669 * 1670 * The enq_count argument on return is set to the number of pages of 1671 * payload data for this entire chain that need to be encrypted via SW 1672 * encryption. The returned value should be passed to ktls_enqueue 1673 * when scheduling encryption of this chain of mbufs. To handle the 1674 * special case of empty fragments for TLS 1.0 sessions, an empty 1675 * fragment counts as one page. 1676 */ 1677 void 1678 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1679 uint8_t record_type) 1680 { 1681 struct tls_record_layer *tlshdr; 1682 struct mbuf *m; 1683 uint64_t *noncep; 1684 uint16_t tls_len; 1685 int maxlen __diagused; 1686 1687 maxlen = tls->params.max_frame_len; 1688 *enq_cnt = 0; 1689 for (m = top; m != NULL; m = m->m_next) { 1690 /* 1691 * All mbufs in the chain should be TLS records whose 1692 * payload does not exceed the maximum frame length. 1693 * 1694 * Empty TLS 1.0 records are permitted when using CBC. 1695 */ 1696 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 1697 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 1698 ("ktls_frame: m %p len %d", m, m->m_len)); 1699 1700 /* 1701 * TLS frames require unmapped mbufs to store session 1702 * info. 1703 */ 1704 KASSERT((m->m_flags & M_EXTPG) != 0, 1705 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 1706 1707 tls_len = m->m_len; 1708 1709 /* Save a reference to the session. */ 1710 m->m_epg_tls = ktls_hold(tls); 1711 1712 m->m_epg_hdrlen = tls->params.tls_hlen; 1713 m->m_epg_trllen = tls->params.tls_tlen; 1714 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1715 int bs, delta; 1716 1717 /* 1718 * AES-CBC pads messages to a multiple of the 1719 * block size. Note that the padding is 1720 * applied after the digest and the encryption 1721 * is done on the "plaintext || mac || padding". 1722 * At least one byte of padding is always 1723 * present. 1724 * 1725 * Compute the final trailer length assuming 1726 * at most one block of padding. 1727 * tls->params.tls_tlen is the maximum 1728 * possible trailer length (padding + digest). 1729 * delta holds the number of excess padding 1730 * bytes if the maximum were used. Those 1731 * extra bytes are removed. 1732 */ 1733 bs = tls->params.tls_bs; 1734 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1735 m->m_epg_trllen -= delta; 1736 } 1737 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1738 1739 /* Populate the TLS header. */ 1740 tlshdr = (void *)m->m_epg_hdr; 1741 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1742 1743 /* 1744 * TLS 1.3 masquarades as TLS 1.2 with a record type 1745 * of TLS_RLTYPE_APP. 1746 */ 1747 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1748 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1749 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1750 tlshdr->tls_type = TLS_RLTYPE_APP; 1751 /* save the real record type for later */ 1752 m->m_epg_record_type = record_type; 1753 m->m_epg_trail[0] = record_type; 1754 } else { 1755 tlshdr->tls_vminor = tls->params.tls_vminor; 1756 tlshdr->tls_type = record_type; 1757 } 1758 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1759 1760 /* 1761 * Store nonces / explicit IVs after the end of the 1762 * TLS header. 1763 * 1764 * For GCM with TLS 1.2, an 8 byte nonce is copied 1765 * from the end of the IV. The nonce is then 1766 * incremented for use by the next record. 1767 * 1768 * For CBC, a random nonce is inserted for TLS 1.1+. 1769 */ 1770 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1771 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1772 noncep = (uint64_t *)(tls->params.iv + 8); 1773 be64enc(tlshdr + 1, *noncep); 1774 (*noncep)++; 1775 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1776 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1777 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1778 1779 /* 1780 * When using SW encryption, mark the mbuf not ready. 1781 * It will be marked ready via sbready() after the 1782 * record has been encrypted. 1783 * 1784 * When using ifnet TLS, unencrypted TLS records are 1785 * sent down the stack to the NIC. 1786 */ 1787 if (tls->mode == TCP_TLS_MODE_SW) { 1788 m->m_flags |= M_NOTREADY; 1789 if (__predict_false(tls_len == 0)) { 1790 /* TLS 1.0 empty fragment. */ 1791 m->m_epg_nrdy = 1; 1792 } else 1793 m->m_epg_nrdy = m->m_epg_npgs; 1794 *enq_cnt += m->m_epg_nrdy; 1795 } 1796 } 1797 } 1798 1799 bool 1800 ktls_permit_empty_frames(struct ktls_session *tls) 1801 { 1802 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1803 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 1804 } 1805 1806 void 1807 ktls_check_rx(struct sockbuf *sb) 1808 { 1809 struct tls_record_layer hdr; 1810 struct ktls_wq *wq; 1811 struct socket *so; 1812 bool running; 1813 1814 SOCKBUF_LOCK_ASSERT(sb); 1815 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1816 __func__, sb)); 1817 so = __containerof(sb, struct socket, so_rcv); 1818 1819 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1820 return; 1821 1822 /* Is there enough queued for a TLS header? */ 1823 if (sb->sb_tlscc < sizeof(hdr)) { 1824 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1825 so->so_error = EMSGSIZE; 1826 return; 1827 } 1828 1829 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1830 1831 /* Is the entire record queued? */ 1832 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1833 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1834 so->so_error = EMSGSIZE; 1835 return; 1836 } 1837 1838 sb->sb_flags |= SB_TLS_RX_RUNNING; 1839 1840 soref(so); 1841 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1842 mtx_lock(&wq->mtx); 1843 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1844 running = wq->running; 1845 mtx_unlock(&wq->mtx); 1846 if (!running) 1847 wakeup(wq); 1848 counter_u64_add(ktls_cnt_rx_queued, 1); 1849 } 1850 1851 static struct mbuf * 1852 ktls_detach_record(struct sockbuf *sb, int len) 1853 { 1854 struct mbuf *m, *n, *top; 1855 int remain; 1856 1857 SOCKBUF_LOCK_ASSERT(sb); 1858 MPASS(len <= sb->sb_tlscc); 1859 1860 /* 1861 * If TLS chain is the exact size of the record, 1862 * just grab the whole record. 1863 */ 1864 top = sb->sb_mtls; 1865 if (sb->sb_tlscc == len) { 1866 sb->sb_mtls = NULL; 1867 sb->sb_mtlstail = NULL; 1868 goto out; 1869 } 1870 1871 /* 1872 * While it would be nice to use m_split() here, we need 1873 * to know exactly what m_split() allocates to update the 1874 * accounting, so do it inline instead. 1875 */ 1876 remain = len; 1877 for (m = top; remain > m->m_len; m = m->m_next) 1878 remain -= m->m_len; 1879 1880 /* Easy case: don't have to split 'm'. */ 1881 if (remain == m->m_len) { 1882 sb->sb_mtls = m->m_next; 1883 if (sb->sb_mtls == NULL) 1884 sb->sb_mtlstail = NULL; 1885 m->m_next = NULL; 1886 goto out; 1887 } 1888 1889 /* 1890 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1891 * with M_NOWAIT first. 1892 */ 1893 n = m_get(M_NOWAIT, MT_DATA); 1894 if (n == NULL) { 1895 /* 1896 * Use M_WAITOK with socket buffer unlocked. If 1897 * 'sb_mtls' changes while the lock is dropped, return 1898 * NULL to force the caller to retry. 1899 */ 1900 SOCKBUF_UNLOCK(sb); 1901 1902 n = m_get(M_WAITOK, MT_DATA); 1903 1904 SOCKBUF_LOCK(sb); 1905 if (sb->sb_mtls != top) { 1906 m_free(n); 1907 return (NULL); 1908 } 1909 } 1910 n->m_flags |= M_NOTREADY; 1911 1912 /* Store remainder in 'n'. */ 1913 n->m_len = m->m_len - remain; 1914 if (m->m_flags & M_EXT) { 1915 n->m_data = m->m_data + remain; 1916 mb_dupcl(n, m); 1917 } else { 1918 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1919 } 1920 1921 /* Trim 'm' and update accounting. */ 1922 m->m_len -= n->m_len; 1923 sb->sb_tlscc -= n->m_len; 1924 sb->sb_ccc -= n->m_len; 1925 1926 /* Account for 'n'. */ 1927 sballoc_ktls_rx(sb, n); 1928 1929 /* Insert 'n' into the TLS chain. */ 1930 sb->sb_mtls = n; 1931 n->m_next = m->m_next; 1932 if (sb->sb_mtlstail == m) 1933 sb->sb_mtlstail = n; 1934 1935 /* Detach the record from the TLS chain. */ 1936 m->m_next = NULL; 1937 1938 out: 1939 MPASS(m_length(top, NULL) == len); 1940 for (m = top; m != NULL; m = m->m_next) 1941 sbfree_ktls_rx(sb, m); 1942 sb->sb_tlsdcc = len; 1943 sb->sb_ccc += len; 1944 SBCHECK(sb); 1945 return (top); 1946 } 1947 1948 /* 1949 * Determine the length of the trailing zero padding and find the real 1950 * record type in the byte before the padding. 1951 * 1952 * Walking the mbuf chain backwards is clumsy, so another option would 1953 * be to scan forwards remembering the last non-zero byte before the 1954 * trailer. However, it would be expensive to scan the entire record. 1955 * Instead, find the last non-zero byte of each mbuf in the chain 1956 * keeping track of the relative offset of that nonzero byte. 1957 * 1958 * trail_len is the size of the MAC/tag on input and is set to the 1959 * size of the full trailer including padding and the record type on 1960 * return. 1961 */ 1962 static int 1963 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 1964 int *trailer_len, uint8_t *record_typep) 1965 { 1966 char *cp; 1967 u_int digest_start, last_offset, m_len, offset; 1968 uint8_t record_type; 1969 1970 digest_start = tls_len - *trailer_len; 1971 last_offset = 0; 1972 offset = 0; 1973 for (; m != NULL && offset < digest_start; 1974 offset += m->m_len, m = m->m_next) { 1975 /* Don't look for padding in the tag. */ 1976 m_len = min(digest_start - offset, m->m_len); 1977 cp = mtod(m, char *); 1978 1979 /* Find last non-zero byte in this mbuf. */ 1980 while (m_len > 0 && cp[m_len - 1] == 0) 1981 m_len--; 1982 if (m_len > 0) { 1983 record_type = cp[m_len - 1]; 1984 last_offset = offset + m_len; 1985 } 1986 } 1987 if (last_offset < tls->params.tls_hlen) 1988 return (EBADMSG); 1989 1990 *record_typep = record_type; 1991 *trailer_len = tls_len - last_offset + 1; 1992 return (0); 1993 } 1994 1995 static void 1996 ktls_decrypt(struct socket *so) 1997 { 1998 char tls_header[MBUF_PEXT_HDR_LEN]; 1999 struct ktls_session *tls; 2000 struct sockbuf *sb; 2001 struct tls_record_layer *hdr; 2002 struct tls_get_record tgr; 2003 struct mbuf *control, *data, *m; 2004 uint64_t seqno; 2005 int error, remain, tls_len, trail_len; 2006 bool tls13; 2007 uint8_t vminor, record_type; 2008 2009 hdr = (struct tls_record_layer *)tls_header; 2010 sb = &so->so_rcv; 2011 SOCKBUF_LOCK(sb); 2012 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2013 ("%s: socket %p not running", __func__, so)); 2014 2015 tls = sb->sb_tls_info; 2016 MPASS(tls != NULL); 2017 2018 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2019 if (tls13) 2020 vminor = TLS_MINOR_VER_TWO; 2021 else 2022 vminor = tls->params.tls_vminor; 2023 for (;;) { 2024 /* Is there enough queued for a TLS header? */ 2025 if (sb->sb_tlscc < tls->params.tls_hlen) 2026 break; 2027 2028 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2029 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2030 2031 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2032 hdr->tls_vminor != vminor) 2033 error = EINVAL; 2034 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2035 error = EINVAL; 2036 else if (tls_len < tls->params.tls_hlen || tls_len > 2037 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2038 tls->params.tls_tlen) 2039 error = EMSGSIZE; 2040 else 2041 error = 0; 2042 if (__predict_false(error != 0)) { 2043 /* 2044 * We have a corrupted record and are likely 2045 * out of sync. The connection isn't 2046 * recoverable at this point, so abort it. 2047 */ 2048 SOCKBUF_UNLOCK(sb); 2049 counter_u64_add(ktls_offload_corrupted_records, 1); 2050 2051 CURVNET_SET(so->so_vnet); 2052 so->so_proto->pr_usrreqs->pru_abort(so); 2053 so->so_error = error; 2054 CURVNET_RESTORE(); 2055 goto deref; 2056 } 2057 2058 /* Is the entire record queued? */ 2059 if (sb->sb_tlscc < tls_len) 2060 break; 2061 2062 /* 2063 * Split out the portion of the mbuf chain containing 2064 * this TLS record. 2065 */ 2066 data = ktls_detach_record(sb, tls_len); 2067 if (data == NULL) 2068 continue; 2069 MPASS(sb->sb_tlsdcc == tls_len); 2070 2071 seqno = sb->sb_tls_seqno; 2072 sb->sb_tls_seqno++; 2073 SBCHECK(sb); 2074 SOCKBUF_UNLOCK(sb); 2075 2076 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 2077 if (error == 0) { 2078 if (tls13) 2079 error = tls13_find_record_type(tls, data, 2080 tls_len, &trail_len, &record_type); 2081 else 2082 record_type = hdr->tls_type; 2083 } 2084 if (error) { 2085 counter_u64_add(ktls_offload_failed_crypto, 1); 2086 2087 SOCKBUF_LOCK(sb); 2088 if (sb->sb_tlsdcc == 0) { 2089 /* 2090 * sbcut/drop/flush discarded these 2091 * mbufs. 2092 */ 2093 m_freem(data); 2094 break; 2095 } 2096 2097 /* 2098 * Drop this TLS record's data, but keep 2099 * decrypting subsequent records. 2100 */ 2101 sb->sb_ccc -= tls_len; 2102 sb->sb_tlsdcc = 0; 2103 2104 CURVNET_SET(so->so_vnet); 2105 so->so_error = EBADMSG; 2106 sorwakeup_locked(so); 2107 CURVNET_RESTORE(); 2108 2109 m_freem(data); 2110 2111 SOCKBUF_LOCK(sb); 2112 continue; 2113 } 2114 2115 /* Allocate the control mbuf. */ 2116 memset(&tgr, 0, sizeof(tgr)); 2117 tgr.tls_type = record_type; 2118 tgr.tls_vmajor = hdr->tls_vmajor; 2119 tgr.tls_vminor = hdr->tls_vminor; 2120 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2121 trail_len); 2122 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 2123 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2124 2125 SOCKBUF_LOCK(sb); 2126 if (sb->sb_tlsdcc == 0) { 2127 /* sbcut/drop/flush discarded these mbufs. */ 2128 MPASS(sb->sb_tlscc == 0); 2129 m_freem(data); 2130 m_freem(control); 2131 break; 2132 } 2133 2134 /* 2135 * Clear the 'dcc' accounting in preparation for 2136 * adding the decrypted record. 2137 */ 2138 sb->sb_ccc -= tls_len; 2139 sb->sb_tlsdcc = 0; 2140 SBCHECK(sb); 2141 2142 /* If there is no payload, drop all of the data. */ 2143 if (tgr.tls_length == htobe16(0)) { 2144 m_freem(data); 2145 data = NULL; 2146 } else { 2147 /* Trim header. */ 2148 remain = tls->params.tls_hlen; 2149 while (remain > 0) { 2150 if (data->m_len > remain) { 2151 data->m_data += remain; 2152 data->m_len -= remain; 2153 break; 2154 } 2155 remain -= data->m_len; 2156 data = m_free(data); 2157 } 2158 2159 /* Trim trailer and clear M_NOTREADY. */ 2160 remain = be16toh(tgr.tls_length); 2161 m = data; 2162 for (m = data; remain > m->m_len; m = m->m_next) { 2163 m->m_flags &= ~M_NOTREADY; 2164 remain -= m->m_len; 2165 } 2166 m->m_len = remain; 2167 m_freem(m->m_next); 2168 m->m_next = NULL; 2169 m->m_flags &= ~M_NOTREADY; 2170 2171 /* Set EOR on the final mbuf. */ 2172 m->m_flags |= M_EOR; 2173 } 2174 2175 sbappendcontrol_locked(sb, data, control, 0); 2176 } 2177 2178 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2179 2180 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2181 so->so_error = EMSGSIZE; 2182 2183 sorwakeup_locked(so); 2184 2185 deref: 2186 SOCKBUF_UNLOCK_ASSERT(sb); 2187 2188 CURVNET_SET(so->so_vnet); 2189 sorele(so); 2190 CURVNET_RESTORE(); 2191 } 2192 2193 void 2194 ktls_enqueue_to_free(struct mbuf *m) 2195 { 2196 struct ktls_wq *wq; 2197 bool running; 2198 2199 /* Mark it for freeing. */ 2200 m->m_epg_flags |= EPG_FLAG_2FREE; 2201 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2202 mtx_lock(&wq->mtx); 2203 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2204 running = wq->running; 2205 mtx_unlock(&wq->mtx); 2206 if (!running) 2207 wakeup(wq); 2208 } 2209 2210 static void * 2211 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2212 { 2213 void *buf; 2214 int domain, running; 2215 2216 if (m->m_epg_npgs <= 2) 2217 return (NULL); 2218 if (ktls_buffer_zone == NULL) 2219 return (NULL); 2220 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2221 /* 2222 * Rate-limit allocation attempts after a failure. 2223 * ktls_buffer_import() will acquire a per-domain mutex to check 2224 * the free page queues and may fail consistently if memory is 2225 * fragmented. 2226 */ 2227 return (NULL); 2228 } 2229 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2230 if (buf == NULL) { 2231 domain = PCPU_GET(domain); 2232 wq->lastallocfail = ticks; 2233 2234 /* 2235 * Note that this check is "racy", but the races are 2236 * harmless, and are either a spurious wakeup if 2237 * multiple threads fail allocations before the alloc 2238 * thread wakes, or waiting an extra second in case we 2239 * see an old value of running == true. 2240 */ 2241 if (!VM_DOMAIN_EMPTY(domain)) { 2242 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2243 if (!running) 2244 wakeup(&ktls_domains[domain].alloc_td); 2245 } 2246 } 2247 return (buf); 2248 } 2249 2250 static int 2251 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2252 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2253 { 2254 vm_page_t pg; 2255 int error, i, len, off; 2256 2257 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2258 ("%p not unready & nomap mbuf\n", m)); 2259 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2260 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2261 ktls_maxlen)); 2262 2263 /* Anonymous mbufs are encrypted in place. */ 2264 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2265 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2266 2267 /* 2268 * For file-backed mbufs (from sendfile), anonymous wired 2269 * pages are allocated and used as the encryption destination. 2270 */ 2271 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2272 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2273 m->m_epg_1st_off; 2274 state->dst_iov[0].iov_base = (char *)state->cbuf + 2275 m->m_epg_1st_off; 2276 state->dst_iov[0].iov_len = len; 2277 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2278 i = 1; 2279 } else { 2280 off = m->m_epg_1st_off; 2281 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2282 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2283 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2284 len = m_epg_pagelen(m, i, off); 2285 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2286 state->dst_iov[i].iov_base = 2287 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2288 state->dst_iov[i].iov_len = len; 2289 } 2290 } 2291 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2292 state->dst_iov[i].iov_base = m->m_epg_trail; 2293 state->dst_iov[i].iov_len = m->m_epg_trllen; 2294 2295 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2296 2297 if (__predict_false(error != 0)) { 2298 /* Free the anonymous pages. */ 2299 if (state->cbuf != NULL) 2300 uma_zfree(ktls_buffer_zone, state->cbuf); 2301 else { 2302 for (i = 0; i < m->m_epg_npgs; i++) { 2303 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2304 (void)vm_page_unwire_noq(pg); 2305 vm_page_free(pg); 2306 } 2307 } 2308 } 2309 return (error); 2310 } 2311 2312 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2313 static u_int 2314 ktls_batched_records(struct mbuf *m) 2315 { 2316 int page_count, records; 2317 2318 records = 0; 2319 page_count = m->m_epg_enc_cnt; 2320 while (page_count > 0) { 2321 records++; 2322 page_count -= m->m_epg_nrdy; 2323 m = m->m_next; 2324 } 2325 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2326 return (records); 2327 } 2328 2329 void 2330 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2331 { 2332 struct ktls_session *tls; 2333 struct ktls_wq *wq; 2334 int queued; 2335 bool running; 2336 2337 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2338 (M_EXTPG | M_NOTREADY)), 2339 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2340 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2341 2342 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2343 2344 m->m_epg_enc_cnt = page_count; 2345 2346 /* 2347 * Save a pointer to the socket. The caller is responsible 2348 * for taking an additional reference via soref(). 2349 */ 2350 m->m_epg_so = so; 2351 2352 queued = 1; 2353 tls = m->m_epg_tls; 2354 wq = &ktls_wq[tls->wq_index]; 2355 mtx_lock(&wq->mtx); 2356 if (__predict_false(tls->sequential_records)) { 2357 /* 2358 * For TLS 1.0, records must be encrypted 2359 * sequentially. For a given connection, all records 2360 * queued to the associated work queue are processed 2361 * sequentially. However, sendfile(2) might complete 2362 * I/O requests spanning multiple TLS records out of 2363 * order. Here we ensure TLS records are enqueued to 2364 * the work queue in FIFO order. 2365 * 2366 * tls->next_seqno holds the sequence number of the 2367 * next TLS record that should be enqueued to the work 2368 * queue. If this next record is not tls->next_seqno, 2369 * it must be a future record, so insert it, sorted by 2370 * TLS sequence number, into tls->pending_records and 2371 * return. 2372 * 2373 * If this TLS record matches tls->next_seqno, place 2374 * it in the work queue and then check 2375 * tls->pending_records to see if any 2376 * previously-queued records are now ready for 2377 * encryption. 2378 */ 2379 if (m->m_epg_seqno != tls->next_seqno) { 2380 struct mbuf *n, *p; 2381 2382 p = NULL; 2383 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2384 if (n->m_epg_seqno > m->m_epg_seqno) 2385 break; 2386 p = n; 2387 } 2388 if (n == NULL) 2389 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2390 m_epg_stailq); 2391 else if (p == NULL) 2392 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2393 m_epg_stailq); 2394 else 2395 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2396 m_epg_stailq); 2397 mtx_unlock(&wq->mtx); 2398 counter_u64_add(ktls_cnt_tx_pending, 1); 2399 return; 2400 } 2401 2402 tls->next_seqno += ktls_batched_records(m); 2403 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2404 2405 while (!STAILQ_EMPTY(&tls->pending_records)) { 2406 struct mbuf *n; 2407 2408 n = STAILQ_FIRST(&tls->pending_records); 2409 if (n->m_epg_seqno != tls->next_seqno) 2410 break; 2411 2412 queued++; 2413 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2414 tls->next_seqno += ktls_batched_records(n); 2415 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2416 } 2417 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2418 } else 2419 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2420 2421 running = wq->running; 2422 mtx_unlock(&wq->mtx); 2423 if (!running) 2424 wakeup(wq); 2425 counter_u64_add(ktls_cnt_tx_queued, queued); 2426 } 2427 2428 /* 2429 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2430 * the pages from the file and replace them with the anonymous pages 2431 * allocated in ktls_encrypt_record(). 2432 */ 2433 static void 2434 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2435 { 2436 int i; 2437 2438 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2439 2440 /* Free the old pages. */ 2441 m->m_ext.ext_free(m); 2442 2443 /* Replace them with the new pages. */ 2444 if (state->cbuf != NULL) { 2445 for (i = 0; i < m->m_epg_npgs; i++) 2446 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2447 2448 /* Contig pages should go back to the cache. */ 2449 m->m_ext.ext_free = ktls_free_mext_contig; 2450 } else { 2451 for (i = 0; i < m->m_epg_npgs; i++) 2452 m->m_epg_pa[i] = state->parray[i]; 2453 2454 /* Use the basic free routine. */ 2455 m->m_ext.ext_free = mb_free_mext_pgs; 2456 } 2457 2458 /* Pages are now writable. */ 2459 m->m_epg_flags |= EPG_FLAG_ANON; 2460 } 2461 2462 static __noinline void 2463 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2464 { 2465 struct ktls_ocf_encrypt_state state; 2466 struct ktls_session *tls; 2467 struct socket *so; 2468 struct mbuf *m; 2469 int error, npages, total_pages; 2470 2471 so = top->m_epg_so; 2472 tls = top->m_epg_tls; 2473 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2474 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2475 #ifdef INVARIANTS 2476 top->m_epg_so = NULL; 2477 #endif 2478 total_pages = top->m_epg_enc_cnt; 2479 npages = 0; 2480 2481 /* 2482 * Encrypt the TLS records in the chain of mbufs starting with 2483 * 'top'. 'total_pages' gives us a total count of pages and is 2484 * used to know when we have finished encrypting the TLS 2485 * records originally queued with 'top'. 2486 * 2487 * NB: These mbufs are queued in the socket buffer and 2488 * 'm_next' is traversing the mbufs in the socket buffer. The 2489 * socket buffer lock is not held while traversing this chain. 2490 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2491 * pointers should be stable. However, the 'm_next' of the 2492 * last mbuf encrypted is not necessarily NULL. It can point 2493 * to other mbufs appended while 'top' was on the TLS work 2494 * queue. 2495 * 2496 * Each mbuf holds an entire TLS record. 2497 */ 2498 error = 0; 2499 for (m = top; npages != total_pages; m = m->m_next) { 2500 KASSERT(m->m_epg_tls == tls, 2501 ("different TLS sessions in a single mbuf chain: %p vs %p", 2502 tls, m->m_epg_tls)); 2503 KASSERT(npages + m->m_epg_npgs <= total_pages, 2504 ("page count mismatch: top %p, total_pages %d, m %p", top, 2505 total_pages, m)); 2506 2507 error = ktls_encrypt_record(wq, m, tls, &state); 2508 if (error) { 2509 counter_u64_add(ktls_offload_failed_crypto, 1); 2510 break; 2511 } 2512 2513 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2514 ktls_finish_nonanon(m, &state); 2515 2516 npages += m->m_epg_nrdy; 2517 2518 /* 2519 * Drop a reference to the session now that it is no 2520 * longer needed. Existing code depends on encrypted 2521 * records having no associated session vs 2522 * yet-to-be-encrypted records having an associated 2523 * session. 2524 */ 2525 m->m_epg_tls = NULL; 2526 ktls_free(tls); 2527 } 2528 2529 CURVNET_SET(so->so_vnet); 2530 if (error == 0) { 2531 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2532 } else { 2533 so->so_proto->pr_usrreqs->pru_abort(so); 2534 so->so_error = EIO; 2535 mb_free_notready(top, total_pages); 2536 } 2537 2538 sorele(so); 2539 CURVNET_RESTORE(); 2540 } 2541 2542 void 2543 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2544 { 2545 struct ktls_session *tls; 2546 struct socket *so; 2547 struct mbuf *m; 2548 int npages; 2549 2550 m = state->m; 2551 2552 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2553 ktls_finish_nonanon(m, state); 2554 2555 so = state->so; 2556 free(state, M_KTLS); 2557 2558 /* 2559 * Drop a reference to the session now that it is no longer 2560 * needed. Existing code depends on encrypted records having 2561 * no associated session vs yet-to-be-encrypted records having 2562 * an associated session. 2563 */ 2564 tls = m->m_epg_tls; 2565 m->m_epg_tls = NULL; 2566 ktls_free(tls); 2567 2568 if (error != 0) 2569 counter_u64_add(ktls_offload_failed_crypto, 1); 2570 2571 CURVNET_SET(so->so_vnet); 2572 npages = m->m_epg_nrdy; 2573 2574 if (error == 0) { 2575 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2576 } else { 2577 so->so_proto->pr_usrreqs->pru_abort(so); 2578 so->so_error = EIO; 2579 mb_free_notready(m, npages); 2580 } 2581 2582 sorele(so); 2583 CURVNET_RESTORE(); 2584 } 2585 2586 /* 2587 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2588 * (coprocessors) where encryption does not use host CPU resources and 2589 * it can be beneficial to queue more requests than CPUs. 2590 */ 2591 static __noinline void 2592 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2593 { 2594 struct ktls_ocf_encrypt_state *state; 2595 struct ktls_session *tls; 2596 struct socket *so; 2597 struct mbuf *m, *n; 2598 int error, mpages, npages, total_pages; 2599 2600 so = top->m_epg_so; 2601 tls = top->m_epg_tls; 2602 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2603 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2604 #ifdef INVARIANTS 2605 top->m_epg_so = NULL; 2606 #endif 2607 total_pages = top->m_epg_enc_cnt; 2608 npages = 0; 2609 2610 error = 0; 2611 for (m = top; npages != total_pages; m = n) { 2612 KASSERT(m->m_epg_tls == tls, 2613 ("different TLS sessions in a single mbuf chain: %p vs %p", 2614 tls, m->m_epg_tls)); 2615 KASSERT(npages + m->m_epg_npgs <= total_pages, 2616 ("page count mismatch: top %p, total_pages %d, m %p", top, 2617 total_pages, m)); 2618 2619 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2620 soref(so); 2621 state->so = so; 2622 state->m = m; 2623 2624 mpages = m->m_epg_nrdy; 2625 n = m->m_next; 2626 2627 error = ktls_encrypt_record(wq, m, tls, state); 2628 if (error) { 2629 counter_u64_add(ktls_offload_failed_crypto, 1); 2630 free(state, M_KTLS); 2631 CURVNET_SET(so->so_vnet); 2632 sorele(so); 2633 CURVNET_RESTORE(); 2634 break; 2635 } 2636 2637 npages += mpages; 2638 } 2639 2640 CURVNET_SET(so->so_vnet); 2641 if (error != 0) { 2642 so->so_proto->pr_usrreqs->pru_abort(so); 2643 so->so_error = EIO; 2644 mb_free_notready(m, total_pages - npages); 2645 } 2646 2647 sorele(so); 2648 CURVNET_RESTORE(); 2649 } 2650 2651 static int 2652 ktls_bind_domain(int domain) 2653 { 2654 int error; 2655 2656 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2657 if (error != 0) 2658 return (error); 2659 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2660 return (0); 2661 } 2662 2663 static void 2664 ktls_alloc_thread(void *ctx) 2665 { 2666 struct ktls_domain_info *ktls_domain = ctx; 2667 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2668 void **buf; 2669 struct sysctl_oid *oid; 2670 char name[80]; 2671 int domain, error, i, nbufs; 2672 2673 domain = ktls_domain - ktls_domains; 2674 if (bootverbose) 2675 printf("Starting KTLS alloc thread for domain %d\n", domain); 2676 error = ktls_bind_domain(domain); 2677 if (error) 2678 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2679 domain, error); 2680 snprintf(name, sizeof(name), "domain%d", domain); 2681 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2682 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2683 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2684 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2685 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2686 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2687 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2688 CTLFLAG_RD, &sc->running, 0, "thread running"); 2689 2690 buf = NULL; 2691 nbufs = 0; 2692 for (;;) { 2693 atomic_store_int(&sc->running, 0); 2694 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2695 atomic_store_int(&sc->running, 1); 2696 sc->wakeups++; 2697 if (nbufs != ktls_max_alloc) { 2698 free(buf, M_KTLS); 2699 nbufs = atomic_load_int(&ktls_max_alloc); 2700 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2701 M_WAITOK | M_ZERO); 2702 } 2703 /* 2704 * Below we allocate nbufs with different allocation 2705 * flags than we use when allocating normally during 2706 * encryption in the ktls worker thread. We specify 2707 * M_NORECLAIM in the worker thread. However, we omit 2708 * that flag here and add M_WAITOK so that the VM 2709 * system is permitted to perform expensive work to 2710 * defragment memory. We do this here, as it does not 2711 * matter if this thread blocks. If we block a ktls 2712 * worker thread, we risk developing backlogs of 2713 * buffers to be encrypted, leading to surges of 2714 * traffic and potential NIC output drops. 2715 */ 2716 for (i = 0; i < nbufs; i++) { 2717 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2718 sc->allocs++; 2719 } 2720 for (i = 0; i < nbufs; i++) { 2721 uma_zfree(ktls_buffer_zone, buf[i]); 2722 buf[i] = NULL; 2723 } 2724 } 2725 } 2726 2727 static void 2728 ktls_work_thread(void *ctx) 2729 { 2730 struct ktls_wq *wq = ctx; 2731 struct mbuf *m, *n; 2732 struct socket *so, *son; 2733 STAILQ_HEAD(, mbuf) local_m_head; 2734 STAILQ_HEAD(, socket) local_so_head; 2735 int cpu; 2736 2737 cpu = wq - ktls_wq; 2738 if (bootverbose) 2739 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2740 2741 /* 2742 * Bind to a core. If ktls_bind_threads is > 1, then 2743 * we bind to the NUMA domain instead. 2744 */ 2745 if (ktls_bind_threads) { 2746 int error; 2747 2748 if (ktls_bind_threads > 1) { 2749 struct pcpu *pc = pcpu_find(cpu); 2750 2751 error = ktls_bind_domain(pc->pc_domain); 2752 } else { 2753 cpuset_t mask; 2754 2755 CPU_SETOF(cpu, &mask); 2756 error = cpuset_setthread(curthread->td_tid, &mask); 2757 } 2758 if (error) 2759 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2760 cpu, error); 2761 } 2762 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2763 fpu_kern_thread(0); 2764 #endif 2765 for (;;) { 2766 mtx_lock(&wq->mtx); 2767 while (STAILQ_EMPTY(&wq->m_head) && 2768 STAILQ_EMPTY(&wq->so_head)) { 2769 wq->running = false; 2770 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2771 wq->running = true; 2772 } 2773 2774 STAILQ_INIT(&local_m_head); 2775 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2776 STAILQ_INIT(&local_so_head); 2777 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2778 mtx_unlock(&wq->mtx); 2779 2780 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2781 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2782 ktls_free(m->m_epg_tls); 2783 m_free_raw(m); 2784 } else { 2785 if (m->m_epg_tls->sync_dispatch) 2786 ktls_encrypt(wq, m); 2787 else 2788 ktls_encrypt_async(wq, m); 2789 counter_u64_add(ktls_cnt_tx_queued, -1); 2790 } 2791 } 2792 2793 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2794 ktls_decrypt(so); 2795 counter_u64_add(ktls_cnt_rx_queued, -1); 2796 } 2797 } 2798 } 2799 2800 #if defined(INET) || defined(INET6) 2801 static void 2802 ktls_disable_ifnet_help(void *context, int pending __unused) 2803 { 2804 struct ktls_session *tls; 2805 struct inpcb *inp; 2806 struct tcpcb *tp; 2807 struct socket *so; 2808 int err; 2809 2810 tls = context; 2811 inp = tls->inp; 2812 if (inp == NULL) 2813 return; 2814 INP_WLOCK(inp); 2815 so = inp->inp_socket; 2816 MPASS(so != NULL); 2817 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2818 goto out; 2819 } 2820 2821 if (so->so_snd.sb_tls_info != NULL) 2822 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2823 else 2824 err = ENXIO; 2825 if (err == 0) { 2826 counter_u64_add(ktls_ifnet_disable_ok, 1); 2827 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2828 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2829 (tp = intotcpcb(inp)) != NULL && 2830 tp->t_fb->tfb_hwtls_change != NULL) 2831 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2832 } else { 2833 counter_u64_add(ktls_ifnet_disable_fail, 1); 2834 } 2835 2836 out: 2837 sorele(so); 2838 if (!in_pcbrele_wlocked(inp)) 2839 INP_WUNLOCK(inp); 2840 ktls_free(tls); 2841 } 2842 2843 /* 2844 * Called when re-transmits are becoming a substantial portion of the 2845 * sends on this connection. When this happens, we transition the 2846 * connection to software TLS. This is needed because most inline TLS 2847 * NICs keep crypto state only for in-order transmits. This means 2848 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2849 * re-DMA the entire TLS record up to and including the current 2850 * segment. This means that when re-transmitting the last ~1448 byte 2851 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2852 * of magnitude more data than we are sending. This can cause the 2853 * PCIe link to saturate well before the network, which can cause 2854 * output drops, and a general loss of capacity. 2855 */ 2856 void 2857 ktls_disable_ifnet(void *arg) 2858 { 2859 struct tcpcb *tp; 2860 struct inpcb *inp; 2861 struct socket *so; 2862 struct ktls_session *tls; 2863 2864 tp = arg; 2865 inp = tp->t_inpcb; 2866 INP_WLOCK_ASSERT(inp); 2867 so = inp->inp_socket; 2868 SOCK_LOCK(so); 2869 tls = so->so_snd.sb_tls_info; 2870 if (tls->disable_ifnet_pending) { 2871 SOCK_UNLOCK(so); 2872 return; 2873 } 2874 2875 /* 2876 * note that disable_ifnet_pending is never cleared; disabling 2877 * ifnet can only be done once per session, so we never want 2878 * to do it again 2879 */ 2880 2881 (void)ktls_hold(tls); 2882 in_pcbref(inp); 2883 soref(so); 2884 tls->disable_ifnet_pending = true; 2885 tls->inp = inp; 2886 SOCK_UNLOCK(so); 2887 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2888 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2889 } 2890 #endif 2891