1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #if defined(INET) || defined(INET6) 70 #include <netinet/in.h> 71 #include <netinet/in_pcb.h> 72 #endif 73 #include <netinet/tcp_var.h> 74 #ifdef TCP_OFFLOAD 75 #include <netinet/tcp_offload.h> 76 #endif 77 #include <opencrypto/cryptodev.h> 78 #include <opencrypto/ktls.h> 79 #include <vm/uma_dbg.h> 80 #include <vm/vm.h> 81 #include <vm/vm_pageout.h> 82 #include <vm/vm_page.h> 83 #include <vm/vm_pagequeue.h> 84 85 struct ktls_wq { 86 struct mtx mtx; 87 STAILQ_HEAD(, mbuf) m_head; 88 STAILQ_HEAD(, socket) so_head; 89 bool running; 90 int lastallocfail; 91 } __aligned(CACHE_LINE_SIZE); 92 93 struct ktls_alloc_thread { 94 uint64_t wakeups; 95 uint64_t allocs; 96 struct thread *td; 97 int running; 98 }; 99 100 struct ktls_domain_info { 101 int count; 102 int cpu[MAXCPU]; 103 struct ktls_alloc_thread alloc_td; 104 }; 105 106 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 107 static struct ktls_wq *ktls_wq; 108 static struct proc *ktls_proc; 109 static uma_zone_t ktls_session_zone; 110 static uma_zone_t ktls_buffer_zone; 111 static uint16_t ktls_cpuid_lookup[MAXCPU]; 112 static int ktls_init_state; 113 static struct sx ktls_init_lock; 114 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 115 116 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload"); 118 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 119 "Kernel TLS offload stats"); 120 121 #ifdef RSS 122 static int ktls_bind_threads = 1; 123 #else 124 static int ktls_bind_threads; 125 #endif 126 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 127 &ktls_bind_threads, 0, 128 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 129 130 static u_int ktls_maxlen = 16384; 131 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 132 &ktls_maxlen, 0, "Maximum TLS record size"); 133 134 static int ktls_number_threads; 135 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 136 &ktls_number_threads, 0, 137 "Number of TLS threads in thread-pool"); 138 139 unsigned int ktls_ifnet_max_rexmit_pct = 2; 140 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 141 &ktls_ifnet_max_rexmit_pct, 2, 142 "Max percent bytes retransmitted before ifnet TLS is disabled"); 143 144 static bool ktls_offload_enable; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 146 &ktls_offload_enable, 0, 147 "Enable support for kernel TLS offload"); 148 149 static bool ktls_cbc_enable = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 151 &ktls_cbc_enable, 1, 152 "Enable Support of AES-CBC crypto for kernel TLS"); 153 154 static bool ktls_sw_buffer_cache = true; 155 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 156 &ktls_sw_buffer_cache, 1, 157 "Enable caching of output buffers for SW encryption"); 158 159 static int ktls_max_alloc = 128; 160 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 161 &ktls_max_alloc, 128, 162 "Max number of 16k buffers to allocate in thread context"); 163 164 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 165 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 166 &ktls_tasks_active, "Number of active tasks"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 170 &ktls_cnt_tx_pending, 171 "Number of TLS 1.0 records waiting for earlier TLS records"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_tx_queued, 176 "Number of TLS records in queue to tasks for SW encryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 180 &ktls_cnt_rx_queued, 181 "Number of TLS sockets in queue to tasks for SW decryption"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 185 CTLFLAG_RD, &ktls_offload_total, 186 "Total successful TLS setups (parameters set)"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 190 CTLFLAG_RD, &ktls_offload_enable_calls, 191 "Total number of TLS enable calls made"); 192 193 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 194 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 195 &ktls_offload_active, "Total Active TLS sessions"); 196 197 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 198 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 199 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 203 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 207 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 211 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 212 213 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 214 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 215 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 216 217 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 218 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 219 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 220 221 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 222 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 223 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_cleanup(struct ktls_session *tls); 301 #if defined(INET) || defined(INET6) 302 static void ktls_reset_send_tag(void *context, int pending); 303 #endif 304 static void ktls_work_thread(void *ctx); 305 static void ktls_alloc_thread(void *ctx); 306 307 #if defined(INET) || defined(INET6) 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 #endif 339 340 static int 341 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 342 { 343 vm_page_t m; 344 int i, req; 345 346 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 347 ("%s: ktls max length %d is not page size-aligned", 348 __func__, ktls_maxlen)); 349 350 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 351 for (i = 0; i < count; i++) { 352 m = vm_page_alloc_noobj_contig_domain(domain, req, 353 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 354 VM_MEMATTR_DEFAULT); 355 if (m == NULL) 356 break; 357 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 358 } 359 return (i); 360 } 361 362 static void 363 ktls_buffer_release(void *arg __unused, void **store, int count) 364 { 365 vm_page_t m; 366 int i, j; 367 368 for (i = 0; i < count; i++) { 369 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 370 for (j = 0; j < atop(ktls_maxlen); j++) { 371 (void)vm_page_unwire_noq(m + j); 372 vm_page_free(m + j); 373 } 374 } 375 } 376 377 static void 378 ktls_free_mext_contig(struct mbuf *m) 379 { 380 M_ASSERTEXTPG(m); 381 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 382 } 383 384 static int 385 ktls_init(void) 386 { 387 struct thread *td; 388 struct pcpu *pc; 389 int count, domain, error, i; 390 391 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 392 M_WAITOK | M_ZERO); 393 394 ktls_session_zone = uma_zcreate("ktls_session", 395 sizeof(struct ktls_session), 396 NULL, NULL, NULL, NULL, 397 UMA_ALIGN_CACHE, 0); 398 399 if (ktls_sw_buffer_cache) { 400 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 401 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 402 ktls_buffer_import, ktls_buffer_release, NULL, 403 UMA_ZONE_FIRSTTOUCH); 404 } 405 406 /* 407 * Initialize the workqueues to run the TLS work. We create a 408 * work queue for each CPU. 409 */ 410 CPU_FOREACH(i) { 411 STAILQ_INIT(&ktls_wq[i].m_head); 412 STAILQ_INIT(&ktls_wq[i].so_head); 413 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 414 if (ktls_bind_threads > 1) { 415 pc = pcpu_find(i); 416 domain = pc->pc_domain; 417 count = ktls_domains[domain].count; 418 ktls_domains[domain].cpu[count] = i; 419 ktls_domains[domain].count++; 420 } 421 ktls_cpuid_lookup[ktls_number_threads] = i; 422 ktls_number_threads++; 423 } 424 425 /* 426 * If we somehow have an empty domain, fall back to choosing 427 * among all KTLS threads. 428 */ 429 if (ktls_bind_threads > 1) { 430 for (i = 0; i < vm_ndomains; i++) { 431 if (ktls_domains[i].count == 0) { 432 ktls_bind_threads = 1; 433 break; 434 } 435 } 436 } 437 438 /* Start kthreads for each workqueue. */ 439 CPU_FOREACH(i) { 440 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 441 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 442 if (error) { 443 printf("Can't add KTLS thread %d error %d\n", i, error); 444 return (error); 445 } 446 } 447 448 /* 449 * Start an allocation thread per-domain to perform blocking allocations 450 * of 16k physically contiguous TLS crypto destination buffers. 451 */ 452 if (ktls_sw_buffer_cache) { 453 for (domain = 0; domain < vm_ndomains; domain++) { 454 if (VM_DOMAIN_EMPTY(domain)) 455 continue; 456 if (CPU_EMPTY(&cpuset_domain[domain])) 457 continue; 458 error = kproc_kthread_add(ktls_alloc_thread, 459 &ktls_domains[domain], &ktls_proc, 460 &ktls_domains[domain].alloc_td.td, 461 0, 0, "KTLS", "alloc_%d", domain); 462 if (error) { 463 printf("Can't add KTLS alloc thread %d error %d\n", 464 domain, error); 465 return (error); 466 } 467 } 468 } 469 470 if (bootverbose) 471 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 472 return (0); 473 } 474 475 static int 476 ktls_start_kthreads(void) 477 { 478 int error, state; 479 480 start: 481 state = atomic_load_acq_int(&ktls_init_state); 482 if (__predict_true(state > 0)) 483 return (0); 484 if (state < 0) 485 return (ENXIO); 486 487 sx_xlock(&ktls_init_lock); 488 if (ktls_init_state != 0) { 489 sx_xunlock(&ktls_init_lock); 490 goto start; 491 } 492 493 error = ktls_init(); 494 if (error == 0) 495 state = 1; 496 else 497 state = -1; 498 atomic_store_rel_int(&ktls_init_state, state); 499 sx_xunlock(&ktls_init_lock); 500 return (error); 501 } 502 503 #if defined(INET) || defined(INET6) 504 static int 505 ktls_create_session(struct socket *so, struct tls_enable *en, 506 struct ktls_session **tlsp) 507 { 508 struct ktls_session *tls; 509 int error; 510 511 /* Only TLS 1.0 - 1.3 are supported. */ 512 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 513 return (EINVAL); 514 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 515 en->tls_vminor > TLS_MINOR_VER_THREE) 516 return (EINVAL); 517 518 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 521 return (EINVAL); 522 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 523 return (EINVAL); 524 525 /* All supported algorithms require a cipher key. */ 526 if (en->cipher_key_len == 0) 527 return (EINVAL); 528 529 /* No flags are currently supported. */ 530 if (en->flags != 0) 531 return (EINVAL); 532 533 /* Common checks for supported algorithms. */ 534 switch (en->cipher_algorithm) { 535 case CRYPTO_AES_NIST_GCM_16: 536 /* 537 * auth_algorithm isn't used, but permit GMAC values 538 * for compatibility. 539 */ 540 switch (en->auth_algorithm) { 541 case 0: 542 #ifdef COMPAT_FREEBSD12 543 /* XXX: Really 13.0-current COMPAT. */ 544 case CRYPTO_AES_128_NIST_GMAC: 545 case CRYPTO_AES_192_NIST_GMAC: 546 case CRYPTO_AES_256_NIST_GMAC: 547 #endif 548 break; 549 default: 550 return (EINVAL); 551 } 552 if (en->auth_key_len != 0) 553 return (EINVAL); 554 switch (en->tls_vminor) { 555 case TLS_MINOR_VER_TWO: 556 if (en->iv_len != TLS_AEAD_GCM_LEN) 557 return (EINVAL); 558 break; 559 case TLS_MINOR_VER_THREE: 560 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 561 return (EINVAL); 562 break; 563 default: 564 return (EINVAL); 565 } 566 break; 567 case CRYPTO_AES_CBC: 568 switch (en->auth_algorithm) { 569 case CRYPTO_SHA1_HMAC: 570 break; 571 case CRYPTO_SHA2_256_HMAC: 572 case CRYPTO_SHA2_384_HMAC: 573 if (en->tls_vminor != TLS_MINOR_VER_TWO) 574 return (EINVAL); 575 break; 576 default: 577 return (EINVAL); 578 } 579 if (en->auth_key_len == 0) 580 return (EINVAL); 581 582 /* 583 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 584 * use explicit IVs. 585 */ 586 switch (en->tls_vminor) { 587 case TLS_MINOR_VER_ZERO: 588 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 589 return (EINVAL); 590 break; 591 case TLS_MINOR_VER_ONE: 592 case TLS_MINOR_VER_TWO: 593 /* Ignore any supplied IV. */ 594 en->iv_len = 0; 595 break; 596 default: 597 return (EINVAL); 598 } 599 break; 600 case CRYPTO_CHACHA20_POLY1305: 601 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 602 return (EINVAL); 603 if (en->tls_vminor != TLS_MINOR_VER_TWO && 604 en->tls_vminor != TLS_MINOR_VER_THREE) 605 return (EINVAL); 606 if (en->iv_len != TLS_CHACHA20_IV_LEN) 607 return (EINVAL); 608 break; 609 default: 610 return (EINVAL); 611 } 612 613 error = ktls_start_kthreads(); 614 if (error != 0) 615 return (error); 616 617 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 618 619 counter_u64_add(ktls_offload_active, 1); 620 621 refcount_init(&tls->refcount, 1); 622 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 623 624 tls->wq_index = ktls_get_cpu(so); 625 626 tls->params.cipher_algorithm = en->cipher_algorithm; 627 tls->params.auth_algorithm = en->auth_algorithm; 628 tls->params.tls_vmajor = en->tls_vmajor; 629 tls->params.tls_vminor = en->tls_vminor; 630 tls->params.flags = en->flags; 631 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 632 633 /* Set the header and trailer lengths. */ 634 tls->params.tls_hlen = sizeof(struct tls_record_layer); 635 switch (en->cipher_algorithm) { 636 case CRYPTO_AES_NIST_GCM_16: 637 /* 638 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 639 * nonce. TLS 1.3 uses a 12 byte implicit IV. 640 */ 641 if (en->tls_vminor < TLS_MINOR_VER_THREE) 642 tls->params.tls_hlen += sizeof(uint64_t); 643 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 644 tls->params.tls_bs = 1; 645 break; 646 case CRYPTO_AES_CBC: 647 switch (en->auth_algorithm) { 648 case CRYPTO_SHA1_HMAC: 649 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 650 /* Implicit IV, no nonce. */ 651 tls->sequential_records = true; 652 tls->next_seqno = be64dec(en->rec_seq); 653 STAILQ_INIT(&tls->pending_records); 654 } else { 655 tls->params.tls_hlen += AES_BLOCK_LEN; 656 } 657 tls->params.tls_tlen = AES_BLOCK_LEN + 658 SHA1_HASH_LEN; 659 break; 660 case CRYPTO_SHA2_256_HMAC: 661 tls->params.tls_hlen += AES_BLOCK_LEN; 662 tls->params.tls_tlen = AES_BLOCK_LEN + 663 SHA2_256_HASH_LEN; 664 break; 665 case CRYPTO_SHA2_384_HMAC: 666 tls->params.tls_hlen += AES_BLOCK_LEN; 667 tls->params.tls_tlen = AES_BLOCK_LEN + 668 SHA2_384_HASH_LEN; 669 break; 670 default: 671 panic("invalid hmac"); 672 } 673 tls->params.tls_bs = AES_BLOCK_LEN; 674 break; 675 case CRYPTO_CHACHA20_POLY1305: 676 /* 677 * Chacha20 uses a 12 byte implicit IV. 678 */ 679 tls->params.tls_tlen = POLY1305_HASH_LEN; 680 tls->params.tls_bs = 1; 681 break; 682 default: 683 panic("invalid cipher"); 684 } 685 686 /* 687 * TLS 1.3 includes optional padding which we do not support, 688 * and also puts the "real" record type at the end of the 689 * encrypted data. 690 */ 691 if (en->tls_vminor == TLS_MINOR_VER_THREE) 692 tls->params.tls_tlen += sizeof(uint8_t); 693 694 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 695 ("TLS header length too long: %d", tls->params.tls_hlen)); 696 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 697 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 698 699 if (en->auth_key_len != 0) { 700 tls->params.auth_key_len = en->auth_key_len; 701 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 702 M_WAITOK); 703 error = copyin(en->auth_key, tls->params.auth_key, 704 en->auth_key_len); 705 if (error) 706 goto out; 707 } 708 709 tls->params.cipher_key_len = en->cipher_key_len; 710 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 711 error = copyin(en->cipher_key, tls->params.cipher_key, 712 en->cipher_key_len); 713 if (error) 714 goto out; 715 716 /* 717 * This holds the implicit portion of the nonce for AEAD 718 * ciphers and the initial implicit IV for TLS 1.0. The 719 * explicit portions of the IV are generated in ktls_frame(). 720 */ 721 if (en->iv_len != 0) { 722 tls->params.iv_len = en->iv_len; 723 error = copyin(en->iv, tls->params.iv, en->iv_len); 724 if (error) 725 goto out; 726 727 /* 728 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 729 * counter to generate unique explicit IVs. 730 * 731 * Store this counter in the last 8 bytes of the IV 732 * array so that it is 8-byte aligned. 733 */ 734 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 735 en->tls_vminor == TLS_MINOR_VER_TWO) 736 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 737 } 738 739 *tlsp = tls; 740 return (0); 741 742 out: 743 ktls_cleanup(tls); 744 return (error); 745 } 746 747 static struct ktls_session * 748 ktls_clone_session(struct ktls_session *tls) 749 { 750 struct ktls_session *tls_new; 751 752 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 753 754 counter_u64_add(ktls_offload_active, 1); 755 756 refcount_init(&tls_new->refcount, 1); 757 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, tls_new); 758 759 /* Copy fields from existing session. */ 760 tls_new->params = tls->params; 761 tls_new->wq_index = tls->wq_index; 762 763 /* Deep copy keys. */ 764 if (tls_new->params.auth_key != NULL) { 765 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 766 M_KTLS, M_WAITOK); 767 memcpy(tls_new->params.auth_key, tls->params.auth_key, 768 tls->params.auth_key_len); 769 } 770 771 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 772 M_WAITOK); 773 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 774 tls->params.cipher_key_len); 775 776 return (tls_new); 777 } 778 #endif 779 780 static void 781 ktls_cleanup(struct ktls_session *tls) 782 { 783 784 counter_u64_add(ktls_offload_active, -1); 785 switch (tls->mode) { 786 case TCP_TLS_MODE_SW: 787 switch (tls->params.cipher_algorithm) { 788 case CRYPTO_AES_CBC: 789 counter_u64_add(ktls_sw_cbc, -1); 790 break; 791 case CRYPTO_AES_NIST_GCM_16: 792 counter_u64_add(ktls_sw_gcm, -1); 793 break; 794 case CRYPTO_CHACHA20_POLY1305: 795 counter_u64_add(ktls_sw_chacha20, -1); 796 break; 797 } 798 break; 799 case TCP_TLS_MODE_IFNET: 800 switch (tls->params.cipher_algorithm) { 801 case CRYPTO_AES_CBC: 802 counter_u64_add(ktls_ifnet_cbc, -1); 803 break; 804 case CRYPTO_AES_NIST_GCM_16: 805 counter_u64_add(ktls_ifnet_gcm, -1); 806 break; 807 case CRYPTO_CHACHA20_POLY1305: 808 counter_u64_add(ktls_ifnet_chacha20, -1); 809 break; 810 } 811 if (tls->snd_tag != NULL) 812 m_snd_tag_rele(tls->snd_tag); 813 break; 814 #ifdef TCP_OFFLOAD 815 case TCP_TLS_MODE_TOE: 816 switch (tls->params.cipher_algorithm) { 817 case CRYPTO_AES_CBC: 818 counter_u64_add(ktls_toe_cbc, -1); 819 break; 820 case CRYPTO_AES_NIST_GCM_16: 821 counter_u64_add(ktls_toe_gcm, -1); 822 break; 823 case CRYPTO_CHACHA20_POLY1305: 824 counter_u64_add(ktls_toe_chacha20, -1); 825 break; 826 } 827 break; 828 #endif 829 } 830 if (tls->ocf_session != NULL) 831 ktls_ocf_free(tls); 832 if (tls->params.auth_key != NULL) { 833 zfree(tls->params.auth_key, M_KTLS); 834 tls->params.auth_key = NULL; 835 tls->params.auth_key_len = 0; 836 } 837 if (tls->params.cipher_key != NULL) { 838 zfree(tls->params.cipher_key, M_KTLS); 839 tls->params.cipher_key = NULL; 840 tls->params.cipher_key_len = 0; 841 } 842 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 843 } 844 845 #if defined(INET) || defined(INET6) 846 847 #ifdef TCP_OFFLOAD 848 static int 849 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 850 { 851 struct inpcb *inp; 852 struct tcpcb *tp; 853 int error; 854 855 inp = so->so_pcb; 856 INP_WLOCK(inp); 857 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 858 INP_WUNLOCK(inp); 859 return (ECONNRESET); 860 } 861 if (inp->inp_socket == NULL) { 862 INP_WUNLOCK(inp); 863 return (ECONNRESET); 864 } 865 tp = intotcpcb(inp); 866 if (!(tp->t_flags & TF_TOE)) { 867 INP_WUNLOCK(inp); 868 return (EOPNOTSUPP); 869 } 870 871 error = tcp_offload_alloc_tls_session(tp, tls, direction); 872 INP_WUNLOCK(inp); 873 if (error == 0) { 874 tls->mode = TCP_TLS_MODE_TOE; 875 switch (tls->params.cipher_algorithm) { 876 case CRYPTO_AES_CBC: 877 counter_u64_add(ktls_toe_cbc, 1); 878 break; 879 case CRYPTO_AES_NIST_GCM_16: 880 counter_u64_add(ktls_toe_gcm, 1); 881 break; 882 case CRYPTO_CHACHA20_POLY1305: 883 counter_u64_add(ktls_toe_chacha20, 1); 884 break; 885 } 886 } 887 return (error); 888 } 889 #endif 890 891 /* 892 * Common code used when first enabling ifnet TLS on a connection or 893 * when allocating a new ifnet TLS session due to a routing change. 894 * This function allocates a new TLS send tag on whatever interface 895 * the connection is currently routed over. 896 */ 897 static int 898 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 899 struct m_snd_tag **mstp) 900 { 901 union if_snd_tag_alloc_params params; 902 struct ifnet *ifp; 903 struct nhop_object *nh; 904 struct tcpcb *tp; 905 int error; 906 907 INP_RLOCK(inp); 908 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 909 INP_RUNLOCK(inp); 910 return (ECONNRESET); 911 } 912 if (inp->inp_socket == NULL) { 913 INP_RUNLOCK(inp); 914 return (ECONNRESET); 915 } 916 tp = intotcpcb(inp); 917 918 /* 919 * Check administrative controls on ifnet TLS to determine if 920 * ifnet TLS should be denied. 921 * 922 * - Always permit 'force' requests. 923 * - ktls_ifnet_permitted == 0: always deny. 924 */ 925 if (!force && ktls_ifnet_permitted == 0) { 926 INP_RUNLOCK(inp); 927 return (ENXIO); 928 } 929 930 /* 931 * XXX: Use the cached route in the inpcb to find the 932 * interface. This should perhaps instead use 933 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 934 * enabled after a connection has completed key negotiation in 935 * userland, the cached route will be present in practice. 936 */ 937 nh = inp->inp_route.ro_nh; 938 if (nh == NULL) { 939 INP_RUNLOCK(inp); 940 return (ENXIO); 941 } 942 ifp = nh->nh_ifp; 943 if_ref(ifp); 944 945 /* 946 * Allocate a TLS + ratelimit tag if the connection has an 947 * existing pacing rate. 948 */ 949 if (tp->t_pacing_rate != -1 && 950 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 951 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 952 params.tls_rate_limit.inp = inp; 953 params.tls_rate_limit.tls = tls; 954 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 955 } else { 956 params.hdr.type = IF_SND_TAG_TYPE_TLS; 957 params.tls.inp = inp; 958 params.tls.tls = tls; 959 } 960 params.hdr.flowid = inp->inp_flowid; 961 params.hdr.flowtype = inp->inp_flowtype; 962 params.hdr.numa_domain = inp->inp_numa_domain; 963 INP_RUNLOCK(inp); 964 965 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 966 error = EOPNOTSUPP; 967 goto out; 968 } 969 if (inp->inp_vflag & INP_IPV6) { 970 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 971 error = EOPNOTSUPP; 972 goto out; 973 } 974 } else { 975 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 976 error = EOPNOTSUPP; 977 goto out; 978 } 979 } 980 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 981 out: 982 if_rele(ifp); 983 return (error); 984 } 985 986 static int 987 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 988 { 989 struct m_snd_tag *mst; 990 int error; 991 992 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 993 if (error == 0) { 994 tls->mode = TCP_TLS_MODE_IFNET; 995 tls->snd_tag = mst; 996 switch (tls->params.cipher_algorithm) { 997 case CRYPTO_AES_CBC: 998 counter_u64_add(ktls_ifnet_cbc, 1); 999 break; 1000 case CRYPTO_AES_NIST_GCM_16: 1001 counter_u64_add(ktls_ifnet_gcm, 1); 1002 break; 1003 case CRYPTO_CHACHA20_POLY1305: 1004 counter_u64_add(ktls_ifnet_chacha20, 1); 1005 break; 1006 } 1007 } 1008 return (error); 1009 } 1010 1011 static void 1012 ktls_use_sw(struct ktls_session *tls) 1013 { 1014 tls->mode = TCP_TLS_MODE_SW; 1015 switch (tls->params.cipher_algorithm) { 1016 case CRYPTO_AES_CBC: 1017 counter_u64_add(ktls_sw_cbc, 1); 1018 break; 1019 case CRYPTO_AES_NIST_GCM_16: 1020 counter_u64_add(ktls_sw_gcm, 1); 1021 break; 1022 case CRYPTO_CHACHA20_POLY1305: 1023 counter_u64_add(ktls_sw_chacha20, 1); 1024 break; 1025 } 1026 } 1027 1028 static int 1029 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1030 { 1031 int error; 1032 1033 error = ktls_ocf_try(so, tls, direction); 1034 if (error) 1035 return (error); 1036 ktls_use_sw(tls); 1037 return (0); 1038 } 1039 1040 /* 1041 * KTLS RX stores data in the socket buffer as a list of TLS records, 1042 * where each record is stored as a control message containg the TLS 1043 * header followed by data mbufs containing the decrypted data. This 1044 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1045 * both encrypted and decrypted data. TLS records decrypted by a NIC 1046 * should be queued to the socket buffer as records, but encrypted 1047 * data which needs to be decrypted by software arrives as a stream of 1048 * regular mbufs which need to be converted. In addition, there may 1049 * already be pending encrypted data in the socket buffer when KTLS RX 1050 * is enabled. 1051 * 1052 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1053 * is used: 1054 * 1055 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1056 * 1057 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1058 * from the first mbuf. Once all of the data for that TLS record is 1059 * queued, the socket is queued to a worker thread. 1060 * 1061 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1062 * the TLS chain. Each TLS record is detached from the TLS chain, 1063 * decrypted, and inserted into the regular socket buffer chain as 1064 * record starting with a control message holding the TLS header and 1065 * a chain of mbufs holding the encrypted data. 1066 */ 1067 1068 static void 1069 sb_mark_notready(struct sockbuf *sb) 1070 { 1071 struct mbuf *m; 1072 1073 m = sb->sb_mb; 1074 sb->sb_mtls = m; 1075 sb->sb_mb = NULL; 1076 sb->sb_mbtail = NULL; 1077 sb->sb_lastrecord = NULL; 1078 for (; m != NULL; m = m->m_next) { 1079 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1080 __func__)); 1081 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1082 __func__)); 1083 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1084 __func__)); 1085 m->m_flags |= M_NOTREADY; 1086 sb->sb_acc -= m->m_len; 1087 sb->sb_tlscc += m->m_len; 1088 sb->sb_mtlstail = m; 1089 } 1090 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1091 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1092 sb->sb_ccc)); 1093 } 1094 1095 /* 1096 * Return information about the pending TLS data in a socket 1097 * buffer. On return, 'seqno' is set to the sequence number 1098 * of the next TLS record to be received, 'resid' is set to 1099 * the amount of bytes still needed for the last pending 1100 * record. The function returns 'false' if the last pending 1101 * record contains a partial TLS header. In that case, 'resid' 1102 * is the number of bytes needed to complete the TLS header. 1103 */ 1104 bool 1105 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1106 { 1107 struct tls_record_layer hdr; 1108 struct mbuf *m; 1109 uint64_t seqno; 1110 size_t resid; 1111 u_int offset, record_len; 1112 1113 SOCKBUF_LOCK_ASSERT(sb); 1114 MPASS(sb->sb_flags & SB_TLS_RX); 1115 seqno = sb->sb_tls_seqno; 1116 resid = sb->sb_tlscc; 1117 m = sb->sb_mtls; 1118 offset = 0; 1119 1120 if (resid == 0) { 1121 *seqnop = seqno; 1122 *residp = 0; 1123 return (true); 1124 } 1125 1126 for (;;) { 1127 seqno++; 1128 1129 if (resid < sizeof(hdr)) { 1130 *seqnop = seqno; 1131 *residp = sizeof(hdr) - resid; 1132 return (false); 1133 } 1134 1135 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1136 1137 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1138 if (resid <= record_len) { 1139 *seqnop = seqno; 1140 *residp = record_len - resid; 1141 return (true); 1142 } 1143 resid -= record_len; 1144 1145 while (record_len != 0) { 1146 if (m->m_len - offset > record_len) { 1147 offset += record_len; 1148 break; 1149 } 1150 1151 record_len -= (m->m_len - offset); 1152 offset = 0; 1153 m = m->m_next; 1154 } 1155 } 1156 } 1157 1158 int 1159 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1160 { 1161 struct ktls_session *tls; 1162 int error; 1163 1164 if (!ktls_offload_enable) 1165 return (ENOTSUP); 1166 if (SOLISTENING(so)) 1167 return (EINVAL); 1168 1169 counter_u64_add(ktls_offload_enable_calls, 1); 1170 1171 /* 1172 * This should always be true since only the TCP socket option 1173 * invokes this function. 1174 */ 1175 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1176 return (EINVAL); 1177 1178 /* 1179 * XXX: Don't overwrite existing sessions. We should permit 1180 * this to support rekeying in the future. 1181 */ 1182 if (so->so_rcv.sb_tls_info != NULL) 1183 return (EALREADY); 1184 1185 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1186 return (ENOTSUP); 1187 1188 error = ktls_create_session(so, en, &tls); 1189 if (error) 1190 return (error); 1191 1192 error = ktls_ocf_try(so, tls, KTLS_RX); 1193 if (error) { 1194 ktls_cleanup(tls); 1195 return (error); 1196 } 1197 1198 #ifdef TCP_OFFLOAD 1199 error = ktls_try_toe(so, tls, KTLS_RX); 1200 if (error) 1201 #endif 1202 ktls_use_sw(tls); 1203 1204 /* Mark the socket as using TLS offload. */ 1205 SOCKBUF_LOCK(&so->so_rcv); 1206 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1207 so->so_rcv.sb_tls_info = tls; 1208 so->so_rcv.sb_flags |= SB_TLS_RX; 1209 1210 /* Mark existing data as not ready until it can be decrypted. */ 1211 if (tls->mode != TCP_TLS_MODE_TOE) { 1212 sb_mark_notready(&so->so_rcv); 1213 ktls_check_rx(&so->so_rcv); 1214 } 1215 SOCKBUF_UNLOCK(&so->so_rcv); 1216 1217 counter_u64_add(ktls_offload_total, 1); 1218 1219 return (0); 1220 } 1221 1222 int 1223 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1224 { 1225 struct ktls_session *tls; 1226 struct inpcb *inp; 1227 int error; 1228 1229 if (!ktls_offload_enable) 1230 return (ENOTSUP); 1231 if (SOLISTENING(so)) 1232 return (EINVAL); 1233 1234 counter_u64_add(ktls_offload_enable_calls, 1); 1235 1236 /* 1237 * This should always be true since only the TCP socket option 1238 * invokes this function. 1239 */ 1240 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1241 return (EINVAL); 1242 1243 /* 1244 * XXX: Don't overwrite existing sessions. We should permit 1245 * this to support rekeying in the future. 1246 */ 1247 if (so->so_snd.sb_tls_info != NULL) 1248 return (EALREADY); 1249 1250 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1251 return (ENOTSUP); 1252 1253 /* TLS requires ext pgs */ 1254 if (mb_use_ext_pgs == 0) 1255 return (ENXIO); 1256 1257 error = ktls_create_session(so, en, &tls); 1258 if (error) 1259 return (error); 1260 1261 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1262 #ifdef TCP_OFFLOAD 1263 error = ktls_try_toe(so, tls, KTLS_TX); 1264 if (error) 1265 #endif 1266 error = ktls_try_ifnet(so, tls, false); 1267 if (error) 1268 error = ktls_try_sw(so, tls, KTLS_TX); 1269 1270 if (error) { 1271 ktls_cleanup(tls); 1272 return (error); 1273 } 1274 1275 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1276 if (error) { 1277 ktls_cleanup(tls); 1278 return (error); 1279 } 1280 1281 /* 1282 * Write lock the INP when setting sb_tls_info so that 1283 * routines in tcp_ratelimit.c can read sb_tls_info while 1284 * holding the INP lock. 1285 */ 1286 inp = so->so_pcb; 1287 INP_WLOCK(inp); 1288 SOCKBUF_LOCK(&so->so_snd); 1289 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1290 so->so_snd.sb_tls_info = tls; 1291 if (tls->mode != TCP_TLS_MODE_SW) 1292 so->so_snd.sb_flags |= SB_TLS_IFNET; 1293 SOCKBUF_UNLOCK(&so->so_snd); 1294 INP_WUNLOCK(inp); 1295 SOCK_IO_SEND_UNLOCK(so); 1296 1297 counter_u64_add(ktls_offload_total, 1); 1298 1299 return (0); 1300 } 1301 1302 int 1303 ktls_get_rx_mode(struct socket *so, int *modep) 1304 { 1305 struct ktls_session *tls; 1306 struct inpcb *inp __diagused; 1307 1308 if (SOLISTENING(so)) 1309 return (EINVAL); 1310 inp = so->so_pcb; 1311 INP_WLOCK_ASSERT(inp); 1312 SOCK_RECVBUF_LOCK(so); 1313 tls = so->so_rcv.sb_tls_info; 1314 if (tls == NULL) 1315 *modep = TCP_TLS_MODE_NONE; 1316 else 1317 *modep = tls->mode; 1318 SOCK_RECVBUF_UNLOCK(so); 1319 return (0); 1320 } 1321 1322 int 1323 ktls_get_tx_mode(struct socket *so, int *modep) 1324 { 1325 struct ktls_session *tls; 1326 struct inpcb *inp __diagused; 1327 1328 if (SOLISTENING(so)) 1329 return (EINVAL); 1330 inp = so->so_pcb; 1331 INP_WLOCK_ASSERT(inp); 1332 SOCK_SENDBUF_LOCK(so); 1333 tls = so->so_snd.sb_tls_info; 1334 if (tls == NULL) 1335 *modep = TCP_TLS_MODE_NONE; 1336 else 1337 *modep = tls->mode; 1338 SOCK_SENDBUF_UNLOCK(so); 1339 return (0); 1340 } 1341 1342 /* 1343 * Switch between SW and ifnet TLS sessions as requested. 1344 */ 1345 int 1346 ktls_set_tx_mode(struct socket *so, int mode) 1347 { 1348 struct ktls_session *tls, *tls_new; 1349 struct inpcb *inp; 1350 int error; 1351 1352 if (SOLISTENING(so)) 1353 return (EINVAL); 1354 switch (mode) { 1355 case TCP_TLS_MODE_SW: 1356 case TCP_TLS_MODE_IFNET: 1357 break; 1358 default: 1359 return (EINVAL); 1360 } 1361 1362 inp = so->so_pcb; 1363 INP_WLOCK_ASSERT(inp); 1364 SOCKBUF_LOCK(&so->so_snd); 1365 tls = so->so_snd.sb_tls_info; 1366 if (tls == NULL) { 1367 SOCKBUF_UNLOCK(&so->so_snd); 1368 return (0); 1369 } 1370 1371 if (tls->mode == mode) { 1372 SOCKBUF_UNLOCK(&so->so_snd); 1373 return (0); 1374 } 1375 1376 tls = ktls_hold(tls); 1377 SOCKBUF_UNLOCK(&so->so_snd); 1378 INP_WUNLOCK(inp); 1379 1380 tls_new = ktls_clone_session(tls); 1381 1382 if (mode == TCP_TLS_MODE_IFNET) 1383 error = ktls_try_ifnet(so, tls_new, true); 1384 else 1385 error = ktls_try_sw(so, tls_new, KTLS_TX); 1386 if (error) { 1387 counter_u64_add(ktls_switch_failed, 1); 1388 ktls_free(tls_new); 1389 ktls_free(tls); 1390 INP_WLOCK(inp); 1391 return (error); 1392 } 1393 1394 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1395 if (error) { 1396 counter_u64_add(ktls_switch_failed, 1); 1397 ktls_free(tls_new); 1398 ktls_free(tls); 1399 INP_WLOCK(inp); 1400 return (error); 1401 } 1402 1403 /* 1404 * If we raced with another session change, keep the existing 1405 * session. 1406 */ 1407 if (tls != so->so_snd.sb_tls_info) { 1408 counter_u64_add(ktls_switch_failed, 1); 1409 SOCK_IO_SEND_UNLOCK(so); 1410 ktls_free(tls_new); 1411 ktls_free(tls); 1412 INP_WLOCK(inp); 1413 return (EBUSY); 1414 } 1415 1416 SOCKBUF_LOCK(&so->so_snd); 1417 so->so_snd.sb_tls_info = tls_new; 1418 if (tls_new->mode != TCP_TLS_MODE_SW) 1419 so->so_snd.sb_flags |= SB_TLS_IFNET; 1420 SOCKBUF_UNLOCK(&so->so_snd); 1421 SOCK_IO_SEND_UNLOCK(so); 1422 1423 /* 1424 * Drop two references on 'tls'. The first is for the 1425 * ktls_hold() above. The second drops the reference from the 1426 * socket buffer. 1427 */ 1428 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1429 ktls_free(tls); 1430 ktls_free(tls); 1431 1432 if (mode == TCP_TLS_MODE_IFNET) 1433 counter_u64_add(ktls_switch_to_ifnet, 1); 1434 else 1435 counter_u64_add(ktls_switch_to_sw, 1); 1436 1437 INP_WLOCK(inp); 1438 return (0); 1439 } 1440 1441 /* 1442 * Try to allocate a new TLS send tag. This task is scheduled when 1443 * ip_output detects a route change while trying to transmit a packet 1444 * holding a TLS record. If a new tag is allocated, replace the tag 1445 * in the TLS session. Subsequent packets on the connection will use 1446 * the new tag. If a new tag cannot be allocated, drop the 1447 * connection. 1448 */ 1449 static void 1450 ktls_reset_send_tag(void *context, int pending) 1451 { 1452 struct epoch_tracker et; 1453 struct ktls_session *tls; 1454 struct m_snd_tag *old, *new; 1455 struct inpcb *inp; 1456 struct tcpcb *tp; 1457 int error; 1458 1459 MPASS(pending == 1); 1460 1461 tls = context; 1462 inp = tls->inp; 1463 1464 /* 1465 * Free the old tag first before allocating a new one. 1466 * ip[6]_output_send() will treat a NULL send tag the same as 1467 * an ifp mismatch and drop packets until a new tag is 1468 * allocated. 1469 * 1470 * Write-lock the INP when changing tls->snd_tag since 1471 * ip[6]_output_send() holds a read-lock when reading the 1472 * pointer. 1473 */ 1474 INP_WLOCK(inp); 1475 old = tls->snd_tag; 1476 tls->snd_tag = NULL; 1477 INP_WUNLOCK(inp); 1478 if (old != NULL) 1479 m_snd_tag_rele(old); 1480 1481 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1482 1483 if (error == 0) { 1484 INP_WLOCK(inp); 1485 tls->snd_tag = new; 1486 mtx_pool_lock(mtxpool_sleep, tls); 1487 tls->reset_pending = false; 1488 mtx_pool_unlock(mtxpool_sleep, tls); 1489 if (!in_pcbrele_wlocked(inp)) 1490 INP_WUNLOCK(inp); 1491 1492 counter_u64_add(ktls_ifnet_reset, 1); 1493 1494 /* 1495 * XXX: Should we kick tcp_output explicitly now that 1496 * the send tag is fixed or just rely on timers? 1497 */ 1498 } else { 1499 NET_EPOCH_ENTER(et); 1500 INP_WLOCK(inp); 1501 if (!in_pcbrele_wlocked(inp)) { 1502 if (!(inp->inp_flags & INP_TIMEWAIT) && 1503 !(inp->inp_flags & INP_DROPPED)) { 1504 tp = intotcpcb(inp); 1505 CURVNET_SET(tp->t_vnet); 1506 tp = tcp_drop(tp, ECONNABORTED); 1507 CURVNET_RESTORE(); 1508 if (tp != NULL) 1509 INP_WUNLOCK(inp); 1510 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1511 } else 1512 INP_WUNLOCK(inp); 1513 } 1514 NET_EPOCH_EXIT(et); 1515 1516 counter_u64_add(ktls_ifnet_reset_failed, 1); 1517 1518 /* 1519 * Leave reset_pending true to avoid future tasks while 1520 * the socket goes away. 1521 */ 1522 } 1523 1524 ktls_free(tls); 1525 } 1526 1527 int 1528 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1529 { 1530 1531 if (inp == NULL) 1532 return (ENOBUFS); 1533 1534 INP_LOCK_ASSERT(inp); 1535 1536 /* 1537 * See if we should schedule a task to update the send tag for 1538 * this session. 1539 */ 1540 mtx_pool_lock(mtxpool_sleep, tls); 1541 if (!tls->reset_pending) { 1542 (void) ktls_hold(tls); 1543 in_pcbref(inp); 1544 tls->inp = inp; 1545 tls->reset_pending = true; 1546 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1547 } 1548 mtx_pool_unlock(mtxpool_sleep, tls); 1549 return (ENOBUFS); 1550 } 1551 1552 #ifdef RATELIMIT 1553 int 1554 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1555 { 1556 union if_snd_tag_modify_params params = { 1557 .rate_limit.max_rate = max_pacing_rate, 1558 .rate_limit.flags = M_NOWAIT, 1559 }; 1560 struct m_snd_tag *mst; 1561 1562 /* Can't get to the inp, but it should be locked. */ 1563 /* INP_LOCK_ASSERT(inp); */ 1564 1565 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1566 1567 if (tls->snd_tag == NULL) { 1568 /* 1569 * Resetting send tag, ignore this change. The 1570 * pending reset may or may not see this updated rate 1571 * in the tcpcb. If it doesn't, we will just lose 1572 * this rate change. 1573 */ 1574 return (0); 1575 } 1576 1577 MPASS(tls->snd_tag != NULL); 1578 MPASS(tls->snd_tag->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1579 1580 mst = tls->snd_tag; 1581 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1582 } 1583 #endif 1584 #endif 1585 1586 void 1587 ktls_destroy(struct ktls_session *tls) 1588 { 1589 1590 if (tls->sequential_records) { 1591 struct mbuf *m, *n; 1592 int page_count; 1593 1594 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1595 page_count = m->m_epg_enc_cnt; 1596 while (page_count > 0) { 1597 KASSERT(page_count >= m->m_epg_nrdy, 1598 ("%s: too few pages", __func__)); 1599 page_count -= m->m_epg_nrdy; 1600 m = m_free(m); 1601 } 1602 } 1603 } 1604 ktls_cleanup(tls); 1605 uma_zfree(ktls_session_zone, tls); 1606 } 1607 1608 void 1609 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1610 { 1611 1612 for (; m != NULL; m = m->m_next) { 1613 KASSERT((m->m_flags & M_EXTPG) != 0, 1614 ("ktls_seq: mapped mbuf %p", m)); 1615 1616 m->m_epg_seqno = sb->sb_tls_seqno; 1617 sb->sb_tls_seqno++; 1618 } 1619 } 1620 1621 /* 1622 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1623 * mbuf in the chain must be an unmapped mbuf. The payload of the 1624 * mbuf must be populated with the payload of each TLS record. 1625 * 1626 * The record_type argument specifies the TLS record type used when 1627 * populating the TLS header. 1628 * 1629 * The enq_count argument on return is set to the number of pages of 1630 * payload data for this entire chain that need to be encrypted via SW 1631 * encryption. The returned value should be passed to ktls_enqueue 1632 * when scheduling encryption of this chain of mbufs. To handle the 1633 * special case of empty fragments for TLS 1.0 sessions, an empty 1634 * fragment counts as one page. 1635 */ 1636 void 1637 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1638 uint8_t record_type) 1639 { 1640 struct tls_record_layer *tlshdr; 1641 struct mbuf *m; 1642 uint64_t *noncep; 1643 uint16_t tls_len; 1644 int maxlen __diagused; 1645 1646 maxlen = tls->params.max_frame_len; 1647 *enq_cnt = 0; 1648 for (m = top; m != NULL; m = m->m_next) { 1649 /* 1650 * All mbufs in the chain should be TLS records whose 1651 * payload does not exceed the maximum frame length. 1652 * 1653 * Empty TLS records are permitted when using CBC. 1654 */ 1655 KASSERT(m->m_len <= maxlen && 1656 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1657 m->m_len >= 0 : m->m_len > 0), 1658 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1659 1660 /* 1661 * TLS frames require unmapped mbufs to store session 1662 * info. 1663 */ 1664 KASSERT((m->m_flags & M_EXTPG) != 0, 1665 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1666 1667 tls_len = m->m_len; 1668 1669 /* Save a reference to the session. */ 1670 m->m_epg_tls = ktls_hold(tls); 1671 1672 m->m_epg_hdrlen = tls->params.tls_hlen; 1673 m->m_epg_trllen = tls->params.tls_tlen; 1674 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1675 int bs, delta; 1676 1677 /* 1678 * AES-CBC pads messages to a multiple of the 1679 * block size. Note that the padding is 1680 * applied after the digest and the encryption 1681 * is done on the "plaintext || mac || padding". 1682 * At least one byte of padding is always 1683 * present. 1684 * 1685 * Compute the final trailer length assuming 1686 * at most one block of padding. 1687 * tls->params.tls_tlen is the maximum 1688 * possible trailer length (padding + digest). 1689 * delta holds the number of excess padding 1690 * bytes if the maximum were used. Those 1691 * extra bytes are removed. 1692 */ 1693 bs = tls->params.tls_bs; 1694 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1695 m->m_epg_trllen -= delta; 1696 } 1697 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1698 1699 /* Populate the TLS header. */ 1700 tlshdr = (void *)m->m_epg_hdr; 1701 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1702 1703 /* 1704 * TLS 1.3 masquarades as TLS 1.2 with a record type 1705 * of TLS_RLTYPE_APP. 1706 */ 1707 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1708 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1709 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1710 tlshdr->tls_type = TLS_RLTYPE_APP; 1711 /* save the real record type for later */ 1712 m->m_epg_record_type = record_type; 1713 m->m_epg_trail[0] = record_type; 1714 } else { 1715 tlshdr->tls_vminor = tls->params.tls_vminor; 1716 tlshdr->tls_type = record_type; 1717 } 1718 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1719 1720 /* 1721 * Store nonces / explicit IVs after the end of the 1722 * TLS header. 1723 * 1724 * For GCM with TLS 1.2, an 8 byte nonce is copied 1725 * from the end of the IV. The nonce is then 1726 * incremented for use by the next record. 1727 * 1728 * For CBC, a random nonce is inserted for TLS 1.1+. 1729 */ 1730 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1731 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1732 noncep = (uint64_t *)(tls->params.iv + 8); 1733 be64enc(tlshdr + 1, *noncep); 1734 (*noncep)++; 1735 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1736 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1737 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1738 1739 /* 1740 * When using SW encryption, mark the mbuf not ready. 1741 * It will be marked ready via sbready() after the 1742 * record has been encrypted. 1743 * 1744 * When using ifnet TLS, unencrypted TLS records are 1745 * sent down the stack to the NIC. 1746 */ 1747 if (tls->mode == TCP_TLS_MODE_SW) { 1748 m->m_flags |= M_NOTREADY; 1749 if (__predict_false(tls_len == 0)) { 1750 /* TLS 1.0 empty fragment. */ 1751 m->m_epg_nrdy = 1; 1752 } else 1753 m->m_epg_nrdy = m->m_epg_npgs; 1754 *enq_cnt += m->m_epg_nrdy; 1755 } 1756 } 1757 } 1758 1759 void 1760 ktls_check_rx(struct sockbuf *sb) 1761 { 1762 struct tls_record_layer hdr; 1763 struct ktls_wq *wq; 1764 struct socket *so; 1765 bool running; 1766 1767 SOCKBUF_LOCK_ASSERT(sb); 1768 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1769 __func__, sb)); 1770 so = __containerof(sb, struct socket, so_rcv); 1771 1772 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1773 return; 1774 1775 /* Is there enough queued for a TLS header? */ 1776 if (sb->sb_tlscc < sizeof(hdr)) { 1777 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1778 so->so_error = EMSGSIZE; 1779 return; 1780 } 1781 1782 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1783 1784 /* Is the entire record queued? */ 1785 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1786 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1787 so->so_error = EMSGSIZE; 1788 return; 1789 } 1790 1791 sb->sb_flags |= SB_TLS_RX_RUNNING; 1792 1793 soref(so); 1794 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1795 mtx_lock(&wq->mtx); 1796 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1797 running = wq->running; 1798 mtx_unlock(&wq->mtx); 1799 if (!running) 1800 wakeup(wq); 1801 counter_u64_add(ktls_cnt_rx_queued, 1); 1802 } 1803 1804 static struct mbuf * 1805 ktls_detach_record(struct sockbuf *sb, int len) 1806 { 1807 struct mbuf *m, *n, *top; 1808 int remain; 1809 1810 SOCKBUF_LOCK_ASSERT(sb); 1811 MPASS(len <= sb->sb_tlscc); 1812 1813 /* 1814 * If TLS chain is the exact size of the record, 1815 * just grab the whole record. 1816 */ 1817 top = sb->sb_mtls; 1818 if (sb->sb_tlscc == len) { 1819 sb->sb_mtls = NULL; 1820 sb->sb_mtlstail = NULL; 1821 goto out; 1822 } 1823 1824 /* 1825 * While it would be nice to use m_split() here, we need 1826 * to know exactly what m_split() allocates to update the 1827 * accounting, so do it inline instead. 1828 */ 1829 remain = len; 1830 for (m = top; remain > m->m_len; m = m->m_next) 1831 remain -= m->m_len; 1832 1833 /* Easy case: don't have to split 'm'. */ 1834 if (remain == m->m_len) { 1835 sb->sb_mtls = m->m_next; 1836 if (sb->sb_mtls == NULL) 1837 sb->sb_mtlstail = NULL; 1838 m->m_next = NULL; 1839 goto out; 1840 } 1841 1842 /* 1843 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1844 * with M_NOWAIT first. 1845 */ 1846 n = m_get(M_NOWAIT, MT_DATA); 1847 if (n == NULL) { 1848 /* 1849 * Use M_WAITOK with socket buffer unlocked. If 1850 * 'sb_mtls' changes while the lock is dropped, return 1851 * NULL to force the caller to retry. 1852 */ 1853 SOCKBUF_UNLOCK(sb); 1854 1855 n = m_get(M_WAITOK, MT_DATA); 1856 1857 SOCKBUF_LOCK(sb); 1858 if (sb->sb_mtls != top) { 1859 m_free(n); 1860 return (NULL); 1861 } 1862 } 1863 n->m_flags |= M_NOTREADY; 1864 1865 /* Store remainder in 'n'. */ 1866 n->m_len = m->m_len - remain; 1867 if (m->m_flags & M_EXT) { 1868 n->m_data = m->m_data + remain; 1869 mb_dupcl(n, m); 1870 } else { 1871 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1872 } 1873 1874 /* Trim 'm' and update accounting. */ 1875 m->m_len -= n->m_len; 1876 sb->sb_tlscc -= n->m_len; 1877 sb->sb_ccc -= n->m_len; 1878 1879 /* Account for 'n'. */ 1880 sballoc_ktls_rx(sb, n); 1881 1882 /* Insert 'n' into the TLS chain. */ 1883 sb->sb_mtls = n; 1884 n->m_next = m->m_next; 1885 if (sb->sb_mtlstail == m) 1886 sb->sb_mtlstail = n; 1887 1888 /* Detach the record from the TLS chain. */ 1889 m->m_next = NULL; 1890 1891 out: 1892 MPASS(m_length(top, NULL) == len); 1893 for (m = top; m != NULL; m = m->m_next) 1894 sbfree_ktls_rx(sb, m); 1895 sb->sb_tlsdcc = len; 1896 sb->sb_ccc += len; 1897 SBCHECK(sb); 1898 return (top); 1899 } 1900 1901 /* 1902 * Determine the length of the trailing zero padding and find the real 1903 * record type in the byte before the padding. 1904 * 1905 * Walking the mbuf chain backwards is clumsy, so another option would 1906 * be to scan forwards remembering the last non-zero byte before the 1907 * trailer. However, it would be expensive to scan the entire record. 1908 * Instead, find the last non-zero byte of each mbuf in the chain 1909 * keeping track of the relative offset of that nonzero byte. 1910 * 1911 * trail_len is the size of the MAC/tag on input and is set to the 1912 * size of the full trailer including padding and the record type on 1913 * return. 1914 */ 1915 static int 1916 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 1917 int *trailer_len, uint8_t *record_typep) 1918 { 1919 char *cp; 1920 u_int digest_start, last_offset, m_len, offset; 1921 uint8_t record_type; 1922 1923 digest_start = tls_len - *trailer_len; 1924 last_offset = 0; 1925 offset = 0; 1926 for (; m != NULL && offset < digest_start; 1927 offset += m->m_len, m = m->m_next) { 1928 /* Don't look for padding in the tag. */ 1929 m_len = min(digest_start - offset, m->m_len); 1930 cp = mtod(m, char *); 1931 1932 /* Find last non-zero byte in this mbuf. */ 1933 while (m_len > 0 && cp[m_len - 1] == 0) 1934 m_len--; 1935 if (m_len > 0) { 1936 record_type = cp[m_len - 1]; 1937 last_offset = offset + m_len; 1938 } 1939 } 1940 if (last_offset < tls->params.tls_hlen) 1941 return (EBADMSG); 1942 1943 *record_typep = record_type; 1944 *trailer_len = tls_len - last_offset + 1; 1945 return (0); 1946 } 1947 1948 static void 1949 ktls_decrypt(struct socket *so) 1950 { 1951 char tls_header[MBUF_PEXT_HDR_LEN]; 1952 struct ktls_session *tls; 1953 struct sockbuf *sb; 1954 struct tls_record_layer *hdr; 1955 struct tls_get_record tgr; 1956 struct mbuf *control, *data, *m; 1957 uint64_t seqno; 1958 int error, remain, tls_len, trail_len; 1959 bool tls13; 1960 uint8_t vminor, record_type; 1961 1962 hdr = (struct tls_record_layer *)tls_header; 1963 sb = &so->so_rcv; 1964 SOCKBUF_LOCK(sb); 1965 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1966 ("%s: socket %p not running", __func__, so)); 1967 1968 tls = sb->sb_tls_info; 1969 MPASS(tls != NULL); 1970 1971 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 1972 if (tls13) 1973 vminor = TLS_MINOR_VER_TWO; 1974 else 1975 vminor = tls->params.tls_vminor; 1976 for (;;) { 1977 /* Is there enough queued for a TLS header? */ 1978 if (sb->sb_tlscc < tls->params.tls_hlen) 1979 break; 1980 1981 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1982 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1983 1984 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1985 hdr->tls_vminor != vminor) 1986 error = EINVAL; 1987 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 1988 error = EINVAL; 1989 else if (tls_len < tls->params.tls_hlen || tls_len > 1990 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1991 tls->params.tls_tlen) 1992 error = EMSGSIZE; 1993 else 1994 error = 0; 1995 if (__predict_false(error != 0)) { 1996 /* 1997 * We have a corrupted record and are likely 1998 * out of sync. The connection isn't 1999 * recoverable at this point, so abort it. 2000 */ 2001 SOCKBUF_UNLOCK(sb); 2002 counter_u64_add(ktls_offload_corrupted_records, 1); 2003 2004 CURVNET_SET(so->so_vnet); 2005 so->so_proto->pr_usrreqs->pru_abort(so); 2006 so->so_error = error; 2007 CURVNET_RESTORE(); 2008 goto deref; 2009 } 2010 2011 /* Is the entire record queued? */ 2012 if (sb->sb_tlscc < tls_len) 2013 break; 2014 2015 /* 2016 * Split out the portion of the mbuf chain containing 2017 * this TLS record. 2018 */ 2019 data = ktls_detach_record(sb, tls_len); 2020 if (data == NULL) 2021 continue; 2022 MPASS(sb->sb_tlsdcc == tls_len); 2023 2024 seqno = sb->sb_tls_seqno; 2025 sb->sb_tls_seqno++; 2026 SBCHECK(sb); 2027 SOCKBUF_UNLOCK(sb); 2028 2029 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 2030 if (error == 0) { 2031 if (tls13) 2032 error = tls13_find_record_type(tls, data, 2033 tls_len, &trail_len, &record_type); 2034 else 2035 record_type = hdr->tls_type; 2036 } 2037 if (error) { 2038 counter_u64_add(ktls_offload_failed_crypto, 1); 2039 2040 SOCKBUF_LOCK(sb); 2041 if (sb->sb_tlsdcc == 0) { 2042 /* 2043 * sbcut/drop/flush discarded these 2044 * mbufs. 2045 */ 2046 m_freem(data); 2047 break; 2048 } 2049 2050 /* 2051 * Drop this TLS record's data, but keep 2052 * decrypting subsequent records. 2053 */ 2054 sb->sb_ccc -= tls_len; 2055 sb->sb_tlsdcc = 0; 2056 2057 CURVNET_SET(so->so_vnet); 2058 so->so_error = EBADMSG; 2059 sorwakeup_locked(so); 2060 CURVNET_RESTORE(); 2061 2062 m_freem(data); 2063 2064 SOCKBUF_LOCK(sb); 2065 continue; 2066 } 2067 2068 /* Allocate the control mbuf. */ 2069 memset(&tgr, 0, sizeof(tgr)); 2070 tgr.tls_type = record_type; 2071 tgr.tls_vmajor = hdr->tls_vmajor; 2072 tgr.tls_vminor = hdr->tls_vminor; 2073 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2074 trail_len); 2075 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 2076 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2077 2078 SOCKBUF_LOCK(sb); 2079 if (sb->sb_tlsdcc == 0) { 2080 /* sbcut/drop/flush discarded these mbufs. */ 2081 MPASS(sb->sb_tlscc == 0); 2082 m_freem(data); 2083 m_freem(control); 2084 break; 2085 } 2086 2087 /* 2088 * Clear the 'dcc' accounting in preparation for 2089 * adding the decrypted record. 2090 */ 2091 sb->sb_ccc -= tls_len; 2092 sb->sb_tlsdcc = 0; 2093 SBCHECK(sb); 2094 2095 /* If there is no payload, drop all of the data. */ 2096 if (tgr.tls_length == htobe16(0)) { 2097 m_freem(data); 2098 data = NULL; 2099 } else { 2100 /* Trim header. */ 2101 remain = tls->params.tls_hlen; 2102 while (remain > 0) { 2103 if (data->m_len > remain) { 2104 data->m_data += remain; 2105 data->m_len -= remain; 2106 break; 2107 } 2108 remain -= data->m_len; 2109 data = m_free(data); 2110 } 2111 2112 /* Trim trailer and clear M_NOTREADY. */ 2113 remain = be16toh(tgr.tls_length); 2114 m = data; 2115 for (m = data; remain > m->m_len; m = m->m_next) { 2116 m->m_flags &= ~M_NOTREADY; 2117 remain -= m->m_len; 2118 } 2119 m->m_len = remain; 2120 m_freem(m->m_next); 2121 m->m_next = NULL; 2122 m->m_flags &= ~M_NOTREADY; 2123 2124 /* Set EOR on the final mbuf. */ 2125 m->m_flags |= M_EOR; 2126 } 2127 2128 sbappendcontrol_locked(sb, data, control, 0); 2129 } 2130 2131 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2132 2133 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2134 so->so_error = EMSGSIZE; 2135 2136 sorwakeup_locked(so); 2137 2138 deref: 2139 SOCKBUF_UNLOCK_ASSERT(sb); 2140 2141 CURVNET_SET(so->so_vnet); 2142 sorele(so); 2143 CURVNET_RESTORE(); 2144 } 2145 2146 void 2147 ktls_enqueue_to_free(struct mbuf *m) 2148 { 2149 struct ktls_wq *wq; 2150 bool running; 2151 2152 /* Mark it for freeing. */ 2153 m->m_epg_flags |= EPG_FLAG_2FREE; 2154 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2155 mtx_lock(&wq->mtx); 2156 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2157 running = wq->running; 2158 mtx_unlock(&wq->mtx); 2159 if (!running) 2160 wakeup(wq); 2161 } 2162 2163 static void * 2164 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2165 { 2166 void *buf; 2167 int domain, running; 2168 2169 if (m->m_epg_npgs <= 2) 2170 return (NULL); 2171 if (ktls_buffer_zone == NULL) 2172 return (NULL); 2173 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2174 /* 2175 * Rate-limit allocation attempts after a failure. 2176 * ktls_buffer_import() will acquire a per-domain mutex to check 2177 * the free page queues and may fail consistently if memory is 2178 * fragmented. 2179 */ 2180 return (NULL); 2181 } 2182 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2183 if (buf == NULL) { 2184 domain = PCPU_GET(domain); 2185 wq->lastallocfail = ticks; 2186 2187 /* 2188 * Note that this check is "racy", but the races are 2189 * harmless, and are either a spurious wakeup if 2190 * multiple threads fail allocations before the alloc 2191 * thread wakes, or waiting an extra second in case we 2192 * see an old value of running == true. 2193 */ 2194 if (!VM_DOMAIN_EMPTY(domain)) { 2195 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2196 if (!running) 2197 wakeup(&ktls_domains[domain].alloc_td); 2198 } 2199 } 2200 return (buf); 2201 } 2202 2203 static int 2204 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2205 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2206 { 2207 vm_page_t pg; 2208 int error, i, len, off; 2209 2210 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2211 ("%p not unready & nomap mbuf\n", m)); 2212 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2213 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2214 ktls_maxlen)); 2215 2216 /* Anonymous mbufs are encrypted in place. */ 2217 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2218 return (tls->sw_encrypt(state, tls, m, NULL, 0)); 2219 2220 /* 2221 * For file-backed mbufs (from sendfile), anonymous wired 2222 * pages are allocated and used as the encryption destination. 2223 */ 2224 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2225 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2226 m->m_epg_1st_off; 2227 state->dst_iov[0].iov_base = (char *)state->cbuf + 2228 m->m_epg_1st_off; 2229 state->dst_iov[0].iov_len = len; 2230 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2231 i = 1; 2232 } else { 2233 off = m->m_epg_1st_off; 2234 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2235 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2236 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2237 len = m_epg_pagelen(m, i, off); 2238 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2239 state->dst_iov[i].iov_base = 2240 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2241 state->dst_iov[i].iov_len = len; 2242 } 2243 } 2244 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2245 state->dst_iov[i].iov_base = m->m_epg_trail; 2246 state->dst_iov[i].iov_len = m->m_epg_trllen; 2247 2248 error = tls->sw_encrypt(state, tls, m, state->dst_iov, i + 1); 2249 2250 if (__predict_false(error != 0)) { 2251 /* Free the anonymous pages. */ 2252 if (state->cbuf != NULL) 2253 uma_zfree(ktls_buffer_zone, state->cbuf); 2254 else { 2255 for (i = 0; i < m->m_epg_npgs; i++) { 2256 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2257 (void)vm_page_unwire_noq(pg); 2258 vm_page_free(pg); 2259 } 2260 } 2261 } 2262 return (error); 2263 } 2264 2265 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2266 static u_int 2267 ktls_batched_records(struct mbuf *m) 2268 { 2269 int page_count, records; 2270 2271 records = 0; 2272 page_count = m->m_epg_enc_cnt; 2273 while (page_count > 0) { 2274 records++; 2275 page_count -= m->m_epg_nrdy; 2276 m = m->m_next; 2277 } 2278 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2279 return (records); 2280 } 2281 2282 void 2283 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2284 { 2285 struct ktls_session *tls; 2286 struct ktls_wq *wq; 2287 int queued; 2288 bool running; 2289 2290 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2291 (M_EXTPG | M_NOTREADY)), 2292 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2293 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2294 2295 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2296 2297 m->m_epg_enc_cnt = page_count; 2298 2299 /* 2300 * Save a pointer to the socket. The caller is responsible 2301 * for taking an additional reference via soref(). 2302 */ 2303 m->m_epg_so = so; 2304 2305 queued = 1; 2306 tls = m->m_epg_tls; 2307 wq = &ktls_wq[tls->wq_index]; 2308 mtx_lock(&wq->mtx); 2309 if (__predict_false(tls->sequential_records)) { 2310 /* 2311 * For TLS 1.0, records must be encrypted 2312 * sequentially. For a given connection, all records 2313 * queued to the associated work queue are processed 2314 * sequentially. However, sendfile(2) might complete 2315 * I/O requests spanning multiple TLS records out of 2316 * order. Here we ensure TLS records are enqueued to 2317 * the work queue in FIFO order. 2318 * 2319 * tls->next_seqno holds the sequence number of the 2320 * next TLS record that should be enqueued to the work 2321 * queue. If this next record is not tls->next_seqno, 2322 * it must be a future record, so insert it, sorted by 2323 * TLS sequence number, into tls->pending_records and 2324 * return. 2325 * 2326 * If this TLS record matches tls->next_seqno, place 2327 * it in the work queue and then check 2328 * tls->pending_records to see if any 2329 * previously-queued records are now ready for 2330 * encryption. 2331 */ 2332 if (m->m_epg_seqno != tls->next_seqno) { 2333 struct mbuf *n, *p; 2334 2335 p = NULL; 2336 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2337 if (n->m_epg_seqno > m->m_epg_seqno) 2338 break; 2339 p = n; 2340 } 2341 if (n == NULL) 2342 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2343 m_epg_stailq); 2344 else if (p == NULL) 2345 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2346 m_epg_stailq); 2347 else 2348 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2349 m_epg_stailq); 2350 mtx_unlock(&wq->mtx); 2351 counter_u64_add(ktls_cnt_tx_pending, 1); 2352 return; 2353 } 2354 2355 tls->next_seqno += ktls_batched_records(m); 2356 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2357 2358 while (!STAILQ_EMPTY(&tls->pending_records)) { 2359 struct mbuf *n; 2360 2361 n = STAILQ_FIRST(&tls->pending_records); 2362 if (n->m_epg_seqno != tls->next_seqno) 2363 break; 2364 2365 queued++; 2366 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2367 tls->next_seqno += ktls_batched_records(n); 2368 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2369 } 2370 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2371 } else 2372 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2373 2374 running = wq->running; 2375 mtx_unlock(&wq->mtx); 2376 if (!running) 2377 wakeup(wq); 2378 counter_u64_add(ktls_cnt_tx_queued, queued); 2379 } 2380 2381 /* 2382 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2383 * the pages from the file and replace them with the anonymous pages 2384 * allocated in ktls_encrypt_record(). 2385 */ 2386 static void 2387 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2388 { 2389 int i; 2390 2391 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2392 2393 /* Free the old pages. */ 2394 m->m_ext.ext_free(m); 2395 2396 /* Replace them with the new pages. */ 2397 if (state->cbuf != NULL) { 2398 for (i = 0; i < m->m_epg_npgs; i++) 2399 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2400 2401 /* Contig pages should go back to the cache. */ 2402 m->m_ext.ext_free = ktls_free_mext_contig; 2403 } else { 2404 for (i = 0; i < m->m_epg_npgs; i++) 2405 m->m_epg_pa[i] = state->parray[i]; 2406 2407 /* Use the basic free routine. */ 2408 m->m_ext.ext_free = mb_free_mext_pgs; 2409 } 2410 2411 /* Pages are now writable. */ 2412 m->m_epg_flags |= EPG_FLAG_ANON; 2413 } 2414 2415 static __noinline void 2416 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2417 { 2418 struct ktls_ocf_encrypt_state state; 2419 struct ktls_session *tls; 2420 struct socket *so; 2421 struct mbuf *m; 2422 int error, npages, total_pages; 2423 2424 so = top->m_epg_so; 2425 tls = top->m_epg_tls; 2426 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2427 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2428 #ifdef INVARIANTS 2429 top->m_epg_so = NULL; 2430 #endif 2431 total_pages = top->m_epg_enc_cnt; 2432 npages = 0; 2433 2434 /* 2435 * Encrypt the TLS records in the chain of mbufs starting with 2436 * 'top'. 'total_pages' gives us a total count of pages and is 2437 * used to know when we have finished encrypting the TLS 2438 * records originally queued with 'top'. 2439 * 2440 * NB: These mbufs are queued in the socket buffer and 2441 * 'm_next' is traversing the mbufs in the socket buffer. The 2442 * socket buffer lock is not held while traversing this chain. 2443 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2444 * pointers should be stable. However, the 'm_next' of the 2445 * last mbuf encrypted is not necessarily NULL. It can point 2446 * to other mbufs appended while 'top' was on the TLS work 2447 * queue. 2448 * 2449 * Each mbuf holds an entire TLS record. 2450 */ 2451 error = 0; 2452 for (m = top; npages != total_pages; m = m->m_next) { 2453 KASSERT(m->m_epg_tls == tls, 2454 ("different TLS sessions in a single mbuf chain: %p vs %p", 2455 tls, m->m_epg_tls)); 2456 KASSERT(npages + m->m_epg_npgs <= total_pages, 2457 ("page count mismatch: top %p, total_pages %d, m %p", top, 2458 total_pages, m)); 2459 2460 error = ktls_encrypt_record(wq, m, tls, &state); 2461 if (error) { 2462 counter_u64_add(ktls_offload_failed_crypto, 1); 2463 break; 2464 } 2465 2466 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2467 ktls_finish_nonanon(m, &state); 2468 2469 npages += m->m_epg_nrdy; 2470 2471 /* 2472 * Drop a reference to the session now that it is no 2473 * longer needed. Existing code depends on encrypted 2474 * records having no associated session vs 2475 * yet-to-be-encrypted records having an associated 2476 * session. 2477 */ 2478 m->m_epg_tls = NULL; 2479 ktls_free(tls); 2480 } 2481 2482 CURVNET_SET(so->so_vnet); 2483 if (error == 0) { 2484 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2485 } else { 2486 so->so_proto->pr_usrreqs->pru_abort(so); 2487 so->so_error = EIO; 2488 mb_free_notready(top, total_pages); 2489 } 2490 2491 sorele(so); 2492 CURVNET_RESTORE(); 2493 } 2494 2495 void 2496 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 2497 { 2498 struct ktls_session *tls; 2499 struct socket *so; 2500 struct mbuf *m; 2501 int npages; 2502 2503 m = state->m; 2504 2505 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2506 ktls_finish_nonanon(m, state); 2507 2508 so = state->so; 2509 free(state, M_KTLS); 2510 2511 /* 2512 * Drop a reference to the session now that it is no longer 2513 * needed. Existing code depends on encrypted records having 2514 * no associated session vs yet-to-be-encrypted records having 2515 * an associated session. 2516 */ 2517 tls = m->m_epg_tls; 2518 m->m_epg_tls = NULL; 2519 ktls_free(tls); 2520 2521 if (error != 0) 2522 counter_u64_add(ktls_offload_failed_crypto, 1); 2523 2524 CURVNET_SET(so->so_vnet); 2525 npages = m->m_epg_nrdy; 2526 2527 if (error == 0) { 2528 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, m, npages); 2529 } else { 2530 so->so_proto->pr_usrreqs->pru_abort(so); 2531 so->so_error = EIO; 2532 mb_free_notready(m, npages); 2533 } 2534 2535 sorele(so); 2536 CURVNET_RESTORE(); 2537 } 2538 2539 /* 2540 * Similar to ktls_encrypt, but used with asynchronous OCF backends 2541 * (coprocessors) where encryption does not use host CPU resources and 2542 * it can be beneficial to queue more requests than CPUs. 2543 */ 2544 static __noinline void 2545 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 2546 { 2547 struct ktls_ocf_encrypt_state *state; 2548 struct ktls_session *tls; 2549 struct socket *so; 2550 struct mbuf *m, *n; 2551 int error, mpages, npages, total_pages; 2552 2553 so = top->m_epg_so; 2554 tls = top->m_epg_tls; 2555 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2556 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2557 #ifdef INVARIANTS 2558 top->m_epg_so = NULL; 2559 #endif 2560 total_pages = top->m_epg_enc_cnt; 2561 npages = 0; 2562 2563 error = 0; 2564 for (m = top; npages != total_pages; m = n) { 2565 KASSERT(m->m_epg_tls == tls, 2566 ("different TLS sessions in a single mbuf chain: %p vs %p", 2567 tls, m->m_epg_tls)); 2568 KASSERT(npages + m->m_epg_npgs <= total_pages, 2569 ("page count mismatch: top %p, total_pages %d, m %p", top, 2570 total_pages, m)); 2571 2572 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 2573 soref(so); 2574 state->so = so; 2575 state->m = m; 2576 2577 mpages = m->m_epg_nrdy; 2578 n = m->m_next; 2579 2580 error = ktls_encrypt_record(wq, m, tls, state); 2581 if (error) { 2582 counter_u64_add(ktls_offload_failed_crypto, 1); 2583 free(state, M_KTLS); 2584 CURVNET_SET(so->so_vnet); 2585 sorele(so); 2586 CURVNET_RESTORE(); 2587 break; 2588 } 2589 2590 npages += mpages; 2591 } 2592 2593 CURVNET_SET(so->so_vnet); 2594 if (error != 0) { 2595 so->so_proto->pr_usrreqs->pru_abort(so); 2596 so->so_error = EIO; 2597 mb_free_notready(m, total_pages - npages); 2598 } 2599 2600 sorele(so); 2601 CURVNET_RESTORE(); 2602 } 2603 2604 static int 2605 ktls_bind_domain(int domain) 2606 { 2607 int error; 2608 2609 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 2610 if (error != 0) 2611 return (error); 2612 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 2613 return (0); 2614 } 2615 2616 static void 2617 ktls_alloc_thread(void *ctx) 2618 { 2619 struct ktls_domain_info *ktls_domain = ctx; 2620 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2621 void **buf; 2622 struct sysctl_oid *oid; 2623 char name[80]; 2624 int domain, error, i, nbufs; 2625 2626 domain = ktls_domain - ktls_domains; 2627 if (bootverbose) 2628 printf("Starting KTLS alloc thread for domain %d\n", domain); 2629 error = ktls_bind_domain(domain); 2630 if (error) 2631 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 2632 domain, error); 2633 snprintf(name, sizeof(name), "domain%d", domain); 2634 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2635 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2636 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2637 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2638 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2639 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2640 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2641 CTLFLAG_RD, &sc->running, 0, "thread running"); 2642 2643 buf = NULL; 2644 nbufs = 0; 2645 for (;;) { 2646 atomic_store_int(&sc->running, 0); 2647 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2648 atomic_store_int(&sc->running, 1); 2649 sc->wakeups++; 2650 if (nbufs != ktls_max_alloc) { 2651 free(buf, M_KTLS); 2652 nbufs = atomic_load_int(&ktls_max_alloc); 2653 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2654 M_WAITOK | M_ZERO); 2655 } 2656 /* 2657 * Below we allocate nbufs with different allocation 2658 * flags than we use when allocating normally during 2659 * encryption in the ktls worker thread. We specify 2660 * M_NORECLAIM in the worker thread. However, we omit 2661 * that flag here and add M_WAITOK so that the VM 2662 * system is permitted to perform expensive work to 2663 * defragment memory. We do this here, as it does not 2664 * matter if this thread blocks. If we block a ktls 2665 * worker thread, we risk developing backlogs of 2666 * buffers to be encrypted, leading to surges of 2667 * traffic and potential NIC output drops. 2668 */ 2669 for (i = 0; i < nbufs; i++) { 2670 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2671 sc->allocs++; 2672 } 2673 for (i = 0; i < nbufs; i++) { 2674 uma_zfree(ktls_buffer_zone, buf[i]); 2675 buf[i] = NULL; 2676 } 2677 } 2678 } 2679 2680 static void 2681 ktls_work_thread(void *ctx) 2682 { 2683 struct ktls_wq *wq = ctx; 2684 struct mbuf *m, *n; 2685 struct socket *so, *son; 2686 STAILQ_HEAD(, mbuf) local_m_head; 2687 STAILQ_HEAD(, socket) local_so_head; 2688 int cpu; 2689 2690 cpu = wq - ktls_wq; 2691 if (bootverbose) 2692 printf("Starting KTLS worker thread for CPU %d\n", cpu); 2693 2694 /* 2695 * Bind to a core. If ktls_bind_threads is > 1, then 2696 * we bind to the NUMA domain instead. 2697 */ 2698 if (ktls_bind_threads) { 2699 int error; 2700 2701 if (ktls_bind_threads > 1) { 2702 struct pcpu *pc = pcpu_find(cpu); 2703 2704 error = ktls_bind_domain(pc->pc_domain); 2705 } else { 2706 cpuset_t mask; 2707 2708 CPU_SETOF(cpu, &mask); 2709 error = cpuset_setthread(curthread->td_tid, &mask); 2710 } 2711 if (error) 2712 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 2713 cpu, error); 2714 } 2715 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2716 fpu_kern_thread(0); 2717 #endif 2718 for (;;) { 2719 mtx_lock(&wq->mtx); 2720 while (STAILQ_EMPTY(&wq->m_head) && 2721 STAILQ_EMPTY(&wq->so_head)) { 2722 wq->running = false; 2723 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2724 wq->running = true; 2725 } 2726 2727 STAILQ_INIT(&local_m_head); 2728 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2729 STAILQ_INIT(&local_so_head); 2730 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2731 mtx_unlock(&wq->mtx); 2732 2733 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2734 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2735 ktls_free(m->m_epg_tls); 2736 m_free_raw(m); 2737 } else { 2738 if (m->m_epg_tls->sync_dispatch) 2739 ktls_encrypt(wq, m); 2740 else 2741 ktls_encrypt_async(wq, m); 2742 counter_u64_add(ktls_cnt_tx_queued, -1); 2743 } 2744 } 2745 2746 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2747 ktls_decrypt(so); 2748 counter_u64_add(ktls_cnt_rx_queued, -1); 2749 } 2750 } 2751 } 2752 2753 #if defined(INET) || defined(INET6) 2754 static void 2755 ktls_disable_ifnet_help(void *context, int pending __unused) 2756 { 2757 struct ktls_session *tls; 2758 struct inpcb *inp; 2759 struct tcpcb *tp; 2760 struct socket *so; 2761 int err; 2762 2763 tls = context; 2764 inp = tls->inp; 2765 if (inp == NULL) 2766 return; 2767 INP_WLOCK(inp); 2768 so = inp->inp_socket; 2769 MPASS(so != NULL); 2770 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2771 goto out; 2772 } 2773 2774 if (so->so_snd.sb_tls_info != NULL) 2775 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2776 else 2777 err = ENXIO; 2778 if (err == 0) { 2779 counter_u64_add(ktls_ifnet_disable_ok, 1); 2780 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2781 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2782 (tp = intotcpcb(inp)) != NULL && 2783 tp->t_fb->tfb_hwtls_change != NULL) 2784 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2785 } else { 2786 counter_u64_add(ktls_ifnet_disable_fail, 1); 2787 } 2788 2789 out: 2790 sorele(so); 2791 if (!in_pcbrele_wlocked(inp)) 2792 INP_WUNLOCK(inp); 2793 ktls_free(tls); 2794 } 2795 2796 /* 2797 * Called when re-transmits are becoming a substantial portion of the 2798 * sends on this connection. When this happens, we transition the 2799 * connection to software TLS. This is needed because most inline TLS 2800 * NICs keep crypto state only for in-order transmits. This means 2801 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2802 * re-DMA the entire TLS record up to and including the current 2803 * segment. This means that when re-transmitting the last ~1448 byte 2804 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2805 * of magnitude more data than we are sending. This can cause the 2806 * PCIe link to saturate well before the network, which can cause 2807 * output drops, and a general loss of capacity. 2808 */ 2809 void 2810 ktls_disable_ifnet(void *arg) 2811 { 2812 struct tcpcb *tp; 2813 struct inpcb *inp; 2814 struct socket *so; 2815 struct ktls_session *tls; 2816 2817 tp = arg; 2818 inp = tp->t_inpcb; 2819 INP_WLOCK_ASSERT(inp); 2820 so = inp->inp_socket; 2821 SOCK_LOCK(so); 2822 tls = so->so_snd.sb_tls_info; 2823 if (tls->disable_ifnet_pending) { 2824 SOCK_UNLOCK(so); 2825 return; 2826 } 2827 2828 /* 2829 * note that disable_ifnet_pending is never cleared; disabling 2830 * ifnet can only be done once per session, so we never want 2831 * to do it again 2832 */ 2833 2834 (void)ktls_hold(tls); 2835 in_pcbref(inp); 2836 soref(so); 2837 tls->disable_ifnet_pending = true; 2838 tls->inp = inp; 2839 SOCK_UNLOCK(so); 2840 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2841 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2842 } 2843 #endif 2844