1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_receive_tag(void *context, int pending); 303 static void ktls_reset_send_tag(void *context, int pending); 304 #endif 305 static void ktls_work_thread(void *ctx); 306 static void ktls_alloc_thread(void *ctx); 307 308 #if defined(INET) || defined(INET6) 309 static u_int 310 ktls_get_cpu(struct socket *so) 311 { 312 struct inpcb *inp; 313 #ifdef NUMA 314 struct ktls_domain_info *di; 315 #endif 316 u_int cpuid; 317 318 inp = sotoinpcb(so); 319 #ifdef RSS 320 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 321 if (cpuid != NETISR_CPUID_NONE) 322 return (cpuid); 323 #endif 324 /* 325 * Just use the flowid to shard connections in a repeatable 326 * fashion. Note that TLS 1.0 sessions rely on the 327 * serialization provided by having the same connection use 328 * the same queue. 329 */ 330 #ifdef NUMA 331 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 332 di = &ktls_domains[inp->inp_numa_domain]; 333 cpuid = di->cpu[inp->inp_flowid % di->count]; 334 } else 335 #endif 336 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 337 return (cpuid); 338 } 339 #endif 340 341 static int 342 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 343 { 344 vm_page_t m; 345 int i, req; 346 347 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 348 ("%s: ktls max length %d is not page size-aligned", 349 __func__, ktls_maxlen)); 350 351 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 352 for (i = 0; i < count; i++) { 353 m = vm_page_alloc_noobj_contig_domain(domain, req, 354 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 355 VM_MEMATTR_DEFAULT); 356 if (m == NULL) 357 break; 358 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 359 } 360 return (i); 361 } 362 363 static void 364 ktls_buffer_release(void *arg __unused, void **store, int count) 365 { 366 vm_page_t m; 367 int i, j; 368 369 for (i = 0; i < count; i++) { 370 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 371 for (j = 0; j < atop(ktls_maxlen); j++) { 372 (void)vm_page_unwire_noq(m + j); 373 vm_page_free(m + j); 374 } 375 } 376 } 377 378 static void 379 ktls_free_mext_contig(struct mbuf *m) 380 { 381 M_ASSERTEXTPG(m); 382 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 383 } 384 385 static int 386 ktls_init(void) 387 { 388 struct thread *td; 389 struct pcpu *pc; 390 int count, domain, error, i; 391 392 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 393 M_WAITOK | M_ZERO); 394 395 ktls_session_zone = uma_zcreate("ktls_session", 396 sizeof(struct ktls_session), 397 NULL, NULL, NULL, NULL, 398 UMA_ALIGN_CACHE, 0); 399 400 if (ktls_sw_buffer_cache) { 401 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 402 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 403 ktls_buffer_import, ktls_buffer_release, NULL, 404 UMA_ZONE_FIRSTTOUCH); 405 } 406 407 /* 408 * Initialize the workqueues to run the TLS work. We create a 409 * work queue for each CPU. 410 */ 411 CPU_FOREACH(i) { 412 STAILQ_INIT(&ktls_wq[i].m_head); 413 STAILQ_INIT(&ktls_wq[i].so_head); 414 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 415 if (ktls_bind_threads > 1) { 416 pc = pcpu_find(i); 417 domain = pc->pc_domain; 418 count = ktls_domains[domain].count; 419 ktls_domains[domain].cpu[count] = i; 420 ktls_domains[domain].count++; 421 } 422 ktls_cpuid_lookup[ktls_number_threads] = i; 423 ktls_number_threads++; 424 } 425 426 /* 427 * If we somehow have an empty domain, fall back to choosing 428 * among all KTLS threads. 429 */ 430 if (ktls_bind_threads > 1) { 431 for (i = 0; i < vm_ndomains; i++) { 432 if (ktls_domains[i].count == 0) { 433 ktls_bind_threads = 1; 434 break; 435 } 436 } 437 } 438 439 /* Start kthreads for each workqueue. */ 440 CPU_FOREACH(i) { 441 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 442 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 443 if (error) { 444 printf("Can't add KTLS thread %d error %d\n", i, error); 445 return (error); 446 } 447 } 448 449 /* 450 * Start an allocation thread per-domain to perform blocking allocations 451 * of 16k physically contiguous TLS crypto destination buffers. 452 */ 453 if (ktls_sw_buffer_cache) { 454 for (domain = 0; domain < vm_ndomains; domain++) { 455 if (VM_DOMAIN_EMPTY(domain)) 456 continue; 457 if (CPU_EMPTY(&cpuset_domain[domain])) 458 continue; 459 error = kproc_kthread_add(ktls_alloc_thread, 460 &ktls_domains[domain], &ktls_proc, 461 &ktls_domains[domain].alloc_td.td, 462 0, 0, "KTLS", "alloc_%d", domain); 463 if (error) { 464 printf("Can't add KTLS alloc thread %d error %d\n", 465 domain, error); 466 return (error); 467 } 468 } 469 } 470 471 if (bootverbose) 472 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 473 return (0); 474 } 475 476 static int 477 ktls_start_kthreads(void) 478 { 479 int error, state; 480 481 start: 482 state = atomic_load_acq_int(&ktls_init_state); 483 if (__predict_true(state > 0)) 484 return (0); 485 if (state < 0) 486 return (ENXIO); 487 488 sx_xlock(&ktls_init_lock); 489 if (ktls_init_state != 0) { 490 sx_xunlock(&ktls_init_lock); 491 goto start; 492 } 493 494 error = ktls_init(); 495 if (error == 0) 496 state = 1; 497 else 498 state = -1; 499 atomic_store_rel_int(&ktls_init_state, state); 500 sx_xunlock(&ktls_init_lock); 501 return (error); 502 } 503 504 #if defined(INET) || defined(INET6) 505 static int 506 ktls_create_session(struct socket *so, struct tls_enable *en, 507 struct ktls_session **tlsp, int direction) 508 { 509 struct ktls_session *tls; 510 int error; 511 512 /* Only TLS 1.0 - 1.3 are supported. */ 513 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 514 return (EINVAL); 515 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 516 en->tls_vminor > TLS_MINOR_VER_THREE) 517 return (EINVAL); 518 519 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 520 return (EINVAL); 521 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 522 return (EINVAL); 523 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 524 return (EINVAL); 525 526 /* All supported algorithms require a cipher key. */ 527 if (en->cipher_key_len == 0) 528 return (EINVAL); 529 530 /* No flags are currently supported. */ 531 if (en->flags != 0) 532 return (EINVAL); 533 534 /* Common checks for supported algorithms. */ 535 switch (en->cipher_algorithm) { 536 case CRYPTO_AES_NIST_GCM_16: 537 /* 538 * auth_algorithm isn't used, but permit GMAC values 539 * for compatibility. 540 */ 541 switch (en->auth_algorithm) { 542 case 0: 543 #ifdef COMPAT_FREEBSD12 544 /* XXX: Really 13.0-current COMPAT. */ 545 case CRYPTO_AES_128_NIST_GMAC: 546 case CRYPTO_AES_192_NIST_GMAC: 547 case CRYPTO_AES_256_NIST_GMAC: 548 #endif 549 break; 550 default: 551 return (EINVAL); 552 } 553 if (en->auth_key_len != 0) 554 return (EINVAL); 555 switch (en->tls_vminor) { 556 case TLS_MINOR_VER_TWO: 557 if (en->iv_len != TLS_AEAD_GCM_LEN) 558 return (EINVAL); 559 break; 560 case TLS_MINOR_VER_THREE: 561 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 562 return (EINVAL); 563 break; 564 default: 565 return (EINVAL); 566 } 567 break; 568 case CRYPTO_AES_CBC: 569 switch (en->auth_algorithm) { 570 case CRYPTO_SHA1_HMAC: 571 break; 572 case CRYPTO_SHA2_256_HMAC: 573 case CRYPTO_SHA2_384_HMAC: 574 if (en->tls_vminor != TLS_MINOR_VER_TWO) 575 return (EINVAL); 576 break; 577 default: 578 return (EINVAL); 579 } 580 if (en->auth_key_len == 0) 581 return (EINVAL); 582 583 /* 584 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 585 * use explicit IVs. 586 */ 587 switch (en->tls_vminor) { 588 case TLS_MINOR_VER_ZERO: 589 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 590 return (EINVAL); 591 break; 592 case TLS_MINOR_VER_ONE: 593 case TLS_MINOR_VER_TWO: 594 /* Ignore any supplied IV. */ 595 en->iv_len = 0; 596 break; 597 default: 598 return (EINVAL); 599 } 600 break; 601 case CRYPTO_CHACHA20_POLY1305: 602 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 603 return (EINVAL); 604 if (en->tls_vminor != TLS_MINOR_VER_TWO && 605 en->tls_vminor != TLS_MINOR_VER_THREE) 606 return (EINVAL); 607 if (en->iv_len != TLS_CHACHA20_IV_LEN) 608 return (EINVAL); 609 break; 610 default: 611 return (EINVAL); 612 } 613 614 error = ktls_start_kthreads(); 615 if (error != 0) 616 return (error); 617 618 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 619 620 counter_u64_add(ktls_offload_active, 1); 621 622 refcount_init(&tls->refcount, 1); 623 if (direction == KTLS_RX) 624 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 625 else 626 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 627 628 tls->wq_index = ktls_get_cpu(so); 629 630 tls->params.cipher_algorithm = en->cipher_algorithm; 631 tls->params.auth_algorithm = en->auth_algorithm; 632 tls->params.tls_vmajor = en->tls_vmajor; 633 tls->params.tls_vminor = en->tls_vminor; 634 tls->params.flags = en->flags; 635 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 636 637 /* Set the header and trailer lengths. */ 638 tls->params.tls_hlen = sizeof(struct tls_record_layer); 639 switch (en->cipher_algorithm) { 640 case CRYPTO_AES_NIST_GCM_16: 641 /* 642 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 643 * nonce. TLS 1.3 uses a 12 byte implicit IV. 644 */ 645 if (en->tls_vminor < TLS_MINOR_VER_THREE) 646 tls->params.tls_hlen += sizeof(uint64_t); 647 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 648 tls->params.tls_bs = 1; 649 break; 650 case CRYPTO_AES_CBC: 651 switch (en->auth_algorithm) { 652 case CRYPTO_SHA1_HMAC: 653 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 654 /* Implicit IV, no nonce. */ 655 tls->sequential_records = true; 656 tls->next_seqno = be64dec(en->rec_seq); 657 STAILQ_INIT(&tls->pending_records); 658 } else { 659 tls->params.tls_hlen += AES_BLOCK_LEN; 660 } 661 tls->params.tls_tlen = AES_BLOCK_LEN + 662 SHA1_HASH_LEN; 663 break; 664 case CRYPTO_SHA2_256_HMAC: 665 tls->params.tls_hlen += AES_BLOCK_LEN; 666 tls->params.tls_tlen = AES_BLOCK_LEN + 667 SHA2_256_HASH_LEN; 668 break; 669 case CRYPTO_SHA2_384_HMAC: 670 tls->params.tls_hlen += AES_BLOCK_LEN; 671 tls->params.tls_tlen = AES_BLOCK_LEN + 672 SHA2_384_HASH_LEN; 673 break; 674 default: 675 panic("invalid hmac"); 676 } 677 tls->params.tls_bs = AES_BLOCK_LEN; 678 break; 679 case CRYPTO_CHACHA20_POLY1305: 680 /* 681 * Chacha20 uses a 12 byte implicit IV. 682 */ 683 tls->params.tls_tlen = POLY1305_HASH_LEN; 684 tls->params.tls_bs = 1; 685 break; 686 default: 687 panic("invalid cipher"); 688 } 689 690 /* 691 * TLS 1.3 includes optional padding which we do not support, 692 * and also puts the "real" record type at the end of the 693 * encrypted data. 694 */ 695 if (en->tls_vminor == TLS_MINOR_VER_THREE) 696 tls->params.tls_tlen += sizeof(uint8_t); 697 698 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 699 ("TLS header length too long: %d", tls->params.tls_hlen)); 700 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 701 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 702 703 if (en->auth_key_len != 0) { 704 tls->params.auth_key_len = en->auth_key_len; 705 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 706 M_WAITOK); 707 error = copyin(en->auth_key, tls->params.auth_key, 708 en->auth_key_len); 709 if (error) 710 goto out; 711 } 712 713 tls->params.cipher_key_len = en->cipher_key_len; 714 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 715 error = copyin(en->cipher_key, tls->params.cipher_key, 716 en->cipher_key_len); 717 if (error) 718 goto out; 719 720 /* 721 * This holds the implicit portion of the nonce for AEAD 722 * ciphers and the initial implicit IV for TLS 1.0. The 723 * explicit portions of the IV are generated in ktls_frame(). 724 */ 725 if (en->iv_len != 0) { 726 tls->params.iv_len = en->iv_len; 727 error = copyin(en->iv, tls->params.iv, en->iv_len); 728 if (error) 729 goto out; 730 731 /* 732 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 733 * counter to generate unique explicit IVs. 734 * 735 * Store this counter in the last 8 bytes of the IV 736 * array so that it is 8-byte aligned. 737 */ 738 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 739 en->tls_vminor == TLS_MINOR_VER_TWO) 740 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 741 } 742 743 *tlsp = tls; 744 return (0); 745 746 out: 747 ktls_cleanup(tls); 748 return (error); 749 } 750 751 static struct ktls_session * 752 ktls_clone_session(struct ktls_session *tls, int direction) 753 { 754 struct ktls_session *tls_new; 755 756 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 757 758 counter_u64_add(ktls_offload_active, 1); 759 760 refcount_init(&tls_new->refcount, 1); 761 if (direction == KTLS_RX) 762 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 763 tls_new); 764 else 765 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 766 tls_new); 767 768 /* Copy fields from existing session. */ 769 tls_new->params = tls->params; 770 tls_new->wq_index = tls->wq_index; 771 772 /* Deep copy keys. */ 773 if (tls_new->params.auth_key != NULL) { 774 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 775 M_KTLS, M_WAITOK); 776 memcpy(tls_new->params.auth_key, tls->params.auth_key, 777 tls->params.auth_key_len); 778 } 779 780 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 781 M_WAITOK); 782 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 783 tls->params.cipher_key_len); 784 785 return (tls_new); 786 } 787 #endif 788 789 static void 790 ktls_cleanup(struct ktls_session *tls) 791 { 792 793 counter_u64_add(ktls_offload_active, -1); 794 switch (tls->mode) { 795 case TCP_TLS_MODE_SW: 796 switch (tls->params.cipher_algorithm) { 797 case CRYPTO_AES_CBC: 798 counter_u64_add(ktls_sw_cbc, -1); 799 break; 800 case CRYPTO_AES_NIST_GCM_16: 801 counter_u64_add(ktls_sw_gcm, -1); 802 break; 803 case CRYPTO_CHACHA20_POLY1305: 804 counter_u64_add(ktls_sw_chacha20, -1); 805 break; 806 } 807 break; 808 case TCP_TLS_MODE_IFNET: 809 switch (tls->params.cipher_algorithm) { 810 case CRYPTO_AES_CBC: 811 counter_u64_add(ktls_ifnet_cbc, -1); 812 break; 813 case CRYPTO_AES_NIST_GCM_16: 814 counter_u64_add(ktls_ifnet_gcm, -1); 815 break; 816 case CRYPTO_CHACHA20_POLY1305: 817 counter_u64_add(ktls_ifnet_chacha20, -1); 818 break; 819 } 820 if (tls->snd_tag != NULL) 821 m_snd_tag_rele(tls->snd_tag); 822 if (tls->rx_ifp != NULL) 823 if_rele(tls->rx_ifp); 824 break; 825 #ifdef TCP_OFFLOAD 826 case TCP_TLS_MODE_TOE: 827 switch (tls->params.cipher_algorithm) { 828 case CRYPTO_AES_CBC: 829 counter_u64_add(ktls_toe_cbc, -1); 830 break; 831 case CRYPTO_AES_NIST_GCM_16: 832 counter_u64_add(ktls_toe_gcm, -1); 833 break; 834 case CRYPTO_CHACHA20_POLY1305: 835 counter_u64_add(ktls_toe_chacha20, -1); 836 break; 837 } 838 break; 839 #endif 840 } 841 if (tls->ocf_session != NULL) 842 ktls_ocf_free(tls); 843 if (tls->params.auth_key != NULL) { 844 zfree(tls->params.auth_key, M_KTLS); 845 tls->params.auth_key = NULL; 846 tls->params.auth_key_len = 0; 847 } 848 if (tls->params.cipher_key != NULL) { 849 zfree(tls->params.cipher_key, M_KTLS); 850 tls->params.cipher_key = NULL; 851 tls->params.cipher_key_len = 0; 852 } 853 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 854 } 855 856 #if defined(INET) || defined(INET6) 857 858 #ifdef TCP_OFFLOAD 859 static int 860 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 861 { 862 struct inpcb *inp; 863 struct tcpcb *tp; 864 int error; 865 866 inp = so->so_pcb; 867 INP_WLOCK(inp); 868 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 869 INP_WUNLOCK(inp); 870 return (ECONNRESET); 871 } 872 if (inp->inp_socket == NULL) { 873 INP_WUNLOCK(inp); 874 return (ECONNRESET); 875 } 876 tp = intotcpcb(inp); 877 if (!(tp->t_flags & TF_TOE)) { 878 INP_WUNLOCK(inp); 879 return (EOPNOTSUPP); 880 } 881 882 error = tcp_offload_alloc_tls_session(tp, tls, direction); 883 INP_WUNLOCK(inp); 884 if (error == 0) { 885 tls->mode = TCP_TLS_MODE_TOE; 886 switch (tls->params.cipher_algorithm) { 887 case CRYPTO_AES_CBC: 888 counter_u64_add(ktls_toe_cbc, 1); 889 break; 890 case CRYPTO_AES_NIST_GCM_16: 891 counter_u64_add(ktls_toe_gcm, 1); 892 break; 893 case CRYPTO_CHACHA20_POLY1305: 894 counter_u64_add(ktls_toe_chacha20, 1); 895 break; 896 } 897 } 898 return (error); 899 } 900 #endif 901 902 /* 903 * Common code used when first enabling ifnet TLS on a connection or 904 * when allocating a new ifnet TLS session due to a routing change. 905 * This function allocates a new TLS send tag on whatever interface 906 * the connection is currently routed over. 907 */ 908 static int 909 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 910 struct m_snd_tag **mstp) 911 { 912 union if_snd_tag_alloc_params params; 913 struct ifnet *ifp; 914 struct nhop_object *nh; 915 struct tcpcb *tp; 916 int error; 917 918 INP_RLOCK(inp); 919 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 920 INP_RUNLOCK(inp); 921 return (ECONNRESET); 922 } 923 if (inp->inp_socket == NULL) { 924 INP_RUNLOCK(inp); 925 return (ECONNRESET); 926 } 927 tp = intotcpcb(inp); 928 929 /* 930 * Check administrative controls on ifnet TLS to determine if 931 * ifnet TLS should be denied. 932 * 933 * - Always permit 'force' requests. 934 * - ktls_ifnet_permitted == 0: always deny. 935 */ 936 if (!force && ktls_ifnet_permitted == 0) { 937 INP_RUNLOCK(inp); 938 return (ENXIO); 939 } 940 941 /* 942 * XXX: Use the cached route in the inpcb to find the 943 * interface. This should perhaps instead use 944 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 945 * enabled after a connection has completed key negotiation in 946 * userland, the cached route will be present in practice. 947 */ 948 nh = inp->inp_route.ro_nh; 949 if (nh == NULL) { 950 INP_RUNLOCK(inp); 951 return (ENXIO); 952 } 953 ifp = nh->nh_ifp; 954 if_ref(ifp); 955 956 /* 957 * Allocate a TLS + ratelimit tag if the connection has an 958 * existing pacing rate. 959 */ 960 if (tp->t_pacing_rate != -1 && 961 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 962 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 963 params.tls_rate_limit.inp = inp; 964 params.tls_rate_limit.tls = tls; 965 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 966 } else { 967 params.hdr.type = IF_SND_TAG_TYPE_TLS; 968 params.tls.inp = inp; 969 params.tls.tls = tls; 970 } 971 params.hdr.flowid = inp->inp_flowid; 972 params.hdr.flowtype = inp->inp_flowtype; 973 params.hdr.numa_domain = inp->inp_numa_domain; 974 INP_RUNLOCK(inp); 975 976 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 977 error = EOPNOTSUPP; 978 goto out; 979 } 980 if (inp->inp_vflag & INP_IPV6) { 981 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 982 error = EOPNOTSUPP; 983 goto out; 984 } 985 } else { 986 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 987 error = EOPNOTSUPP; 988 goto out; 989 } 990 } 991 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 992 out: 993 if_rele(ifp); 994 return (error); 995 } 996 997 /* 998 * Allocate an initial TLS receive tag for doing HW decryption of TLS 999 * data. 1000 * 1001 * This function allocates a new TLS receive tag on whatever interface 1002 * the connection is currently routed over. If the connection ends up 1003 * using a different interface for receive this will get fixed up via 1004 * ktls_input_ifp_mismatch as future packets arrive. 1005 */ 1006 static int 1007 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1008 struct m_snd_tag **mstp) 1009 { 1010 union if_snd_tag_alloc_params params; 1011 struct ifnet *ifp; 1012 struct nhop_object *nh; 1013 int error; 1014 1015 if (!ktls_ocf_recrypt_supported(tls)) 1016 return (ENXIO); 1017 1018 INP_RLOCK(inp); 1019 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1020 INP_RUNLOCK(inp); 1021 return (ECONNRESET); 1022 } 1023 if (inp->inp_socket == NULL) { 1024 INP_RUNLOCK(inp); 1025 return (ECONNRESET); 1026 } 1027 1028 /* 1029 * Check administrative controls on ifnet TLS to determine if 1030 * ifnet TLS should be denied. 1031 */ 1032 if (ktls_ifnet_permitted == 0) { 1033 INP_RUNLOCK(inp); 1034 return (ENXIO); 1035 } 1036 1037 /* 1038 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1039 * the inpcb to find the interface. 1040 */ 1041 nh = inp->inp_route.ro_nh; 1042 if (nh == NULL) { 1043 INP_RUNLOCK(inp); 1044 return (ENXIO); 1045 } 1046 ifp = nh->nh_ifp; 1047 if_ref(ifp); 1048 tls->rx_ifp = ifp; 1049 1050 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1051 params.hdr.flowid = inp->inp_flowid; 1052 params.hdr.flowtype = inp->inp_flowtype; 1053 params.hdr.numa_domain = inp->inp_numa_domain; 1054 params.tls_rx.inp = inp; 1055 params.tls_rx.tls = tls; 1056 params.tls_rx.vlan_id = 0; 1057 1058 INP_RUNLOCK(inp); 1059 1060 if (inp->inp_vflag & INP_IPV6) { 1061 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) { 1062 error = EOPNOTSUPP; 1063 goto out; 1064 } 1065 } else { 1066 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) { 1067 error = EOPNOTSUPP; 1068 goto out; 1069 } 1070 } 1071 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1072 1073 /* 1074 * If this connection is over a vlan, vlan_snd_tag_alloc 1075 * rewrites vlan_id with the saved interface. Save the VLAN 1076 * ID for use in ktls_reset_receive_tag which allocates new 1077 * receive tags directly from the leaf interface bypassing 1078 * if_vlan. 1079 */ 1080 if (error == 0) 1081 tls->rx_vlan_id = params.tls_rx.vlan_id; 1082 out: 1083 return (error); 1084 } 1085 1086 static int 1087 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1088 bool force) 1089 { 1090 struct m_snd_tag *mst; 1091 int error; 1092 1093 switch (direction) { 1094 case KTLS_TX: 1095 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1096 if (__predict_false(error != 0)) 1097 goto done; 1098 break; 1099 case KTLS_RX: 1100 KASSERT(!force, ("%s: forced receive tag", __func__)); 1101 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1102 if (__predict_false(error != 0)) 1103 goto done; 1104 break; 1105 default: 1106 __assert_unreachable(); 1107 } 1108 1109 tls->mode = TCP_TLS_MODE_IFNET; 1110 tls->snd_tag = mst; 1111 1112 switch (tls->params.cipher_algorithm) { 1113 case CRYPTO_AES_CBC: 1114 counter_u64_add(ktls_ifnet_cbc, 1); 1115 break; 1116 case CRYPTO_AES_NIST_GCM_16: 1117 counter_u64_add(ktls_ifnet_gcm, 1); 1118 break; 1119 case CRYPTO_CHACHA20_POLY1305: 1120 counter_u64_add(ktls_ifnet_chacha20, 1); 1121 break; 1122 default: 1123 break; 1124 } 1125 done: 1126 return (error); 1127 } 1128 1129 static void 1130 ktls_use_sw(struct ktls_session *tls) 1131 { 1132 tls->mode = TCP_TLS_MODE_SW; 1133 switch (tls->params.cipher_algorithm) { 1134 case CRYPTO_AES_CBC: 1135 counter_u64_add(ktls_sw_cbc, 1); 1136 break; 1137 case CRYPTO_AES_NIST_GCM_16: 1138 counter_u64_add(ktls_sw_gcm, 1); 1139 break; 1140 case CRYPTO_CHACHA20_POLY1305: 1141 counter_u64_add(ktls_sw_chacha20, 1); 1142 break; 1143 } 1144 } 1145 1146 static int 1147 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1148 { 1149 int error; 1150 1151 error = ktls_ocf_try(so, tls, direction); 1152 if (error) 1153 return (error); 1154 ktls_use_sw(tls); 1155 return (0); 1156 } 1157 1158 /* 1159 * KTLS RX stores data in the socket buffer as a list of TLS records, 1160 * where each record is stored as a control message containg the TLS 1161 * header followed by data mbufs containing the decrypted data. This 1162 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1163 * both encrypted and decrypted data. TLS records decrypted by a NIC 1164 * should be queued to the socket buffer as records, but encrypted 1165 * data which needs to be decrypted by software arrives as a stream of 1166 * regular mbufs which need to be converted. In addition, there may 1167 * already be pending encrypted data in the socket buffer when KTLS RX 1168 * is enabled. 1169 * 1170 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1171 * is used: 1172 * 1173 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1174 * 1175 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1176 * from the first mbuf. Once all of the data for that TLS record is 1177 * queued, the socket is queued to a worker thread. 1178 * 1179 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1180 * the TLS chain. Each TLS record is detached from the TLS chain, 1181 * decrypted, and inserted into the regular socket buffer chain as 1182 * record starting with a control message holding the TLS header and 1183 * a chain of mbufs holding the encrypted data. 1184 */ 1185 1186 static void 1187 sb_mark_notready(struct sockbuf *sb) 1188 { 1189 struct mbuf *m; 1190 1191 m = sb->sb_mb; 1192 sb->sb_mtls = m; 1193 sb->sb_mb = NULL; 1194 sb->sb_mbtail = NULL; 1195 sb->sb_lastrecord = NULL; 1196 for (; m != NULL; m = m->m_next) { 1197 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1198 __func__)); 1199 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1200 __func__)); 1201 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1202 __func__)); 1203 m->m_flags |= M_NOTREADY; 1204 sb->sb_acc -= m->m_len; 1205 sb->sb_tlscc += m->m_len; 1206 sb->sb_mtlstail = m; 1207 } 1208 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1209 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1210 sb->sb_ccc)); 1211 } 1212 1213 /* 1214 * Return information about the pending TLS data in a socket 1215 * buffer. On return, 'seqno' is set to the sequence number 1216 * of the next TLS record to be received, 'resid' is set to 1217 * the amount of bytes still needed for the last pending 1218 * record. The function returns 'false' if the last pending 1219 * record contains a partial TLS header. In that case, 'resid' 1220 * is the number of bytes needed to complete the TLS header. 1221 */ 1222 bool 1223 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1224 { 1225 struct tls_record_layer hdr; 1226 struct mbuf *m; 1227 uint64_t seqno; 1228 size_t resid; 1229 u_int offset, record_len; 1230 1231 SOCKBUF_LOCK_ASSERT(sb); 1232 MPASS(sb->sb_flags & SB_TLS_RX); 1233 seqno = sb->sb_tls_seqno; 1234 resid = sb->sb_tlscc; 1235 m = sb->sb_mtls; 1236 offset = 0; 1237 1238 if (resid == 0) { 1239 *seqnop = seqno; 1240 *residp = 0; 1241 return (true); 1242 } 1243 1244 for (;;) { 1245 seqno++; 1246 1247 if (resid < sizeof(hdr)) { 1248 *seqnop = seqno; 1249 *residp = sizeof(hdr) - resid; 1250 return (false); 1251 } 1252 1253 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1254 1255 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1256 if (resid <= record_len) { 1257 *seqnop = seqno; 1258 *residp = record_len - resid; 1259 return (true); 1260 } 1261 resid -= record_len; 1262 1263 while (record_len != 0) { 1264 if (m->m_len - offset > record_len) { 1265 offset += record_len; 1266 break; 1267 } 1268 1269 record_len -= (m->m_len - offset); 1270 offset = 0; 1271 m = m->m_next; 1272 } 1273 } 1274 } 1275 1276 int 1277 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1278 { 1279 struct ktls_session *tls; 1280 int error; 1281 1282 if (!ktls_offload_enable) 1283 return (ENOTSUP); 1284 if (SOLISTENING(so)) 1285 return (EINVAL); 1286 1287 counter_u64_add(ktls_offload_enable_calls, 1); 1288 1289 /* 1290 * This should always be true since only the TCP socket option 1291 * invokes this function. 1292 */ 1293 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1294 return (EINVAL); 1295 1296 /* 1297 * XXX: Don't overwrite existing sessions. We should permit 1298 * this to support rekeying in the future. 1299 */ 1300 if (so->so_rcv.sb_tls_info != NULL) 1301 return (EALREADY); 1302 1303 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1304 return (ENOTSUP); 1305 1306 error = ktls_create_session(so, en, &tls, KTLS_RX); 1307 if (error) 1308 return (error); 1309 1310 error = ktls_ocf_try(so, tls, KTLS_RX); 1311 if (error) { 1312 ktls_cleanup(tls); 1313 return (error); 1314 } 1315 1316 /* Mark the socket as using TLS offload. */ 1317 SOCKBUF_LOCK(&so->so_rcv); 1318 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1319 so->so_rcv.sb_tls_info = tls; 1320 so->so_rcv.sb_flags |= SB_TLS_RX; 1321 1322 /* Mark existing data as not ready until it can be decrypted. */ 1323 sb_mark_notready(&so->so_rcv); 1324 ktls_check_rx(&so->so_rcv); 1325 SOCKBUF_UNLOCK(&so->so_rcv); 1326 1327 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1328 #ifdef TCP_OFFLOAD 1329 error = ktls_try_toe(so, tls, KTLS_RX); 1330 if (error) 1331 #endif 1332 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1333 if (error) 1334 ktls_use_sw(tls); 1335 1336 counter_u64_add(ktls_offload_total, 1); 1337 1338 return (0); 1339 } 1340 1341 int 1342 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1343 { 1344 struct ktls_session *tls; 1345 struct inpcb *inp; 1346 int error; 1347 1348 if (!ktls_offload_enable) 1349 return (ENOTSUP); 1350 if (SOLISTENING(so)) 1351 return (EINVAL); 1352 1353 counter_u64_add(ktls_offload_enable_calls, 1); 1354 1355 /* 1356 * This should always be true since only the TCP socket option 1357 * invokes this function. 1358 */ 1359 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1360 return (EINVAL); 1361 1362 /* 1363 * XXX: Don't overwrite existing sessions. We should permit 1364 * this to support rekeying in the future. 1365 */ 1366 if (so->so_snd.sb_tls_info != NULL) 1367 return (EALREADY); 1368 1369 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1370 return (ENOTSUP); 1371 1372 /* TLS requires ext pgs */ 1373 if (mb_use_ext_pgs == 0) 1374 return (ENXIO); 1375 1376 error = ktls_create_session(so, en, &tls, KTLS_TX); 1377 if (error) 1378 return (error); 1379 1380 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1381 #ifdef TCP_OFFLOAD 1382 error = ktls_try_toe(so, tls, KTLS_TX); 1383 if (error) 1384 #endif 1385 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1386 if (error) 1387 error = ktls_try_sw(so, tls, KTLS_TX); 1388 1389 if (error) { 1390 ktls_cleanup(tls); 1391 return (error); 1392 } 1393 1394 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1395 if (error) { 1396 ktls_cleanup(tls); 1397 return (error); 1398 } 1399 1400 /* 1401 * Write lock the INP when setting sb_tls_info so that 1402 * routines in tcp_ratelimit.c can read sb_tls_info while 1403 * holding the INP lock. 1404 */ 1405 inp = so->so_pcb; 1406 INP_WLOCK(inp); 1407 SOCKBUF_LOCK(&so->so_snd); 1408 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1409 so->so_snd.sb_tls_info = tls; 1410 if (tls->mode != TCP_TLS_MODE_SW) 1411 so->so_snd.sb_flags |= SB_TLS_IFNET; 1412 SOCKBUF_UNLOCK(&so->so_snd); 1413 INP_WUNLOCK(inp); 1414 SOCK_IO_SEND_UNLOCK(so); 1415 1416 counter_u64_add(ktls_offload_total, 1); 1417 1418 return (0); 1419 } 1420 1421 int 1422 ktls_get_rx_mode(struct socket *so, int *modep) 1423 { 1424 struct ktls_session *tls; 1425 struct inpcb *inp __diagused; 1426 1427 if (SOLISTENING(so)) 1428 return (EINVAL); 1429 inp = so->so_pcb; 1430 INP_WLOCK_ASSERT(inp); 1431 SOCK_RECVBUF_LOCK(so); 1432 tls = so->so_rcv.sb_tls_info; 1433 if (tls == NULL) 1434 *modep = TCP_TLS_MODE_NONE; 1435 else 1436 *modep = tls->mode; 1437 SOCK_RECVBUF_UNLOCK(so); 1438 return (0); 1439 } 1440 1441 /* 1442 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1443 * 1444 * This function gets information about the next TCP- and TLS- 1445 * sequence number to be processed by the TLS receive worker 1446 * thread. The information is extracted from the given "inpcb" 1447 * structure. The values are stored in host endian format at the two 1448 * given output pointer locations. The TCP sequence number points to 1449 * the beginning of the TLS header. 1450 * 1451 * This function returns zero on success, else a non-zero error code 1452 * is returned. 1453 */ 1454 int 1455 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1456 { 1457 struct socket *so; 1458 struct tcpcb *tp; 1459 1460 INP_RLOCK(inp); 1461 so = inp->inp_socket; 1462 if (__predict_false(so == NULL)) { 1463 INP_RUNLOCK(inp); 1464 return (EINVAL); 1465 } 1466 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1467 INP_RUNLOCK(inp); 1468 return (ECONNRESET); 1469 } 1470 1471 tp = intotcpcb(inp); 1472 MPASS(tp != NULL); 1473 1474 SOCKBUF_LOCK(&so->so_rcv); 1475 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1476 *tlsseq = so->so_rcv.sb_tls_seqno; 1477 SOCKBUF_UNLOCK(&so->so_rcv); 1478 1479 INP_RUNLOCK(inp); 1480 1481 return (0); 1482 } 1483 1484 int 1485 ktls_get_tx_mode(struct socket *so, int *modep) 1486 { 1487 struct ktls_session *tls; 1488 struct inpcb *inp __diagused; 1489 1490 if (SOLISTENING(so)) 1491 return (EINVAL); 1492 inp = so->so_pcb; 1493 INP_WLOCK_ASSERT(inp); 1494 SOCK_SENDBUF_LOCK(so); 1495 tls = so->so_snd.sb_tls_info; 1496 if (tls == NULL) 1497 *modep = TCP_TLS_MODE_NONE; 1498 else 1499 *modep = tls->mode; 1500 SOCK_SENDBUF_UNLOCK(so); 1501 return (0); 1502 } 1503 1504 /* 1505 * Switch between SW and ifnet TLS sessions as requested. 1506 */ 1507 int 1508 ktls_set_tx_mode(struct socket *so, int mode) 1509 { 1510 struct ktls_session *tls, *tls_new; 1511 struct inpcb *inp; 1512 int error; 1513 1514 if (SOLISTENING(so)) 1515 return (EINVAL); 1516 switch (mode) { 1517 case TCP_TLS_MODE_SW: 1518 case TCP_TLS_MODE_IFNET: 1519 break; 1520 default: 1521 return (EINVAL); 1522 } 1523 1524 inp = so->so_pcb; 1525 INP_WLOCK_ASSERT(inp); 1526 SOCKBUF_LOCK(&so->so_snd); 1527 tls = so->so_snd.sb_tls_info; 1528 if (tls == NULL) { 1529 SOCKBUF_UNLOCK(&so->so_snd); 1530 return (0); 1531 } 1532 1533 if (tls->mode == mode) { 1534 SOCKBUF_UNLOCK(&so->so_snd); 1535 return (0); 1536 } 1537 1538 tls = ktls_hold(tls); 1539 SOCKBUF_UNLOCK(&so->so_snd); 1540 INP_WUNLOCK(inp); 1541 1542 tls_new = ktls_clone_session(tls, KTLS_TX); 1543 1544 if (mode == TCP_TLS_MODE_IFNET) 1545 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1546 else 1547 error = ktls_try_sw(so, tls_new, KTLS_TX); 1548 if (error) { 1549 counter_u64_add(ktls_switch_failed, 1); 1550 ktls_free(tls_new); 1551 ktls_free(tls); 1552 INP_WLOCK(inp); 1553 return (error); 1554 } 1555 1556 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1557 if (error) { 1558 counter_u64_add(ktls_switch_failed, 1); 1559 ktls_free(tls_new); 1560 ktls_free(tls); 1561 INP_WLOCK(inp); 1562 return (error); 1563 } 1564 1565 /* 1566 * If we raced with another session change, keep the existing 1567 * session. 1568 */ 1569 if (tls != so->so_snd.sb_tls_info) { 1570 counter_u64_add(ktls_switch_failed, 1); 1571 SOCK_IO_SEND_UNLOCK(so); 1572 ktls_free(tls_new); 1573 ktls_free(tls); 1574 INP_WLOCK(inp); 1575 return (EBUSY); 1576 } 1577 1578 INP_WLOCK(inp); 1579 SOCKBUF_LOCK(&so->so_snd); 1580 so->so_snd.sb_tls_info = tls_new; 1581 if (tls_new->mode != TCP_TLS_MODE_SW) 1582 so->so_snd.sb_flags |= SB_TLS_IFNET; 1583 SOCKBUF_UNLOCK(&so->so_snd); 1584 SOCK_IO_SEND_UNLOCK(so); 1585 1586 /* 1587 * Drop two references on 'tls'. The first is for the 1588 * ktls_hold() above. The second drops the reference from the 1589 * socket buffer. 1590 */ 1591 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1592 ktls_free(tls); 1593 ktls_free(tls); 1594 1595 if (mode == TCP_TLS_MODE_IFNET) 1596 counter_u64_add(ktls_switch_to_ifnet, 1); 1597 else 1598 counter_u64_add(ktls_switch_to_sw, 1); 1599 1600 return (0); 1601 } 1602 1603 /* 1604 * Try to allocate a new TLS receive tag. This task is scheduled when 1605 * sbappend_ktls_rx detects an input path change. If a new tag is 1606 * allocated, replace the tag in the TLS session. If a new tag cannot 1607 * be allocated, let the session fall back to software decryption. 1608 */ 1609 static void 1610 ktls_reset_receive_tag(void *context, int pending) 1611 { 1612 union if_snd_tag_alloc_params params; 1613 struct ktls_session *tls; 1614 struct m_snd_tag *mst; 1615 struct inpcb *inp; 1616 struct ifnet *ifp; 1617 struct socket *so; 1618 int error; 1619 1620 MPASS(pending == 1); 1621 1622 tls = context; 1623 so = tls->so; 1624 inp = so->so_pcb; 1625 ifp = NULL; 1626 1627 INP_RLOCK(inp); 1628 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1629 INP_RUNLOCK(inp); 1630 goto out; 1631 } 1632 1633 SOCKBUF_LOCK(&so->so_rcv); 1634 m_snd_tag_rele(tls->snd_tag); 1635 tls->snd_tag = NULL; 1636 1637 ifp = tls->rx_ifp; 1638 if_ref(ifp); 1639 SOCKBUF_UNLOCK(&so->so_rcv); 1640 1641 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1642 params.hdr.flowid = inp->inp_flowid; 1643 params.hdr.flowtype = inp->inp_flowtype; 1644 params.hdr.numa_domain = inp->inp_numa_domain; 1645 params.tls_rx.inp = inp; 1646 params.tls_rx.tls = tls; 1647 params.tls_rx.vlan_id = tls->rx_vlan_id; 1648 INP_RUNLOCK(inp); 1649 1650 if (inp->inp_vflag & INP_IPV6) { 1651 if ((ifp->if_capenable2 & IFCAP2_RXTLS6) == 0) 1652 goto out; 1653 } else { 1654 if ((ifp->if_capenable2 & IFCAP2_RXTLS4) == 0) 1655 goto out; 1656 } 1657 1658 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1659 if (error == 0) { 1660 SOCKBUF_LOCK(&so->so_rcv); 1661 tls->snd_tag = mst; 1662 SOCKBUF_UNLOCK(&so->so_rcv); 1663 1664 counter_u64_add(ktls_ifnet_reset, 1); 1665 } else { 1666 /* 1667 * Just fall back to software decryption if a tag 1668 * cannot be allocated leaving the connection intact. 1669 * If a future input path change switches to another 1670 * interface this connection will resume ifnet TLS. 1671 */ 1672 counter_u64_add(ktls_ifnet_reset_failed, 1); 1673 } 1674 1675 out: 1676 mtx_pool_lock(mtxpool_sleep, tls); 1677 tls->reset_pending = false; 1678 mtx_pool_unlock(mtxpool_sleep, tls); 1679 1680 if (ifp != NULL) 1681 if_rele(ifp); 1682 sorele(so); 1683 ktls_free(tls); 1684 } 1685 1686 /* 1687 * Try to allocate a new TLS send tag. This task is scheduled when 1688 * ip_output detects a route change while trying to transmit a packet 1689 * holding a TLS record. If a new tag is allocated, replace the tag 1690 * in the TLS session. Subsequent packets on the connection will use 1691 * the new tag. If a new tag cannot be allocated, drop the 1692 * connection. 1693 */ 1694 static void 1695 ktls_reset_send_tag(void *context, int pending) 1696 { 1697 struct epoch_tracker et; 1698 struct ktls_session *tls; 1699 struct m_snd_tag *old, *new; 1700 struct inpcb *inp; 1701 struct tcpcb *tp; 1702 int error; 1703 1704 MPASS(pending == 1); 1705 1706 tls = context; 1707 inp = tls->inp; 1708 1709 /* 1710 * Free the old tag first before allocating a new one. 1711 * ip[6]_output_send() will treat a NULL send tag the same as 1712 * an ifp mismatch and drop packets until a new tag is 1713 * allocated. 1714 * 1715 * Write-lock the INP when changing tls->snd_tag since 1716 * ip[6]_output_send() holds a read-lock when reading the 1717 * pointer. 1718 */ 1719 INP_WLOCK(inp); 1720 old = tls->snd_tag; 1721 tls->snd_tag = NULL; 1722 INP_WUNLOCK(inp); 1723 if (old != NULL) 1724 m_snd_tag_rele(old); 1725 1726 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1727 1728 if (error == 0) { 1729 INP_WLOCK(inp); 1730 tls->snd_tag = new; 1731 mtx_pool_lock(mtxpool_sleep, tls); 1732 tls->reset_pending = false; 1733 mtx_pool_unlock(mtxpool_sleep, tls); 1734 if (!in_pcbrele_wlocked(inp)) 1735 INP_WUNLOCK(inp); 1736 1737 counter_u64_add(ktls_ifnet_reset, 1); 1738 1739 /* 1740 * XXX: Should we kick tcp_output explicitly now that 1741 * the send tag is fixed or just rely on timers? 1742 */ 1743 } else { 1744 NET_EPOCH_ENTER(et); 1745 INP_WLOCK(inp); 1746 if (!in_pcbrele_wlocked(inp)) { 1747 if (!(inp->inp_flags & INP_TIMEWAIT) && 1748 !(inp->inp_flags & INP_DROPPED)) { 1749 tp = intotcpcb(inp); 1750 CURVNET_SET(tp->t_vnet); 1751 tp = tcp_drop(tp, ECONNABORTED); 1752 CURVNET_RESTORE(); 1753 if (tp != NULL) 1754 INP_WUNLOCK(inp); 1755 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1756 } else 1757 INP_WUNLOCK(inp); 1758 } 1759 NET_EPOCH_EXIT(et); 1760 1761 counter_u64_add(ktls_ifnet_reset_failed, 1); 1762 1763 /* 1764 * Leave reset_pending true to avoid future tasks while 1765 * the socket goes away. 1766 */ 1767 } 1768 1769 ktls_free(tls); 1770 } 1771 1772 void 1773 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1774 { 1775 struct ktls_session *tls; 1776 struct socket *so; 1777 1778 SOCKBUF_LOCK_ASSERT(sb); 1779 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1780 __func__, sb)); 1781 so = __containerof(sb, struct socket, so_rcv); 1782 1783 tls = sb->sb_tls_info; 1784 if_rele(tls->rx_ifp); 1785 if_ref(ifp); 1786 tls->rx_ifp = ifp; 1787 1788 /* 1789 * See if we should schedule a task to update the receive tag for 1790 * this session. 1791 */ 1792 mtx_pool_lock(mtxpool_sleep, tls); 1793 if (!tls->reset_pending) { 1794 (void) ktls_hold(tls); 1795 soref(so); 1796 tls->so = so; 1797 tls->reset_pending = true; 1798 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1799 } 1800 mtx_pool_unlock(mtxpool_sleep, tls); 1801 } 1802 1803 int 1804 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1805 { 1806 1807 if (inp == NULL) 1808 return (ENOBUFS); 1809 1810 INP_LOCK_ASSERT(inp); 1811 1812 /* 1813 * See if we should schedule a task to update the send tag for 1814 * this session. 1815 */ 1816 mtx_pool_lock(mtxpool_sleep, tls); 1817 if (!tls->reset_pending) { 1818 (void) ktls_hold(tls); 1819 in_pcbref(inp); 1820 tls->inp = inp; 1821 tls->reset_pending = true; 1822 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1823 } 1824 mtx_pool_unlock(mtxpool_sleep, tls); 1825 return (ENOBUFS); 1826 } 1827 1828 #ifdef RATELIMIT 1829 int 1830 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1831 { 1832 union if_snd_tag_modify_params params = { 1833 .rate_limit.max_rate = max_pacing_rate, 1834 .rate_limit.flags = M_NOWAIT, 1835 }; 1836 struct m_snd_tag *mst; 1837 1838 /* Can't get to the inp, but it should be locked. */ 1839 /* INP_LOCK_ASSERT(inp); */ 1840 1841 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1842 1843 if (tls->snd_tag == NULL) { 1844 /* 1845 * Resetting send tag, ignore this change. The 1846 * pending reset may or may not see this updated rate 1847 * in the tcpcb. If it doesn't, we will just lose 1848 * this rate change. 1849 */ 1850 return (0); 1851 } 1852 1853 mst = tls->snd_tag; 1854 1855 MPASS(mst != NULL); 1856 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1857 1858 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1859 } 1860 #endif 1861 #endif 1862 1863 void 1864 ktls_destroy(struct ktls_session *tls) 1865 { 1866 1867 if (tls->sequential_records) { 1868 struct mbuf *m, *n; 1869 int page_count; 1870 1871 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1872 page_count = m->m_epg_enc_cnt; 1873 while (page_count > 0) { 1874 KASSERT(page_count >= m->m_epg_nrdy, 1875 ("%s: too few pages", __func__)); 1876 page_count -= m->m_epg_nrdy; 1877 m = m_free(m); 1878 } 1879 } 1880 } 1881 ktls_cleanup(tls); 1882 uma_zfree(ktls_session_zone, tls); 1883 } 1884 1885 void 1886 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1887 { 1888 1889 for (; m != NULL; m = m->m_next) { 1890 KASSERT((m->m_flags & M_EXTPG) != 0, 1891 ("ktls_seq: mapped mbuf %p", m)); 1892 1893 m->m_epg_seqno = sb->sb_tls_seqno; 1894 sb->sb_tls_seqno++; 1895 } 1896 } 1897 1898 /* 1899 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1900 * mbuf in the chain must be an unmapped mbuf. The payload of the 1901 * mbuf must be populated with the payload of each TLS record. 1902 * 1903 * The record_type argument specifies the TLS record type used when 1904 * populating the TLS header. 1905 * 1906 * The enq_count argument on return is set to the number of pages of 1907 * payload data for this entire chain that need to be encrypted via SW 1908 * encryption. The returned value should be passed to ktls_enqueue 1909 * when scheduling encryption of this chain of mbufs. To handle the 1910 * special case of empty fragments for TLS 1.0 sessions, an empty 1911 * fragment counts as one page. 1912 */ 1913 void 1914 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1915 uint8_t record_type) 1916 { 1917 struct tls_record_layer *tlshdr; 1918 struct mbuf *m; 1919 uint64_t *noncep; 1920 uint16_t tls_len; 1921 int maxlen __diagused; 1922 1923 maxlen = tls->params.max_frame_len; 1924 *enq_cnt = 0; 1925 for (m = top; m != NULL; m = m->m_next) { 1926 /* 1927 * All mbufs in the chain should be TLS records whose 1928 * payload does not exceed the maximum frame length. 1929 * 1930 * Empty TLS 1.0 records are permitted when using CBC. 1931 */ 1932 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 1933 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 1934 ("ktls_frame: m %p len %d", m, m->m_len)); 1935 1936 /* 1937 * TLS frames require unmapped mbufs to store session 1938 * info. 1939 */ 1940 KASSERT((m->m_flags & M_EXTPG) != 0, 1941 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 1942 1943 tls_len = m->m_len; 1944 1945 /* Save a reference to the session. */ 1946 m->m_epg_tls = ktls_hold(tls); 1947 1948 m->m_epg_hdrlen = tls->params.tls_hlen; 1949 m->m_epg_trllen = tls->params.tls_tlen; 1950 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1951 int bs, delta; 1952 1953 /* 1954 * AES-CBC pads messages to a multiple of the 1955 * block size. Note that the padding is 1956 * applied after the digest and the encryption 1957 * is done on the "plaintext || mac || padding". 1958 * At least one byte of padding is always 1959 * present. 1960 * 1961 * Compute the final trailer length assuming 1962 * at most one block of padding. 1963 * tls->params.tls_tlen is the maximum 1964 * possible trailer length (padding + digest). 1965 * delta holds the number of excess padding 1966 * bytes if the maximum were used. Those 1967 * extra bytes are removed. 1968 */ 1969 bs = tls->params.tls_bs; 1970 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1971 m->m_epg_trllen -= delta; 1972 } 1973 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1974 1975 /* Populate the TLS header. */ 1976 tlshdr = (void *)m->m_epg_hdr; 1977 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1978 1979 /* 1980 * TLS 1.3 masquarades as TLS 1.2 with a record type 1981 * of TLS_RLTYPE_APP. 1982 */ 1983 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1984 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1985 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1986 tlshdr->tls_type = TLS_RLTYPE_APP; 1987 /* save the real record type for later */ 1988 m->m_epg_record_type = record_type; 1989 m->m_epg_trail[0] = record_type; 1990 } else { 1991 tlshdr->tls_vminor = tls->params.tls_vminor; 1992 tlshdr->tls_type = record_type; 1993 } 1994 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1995 1996 /* 1997 * Store nonces / explicit IVs after the end of the 1998 * TLS header. 1999 * 2000 * For GCM with TLS 1.2, an 8 byte nonce is copied 2001 * from the end of the IV. The nonce is then 2002 * incremented for use by the next record. 2003 * 2004 * For CBC, a random nonce is inserted for TLS 1.1+. 2005 */ 2006 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2007 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2008 noncep = (uint64_t *)(tls->params.iv + 8); 2009 be64enc(tlshdr + 1, *noncep); 2010 (*noncep)++; 2011 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2012 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2013 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2014 2015 /* 2016 * When using SW encryption, mark the mbuf not ready. 2017 * It will be marked ready via sbready() after the 2018 * record has been encrypted. 2019 * 2020 * When using ifnet TLS, unencrypted TLS records are 2021 * sent down the stack to the NIC. 2022 */ 2023 if (tls->mode == TCP_TLS_MODE_SW) { 2024 m->m_flags |= M_NOTREADY; 2025 if (__predict_false(tls_len == 0)) { 2026 /* TLS 1.0 empty fragment. */ 2027 m->m_epg_nrdy = 1; 2028 } else 2029 m->m_epg_nrdy = m->m_epg_npgs; 2030 *enq_cnt += m->m_epg_nrdy; 2031 } 2032 } 2033 } 2034 2035 bool 2036 ktls_permit_empty_frames(struct ktls_session *tls) 2037 { 2038 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2039 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2040 } 2041 2042 void 2043 ktls_check_rx(struct sockbuf *sb) 2044 { 2045 struct tls_record_layer hdr; 2046 struct ktls_wq *wq; 2047 struct socket *so; 2048 bool running; 2049 2050 SOCKBUF_LOCK_ASSERT(sb); 2051 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2052 __func__, sb)); 2053 so = __containerof(sb, struct socket, so_rcv); 2054 2055 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2056 return; 2057 2058 /* Is there enough queued for a TLS header? */ 2059 if (sb->sb_tlscc < sizeof(hdr)) { 2060 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2061 so->so_error = EMSGSIZE; 2062 return; 2063 } 2064 2065 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2066 2067 /* Is the entire record queued? */ 2068 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2069 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2070 so->so_error = EMSGSIZE; 2071 return; 2072 } 2073 2074 sb->sb_flags |= SB_TLS_RX_RUNNING; 2075 2076 soref(so); 2077 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2078 mtx_lock(&wq->mtx); 2079 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2080 running = wq->running; 2081 mtx_unlock(&wq->mtx); 2082 if (!running) 2083 wakeup(wq); 2084 counter_u64_add(ktls_cnt_rx_queued, 1); 2085 } 2086 2087 static struct mbuf * 2088 ktls_detach_record(struct sockbuf *sb, int len) 2089 { 2090 struct mbuf *m, *n, *top; 2091 int remain; 2092 2093 SOCKBUF_LOCK_ASSERT(sb); 2094 MPASS(len <= sb->sb_tlscc); 2095 2096 /* 2097 * If TLS chain is the exact size of the record, 2098 * just grab the whole record. 2099 */ 2100 top = sb->sb_mtls; 2101 if (sb->sb_tlscc == len) { 2102 sb->sb_mtls = NULL; 2103 sb->sb_mtlstail = NULL; 2104 goto out; 2105 } 2106 2107 /* 2108 * While it would be nice to use m_split() here, we need 2109 * to know exactly what m_split() allocates to update the 2110 * accounting, so do it inline instead. 2111 */ 2112 remain = len; 2113 for (m = top; remain > m->m_len; m = m->m_next) 2114 remain -= m->m_len; 2115 2116 /* Easy case: don't have to split 'm'. */ 2117 if (remain == m->m_len) { 2118 sb->sb_mtls = m->m_next; 2119 if (sb->sb_mtls == NULL) 2120 sb->sb_mtlstail = NULL; 2121 m->m_next = NULL; 2122 goto out; 2123 } 2124 2125 /* 2126 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2127 * with M_NOWAIT first. 2128 */ 2129 n = m_get(M_NOWAIT, MT_DATA); 2130 if (n == NULL) { 2131 /* 2132 * Use M_WAITOK with socket buffer unlocked. If 2133 * 'sb_mtls' changes while the lock is dropped, return 2134 * NULL to force the caller to retry. 2135 */ 2136 SOCKBUF_UNLOCK(sb); 2137 2138 n = m_get(M_WAITOK, MT_DATA); 2139 2140 SOCKBUF_LOCK(sb); 2141 if (sb->sb_mtls != top) { 2142 m_free(n); 2143 return (NULL); 2144 } 2145 } 2146 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2147 2148 /* Store remainder in 'n'. */ 2149 n->m_len = m->m_len - remain; 2150 if (m->m_flags & M_EXT) { 2151 n->m_data = m->m_data + remain; 2152 mb_dupcl(n, m); 2153 } else { 2154 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2155 } 2156 2157 /* Trim 'm' and update accounting. */ 2158 m->m_len -= n->m_len; 2159 sb->sb_tlscc -= n->m_len; 2160 sb->sb_ccc -= n->m_len; 2161 2162 /* Account for 'n'. */ 2163 sballoc_ktls_rx(sb, n); 2164 2165 /* Insert 'n' into the TLS chain. */ 2166 sb->sb_mtls = n; 2167 n->m_next = m->m_next; 2168 if (sb->sb_mtlstail == m) 2169 sb->sb_mtlstail = n; 2170 2171 /* Detach the record from the TLS chain. */ 2172 m->m_next = NULL; 2173 2174 out: 2175 MPASS(m_length(top, NULL) == len); 2176 for (m = top; m != NULL; m = m->m_next) 2177 sbfree_ktls_rx(sb, m); 2178 sb->sb_tlsdcc = len; 2179 sb->sb_ccc += len; 2180 SBCHECK(sb); 2181 return (top); 2182 } 2183 2184 /* 2185 * Determine the length of the trailing zero padding and find the real 2186 * record type in the byte before the padding. 2187 * 2188 * Walking the mbuf chain backwards is clumsy, so another option would 2189 * be to scan forwards remembering the last non-zero byte before the 2190 * trailer. However, it would be expensive to scan the entire record. 2191 * Instead, find the last non-zero byte of each mbuf in the chain 2192 * keeping track of the relative offset of that nonzero byte. 2193 * 2194 * trail_len is the size of the MAC/tag on input and is set to the 2195 * size of the full trailer including padding and the record type on 2196 * return. 2197 */ 2198 static int 2199 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2200 int *trailer_len, uint8_t *record_typep) 2201 { 2202 char *cp; 2203 u_int digest_start, last_offset, m_len, offset; 2204 uint8_t record_type; 2205 2206 digest_start = tls_len - *trailer_len; 2207 last_offset = 0; 2208 offset = 0; 2209 for (; m != NULL && offset < digest_start; 2210 offset += m->m_len, m = m->m_next) { 2211 /* Don't look for padding in the tag. */ 2212 m_len = min(digest_start - offset, m->m_len); 2213 cp = mtod(m, char *); 2214 2215 /* Find last non-zero byte in this mbuf. */ 2216 while (m_len > 0 && cp[m_len - 1] == 0) 2217 m_len--; 2218 if (m_len > 0) { 2219 record_type = cp[m_len - 1]; 2220 last_offset = offset + m_len; 2221 } 2222 } 2223 if (last_offset < tls->params.tls_hlen) 2224 return (EBADMSG); 2225 2226 *record_typep = record_type; 2227 *trailer_len = tls_len - last_offset + 1; 2228 return (0); 2229 } 2230 2231 /* 2232 * Check if a mbuf chain is fully decrypted at the given offset and 2233 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2234 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2235 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2236 * is encrypted. 2237 */ 2238 ktls_mbuf_crypto_st_t 2239 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2240 { 2241 int m_flags_ored = 0; 2242 int m_flags_anded = -1; 2243 2244 for (; mb != NULL; mb = mb->m_next) { 2245 if (offset < mb->m_len) 2246 break; 2247 offset -= mb->m_len; 2248 } 2249 offset += len; 2250 2251 for (; mb != NULL; mb = mb->m_next) { 2252 m_flags_ored |= mb->m_flags; 2253 m_flags_anded &= mb->m_flags; 2254 2255 if (offset <= mb->m_len) 2256 break; 2257 offset -= mb->m_len; 2258 } 2259 MPASS(mb != NULL || offset == 0); 2260 2261 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2262 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2263 else 2264 return ((m_flags_ored & M_DECRYPTED) ? 2265 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2266 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2267 } 2268 2269 /* 2270 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2271 */ 2272 static int 2273 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2274 { 2275 union if_snd_tag_modify_params params; 2276 struct m_snd_tag *mst; 2277 struct inpcb *inp; 2278 struct tcpcb *tp; 2279 2280 mst = so->so_rcv.sb_tls_info->snd_tag; 2281 if (__predict_false(mst == NULL)) 2282 return (EINVAL); 2283 2284 inp = sotoinpcb(so); 2285 if (__predict_false(inp == NULL)) 2286 return (EINVAL); 2287 2288 INP_RLOCK(inp); 2289 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2290 INP_RUNLOCK(inp); 2291 return (ECONNRESET); 2292 } 2293 2294 tp = intotcpcb(inp); 2295 MPASS(tp != NULL); 2296 2297 /* Get the TCP sequence number of the next valid TLS header. */ 2298 SOCKBUF_LOCK(&so->so_rcv); 2299 params.tls_rx.tls_hdr_tcp_sn = 2300 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2301 params.tls_rx.tls_rec_length = tls_len; 2302 params.tls_rx.tls_seq_number = tls_rcd_num; 2303 SOCKBUF_UNLOCK(&so->so_rcv); 2304 2305 INP_RUNLOCK(inp); 2306 2307 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2308 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2309 } 2310 2311 static void 2312 ktls_decrypt(struct socket *so) 2313 { 2314 char tls_header[MBUF_PEXT_HDR_LEN]; 2315 struct ktls_session *tls; 2316 struct sockbuf *sb; 2317 struct tls_record_layer *hdr; 2318 struct tls_get_record tgr; 2319 struct mbuf *control, *data, *m; 2320 ktls_mbuf_crypto_st_t state; 2321 uint64_t seqno; 2322 int error, remain, tls_len, trail_len; 2323 bool tls13; 2324 uint8_t vminor, record_type; 2325 2326 hdr = (struct tls_record_layer *)tls_header; 2327 sb = &so->so_rcv; 2328 SOCKBUF_LOCK(sb); 2329 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2330 ("%s: socket %p not running", __func__, so)); 2331 2332 tls = sb->sb_tls_info; 2333 MPASS(tls != NULL); 2334 2335 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2336 if (tls13) 2337 vminor = TLS_MINOR_VER_TWO; 2338 else 2339 vminor = tls->params.tls_vminor; 2340 for (;;) { 2341 /* Is there enough queued for a TLS header? */ 2342 if (sb->sb_tlscc < tls->params.tls_hlen) 2343 break; 2344 2345 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2346 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2347 2348 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2349 hdr->tls_vminor != vminor) 2350 error = EINVAL; 2351 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2352 error = EINVAL; 2353 else if (tls_len < tls->params.tls_hlen || tls_len > 2354 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2355 tls->params.tls_tlen) 2356 error = EMSGSIZE; 2357 else 2358 error = 0; 2359 if (__predict_false(error != 0)) { 2360 /* 2361 * We have a corrupted record and are likely 2362 * out of sync. The connection isn't 2363 * recoverable at this point, so abort it. 2364 */ 2365 SOCKBUF_UNLOCK(sb); 2366 counter_u64_add(ktls_offload_corrupted_records, 1); 2367 2368 CURVNET_SET(so->so_vnet); 2369 so->so_proto->pr_abort(so); 2370 so->so_error = error; 2371 CURVNET_RESTORE(); 2372 goto deref; 2373 } 2374 2375 /* Is the entire record queued? */ 2376 if (sb->sb_tlscc < tls_len) 2377 break; 2378 2379 /* 2380 * Split out the portion of the mbuf chain containing 2381 * this TLS record. 2382 */ 2383 data = ktls_detach_record(sb, tls_len); 2384 if (data == NULL) 2385 continue; 2386 MPASS(sb->sb_tlsdcc == tls_len); 2387 2388 seqno = sb->sb_tls_seqno; 2389 sb->sb_tls_seqno++; 2390 SBCHECK(sb); 2391 SOCKBUF_UNLOCK(sb); 2392 2393 /* get crypto state for this TLS record */ 2394 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2395 2396 switch (state) { 2397 case KTLS_MBUF_CRYPTO_ST_MIXED: 2398 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2399 if (error) 2400 break; 2401 /* FALLTHROUGH */ 2402 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2403 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2404 &trail_len); 2405 if (__predict_true(error == 0)) { 2406 if (tls13) { 2407 error = tls13_find_record_type(tls, data, 2408 tls_len, &trail_len, &record_type); 2409 } else { 2410 record_type = hdr->tls_type; 2411 } 2412 } 2413 break; 2414 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2415 /* 2416 * NIC TLS is only supported for AEAD 2417 * ciphersuites which used a fixed sized 2418 * trailer. 2419 */ 2420 if (tls13) { 2421 trail_len = tls->params.tls_tlen - 1; 2422 error = tls13_find_record_type(tls, data, 2423 tls_len, &trail_len, &record_type); 2424 } else { 2425 trail_len = tls->params.tls_tlen; 2426 error = 0; 2427 record_type = hdr->tls_type; 2428 } 2429 break; 2430 default: 2431 error = EINVAL; 2432 break; 2433 } 2434 if (error) { 2435 counter_u64_add(ktls_offload_failed_crypto, 1); 2436 2437 SOCKBUF_LOCK(sb); 2438 if (sb->sb_tlsdcc == 0) { 2439 /* 2440 * sbcut/drop/flush discarded these 2441 * mbufs. 2442 */ 2443 m_freem(data); 2444 break; 2445 } 2446 2447 /* 2448 * Drop this TLS record's data, but keep 2449 * decrypting subsequent records. 2450 */ 2451 sb->sb_ccc -= tls_len; 2452 sb->sb_tlsdcc = 0; 2453 2454 CURVNET_SET(so->so_vnet); 2455 so->so_error = EBADMSG; 2456 sorwakeup_locked(so); 2457 CURVNET_RESTORE(); 2458 2459 m_freem(data); 2460 2461 SOCKBUF_LOCK(sb); 2462 continue; 2463 } 2464 2465 /* Allocate the control mbuf. */ 2466 memset(&tgr, 0, sizeof(tgr)); 2467 tgr.tls_type = record_type; 2468 tgr.tls_vmajor = hdr->tls_vmajor; 2469 tgr.tls_vminor = hdr->tls_vminor; 2470 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2471 trail_len); 2472 control = sbcreatecontrol(&tgr, sizeof(tgr), 2473 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2474 2475 SOCKBUF_LOCK(sb); 2476 if (sb->sb_tlsdcc == 0) { 2477 /* sbcut/drop/flush discarded these mbufs. */ 2478 MPASS(sb->sb_tlscc == 0); 2479 m_freem(data); 2480 m_freem(control); 2481 break; 2482 } 2483 2484 /* 2485 * Clear the 'dcc' accounting in preparation for 2486 * adding the decrypted record. 2487 */ 2488 sb->sb_ccc -= tls_len; 2489 sb->sb_tlsdcc = 0; 2490 SBCHECK(sb); 2491 2492 /* If there is no payload, drop all of the data. */ 2493 if (tgr.tls_length == htobe16(0)) { 2494 m_freem(data); 2495 data = NULL; 2496 } else { 2497 /* Trim header. */ 2498 remain = tls->params.tls_hlen; 2499 while (remain > 0) { 2500 if (data->m_len > remain) { 2501 data->m_data += remain; 2502 data->m_len -= remain; 2503 break; 2504 } 2505 remain -= data->m_len; 2506 data = m_free(data); 2507 } 2508 2509 /* Trim trailer and clear M_NOTREADY. */ 2510 remain = be16toh(tgr.tls_length); 2511 m = data; 2512 for (m = data; remain > m->m_len; m = m->m_next) { 2513 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2514 remain -= m->m_len; 2515 } 2516 m->m_len = remain; 2517 m_freem(m->m_next); 2518 m->m_next = NULL; 2519 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2520 2521 /* Set EOR on the final mbuf. */ 2522 m->m_flags |= M_EOR; 2523 } 2524 2525 sbappendcontrol_locked(sb, data, control, 0); 2526 2527 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2528 sb->sb_flags |= SB_TLS_RX_RESYNC; 2529 SOCKBUF_UNLOCK(sb); 2530 ktls_resync_ifnet(so, tls_len, seqno); 2531 SOCKBUF_LOCK(sb); 2532 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2533 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2534 SOCKBUF_UNLOCK(sb); 2535 ktls_resync_ifnet(so, 0, seqno); 2536 SOCKBUF_LOCK(sb); 2537 } 2538 } 2539 2540 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2541 2542 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2543 so->so_error = EMSGSIZE; 2544 2545 sorwakeup_locked(so); 2546 2547 deref: 2548 SOCKBUF_UNLOCK_ASSERT(sb); 2549 2550 CURVNET_SET(so->so_vnet); 2551 sorele(so); 2552 CURVNET_RESTORE(); 2553 } 2554 2555 void 2556 ktls_enqueue_to_free(struct mbuf *m) 2557 { 2558 struct ktls_wq *wq; 2559 bool running; 2560 2561 /* Mark it for freeing. */ 2562 m->m_epg_flags |= EPG_FLAG_2FREE; 2563 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2564 mtx_lock(&wq->mtx); 2565 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2566 running = wq->running; 2567 mtx_unlock(&wq->mtx); 2568 if (!running) 2569 wakeup(wq); 2570 } 2571 2572 static void * 2573 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2574 { 2575 void *buf; 2576 int domain, running; 2577 2578 if (m->m_epg_npgs <= 2) 2579 return (NULL); 2580 if (ktls_buffer_zone == NULL) 2581 return (NULL); 2582 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2583 /* 2584 * Rate-limit allocation attempts after a failure. 2585 * ktls_buffer_import() will acquire a per-domain mutex to check 2586 * the free page queues and may fail consistently if memory is 2587 * fragmented. 2588 */ 2589 return (NULL); 2590 } 2591 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2592 if (buf == NULL) { 2593 domain = PCPU_GET(domain); 2594 wq->lastallocfail = ticks; 2595 2596 /* 2597 * Note that this check is "racy", but the races are 2598 * harmless, and are either a spurious wakeup if 2599 * multiple threads fail allocations before the alloc 2600 * thread wakes, or waiting an extra second in case we 2601 * see an old value of running == true. 2602 */ 2603 if (!VM_DOMAIN_EMPTY(domain)) { 2604 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2605 if (!running) 2606 wakeup(&ktls_domains[domain].alloc_td); 2607 } 2608 } 2609 return (buf); 2610 } 2611 2612 static int 2613 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2614 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2615 { 2616 vm_page_t pg; 2617 int error, i, len, off; 2618 2619 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2620 ("%p not unready & nomap mbuf\n", m)); 2621 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2622 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2623 ktls_maxlen)); 2624 2625 /* Anonymous mbufs are encrypted in place. */ 2626 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2627 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2628 2629 /* 2630 * For file-backed mbufs (from sendfile), anonymous wired 2631 * pages are allocated and used as the encryption destination. 2632 */ 2633 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2634 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2635 m->m_epg_1st_off; 2636 state->dst_iov[0].iov_base = (char *)state->cbuf + 2637 m->m_epg_1st_off; 2638 state->dst_iov[0].iov_len = len; 2639 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2640 i = 1; 2641 } else { 2642 off = m->m_epg_1st_off; 2643 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2644 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2645 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2646 len = m_epg_pagelen(m, i, off); 2647 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2648 state->dst_iov[i].iov_base = 2649 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2650 state->dst_iov[i].iov_len = len; 2651 } 2652 } 2653 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2654 state->dst_iov[i].iov_base = m->m_epg_trail; 2655 state->dst_iov[i].iov_len = m->m_epg_trllen; 2656 2657 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2658 2659 if (__predict_false(error != 0)) { 2660 /* Free the anonymous pages. */ 2661 if (state->cbuf != NULL) 2662 uma_zfree(ktls_buffer_zone, state->cbuf); 2663 else { 2664 for (i = 0; i < m->m_epg_npgs; i++) { 2665 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2666 (void)vm_page_unwire_noq(pg); 2667 vm_page_free(pg); 2668 } 2669 } 2670 } 2671 return (error); 2672 } 2673 2674 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2675 static u_int 2676 ktls_batched_records(struct mbuf *m) 2677 { 2678 int page_count, records; 2679 2680 records = 0; 2681 page_count = m->m_epg_enc_cnt; 2682 while (page_count > 0) { 2683 records++; 2684 page_count -= m->m_epg_nrdy; 2685 m = m->m_next; 2686 } 2687 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2688 return (records); 2689 } 2690 2691 void 2692 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2693 { 2694 struct ktls_session *tls; 2695 struct ktls_wq *wq; 2696 int queued; 2697 bool running; 2698 2699 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2700 (M_EXTPG | M_NOTREADY)), 2701 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2702 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2703 2704 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2705 2706 m->m_epg_enc_cnt = page_count; 2707 2708 /* 2709 * Save a pointer to the socket. The caller is responsible 2710 * for taking an additional reference via soref(). 2711 */ 2712 m->m_epg_so = so; 2713 2714 queued = 1; 2715 tls = m->m_epg_tls; 2716 wq = &ktls_wq[tls->wq_index]; 2717 mtx_lock(&wq->mtx); 2718 if (__predict_false(tls->sequential_records)) { 2719 /* 2720 * For TLS 1.0, records must be encrypted 2721 * sequentially. For a given connection, all records 2722 * queued to the associated work queue are processed 2723 * sequentially. However, sendfile(2) might complete 2724 * I/O requests spanning multiple TLS records out of 2725 * order. Here we ensure TLS records are enqueued to 2726 * the work queue in FIFO order. 2727 * 2728 * tls->next_seqno holds the sequence number of the 2729 * next TLS record that should be enqueued to the work 2730 * queue. If this next record is not tls->next_seqno, 2731 * it must be a future record, so insert it, sorted by 2732 * TLS sequence number, into tls->pending_records and 2733 * return. 2734 * 2735 * If this TLS record matches tls->next_seqno, place 2736 * it in the work queue and then check 2737 * tls->pending_records to see if any 2738 * previously-queued records are now ready for 2739 * encryption. 2740 */ 2741 if (m->m_epg_seqno != tls->next_seqno) { 2742 struct mbuf *n, *p; 2743 2744 p = NULL; 2745 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2746 if (n->m_epg_seqno > m->m_epg_seqno) 2747 break; 2748 p = n; 2749 } 2750 if (n == NULL) 2751 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2752 m_epg_stailq); 2753 else if (p == NULL) 2754 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2755 m_epg_stailq); 2756 else 2757 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2758 m_epg_stailq); 2759 mtx_unlock(&wq->mtx); 2760 counter_u64_add(ktls_cnt_tx_pending, 1); 2761 return; 2762 } 2763 2764 tls->next_seqno += ktls_batched_records(m); 2765 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2766 2767 while (!STAILQ_EMPTY(&tls->pending_records)) { 2768 struct mbuf *n; 2769 2770 n = STAILQ_FIRST(&tls->pending_records); 2771 if (n->m_epg_seqno != tls->next_seqno) 2772 break; 2773 2774 queued++; 2775 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2776 tls->next_seqno += ktls_batched_records(n); 2777 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2778 } 2779 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2780 } else 2781 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2782 2783 running = wq->running; 2784 mtx_unlock(&wq->mtx); 2785 if (!running) 2786 wakeup(wq); 2787 counter_u64_add(ktls_cnt_tx_queued, queued); 2788 } 2789 2790 /* 2791 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2792 * the pages from the file and replace them with the anonymous pages 2793 * allocated in ktls_encrypt_record(). 2794 */ 2795 static void 2796 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2797 { 2798 int i; 2799 2800 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2801 2802 /* Free the old pages. */ 2803 m->m_ext.ext_free(m); 2804 2805 /* Replace them with the new pages. */ 2806 if (state->cbuf != NULL) { 2807 for (i = 0; i < m->m_epg_npgs; i++) 2808 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2809 2810 /* Contig pages should go back to the cache. */ 2811 m->m_ext.ext_free = ktls_free_mext_contig; 2812 } else { 2813 for (i = 0; i < m->m_epg_npgs; i++) 2814 m->m_epg_pa[i] = state->parray[i]; 2815 2816 /* Use the basic free routine. */ 2817 m->m_ext.ext_free = mb_free_mext_pgs; 2818 } 2819 2820 /* Pages are now writable. */ 2821 m->m_epg_flags |= EPG_FLAG_ANON; 2822 } 2823 2824 static __noinline void 2825 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2826 { 2827 struct ktls_ocf_encrypt_state state; 2828 struct ktls_session *tls; 2829 struct socket *so; 2830 struct mbuf *m; 2831 int error, npages, total_pages; 2832 2833 so = top->m_epg_so; 2834 tls = top->m_epg_tls; 2835 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2836 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2837 #ifdef INVARIANTS 2838 top->m_epg_so = NULL; 2839 #endif 2840 total_pages = top->m_epg_enc_cnt; 2841 npages = 0; 2842 2843 /* 2844 * Encrypt the TLS records in the chain of mbufs starting with 2845 * 'top'. 'total_pages' gives us a total count of pages and is 2846 * used to know when we have finished encrypting the TLS 2847 * records originally queued with 'top'. 2848 * 2849 * NB: These mbufs are queued in the socket buffer and 2850 * 'm_next' is traversing the mbufs in the socket buffer. The 2851 * socket buffer lock is not held while traversing this chain. 2852 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2853 * pointers should be stable. However, the 'm_next' of the 2854 * last mbuf encrypted is not necessarily NULL. It can point 2855 * to other mbufs appended while 'top' was on the TLS work 2856 * queue. 2857 * 2858 * Each mbuf holds an entire TLS record. 2859 */ 2860 error = 0; 2861 for (m = top; npages != total_pages; m = m->m_next) { 2862 KASSERT(m->m_epg_tls == tls, 2863 ("different TLS sessions in a single mbuf chain: %p vs %p", 2864 tls, m->m_epg_tls)); 2865 KASSERT(npages + m->m_epg_npgs <= total_pages, 2866 ("page count mismatch: top %p, total_pages %d, m %p", top, 2867 total_pages, m)); 2868 2869 error = ktls_encrypt_record(wq, m, tls, &state); 2870 if (error) { 2871 counter_u64_add(ktls_offload_failed_crypto, 1); 2872 break; 2873 } 2874 2875 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2876 ktls_finish_nonanon(m, &state); 2877 2878 npages += m->m_epg_nrdy; 2879 2880 /* 2881 * Drop a reference to the session now that it is no 2882 * longer needed. Existing code depends on encrypted 2883 * records having no associated session vs 2884 * yet-to-be-encrypted records having an associated 2885 * session. 2886 */ 2887 m->m_epg_tls = NULL; 2888 ktls_free(tls); 2889 } 2890 2891 CURVNET_SET(so->so_vnet); 2892 if (error == 0) { 2893 (void)so->so_proto->pr_ready(so, top, npages); 2894 } else { 2895 so->so_proto->pr_abort(so); 2896 so->so_error = EIO; 2897 mb_free_notready(top, total_pages); 2898 } 2899 2900 sorele(so); 2901 CURVNET_RESTORE(); 2902 } 2903 2904 void 2905 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2906 { 2907 struct ktls_session *tls; 2908 struct socket *so; 2909 struct mbuf *m; 2910 int npages; 2911 2912 m = state->m; 2913 2914 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2915 ktls_finish_nonanon(m, state); 2916 2917 so = state->so; 2918 free(state, M_KTLS); 2919 2920 /* 2921 * Drop a reference to the session now that it is no longer 2922 * needed. Existing code depends on encrypted records having 2923 * no associated session vs yet-to-be-encrypted records having 2924 * an associated session. 2925 */ 2926 tls = m->m_epg_tls; 2927 m->m_epg_tls = NULL; 2928 ktls_free(tls); 2929 2930 if (error != 0) 2931 counter_u64_add(ktls_offload_failed_crypto, 1); 2932 2933 CURVNET_SET(so->so_vnet); 2934 npages = m->m_epg_nrdy; 2935 2936 if (error == 0) { 2937 (void)so->so_proto->pr_ready(so, m, npages); 2938 } else { 2939 so->so_proto->pr_abort(so); 2940 so->so_error = EIO; 2941 mb_free_notready(m, npages); 2942 } 2943 2944 sorele(so); 2945 CURVNET_RESTORE(); 2946 } 2947 2948 /* 2949 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2950 * (coprocessors) where encryption does not use host CPU resources and 2951 * it can be beneficial to queue more requests than CPUs. 2952 */ 2953 static __noinline void 2954 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2955 { 2956 struct ktls_ocf_encrypt_state *state; 2957 struct ktls_session *tls; 2958 struct socket *so; 2959 struct mbuf *m, *n; 2960 int error, mpages, npages, total_pages; 2961 2962 so = top->m_epg_so; 2963 tls = top->m_epg_tls; 2964 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2965 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2966 #ifdef INVARIANTS 2967 top->m_epg_so = NULL; 2968 #endif 2969 total_pages = top->m_epg_enc_cnt; 2970 npages = 0; 2971 2972 error = 0; 2973 for (m = top; npages != total_pages; m = n) { 2974 KASSERT(m->m_epg_tls == tls, 2975 ("different TLS sessions in a single mbuf chain: %p vs %p", 2976 tls, m->m_epg_tls)); 2977 KASSERT(npages + m->m_epg_npgs <= total_pages, 2978 ("page count mismatch: top %p, total_pages %d, m %p", top, 2979 total_pages, m)); 2980 2981 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2982 soref(so); 2983 state->so = so; 2984 state->m = m; 2985 2986 mpages = m->m_epg_nrdy; 2987 n = m->m_next; 2988 2989 error = ktls_encrypt_record(wq, m, tls, state); 2990 if (error) { 2991 counter_u64_add(ktls_offload_failed_crypto, 1); 2992 free(state, M_KTLS); 2993 CURVNET_SET(so->so_vnet); 2994 sorele(so); 2995 CURVNET_RESTORE(); 2996 break; 2997 } 2998 2999 npages += mpages; 3000 } 3001 3002 CURVNET_SET(so->so_vnet); 3003 if (error != 0) { 3004 so->so_proto->pr_abort(so); 3005 so->so_error = EIO; 3006 mb_free_notready(m, total_pages - npages); 3007 } 3008 3009 sorele(so); 3010 CURVNET_RESTORE(); 3011 } 3012 3013 static int 3014 ktls_bind_domain(int domain) 3015 { 3016 int error; 3017 3018 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3019 if (error != 0) 3020 return (error); 3021 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3022 return (0); 3023 } 3024 3025 static void 3026 ktls_alloc_thread(void *ctx) 3027 { 3028 struct ktls_domain_info *ktls_domain = ctx; 3029 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 3030 void **buf; 3031 struct sysctl_oid *oid; 3032 char name[80]; 3033 int domain, error, i, nbufs; 3034 3035 domain = ktls_domain - ktls_domains; 3036 if (bootverbose) 3037 printf("Starting KTLS alloc thread for domain %d\n", domain); 3038 error = ktls_bind_domain(domain); 3039 if (error) 3040 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 3041 domain, error); 3042 snprintf(name, sizeof(name), "domain%d", domain); 3043 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3044 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3045 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 3046 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 3047 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3048 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3049 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3050 CTLFLAG_RD, &sc->running, 0, "thread running"); 3051 3052 buf = NULL; 3053 nbufs = 0; 3054 for (;;) { 3055 atomic_store_int(&sc->running, 0); 3056 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3057 atomic_store_int(&sc->running, 1); 3058 sc->wakeups++; 3059 if (nbufs != ktls_max_alloc) { 3060 free(buf, M_KTLS); 3061 nbufs = atomic_load_int(&ktls_max_alloc); 3062 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 3063 M_WAITOK | M_ZERO); 3064 } 3065 /* 3066 * Below we allocate nbufs with different allocation 3067 * flags than we use when allocating normally during 3068 * encryption in the ktls worker thread. We specify 3069 * M_NORECLAIM in the worker thread. However, we omit 3070 * that flag here and add M_WAITOK so that the VM 3071 * system is permitted to perform expensive work to 3072 * defragment memory. We do this here, as it does not 3073 * matter if this thread blocks. If we block a ktls 3074 * worker thread, we risk developing backlogs of 3075 * buffers to be encrypted, leading to surges of 3076 * traffic and potential NIC output drops. 3077 */ 3078 for (i = 0; i < nbufs; i++) { 3079 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 3080 sc->allocs++; 3081 } 3082 for (i = 0; i < nbufs; i++) { 3083 uma_zfree(ktls_buffer_zone, buf[i]); 3084 buf[i] = NULL; 3085 } 3086 } 3087 } 3088 3089 static void 3090 ktls_work_thread(void *ctx) 3091 { 3092 struct ktls_wq *wq = ctx; 3093 struct mbuf *m, *n; 3094 struct socket *so, *son; 3095 STAILQ_HEAD(, mbuf) local_m_head; 3096 STAILQ_HEAD(, socket) local_so_head; 3097 int cpu; 3098 3099 cpu = wq - ktls_wq; 3100 if (bootverbose) 3101 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3102 3103 /* 3104 * Bind to a core. If ktls_bind_threads is > 1, then 3105 * we bind to the NUMA domain instead. 3106 */ 3107 if (ktls_bind_threads) { 3108 int error; 3109 3110 if (ktls_bind_threads > 1) { 3111 struct pcpu *pc = pcpu_find(cpu); 3112 3113 error = ktls_bind_domain(pc->pc_domain); 3114 } else { 3115 cpuset_t mask; 3116 3117 CPU_SETOF(cpu, &mask); 3118 error = cpuset_setthread(curthread->td_tid, &mask); 3119 } 3120 if (error) 3121 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3122 cpu, error); 3123 } 3124 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3125 fpu_kern_thread(0); 3126 #endif 3127 for (;;) { 3128 mtx_lock(&wq->mtx); 3129 while (STAILQ_EMPTY(&wq->m_head) && 3130 STAILQ_EMPTY(&wq->so_head)) { 3131 wq->running = false; 3132 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3133 wq->running = true; 3134 } 3135 3136 STAILQ_INIT(&local_m_head); 3137 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3138 STAILQ_INIT(&local_so_head); 3139 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3140 mtx_unlock(&wq->mtx); 3141 3142 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3143 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3144 ktls_free(m->m_epg_tls); 3145 m_free_raw(m); 3146 } else { 3147 if (m->m_epg_tls->sync_dispatch) 3148 ktls_encrypt(wq, m); 3149 else 3150 ktls_encrypt_async(wq, m); 3151 counter_u64_add(ktls_cnt_tx_queued, -1); 3152 } 3153 } 3154 3155 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3156 ktls_decrypt(so); 3157 counter_u64_add(ktls_cnt_rx_queued, -1); 3158 } 3159 } 3160 } 3161 3162 #if defined(INET) || defined(INET6) 3163 static void 3164 ktls_disable_ifnet_help(void *context, int pending __unused) 3165 { 3166 struct ktls_session *tls; 3167 struct inpcb *inp; 3168 struct tcpcb *tp; 3169 struct socket *so; 3170 int err; 3171 3172 tls = context; 3173 inp = tls->inp; 3174 if (inp == NULL) 3175 return; 3176 INP_WLOCK(inp); 3177 so = inp->inp_socket; 3178 MPASS(so != NULL); 3179 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 3180 goto out; 3181 } 3182 3183 if (so->so_snd.sb_tls_info != NULL) 3184 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3185 else 3186 err = ENXIO; 3187 if (err == 0) { 3188 counter_u64_add(ktls_ifnet_disable_ok, 1); 3189 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3190 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 3191 (tp = intotcpcb(inp)) != NULL && 3192 tp->t_fb->tfb_hwtls_change != NULL) 3193 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3194 } else { 3195 counter_u64_add(ktls_ifnet_disable_fail, 1); 3196 } 3197 3198 out: 3199 sorele(so); 3200 if (!in_pcbrele_wlocked(inp)) 3201 INP_WUNLOCK(inp); 3202 ktls_free(tls); 3203 } 3204 3205 /* 3206 * Called when re-transmits are becoming a substantial portion of the 3207 * sends on this connection. When this happens, we transition the 3208 * connection to software TLS. This is needed because most inline TLS 3209 * NICs keep crypto state only for in-order transmits. This means 3210 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3211 * re-DMA the entire TLS record up to and including the current 3212 * segment. This means that when re-transmitting the last ~1448 byte 3213 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3214 * of magnitude more data than we are sending. This can cause the 3215 * PCIe link to saturate well before the network, which can cause 3216 * output drops, and a general loss of capacity. 3217 */ 3218 void 3219 ktls_disable_ifnet(void *arg) 3220 { 3221 struct tcpcb *tp; 3222 struct inpcb *inp; 3223 struct socket *so; 3224 struct ktls_session *tls; 3225 3226 tp = arg; 3227 inp = tp->t_inpcb; 3228 INP_WLOCK_ASSERT(inp); 3229 so = inp->inp_socket; 3230 SOCK_LOCK(so); 3231 tls = so->so_snd.sb_tls_info; 3232 if (tls->disable_ifnet_pending) { 3233 SOCK_UNLOCK(so); 3234 return; 3235 } 3236 3237 /* 3238 * note that disable_ifnet_pending is never cleared; disabling 3239 * ifnet can only be done once per session, so we never want 3240 * to do it again 3241 */ 3242 3243 (void)ktls_hold(tls); 3244 in_pcbref(inp); 3245 soref(so); 3246 tls->disable_ifnet_pending = true; 3247 tls->inp = inp; 3248 SOCK_UNLOCK(so); 3249 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3250 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3251 } 3252 #endif 3253