1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_kern_tls.h" 32 #include "opt_ratelimit.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/endian.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/tcp_var.h> 70 #ifdef TCP_OFFLOAD 71 #include <netinet/tcp_offload.h> 72 #endif 73 #include <opencrypto/cryptodev.h> 74 #include <opencrypto/ktls.h> 75 #include <vm/vm.h> 76 #include <vm/vm_pageout.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_pagequeue.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_reclaim_thread { 89 uint64_t wakeups; 90 uint64_t reclaims; 91 struct thread *td; 92 int running; 93 }; 94 95 struct ktls_domain_info { 96 int count; 97 int cpu[MAXCPU]; 98 struct ktls_reclaim_thread reclaim_td; 99 }; 100 101 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 102 static struct ktls_wq *ktls_wq; 103 static struct proc *ktls_proc; 104 static uma_zone_t ktls_session_zone; 105 static uma_zone_t ktls_buffer_zone; 106 static uint16_t ktls_cpuid_lookup[MAXCPU]; 107 static int ktls_init_state; 108 static struct sx ktls_init_lock; 109 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable = true; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_reclaim = 1024; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN, 156 &ktls_max_reclaim, 128, 157 "Max number of 16k buffers to reclaim in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 165 &ktls_cnt_tx_pending, 166 "Number of TLS 1.0 records waiting for earlier TLS records"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_tx_queued, 171 "Number of TLS records in queue to tasks for SW encryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 175 &ktls_cnt_rx_queued, 176 "Number of TLS sockets in queue to tasks for SW decryption"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 180 CTLFLAG_RD, &ktls_offload_total, 181 "Total successful TLS setups (parameters set)"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 185 CTLFLAG_RD, &ktls_offload_enable_calls, 186 "Total number of TLS enable calls made"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 190 &ktls_offload_active, "Total Active TLS sessions"); 191 192 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 193 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 194 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 198 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 202 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 206 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 207 208 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 209 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 210 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 211 212 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 213 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 214 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 215 216 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 217 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 218 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 219 220 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 221 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 222 &ktls_destroy_task, 223 "Number of times ktls session was destroyed via taskqueue"); 224 225 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 226 "Software TLS session stats"); 227 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 228 "Hardware (ifnet) TLS session stats"); 229 #ifdef TCP_OFFLOAD 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "TOE TLS session stats"); 232 #endif 233 234 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 235 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 236 "Active number of software TLS sessions using AES-CBC"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 240 "Active number of software TLS sessions using AES-GCM"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 244 &ktls_sw_chacha20, 245 "Active number of software TLS sessions using Chacha20-Poly1305"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 249 &ktls_ifnet_cbc, 250 "Active number of ifnet TLS sessions using AES-CBC"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 254 &ktls_ifnet_gcm, 255 "Active number of ifnet TLS sessions using AES-GCM"); 256 257 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 258 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 259 &ktls_ifnet_chacha20, 260 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 261 262 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 263 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 264 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 265 266 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 267 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 268 &ktls_ifnet_reset_dropped, 269 "TLS sessions dropped after failing to update ifnet send tag"); 270 271 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 272 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 273 &ktls_ifnet_reset_failed, 274 "TLS sessions that failed to allocate a new ifnet send tag"); 275 276 static int ktls_ifnet_permitted = 1; 277 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 278 &ktls_ifnet_permitted, 1, 279 "Whether to permit hardware (ifnet) TLS sessions"); 280 281 #ifdef TCP_OFFLOAD 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 284 &ktls_toe_cbc, 285 "Active number of TOE TLS sessions using AES-CBC"); 286 287 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 288 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 289 &ktls_toe_gcm, 290 "Active number of TOE TLS sessions using AES-GCM"); 291 292 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 293 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 294 &ktls_toe_chacha20, 295 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 296 #endif 297 298 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 299 300 static void ktls_reclaim_thread(void *ctx); 301 static void ktls_reset_receive_tag(void *context, int pending); 302 static void ktls_reset_send_tag(void *context, int pending); 303 static void ktls_work_thread(void *ctx); 304 305 int 306 ktls_copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) 307 { 308 struct tls_enable_v0 tls_v0; 309 int error; 310 uint8_t *cipher_key = NULL, *iv = NULL, *auth_key = NULL; 311 312 if (sopt->sopt_valsize == sizeof(tls_v0)) { 313 error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); 314 if (error != 0) 315 goto done; 316 memset(tls, 0, sizeof(*tls)); 317 tls->cipher_key = tls_v0.cipher_key; 318 tls->iv = tls_v0.iv; 319 tls->auth_key = tls_v0.auth_key; 320 tls->cipher_algorithm = tls_v0.cipher_algorithm; 321 tls->cipher_key_len = tls_v0.cipher_key_len; 322 tls->iv_len = tls_v0.iv_len; 323 tls->auth_algorithm = tls_v0.auth_algorithm; 324 tls->auth_key_len = tls_v0.auth_key_len; 325 tls->flags = tls_v0.flags; 326 tls->tls_vmajor = tls_v0.tls_vmajor; 327 tls->tls_vminor = tls_v0.tls_vminor; 328 } else 329 error = sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls)); 330 331 if (error != 0) 332 return (error); 333 334 if (tls->cipher_key_len < 0 || tls->cipher_key_len > TLS_MAX_PARAM_SIZE) 335 return (EINVAL); 336 if (tls->iv_len < 0 || tls->iv_len > sizeof(((struct ktls_session *)NULL)->params.iv)) 337 return (EINVAL); 338 if (tls->auth_key_len < 0 || tls->auth_key_len > TLS_MAX_PARAM_SIZE) 339 return (EINVAL); 340 341 /* All supported algorithms require a cipher key. */ 342 if (tls->cipher_key_len == 0) 343 return (EINVAL); 344 345 /* 346 * Now do a deep copy of the variable-length arrays in the struct, so that 347 * subsequent consumers of it can reliably assume kernel memory. This 348 * requires doing our own allocations, which we will free in the 349 * error paths so that our caller need only worry about outstanding 350 * allocations existing on successful return. 351 */ 352 if (tls->cipher_key_len != 0) { 353 cipher_key = malloc(tls->cipher_key_len, M_KTLS, M_WAITOK); 354 if (sopt->sopt_td != NULL) { 355 error = copyin(tls->cipher_key, cipher_key, tls->cipher_key_len); 356 if (error != 0) 357 goto done; 358 } else { 359 bcopy(tls->cipher_key, cipher_key, tls->cipher_key_len); 360 } 361 } 362 if (tls->iv_len != 0) { 363 iv = malloc(tls->iv_len, M_KTLS, M_WAITOK); 364 if (sopt->sopt_td != NULL) { 365 error = copyin(tls->iv, iv, tls->iv_len); 366 if (error != 0) 367 goto done; 368 } else { 369 bcopy(tls->iv, iv, tls->iv_len); 370 } 371 } 372 if (tls->auth_key_len != 0) { 373 auth_key = malloc(tls->auth_key_len, M_KTLS, M_WAITOK); 374 if (sopt->sopt_td != NULL) { 375 error = copyin(tls->auth_key, auth_key, tls->auth_key_len); 376 if (error != 0) 377 goto done; 378 } else { 379 bcopy(tls->auth_key, auth_key, tls->auth_key_len); 380 } 381 } 382 tls->cipher_key = cipher_key; 383 tls->iv = iv; 384 tls->auth_key = auth_key; 385 386 done: 387 if (error != 0) { 388 zfree(cipher_key, M_KTLS); 389 zfree(iv, M_KTLS); 390 zfree(auth_key, M_KTLS); 391 } 392 393 return (error); 394 } 395 396 void 397 ktls_cleanup_tls_enable(struct tls_enable *tls) 398 { 399 zfree(__DECONST(void *, tls->cipher_key), M_KTLS); 400 zfree(__DECONST(void *, tls->iv), M_KTLS); 401 zfree(__DECONST(void *, tls->auth_key), M_KTLS); 402 } 403 404 static u_int 405 ktls_get_cpu(struct socket *so) 406 { 407 struct inpcb *inp; 408 #ifdef NUMA 409 struct ktls_domain_info *di; 410 #endif 411 u_int cpuid; 412 413 inp = sotoinpcb(so); 414 #ifdef RSS 415 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 416 if (cpuid != NETISR_CPUID_NONE) 417 return (cpuid); 418 #endif 419 /* 420 * Just use the flowid to shard connections in a repeatable 421 * fashion. Note that TLS 1.0 sessions rely on the 422 * serialization provided by having the same connection use 423 * the same queue. 424 */ 425 #ifdef NUMA 426 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 427 di = &ktls_domains[inp->inp_numa_domain]; 428 cpuid = di->cpu[inp->inp_flowid % di->count]; 429 } else 430 #endif 431 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 432 return (cpuid); 433 } 434 435 static int 436 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 437 { 438 vm_page_t m; 439 int i, req; 440 441 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 442 ("%s: ktls max length %d is not page size-aligned", 443 __func__, ktls_maxlen)); 444 445 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 446 for (i = 0; i < count; i++) { 447 m = vm_page_alloc_noobj_contig_domain(domain, req, 448 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 449 VM_MEMATTR_DEFAULT); 450 if (m == NULL) 451 break; 452 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 453 } 454 return (i); 455 } 456 457 static void 458 ktls_buffer_release(void *arg __unused, void **store, int count) 459 { 460 vm_page_t m; 461 int i, j; 462 463 for (i = 0; i < count; i++) { 464 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 465 for (j = 0; j < atop(ktls_maxlen); j++) { 466 (void)vm_page_unwire_noq(m + j); 467 vm_page_free(m + j); 468 } 469 } 470 } 471 472 static void 473 ktls_free_mext_contig(struct mbuf *m) 474 { 475 M_ASSERTEXTPG(m); 476 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 477 } 478 479 static int 480 ktls_init(void) 481 { 482 struct thread *td; 483 struct pcpu *pc; 484 int count, domain, error, i; 485 486 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 487 M_WAITOK | M_ZERO); 488 489 ktls_session_zone = uma_zcreate("ktls_session", 490 sizeof(struct ktls_session), 491 NULL, NULL, NULL, NULL, 492 UMA_ALIGN_CACHE, 0); 493 494 if (ktls_sw_buffer_cache) { 495 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 496 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 497 ktls_buffer_import, ktls_buffer_release, NULL, 498 UMA_ZONE_FIRSTTOUCH | UMA_ZONE_NOTRIM); 499 } 500 501 /* 502 * Initialize the workqueues to run the TLS work. We create a 503 * work queue for each CPU. 504 */ 505 CPU_FOREACH(i) { 506 STAILQ_INIT(&ktls_wq[i].m_head); 507 STAILQ_INIT(&ktls_wq[i].so_head); 508 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 509 if (ktls_bind_threads > 1) { 510 pc = pcpu_find(i); 511 domain = pc->pc_domain; 512 count = ktls_domains[domain].count; 513 ktls_domains[domain].cpu[count] = i; 514 ktls_domains[domain].count++; 515 } 516 ktls_cpuid_lookup[ktls_number_threads] = i; 517 ktls_number_threads++; 518 } 519 520 /* 521 * If we somehow have an empty domain, fall back to choosing 522 * among all KTLS threads. 523 */ 524 if (ktls_bind_threads > 1) { 525 for (i = 0; i < vm_ndomains; i++) { 526 if (ktls_domains[i].count == 0) { 527 ktls_bind_threads = 1; 528 break; 529 } 530 } 531 } 532 533 /* Start kthreads for each workqueue. */ 534 CPU_FOREACH(i) { 535 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 536 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 537 if (error) { 538 printf("Can't add KTLS thread %d error %d\n", i, error); 539 return (error); 540 } 541 } 542 543 /* 544 * Start an allocation thread per-domain to perform blocking allocations 545 * of 16k physically contiguous TLS crypto destination buffers. 546 */ 547 if (ktls_sw_buffer_cache) { 548 for (domain = 0; domain < vm_ndomains; domain++) { 549 if (VM_DOMAIN_EMPTY(domain)) 550 continue; 551 if (CPU_EMPTY(&cpuset_domain[domain])) 552 continue; 553 error = kproc_kthread_add(ktls_reclaim_thread, 554 &ktls_domains[domain], &ktls_proc, 555 &ktls_domains[domain].reclaim_td.td, 556 0, 0, "KTLS", "reclaim_%d", domain); 557 if (error) { 558 printf("Can't add KTLS reclaim thread %d error %d\n", 559 domain, error); 560 return (error); 561 } 562 } 563 } 564 565 if (bootverbose) 566 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 567 return (0); 568 } 569 570 static int 571 ktls_start_kthreads(void) 572 { 573 int error, state; 574 575 start: 576 state = atomic_load_acq_int(&ktls_init_state); 577 if (__predict_true(state > 0)) 578 return (0); 579 if (state < 0) 580 return (ENXIO); 581 582 sx_xlock(&ktls_init_lock); 583 if (ktls_init_state != 0) { 584 sx_xunlock(&ktls_init_lock); 585 goto start; 586 } 587 588 error = ktls_init(); 589 if (error == 0) 590 state = 1; 591 else 592 state = -1; 593 atomic_store_rel_int(&ktls_init_state, state); 594 sx_xunlock(&ktls_init_lock); 595 return (error); 596 } 597 598 static int 599 ktls_create_session(struct socket *so, struct tls_enable *en, 600 struct ktls_session **tlsp, int direction) 601 { 602 struct ktls_session *tls; 603 int error; 604 605 /* Only TLS 1.0 - 1.3 are supported. */ 606 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 607 return (EINVAL); 608 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 609 en->tls_vminor > TLS_MINOR_VER_THREE) 610 return (EINVAL); 611 612 613 /* No flags are currently supported. */ 614 if (en->flags != 0) 615 return (EINVAL); 616 617 /* Common checks for supported algorithms. */ 618 switch (en->cipher_algorithm) { 619 case CRYPTO_AES_NIST_GCM_16: 620 /* 621 * auth_algorithm isn't used, but permit GMAC values 622 * for compatibility. 623 */ 624 switch (en->auth_algorithm) { 625 case 0: 626 #ifdef COMPAT_FREEBSD12 627 /* XXX: Really 13.0-current COMPAT. */ 628 case CRYPTO_AES_128_NIST_GMAC: 629 case CRYPTO_AES_192_NIST_GMAC: 630 case CRYPTO_AES_256_NIST_GMAC: 631 #endif 632 break; 633 default: 634 return (EINVAL); 635 } 636 if (en->auth_key_len != 0) 637 return (EINVAL); 638 switch (en->tls_vminor) { 639 case TLS_MINOR_VER_TWO: 640 if (en->iv_len != TLS_AEAD_GCM_LEN) 641 return (EINVAL); 642 break; 643 case TLS_MINOR_VER_THREE: 644 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 645 return (EINVAL); 646 break; 647 default: 648 return (EINVAL); 649 } 650 break; 651 case CRYPTO_AES_CBC: 652 switch (en->auth_algorithm) { 653 case CRYPTO_SHA1_HMAC: 654 break; 655 case CRYPTO_SHA2_256_HMAC: 656 case CRYPTO_SHA2_384_HMAC: 657 if (en->tls_vminor != TLS_MINOR_VER_TWO) 658 return (EINVAL); 659 break; 660 default: 661 return (EINVAL); 662 } 663 if (en->auth_key_len == 0) 664 return (EINVAL); 665 666 /* 667 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 668 * use explicit IVs. 669 */ 670 switch (en->tls_vminor) { 671 case TLS_MINOR_VER_ZERO: 672 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 673 return (EINVAL); 674 break; 675 case TLS_MINOR_VER_ONE: 676 case TLS_MINOR_VER_TWO: 677 /* Ignore any supplied IV. */ 678 en->iv_len = 0; 679 break; 680 default: 681 return (EINVAL); 682 } 683 break; 684 case CRYPTO_CHACHA20_POLY1305: 685 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 686 return (EINVAL); 687 if (en->tls_vminor != TLS_MINOR_VER_TWO && 688 en->tls_vminor != TLS_MINOR_VER_THREE) 689 return (EINVAL); 690 if (en->iv_len != TLS_CHACHA20_IV_LEN) 691 return (EINVAL); 692 break; 693 default: 694 return (EINVAL); 695 } 696 697 error = ktls_start_kthreads(); 698 if (error != 0) 699 return (error); 700 701 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 702 703 counter_u64_add(ktls_offload_active, 1); 704 705 refcount_init(&tls->refcount, 1); 706 if (direction == KTLS_RX) { 707 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 708 } else { 709 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 710 tls->inp = so->so_pcb; 711 in_pcbref(tls->inp); 712 tls->tx = true; 713 } 714 715 tls->wq_index = ktls_get_cpu(so); 716 717 tls->params.cipher_algorithm = en->cipher_algorithm; 718 tls->params.auth_algorithm = en->auth_algorithm; 719 tls->params.tls_vmajor = en->tls_vmajor; 720 tls->params.tls_vminor = en->tls_vminor; 721 tls->params.flags = en->flags; 722 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 723 724 /* Set the header and trailer lengths. */ 725 tls->params.tls_hlen = sizeof(struct tls_record_layer); 726 switch (en->cipher_algorithm) { 727 case CRYPTO_AES_NIST_GCM_16: 728 /* 729 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 730 * nonce. TLS 1.3 uses a 12 byte implicit IV. 731 */ 732 if (en->tls_vminor < TLS_MINOR_VER_THREE) 733 tls->params.tls_hlen += sizeof(uint64_t); 734 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 735 tls->params.tls_bs = 1; 736 break; 737 case CRYPTO_AES_CBC: 738 switch (en->auth_algorithm) { 739 case CRYPTO_SHA1_HMAC: 740 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 741 /* Implicit IV, no nonce. */ 742 tls->sequential_records = true; 743 tls->next_seqno = be64dec(en->rec_seq); 744 STAILQ_INIT(&tls->pending_records); 745 } else { 746 tls->params.tls_hlen += AES_BLOCK_LEN; 747 } 748 tls->params.tls_tlen = AES_BLOCK_LEN + 749 SHA1_HASH_LEN; 750 break; 751 case CRYPTO_SHA2_256_HMAC: 752 tls->params.tls_hlen += AES_BLOCK_LEN; 753 tls->params.tls_tlen = AES_BLOCK_LEN + 754 SHA2_256_HASH_LEN; 755 break; 756 case CRYPTO_SHA2_384_HMAC: 757 tls->params.tls_hlen += AES_BLOCK_LEN; 758 tls->params.tls_tlen = AES_BLOCK_LEN + 759 SHA2_384_HASH_LEN; 760 break; 761 default: 762 panic("invalid hmac"); 763 } 764 tls->params.tls_bs = AES_BLOCK_LEN; 765 break; 766 case CRYPTO_CHACHA20_POLY1305: 767 /* 768 * Chacha20 uses a 12 byte implicit IV. 769 */ 770 tls->params.tls_tlen = POLY1305_HASH_LEN; 771 tls->params.tls_bs = 1; 772 break; 773 default: 774 panic("invalid cipher"); 775 } 776 777 /* 778 * TLS 1.3 includes optional padding which we do not support, 779 * and also puts the "real" record type at the end of the 780 * encrypted data. 781 */ 782 if (en->tls_vminor == TLS_MINOR_VER_THREE) 783 tls->params.tls_tlen += sizeof(uint8_t); 784 785 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 786 ("TLS header length too long: %d", tls->params.tls_hlen)); 787 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 788 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 789 790 if (en->auth_key_len != 0) { 791 tls->params.auth_key_len = en->auth_key_len; 792 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 793 M_WAITOK); 794 bcopy(en->auth_key, tls->params.auth_key, en->auth_key_len); 795 } 796 797 tls->params.cipher_key_len = en->cipher_key_len; 798 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 799 bcopy(en->cipher_key, tls->params.cipher_key, en->cipher_key_len); 800 801 /* 802 * This holds the implicit portion of the nonce for AEAD 803 * ciphers and the initial implicit IV for TLS 1.0. The 804 * explicit portions of the IV are generated in ktls_frame(). 805 */ 806 if (en->iv_len != 0) { 807 tls->params.iv_len = en->iv_len; 808 bcopy(en->iv, tls->params.iv, en->iv_len); 809 810 /* 811 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 812 * counter to generate unique explicit IVs. 813 * 814 * Store this counter in the last 8 bytes of the IV 815 * array so that it is 8-byte aligned. 816 */ 817 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 818 en->tls_vminor == TLS_MINOR_VER_TWO) 819 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 820 } 821 822 tls->gen = 0; 823 *tlsp = tls; 824 return (0); 825 } 826 827 static struct ktls_session * 828 ktls_clone_session(struct ktls_session *tls, int direction) 829 { 830 struct ktls_session *tls_new; 831 832 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 833 834 counter_u64_add(ktls_offload_active, 1); 835 836 refcount_init(&tls_new->refcount, 1); 837 if (direction == KTLS_RX) { 838 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 839 tls_new); 840 } else { 841 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 842 tls_new); 843 tls_new->inp = tls->inp; 844 tls_new->tx = true; 845 in_pcbref(tls_new->inp); 846 } 847 848 /* Copy fields from existing session. */ 849 tls_new->params = tls->params; 850 tls_new->wq_index = tls->wq_index; 851 852 /* Deep copy keys. */ 853 if (tls_new->params.auth_key != NULL) { 854 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 855 M_KTLS, M_WAITOK); 856 memcpy(tls_new->params.auth_key, tls->params.auth_key, 857 tls->params.auth_key_len); 858 } 859 860 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 861 M_WAITOK); 862 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 863 tls->params.cipher_key_len); 864 865 tls_new->gen = 0; 866 return (tls_new); 867 } 868 869 #ifdef TCP_OFFLOAD 870 static int 871 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 872 { 873 struct inpcb *inp; 874 struct tcpcb *tp; 875 int error; 876 877 inp = so->so_pcb; 878 INP_WLOCK(inp); 879 if (inp->inp_flags & INP_DROPPED) { 880 INP_WUNLOCK(inp); 881 return (ECONNRESET); 882 } 883 if (inp->inp_socket == NULL) { 884 INP_WUNLOCK(inp); 885 return (ECONNRESET); 886 } 887 tp = intotcpcb(inp); 888 if (!(tp->t_flags & TF_TOE)) { 889 INP_WUNLOCK(inp); 890 return (EOPNOTSUPP); 891 } 892 893 error = tcp_offload_alloc_tls_session(tp, tls, direction); 894 INP_WUNLOCK(inp); 895 if (error == 0) { 896 tls->mode = TCP_TLS_MODE_TOE; 897 switch (tls->params.cipher_algorithm) { 898 case CRYPTO_AES_CBC: 899 counter_u64_add(ktls_toe_cbc, 1); 900 break; 901 case CRYPTO_AES_NIST_GCM_16: 902 counter_u64_add(ktls_toe_gcm, 1); 903 break; 904 case CRYPTO_CHACHA20_POLY1305: 905 counter_u64_add(ktls_toe_chacha20, 1); 906 break; 907 } 908 } 909 return (error); 910 } 911 #endif 912 913 /* 914 * Common code used when first enabling ifnet TLS on a connection or 915 * when allocating a new ifnet TLS session due to a routing change. 916 * This function allocates a new TLS send tag on whatever interface 917 * the connection is currently routed over. 918 */ 919 static int 920 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 921 struct m_snd_tag **mstp) 922 { 923 union if_snd_tag_alloc_params params; 924 struct ifnet *ifp; 925 struct nhop_object *nh; 926 struct tcpcb *tp; 927 int error; 928 929 INP_RLOCK(inp); 930 if (inp->inp_flags & INP_DROPPED) { 931 INP_RUNLOCK(inp); 932 return (ECONNRESET); 933 } 934 if (inp->inp_socket == NULL) { 935 INP_RUNLOCK(inp); 936 return (ECONNRESET); 937 } 938 tp = intotcpcb(inp); 939 940 /* 941 * Check administrative controls on ifnet TLS to determine if 942 * ifnet TLS should be denied. 943 * 944 * - Always permit 'force' requests. 945 * - ktls_ifnet_permitted == 0: always deny. 946 */ 947 if (!force && ktls_ifnet_permitted == 0) { 948 INP_RUNLOCK(inp); 949 return (ENXIO); 950 } 951 952 /* 953 * XXX: Use the cached route in the inpcb to find the 954 * interface. This should perhaps instead use 955 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 956 * enabled after a connection has completed key negotiation in 957 * userland, the cached route will be present in practice. 958 */ 959 nh = inp->inp_route.ro_nh; 960 if (nh == NULL) { 961 INP_RUNLOCK(inp); 962 return (ENXIO); 963 } 964 ifp = nh->nh_ifp; 965 if_ref(ifp); 966 967 /* 968 * Allocate a TLS + ratelimit tag if the connection has an 969 * existing pacing rate. 970 */ 971 if (tp->t_pacing_rate != -1 && 972 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 973 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 974 params.tls_rate_limit.inp = inp; 975 params.tls_rate_limit.tls = tls; 976 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 977 } else { 978 params.hdr.type = IF_SND_TAG_TYPE_TLS; 979 params.tls.inp = inp; 980 params.tls.tls = tls; 981 } 982 params.hdr.flowid = inp->inp_flowid; 983 params.hdr.flowtype = inp->inp_flowtype; 984 params.hdr.numa_domain = inp->inp_numa_domain; 985 INP_RUNLOCK(inp); 986 987 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 988 error = EOPNOTSUPP; 989 goto out; 990 } 991 if (inp->inp_vflag & INP_IPV6) { 992 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 993 error = EOPNOTSUPP; 994 goto out; 995 } 996 } else { 997 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 998 error = EOPNOTSUPP; 999 goto out; 1000 } 1001 } 1002 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1003 out: 1004 if_rele(ifp); 1005 return (error); 1006 } 1007 1008 /* 1009 * Allocate an initial TLS receive tag for doing HW decryption of TLS 1010 * data. 1011 * 1012 * This function allocates a new TLS receive tag on whatever interface 1013 * the connection is currently routed over. If the connection ends up 1014 * using a different interface for receive this will get fixed up via 1015 * ktls_input_ifp_mismatch as future packets arrive. 1016 */ 1017 static int 1018 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 1019 struct m_snd_tag **mstp) 1020 { 1021 union if_snd_tag_alloc_params params; 1022 struct ifnet *ifp; 1023 struct nhop_object *nh; 1024 int error; 1025 1026 if (!ktls_ocf_recrypt_supported(tls)) 1027 return (ENXIO); 1028 1029 INP_RLOCK(inp); 1030 if (inp->inp_flags & INP_DROPPED) { 1031 INP_RUNLOCK(inp); 1032 return (ECONNRESET); 1033 } 1034 if (inp->inp_socket == NULL) { 1035 INP_RUNLOCK(inp); 1036 return (ECONNRESET); 1037 } 1038 1039 /* 1040 * Check administrative controls on ifnet TLS to determine if 1041 * ifnet TLS should be denied. 1042 */ 1043 if (ktls_ifnet_permitted == 0) { 1044 INP_RUNLOCK(inp); 1045 return (ENXIO); 1046 } 1047 1048 /* 1049 * XXX: As with ktls_alloc_snd_tag, use the cached route in 1050 * the inpcb to find the interface. 1051 */ 1052 nh = inp->inp_route.ro_nh; 1053 if (nh == NULL) { 1054 INP_RUNLOCK(inp); 1055 return (ENXIO); 1056 } 1057 ifp = nh->nh_ifp; 1058 if_ref(ifp); 1059 tls->rx_ifp = ifp; 1060 1061 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1062 params.hdr.flowid = inp->inp_flowid; 1063 params.hdr.flowtype = inp->inp_flowtype; 1064 params.hdr.numa_domain = inp->inp_numa_domain; 1065 params.tls_rx.inp = inp; 1066 params.tls_rx.tls = tls; 1067 params.tls_rx.vlan_id = 0; 1068 1069 INP_RUNLOCK(inp); 1070 1071 if (inp->inp_vflag & INP_IPV6) { 1072 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) { 1073 error = EOPNOTSUPP; 1074 goto out; 1075 } 1076 } else { 1077 if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) { 1078 error = EOPNOTSUPP; 1079 goto out; 1080 } 1081 } 1082 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1083 1084 /* 1085 * If this connection is over a vlan, vlan_snd_tag_alloc 1086 * rewrites vlan_id with the saved interface. Save the VLAN 1087 * ID for use in ktls_reset_receive_tag which allocates new 1088 * receive tags directly from the leaf interface bypassing 1089 * if_vlan. 1090 */ 1091 if (error == 0) 1092 tls->rx_vlan_id = params.tls_rx.vlan_id; 1093 out: 1094 return (error); 1095 } 1096 1097 static int 1098 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1099 bool force) 1100 { 1101 struct m_snd_tag *mst; 1102 int error; 1103 1104 switch (direction) { 1105 case KTLS_TX: 1106 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1107 if (__predict_false(error != 0)) 1108 goto done; 1109 break; 1110 case KTLS_RX: 1111 KASSERT(!force, ("%s: forced receive tag", __func__)); 1112 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1113 if (__predict_false(error != 0)) 1114 goto done; 1115 break; 1116 default: 1117 __assert_unreachable(); 1118 } 1119 1120 tls->mode = TCP_TLS_MODE_IFNET; 1121 tls->snd_tag = mst; 1122 1123 switch (tls->params.cipher_algorithm) { 1124 case CRYPTO_AES_CBC: 1125 counter_u64_add(ktls_ifnet_cbc, 1); 1126 break; 1127 case CRYPTO_AES_NIST_GCM_16: 1128 counter_u64_add(ktls_ifnet_gcm, 1); 1129 break; 1130 case CRYPTO_CHACHA20_POLY1305: 1131 counter_u64_add(ktls_ifnet_chacha20, 1); 1132 break; 1133 default: 1134 break; 1135 } 1136 done: 1137 return (error); 1138 } 1139 1140 static void 1141 ktls_use_sw(struct ktls_session *tls) 1142 { 1143 tls->mode = TCP_TLS_MODE_SW; 1144 switch (tls->params.cipher_algorithm) { 1145 case CRYPTO_AES_CBC: 1146 counter_u64_add(ktls_sw_cbc, 1); 1147 break; 1148 case CRYPTO_AES_NIST_GCM_16: 1149 counter_u64_add(ktls_sw_gcm, 1); 1150 break; 1151 case CRYPTO_CHACHA20_POLY1305: 1152 counter_u64_add(ktls_sw_chacha20, 1); 1153 break; 1154 } 1155 } 1156 1157 static int 1158 ktls_try_sw(struct ktls_session *tls, int direction) 1159 { 1160 int error; 1161 1162 error = ktls_ocf_try(tls, direction); 1163 if (error) 1164 return (error); 1165 ktls_use_sw(tls); 1166 return (0); 1167 } 1168 1169 /* 1170 * KTLS RX stores data in the socket buffer as a list of TLS records, 1171 * where each record is stored as a control message containg the TLS 1172 * header followed by data mbufs containing the decrypted data. This 1173 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1174 * both encrypted and decrypted data. TLS records decrypted by a NIC 1175 * should be queued to the socket buffer as records, but encrypted 1176 * data which needs to be decrypted by software arrives as a stream of 1177 * regular mbufs which need to be converted. In addition, there may 1178 * already be pending encrypted data in the socket buffer when KTLS RX 1179 * is enabled. 1180 * 1181 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1182 * is used: 1183 * 1184 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1185 * 1186 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1187 * from the first mbuf. Once all of the data for that TLS record is 1188 * queued, the socket is queued to a worker thread. 1189 * 1190 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1191 * the TLS chain. Each TLS record is detached from the TLS chain, 1192 * decrypted, and inserted into the regular socket buffer chain as 1193 * record starting with a control message holding the TLS header and 1194 * a chain of mbufs holding the encrypted data. 1195 */ 1196 1197 static void 1198 sb_mark_notready(struct sockbuf *sb) 1199 { 1200 struct mbuf *m; 1201 1202 m = sb->sb_mb; 1203 sb->sb_mtls = m; 1204 sb->sb_mb = NULL; 1205 sb->sb_mbtail = NULL; 1206 sb->sb_lastrecord = NULL; 1207 for (; m != NULL; m = m->m_next) { 1208 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1209 __func__)); 1210 KASSERT((m->m_flags & M_NOTREADY) == 0, ("%s: mbuf not ready", 1211 __func__)); 1212 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1213 __func__)); 1214 m->m_flags |= M_NOTREADY; 1215 sb->sb_acc -= m->m_len; 1216 sb->sb_tlscc += m->m_len; 1217 sb->sb_mtlstail = m; 1218 } 1219 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1220 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1221 sb->sb_ccc)); 1222 } 1223 1224 /* 1225 * Return information about the pending TLS data in a socket 1226 * buffer. On return, 'seqno' is set to the sequence number 1227 * of the next TLS record to be received, 'resid' is set to 1228 * the amount of bytes still needed for the last pending 1229 * record. The function returns 'false' if the last pending 1230 * record contains a partial TLS header. In that case, 'resid' 1231 * is the number of bytes needed to complete the TLS header. 1232 */ 1233 bool 1234 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1235 { 1236 struct tls_record_layer hdr; 1237 struct mbuf *m; 1238 uint64_t seqno; 1239 size_t resid; 1240 u_int offset, record_len; 1241 1242 SOCKBUF_LOCK_ASSERT(sb); 1243 MPASS(sb->sb_flags & SB_TLS_RX); 1244 seqno = sb->sb_tls_seqno; 1245 resid = sb->sb_tlscc; 1246 m = sb->sb_mtls; 1247 offset = 0; 1248 1249 if (resid == 0) { 1250 *seqnop = seqno; 1251 *residp = 0; 1252 return (true); 1253 } 1254 1255 for (;;) { 1256 seqno++; 1257 1258 if (resid < sizeof(hdr)) { 1259 *seqnop = seqno; 1260 *residp = sizeof(hdr) - resid; 1261 return (false); 1262 } 1263 1264 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1265 1266 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1267 if (resid <= record_len) { 1268 *seqnop = seqno; 1269 *residp = record_len - resid; 1270 return (true); 1271 } 1272 resid -= record_len; 1273 1274 while (record_len != 0) { 1275 if (m->m_len - offset > record_len) { 1276 offset += record_len; 1277 break; 1278 } 1279 1280 record_len -= (m->m_len - offset); 1281 offset = 0; 1282 m = m->m_next; 1283 } 1284 } 1285 } 1286 1287 int 1288 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1289 { 1290 struct ktls_session *tls; 1291 int error; 1292 1293 if (!ktls_offload_enable) 1294 return (ENOTSUP); 1295 1296 counter_u64_add(ktls_offload_enable_calls, 1); 1297 1298 /* 1299 * This should always be true since only the TCP socket option 1300 * invokes this function. 1301 */ 1302 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1303 return (EINVAL); 1304 1305 /* 1306 * XXX: Don't overwrite existing sessions. We should permit 1307 * this to support rekeying in the future. 1308 */ 1309 if (so->so_rcv.sb_tls_info != NULL) 1310 return (EALREADY); 1311 1312 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1313 return (ENOTSUP); 1314 1315 error = ktls_create_session(so, en, &tls, KTLS_RX); 1316 if (error) 1317 return (error); 1318 1319 error = ktls_ocf_try(tls, KTLS_RX); 1320 if (error) { 1321 ktls_free(tls); 1322 return (error); 1323 } 1324 1325 /* 1326 * Serialize with soreceive_generic() and make sure that we're not 1327 * operating on a listening socket. 1328 */ 1329 error = SOCK_IO_RECV_LOCK(so, SBL_WAIT); 1330 if (error) { 1331 ktls_free(tls); 1332 return (error); 1333 } 1334 1335 /* Mark the socket as using TLS offload. */ 1336 SOCK_RECVBUF_LOCK(so); 1337 if (__predict_false(so->so_rcv.sb_tls_info != NULL)) 1338 error = EALREADY; 1339 else if ((so->so_rcv.sb_flags & SB_SPLICED) != 0) 1340 error = EINVAL; 1341 if (error != 0) { 1342 SOCK_RECVBUF_UNLOCK(so); 1343 SOCK_IO_RECV_UNLOCK(so); 1344 ktls_free(tls); 1345 return (EALREADY); 1346 } 1347 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1348 so->so_rcv.sb_tls_info = tls; 1349 so->so_rcv.sb_flags |= SB_TLS_RX; 1350 1351 /* Mark existing data as not ready until it can be decrypted. */ 1352 sb_mark_notready(&so->so_rcv); 1353 ktls_check_rx(&so->so_rcv); 1354 SOCK_RECVBUF_UNLOCK(so); 1355 SOCK_IO_RECV_UNLOCK(so); 1356 1357 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1358 #ifdef TCP_OFFLOAD 1359 error = ktls_try_toe(so, tls, KTLS_RX); 1360 if (error) 1361 #endif 1362 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1363 if (error) 1364 ktls_use_sw(tls); 1365 1366 counter_u64_add(ktls_offload_total, 1); 1367 1368 return (0); 1369 } 1370 1371 int 1372 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1373 { 1374 struct ktls_session *tls; 1375 struct inpcb *inp; 1376 struct tcpcb *tp; 1377 int error; 1378 1379 if (!ktls_offload_enable) 1380 return (ENOTSUP); 1381 1382 counter_u64_add(ktls_offload_enable_calls, 1); 1383 1384 /* 1385 * This should always be true since only the TCP socket option 1386 * invokes this function. 1387 */ 1388 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1389 return (EINVAL); 1390 1391 /* 1392 * XXX: Don't overwrite existing sessions. We should permit 1393 * this to support rekeying in the future. 1394 */ 1395 if (so->so_snd.sb_tls_info != NULL) 1396 return (EALREADY); 1397 1398 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1399 return (ENOTSUP); 1400 1401 /* TLS requires ext pgs */ 1402 if (mb_use_ext_pgs == 0) 1403 return (ENXIO); 1404 1405 error = ktls_create_session(so, en, &tls, KTLS_TX); 1406 if (error) 1407 return (error); 1408 1409 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1410 #ifdef TCP_OFFLOAD 1411 error = ktls_try_toe(so, tls, KTLS_TX); 1412 if (error) 1413 #endif 1414 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1415 if (error) 1416 error = ktls_try_sw(tls, KTLS_TX); 1417 1418 if (error) { 1419 ktls_free(tls); 1420 return (error); 1421 } 1422 1423 /* 1424 * Serialize with sosend_generic() and make sure that we're not 1425 * operating on a listening socket. 1426 */ 1427 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1428 if (error) { 1429 ktls_free(tls); 1430 return (error); 1431 } 1432 1433 /* 1434 * Write lock the INP when setting sb_tls_info so that 1435 * routines in tcp_ratelimit.c can read sb_tls_info while 1436 * holding the INP lock. 1437 */ 1438 inp = so->so_pcb; 1439 INP_WLOCK(inp); 1440 SOCK_SENDBUF_LOCK(so); 1441 if (__predict_false(so->so_snd.sb_tls_info != NULL)) 1442 error = EALREADY; 1443 else if ((so->so_snd.sb_flags & SB_SPLICED) != 0) 1444 error = EINVAL; 1445 if (error != 0) { 1446 SOCK_SENDBUF_UNLOCK(so); 1447 INP_WUNLOCK(inp); 1448 SOCK_IO_SEND_UNLOCK(so); 1449 ktls_free(tls); 1450 return (error); 1451 } 1452 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1453 so->so_snd.sb_tls_info = tls; 1454 if (tls->mode != TCP_TLS_MODE_SW) { 1455 tp = intotcpcb(inp); 1456 MPASS(tp->t_nic_ktls_xmit == 0); 1457 tp->t_nic_ktls_xmit = 1; 1458 if (tp->t_fb->tfb_hwtls_change != NULL) 1459 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1460 } 1461 SOCK_SENDBUF_UNLOCK(so); 1462 INP_WUNLOCK(inp); 1463 SOCK_IO_SEND_UNLOCK(so); 1464 1465 counter_u64_add(ktls_offload_total, 1); 1466 1467 return (0); 1468 } 1469 1470 int 1471 ktls_get_rx_mode(struct socket *so, int *modep) 1472 { 1473 struct ktls_session *tls; 1474 struct inpcb *inp __diagused; 1475 1476 if (SOLISTENING(so)) 1477 return (EINVAL); 1478 inp = so->so_pcb; 1479 INP_WLOCK_ASSERT(inp); 1480 SOCK_RECVBUF_LOCK(so); 1481 tls = so->so_rcv.sb_tls_info; 1482 if (tls == NULL) 1483 *modep = TCP_TLS_MODE_NONE; 1484 else 1485 *modep = tls->mode; 1486 SOCK_RECVBUF_UNLOCK(so); 1487 return (0); 1488 } 1489 1490 /* 1491 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1492 * 1493 * This function gets information about the next TCP- and TLS- 1494 * sequence number to be processed by the TLS receive worker 1495 * thread. The information is extracted from the given "inpcb" 1496 * structure. The values are stored in host endian format at the two 1497 * given output pointer locations. The TCP sequence number points to 1498 * the beginning of the TLS header. 1499 * 1500 * This function returns zero on success, else a non-zero error code 1501 * is returned. 1502 */ 1503 int 1504 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1505 { 1506 struct socket *so; 1507 struct tcpcb *tp; 1508 1509 INP_RLOCK(inp); 1510 so = inp->inp_socket; 1511 if (__predict_false(so == NULL)) { 1512 INP_RUNLOCK(inp); 1513 return (EINVAL); 1514 } 1515 if (inp->inp_flags & INP_DROPPED) { 1516 INP_RUNLOCK(inp); 1517 return (ECONNRESET); 1518 } 1519 1520 tp = intotcpcb(inp); 1521 MPASS(tp != NULL); 1522 1523 SOCKBUF_LOCK(&so->so_rcv); 1524 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1525 *tlsseq = so->so_rcv.sb_tls_seqno; 1526 SOCKBUF_UNLOCK(&so->so_rcv); 1527 1528 INP_RUNLOCK(inp); 1529 1530 return (0); 1531 } 1532 1533 int 1534 ktls_get_tx_mode(struct socket *so, int *modep) 1535 { 1536 struct ktls_session *tls; 1537 struct inpcb *inp __diagused; 1538 1539 if (SOLISTENING(so)) 1540 return (EINVAL); 1541 inp = so->so_pcb; 1542 INP_WLOCK_ASSERT(inp); 1543 SOCK_SENDBUF_LOCK(so); 1544 tls = so->so_snd.sb_tls_info; 1545 if (tls == NULL) 1546 *modep = TCP_TLS_MODE_NONE; 1547 else 1548 *modep = tls->mode; 1549 SOCK_SENDBUF_UNLOCK(so); 1550 return (0); 1551 } 1552 1553 /* 1554 * Switch between SW and ifnet TLS sessions as requested. 1555 */ 1556 int 1557 ktls_set_tx_mode(struct socket *so, int mode) 1558 { 1559 struct ktls_session *tls, *tls_new; 1560 struct inpcb *inp; 1561 struct tcpcb *tp; 1562 int error; 1563 1564 if (SOLISTENING(so)) 1565 return (EINVAL); 1566 switch (mode) { 1567 case TCP_TLS_MODE_SW: 1568 case TCP_TLS_MODE_IFNET: 1569 break; 1570 default: 1571 return (EINVAL); 1572 } 1573 1574 inp = so->so_pcb; 1575 INP_WLOCK_ASSERT(inp); 1576 tp = intotcpcb(inp); 1577 1578 if (mode == TCP_TLS_MODE_IFNET) { 1579 /* Don't allow enabling ifnet ktls multiple times */ 1580 if (tp->t_nic_ktls_xmit) 1581 return (EALREADY); 1582 1583 /* 1584 * Don't enable ifnet ktls if we disabled it due to an 1585 * excessive retransmission rate 1586 */ 1587 if (tp->t_nic_ktls_xmit_dis) 1588 return (ENXIO); 1589 } 1590 1591 SOCKBUF_LOCK(&so->so_snd); 1592 tls = so->so_snd.sb_tls_info; 1593 if (tls == NULL) { 1594 SOCKBUF_UNLOCK(&so->so_snd); 1595 return (0); 1596 } 1597 1598 if (tls->mode == mode) { 1599 SOCKBUF_UNLOCK(&so->so_snd); 1600 return (0); 1601 } 1602 1603 tls = ktls_hold(tls); 1604 SOCKBUF_UNLOCK(&so->so_snd); 1605 INP_WUNLOCK(inp); 1606 1607 tls_new = ktls_clone_session(tls, KTLS_TX); 1608 1609 if (mode == TCP_TLS_MODE_IFNET) 1610 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1611 else 1612 error = ktls_try_sw(tls_new, KTLS_TX); 1613 if (error) { 1614 counter_u64_add(ktls_switch_failed, 1); 1615 ktls_free(tls_new); 1616 ktls_free(tls); 1617 INP_WLOCK(inp); 1618 return (error); 1619 } 1620 1621 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1622 if (error) { 1623 counter_u64_add(ktls_switch_failed, 1); 1624 ktls_free(tls_new); 1625 ktls_free(tls); 1626 INP_WLOCK(inp); 1627 return (error); 1628 } 1629 1630 /* 1631 * If we raced with another session change, keep the existing 1632 * session. 1633 */ 1634 if (tls != so->so_snd.sb_tls_info) { 1635 counter_u64_add(ktls_switch_failed, 1); 1636 SOCK_IO_SEND_UNLOCK(so); 1637 ktls_free(tls_new); 1638 ktls_free(tls); 1639 INP_WLOCK(inp); 1640 return (EBUSY); 1641 } 1642 1643 INP_WLOCK(inp); 1644 SOCKBUF_LOCK(&so->so_snd); 1645 so->so_snd.sb_tls_info = tls_new; 1646 if (tls_new->mode != TCP_TLS_MODE_SW) { 1647 MPASS(tp->t_nic_ktls_xmit == 0); 1648 tp->t_nic_ktls_xmit = 1; 1649 if (tp->t_fb->tfb_hwtls_change != NULL) 1650 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1651 } 1652 SOCKBUF_UNLOCK(&so->so_snd); 1653 SOCK_IO_SEND_UNLOCK(so); 1654 1655 /* 1656 * Drop two references on 'tls'. The first is for the 1657 * ktls_hold() above. The second drops the reference from the 1658 * socket buffer. 1659 */ 1660 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1661 ktls_free(tls); 1662 ktls_free(tls); 1663 1664 if (mode == TCP_TLS_MODE_IFNET) 1665 counter_u64_add(ktls_switch_to_ifnet, 1); 1666 else 1667 counter_u64_add(ktls_switch_to_sw, 1); 1668 1669 return (0); 1670 } 1671 1672 /* 1673 * Try to allocate a new TLS receive tag. This task is scheduled when 1674 * sbappend_ktls_rx detects an input path change. If a new tag is 1675 * allocated, replace the tag in the TLS session. If a new tag cannot 1676 * be allocated, let the session fall back to software decryption. 1677 */ 1678 static void 1679 ktls_reset_receive_tag(void *context, int pending) 1680 { 1681 union if_snd_tag_alloc_params params; 1682 struct ktls_session *tls; 1683 struct m_snd_tag *mst; 1684 struct inpcb *inp; 1685 struct ifnet *ifp; 1686 struct socket *so; 1687 int error; 1688 1689 MPASS(pending == 1); 1690 1691 tls = context; 1692 so = tls->so; 1693 inp = so->so_pcb; 1694 ifp = NULL; 1695 1696 INP_RLOCK(inp); 1697 if (inp->inp_flags & INP_DROPPED) { 1698 INP_RUNLOCK(inp); 1699 goto out; 1700 } 1701 1702 SOCKBUF_LOCK(&so->so_rcv); 1703 mst = tls->snd_tag; 1704 tls->snd_tag = NULL; 1705 if (mst != NULL) 1706 m_snd_tag_rele(mst); 1707 1708 ifp = tls->rx_ifp; 1709 if_ref(ifp); 1710 SOCKBUF_UNLOCK(&so->so_rcv); 1711 1712 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1713 params.hdr.flowid = inp->inp_flowid; 1714 params.hdr.flowtype = inp->inp_flowtype; 1715 params.hdr.numa_domain = inp->inp_numa_domain; 1716 params.tls_rx.inp = inp; 1717 params.tls_rx.tls = tls; 1718 params.tls_rx.vlan_id = tls->rx_vlan_id; 1719 INP_RUNLOCK(inp); 1720 1721 if (inp->inp_vflag & INP_IPV6) { 1722 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1723 goto out; 1724 } else { 1725 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1726 goto out; 1727 } 1728 1729 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1730 if (error == 0) { 1731 SOCKBUF_LOCK(&so->so_rcv); 1732 tls->snd_tag = mst; 1733 SOCKBUF_UNLOCK(&so->so_rcv); 1734 1735 counter_u64_add(ktls_ifnet_reset, 1); 1736 } else { 1737 /* 1738 * Just fall back to software decryption if a tag 1739 * cannot be allocated leaving the connection intact. 1740 * If a future input path change switches to another 1741 * interface this connection will resume ifnet TLS. 1742 */ 1743 counter_u64_add(ktls_ifnet_reset_failed, 1); 1744 } 1745 1746 out: 1747 mtx_pool_lock(mtxpool_sleep, tls); 1748 tls->reset_pending = false; 1749 mtx_pool_unlock(mtxpool_sleep, tls); 1750 1751 if (ifp != NULL) 1752 if_rele(ifp); 1753 CURVNET_SET(so->so_vnet); 1754 sorele(so); 1755 CURVNET_RESTORE(); 1756 ktls_free(tls); 1757 } 1758 1759 /* 1760 * Try to allocate a new TLS send tag. This task is scheduled when 1761 * ip_output detects a route change while trying to transmit a packet 1762 * holding a TLS record. If a new tag is allocated, replace the tag 1763 * in the TLS session. Subsequent packets on the connection will use 1764 * the new tag. If a new tag cannot be allocated, drop the 1765 * connection. 1766 */ 1767 static void 1768 ktls_reset_send_tag(void *context, int pending) 1769 { 1770 struct epoch_tracker et; 1771 struct ktls_session *tls; 1772 struct m_snd_tag *old, *new; 1773 struct inpcb *inp; 1774 struct tcpcb *tp; 1775 int error; 1776 1777 MPASS(pending == 1); 1778 1779 tls = context; 1780 inp = tls->inp; 1781 1782 /* 1783 * Free the old tag first before allocating a new one. 1784 * ip[6]_output_send() will treat a NULL send tag the same as 1785 * an ifp mismatch and drop packets until a new tag is 1786 * allocated. 1787 * 1788 * Write-lock the INP when changing tls->snd_tag since 1789 * ip[6]_output_send() holds a read-lock when reading the 1790 * pointer. 1791 */ 1792 INP_WLOCK(inp); 1793 old = tls->snd_tag; 1794 tls->snd_tag = NULL; 1795 INP_WUNLOCK(inp); 1796 if (old != NULL) 1797 m_snd_tag_rele(old); 1798 1799 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1800 1801 if (error == 0) { 1802 INP_WLOCK(inp); 1803 tls->snd_tag = new; 1804 mtx_pool_lock(mtxpool_sleep, tls); 1805 tls->reset_pending = false; 1806 mtx_pool_unlock(mtxpool_sleep, tls); 1807 INP_WUNLOCK(inp); 1808 1809 counter_u64_add(ktls_ifnet_reset, 1); 1810 1811 /* 1812 * XXX: Should we kick tcp_output explicitly now that 1813 * the send tag is fixed or just rely on timers? 1814 */ 1815 } else { 1816 NET_EPOCH_ENTER(et); 1817 INP_WLOCK(inp); 1818 if (!(inp->inp_flags & INP_DROPPED)) { 1819 tp = intotcpcb(inp); 1820 CURVNET_SET(inp->inp_vnet); 1821 tp = tcp_drop(tp, ECONNABORTED); 1822 CURVNET_RESTORE(); 1823 if (tp != NULL) { 1824 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1825 INP_WUNLOCK(inp); 1826 } 1827 } else 1828 INP_WUNLOCK(inp); 1829 NET_EPOCH_EXIT(et); 1830 1831 counter_u64_add(ktls_ifnet_reset_failed, 1); 1832 1833 /* 1834 * Leave reset_pending true to avoid future tasks while 1835 * the socket goes away. 1836 */ 1837 } 1838 1839 ktls_free(tls); 1840 } 1841 1842 void 1843 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1844 { 1845 struct ktls_session *tls; 1846 struct socket *so; 1847 1848 SOCKBUF_LOCK_ASSERT(sb); 1849 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1850 __func__, sb)); 1851 so = __containerof(sb, struct socket, so_rcv); 1852 1853 tls = sb->sb_tls_info; 1854 if_rele(tls->rx_ifp); 1855 if_ref(ifp); 1856 tls->rx_ifp = ifp; 1857 1858 /* 1859 * See if we should schedule a task to update the receive tag for 1860 * this session. 1861 */ 1862 mtx_pool_lock(mtxpool_sleep, tls); 1863 if (!tls->reset_pending) { 1864 (void) ktls_hold(tls); 1865 soref(so); 1866 tls->so = so; 1867 tls->reset_pending = true; 1868 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1869 } 1870 mtx_pool_unlock(mtxpool_sleep, tls); 1871 } 1872 1873 int 1874 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1875 { 1876 1877 if (inp == NULL) 1878 return (ENOBUFS); 1879 1880 INP_LOCK_ASSERT(inp); 1881 1882 /* 1883 * See if we should schedule a task to update the send tag for 1884 * this session. 1885 */ 1886 mtx_pool_lock(mtxpool_sleep, tls); 1887 if (!tls->reset_pending) { 1888 (void) ktls_hold(tls); 1889 tls->reset_pending = true; 1890 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1891 } 1892 mtx_pool_unlock(mtxpool_sleep, tls); 1893 return (ENOBUFS); 1894 } 1895 1896 #ifdef RATELIMIT 1897 int 1898 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1899 { 1900 union if_snd_tag_modify_params params = { 1901 .rate_limit.max_rate = max_pacing_rate, 1902 .rate_limit.flags = M_NOWAIT, 1903 }; 1904 struct m_snd_tag *mst; 1905 1906 /* Can't get to the inp, but it should be locked. */ 1907 /* INP_LOCK_ASSERT(inp); */ 1908 1909 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1910 1911 if (tls->snd_tag == NULL) { 1912 /* 1913 * Resetting send tag, ignore this change. The 1914 * pending reset may or may not see this updated rate 1915 * in the tcpcb. If it doesn't, we will just lose 1916 * this rate change. 1917 */ 1918 return (0); 1919 } 1920 1921 mst = tls->snd_tag; 1922 1923 MPASS(mst != NULL); 1924 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1925 1926 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1927 } 1928 #endif 1929 1930 static void 1931 ktls_destroy_help(void *context, int pending __unused) 1932 { 1933 ktls_destroy(context); 1934 } 1935 1936 void 1937 ktls_destroy(struct ktls_session *tls) 1938 { 1939 struct inpcb *inp; 1940 struct tcpcb *tp; 1941 bool wlocked; 1942 1943 MPASS(tls->refcount == 0); 1944 1945 inp = tls->inp; 1946 if (tls->tx) { 1947 wlocked = INP_WLOCKED(inp); 1948 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1949 /* 1950 * rwlocks read locks are anonymous, and there 1951 * is no way to know if our current thread 1952 * holds an rlock on the inp. As a rough 1953 * estimate, check to see if the thread holds 1954 * *any* rlocks at all. If it does not, then we 1955 * know that we don't hold the inp rlock, and 1956 * can safely take the wlock 1957 */ 1958 if (curthread->td_rw_rlocks == 0) { 1959 INP_WLOCK(inp); 1960 } else { 1961 /* 1962 * We might hold the rlock, so let's 1963 * do the destroy in a taskqueue 1964 * context to avoid a potential 1965 * deadlock. This should be very 1966 * rare. 1967 */ 1968 counter_u64_add(ktls_destroy_task, 1); 1969 TASK_INIT(&tls->destroy_task, 0, 1970 ktls_destroy_help, tls); 1971 (void)taskqueue_enqueue(taskqueue_thread, 1972 &tls->destroy_task); 1973 return; 1974 } 1975 } 1976 } 1977 1978 if (tls->sequential_records) { 1979 struct mbuf *m, *n; 1980 int page_count; 1981 1982 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1983 page_count = m->m_epg_enc_cnt; 1984 while (page_count > 0) { 1985 KASSERT(page_count >= m->m_epg_nrdy, 1986 ("%s: too few pages", __func__)); 1987 page_count -= m->m_epg_nrdy; 1988 m = m_free(m); 1989 } 1990 } 1991 } 1992 1993 counter_u64_add(ktls_offload_active, -1); 1994 switch (tls->mode) { 1995 case TCP_TLS_MODE_SW: 1996 switch (tls->params.cipher_algorithm) { 1997 case CRYPTO_AES_CBC: 1998 counter_u64_add(ktls_sw_cbc, -1); 1999 break; 2000 case CRYPTO_AES_NIST_GCM_16: 2001 counter_u64_add(ktls_sw_gcm, -1); 2002 break; 2003 case CRYPTO_CHACHA20_POLY1305: 2004 counter_u64_add(ktls_sw_chacha20, -1); 2005 break; 2006 } 2007 break; 2008 case TCP_TLS_MODE_IFNET: 2009 switch (tls->params.cipher_algorithm) { 2010 case CRYPTO_AES_CBC: 2011 counter_u64_add(ktls_ifnet_cbc, -1); 2012 break; 2013 case CRYPTO_AES_NIST_GCM_16: 2014 counter_u64_add(ktls_ifnet_gcm, -1); 2015 break; 2016 case CRYPTO_CHACHA20_POLY1305: 2017 counter_u64_add(ktls_ifnet_chacha20, -1); 2018 break; 2019 } 2020 if (tls->snd_tag != NULL) 2021 m_snd_tag_rele(tls->snd_tag); 2022 if (tls->rx_ifp != NULL) 2023 if_rele(tls->rx_ifp); 2024 if (tls->tx) { 2025 INP_WLOCK_ASSERT(inp); 2026 tp = intotcpcb(inp); 2027 MPASS(tp->t_nic_ktls_xmit == 1); 2028 tp->t_nic_ktls_xmit = 0; 2029 } 2030 break; 2031 #ifdef TCP_OFFLOAD 2032 case TCP_TLS_MODE_TOE: 2033 switch (tls->params.cipher_algorithm) { 2034 case CRYPTO_AES_CBC: 2035 counter_u64_add(ktls_toe_cbc, -1); 2036 break; 2037 case CRYPTO_AES_NIST_GCM_16: 2038 counter_u64_add(ktls_toe_gcm, -1); 2039 break; 2040 case CRYPTO_CHACHA20_POLY1305: 2041 counter_u64_add(ktls_toe_chacha20, -1); 2042 break; 2043 } 2044 break; 2045 #endif 2046 } 2047 if (tls->ocf_session != NULL) 2048 ktls_ocf_free(tls); 2049 if (tls->params.auth_key != NULL) { 2050 zfree(tls->params.auth_key, M_KTLS); 2051 tls->params.auth_key = NULL; 2052 tls->params.auth_key_len = 0; 2053 } 2054 if (tls->params.cipher_key != NULL) { 2055 zfree(tls->params.cipher_key, M_KTLS); 2056 tls->params.cipher_key = NULL; 2057 tls->params.cipher_key_len = 0; 2058 } 2059 if (tls->tx) { 2060 INP_WLOCK_ASSERT(inp); 2061 if (!in_pcbrele_wlocked(inp) && !wlocked) 2062 INP_WUNLOCK(inp); 2063 } 2064 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 2065 2066 uma_zfree(ktls_session_zone, tls); 2067 } 2068 2069 void 2070 ktls_seq(struct sockbuf *sb, struct mbuf *m) 2071 { 2072 2073 for (; m != NULL; m = m->m_next) { 2074 KASSERT((m->m_flags & M_EXTPG) != 0, 2075 ("ktls_seq: mapped mbuf %p", m)); 2076 2077 m->m_epg_seqno = sb->sb_tls_seqno; 2078 sb->sb_tls_seqno++; 2079 } 2080 } 2081 2082 /* 2083 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 2084 * mbuf in the chain must be an unmapped mbuf. The payload of the 2085 * mbuf must be populated with the payload of each TLS record. 2086 * 2087 * The record_type argument specifies the TLS record type used when 2088 * populating the TLS header. 2089 * 2090 * The enq_count argument on return is set to the number of pages of 2091 * payload data for this entire chain that need to be encrypted via SW 2092 * encryption. The returned value should be passed to ktls_enqueue 2093 * when scheduling encryption of this chain of mbufs. To handle the 2094 * special case of empty fragments for TLS 1.0 sessions, an empty 2095 * fragment counts as one page. 2096 */ 2097 void 2098 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 2099 uint8_t record_type) 2100 { 2101 struct tls_record_layer *tlshdr; 2102 struct mbuf *m; 2103 uint64_t *noncep; 2104 uint16_t tls_len; 2105 int maxlen __diagused; 2106 2107 maxlen = tls->params.max_frame_len; 2108 *enq_cnt = 0; 2109 for (m = top; m != NULL; m = m->m_next) { 2110 /* 2111 * All mbufs in the chain should be TLS records whose 2112 * payload does not exceed the maximum frame length. 2113 * 2114 * Empty TLS 1.0 records are permitted when using CBC. 2115 */ 2116 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2117 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2118 ("ktls_frame: m %p len %d", m, m->m_len)); 2119 2120 /* 2121 * TLS frames require unmapped mbufs to store session 2122 * info. 2123 */ 2124 KASSERT((m->m_flags & M_EXTPG) != 0, 2125 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2126 2127 tls_len = m->m_len; 2128 2129 /* Save a reference to the session. */ 2130 m->m_epg_tls = ktls_hold(tls); 2131 2132 m->m_epg_hdrlen = tls->params.tls_hlen; 2133 m->m_epg_trllen = tls->params.tls_tlen; 2134 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2135 int bs, delta; 2136 2137 /* 2138 * AES-CBC pads messages to a multiple of the 2139 * block size. Note that the padding is 2140 * applied after the digest and the encryption 2141 * is done on the "plaintext || mac || padding". 2142 * At least one byte of padding is always 2143 * present. 2144 * 2145 * Compute the final trailer length assuming 2146 * at most one block of padding. 2147 * tls->params.tls_tlen is the maximum 2148 * possible trailer length (padding + digest). 2149 * delta holds the number of excess padding 2150 * bytes if the maximum were used. Those 2151 * extra bytes are removed. 2152 */ 2153 bs = tls->params.tls_bs; 2154 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2155 m->m_epg_trllen -= delta; 2156 } 2157 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2158 2159 /* Populate the TLS header. */ 2160 tlshdr = (void *)m->m_epg_hdr; 2161 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2162 2163 /* 2164 * TLS 1.3 masquarades as TLS 1.2 with a record type 2165 * of TLS_RLTYPE_APP. 2166 */ 2167 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2168 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2169 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2170 tlshdr->tls_type = TLS_RLTYPE_APP; 2171 /* save the real record type for later */ 2172 m->m_epg_record_type = record_type; 2173 m->m_epg_trail[0] = record_type; 2174 } else { 2175 tlshdr->tls_vminor = tls->params.tls_vminor; 2176 tlshdr->tls_type = record_type; 2177 } 2178 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2179 2180 /* 2181 * Store nonces / explicit IVs after the end of the 2182 * TLS header. 2183 * 2184 * For GCM with TLS 1.2, an 8 byte nonce is copied 2185 * from the end of the IV. The nonce is then 2186 * incremented for use by the next record. 2187 * 2188 * For CBC, a random nonce is inserted for TLS 1.1+. 2189 */ 2190 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2191 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2192 noncep = (uint64_t *)(tls->params.iv + 8); 2193 be64enc(tlshdr + 1, *noncep); 2194 (*noncep)++; 2195 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2196 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2197 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2198 2199 /* 2200 * When using SW encryption, mark the mbuf not ready. 2201 * It will be marked ready via sbready() after the 2202 * record has been encrypted. 2203 * 2204 * When using ifnet TLS, unencrypted TLS records are 2205 * sent down the stack to the NIC. 2206 */ 2207 if (tls->mode == TCP_TLS_MODE_SW) { 2208 m->m_flags |= M_NOTREADY; 2209 if (__predict_false(tls_len == 0)) { 2210 /* TLS 1.0 empty fragment. */ 2211 m->m_epg_nrdy = 1; 2212 } else 2213 m->m_epg_nrdy = m->m_epg_npgs; 2214 *enq_cnt += m->m_epg_nrdy; 2215 } 2216 } 2217 } 2218 2219 bool 2220 ktls_permit_empty_frames(struct ktls_session *tls) 2221 { 2222 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2223 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2224 } 2225 2226 void 2227 ktls_check_rx(struct sockbuf *sb) 2228 { 2229 struct tls_record_layer hdr; 2230 struct ktls_wq *wq; 2231 struct socket *so; 2232 bool running; 2233 2234 SOCKBUF_LOCK_ASSERT(sb); 2235 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2236 __func__, sb)); 2237 so = __containerof(sb, struct socket, so_rcv); 2238 2239 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2240 return; 2241 2242 /* Is there enough queued for a TLS header? */ 2243 if (sb->sb_tlscc < sizeof(hdr)) { 2244 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2245 so->so_error = EMSGSIZE; 2246 return; 2247 } 2248 2249 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2250 2251 /* Is the entire record queued? */ 2252 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2253 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2254 so->so_error = EMSGSIZE; 2255 return; 2256 } 2257 2258 sb->sb_flags |= SB_TLS_RX_RUNNING; 2259 2260 soref(so); 2261 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2262 mtx_lock(&wq->mtx); 2263 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2264 running = wq->running; 2265 mtx_unlock(&wq->mtx); 2266 if (!running) 2267 wakeup(wq); 2268 counter_u64_add(ktls_cnt_rx_queued, 1); 2269 } 2270 2271 static struct mbuf * 2272 ktls_detach_record(struct sockbuf *sb, int len) 2273 { 2274 struct mbuf *m, *n, *top; 2275 int remain; 2276 2277 SOCKBUF_LOCK_ASSERT(sb); 2278 MPASS(len <= sb->sb_tlscc); 2279 2280 /* 2281 * If TLS chain is the exact size of the record, 2282 * just grab the whole record. 2283 */ 2284 top = sb->sb_mtls; 2285 if (sb->sb_tlscc == len) { 2286 sb->sb_mtls = NULL; 2287 sb->sb_mtlstail = NULL; 2288 goto out; 2289 } 2290 2291 /* 2292 * While it would be nice to use m_split() here, we need 2293 * to know exactly what m_split() allocates to update the 2294 * accounting, so do it inline instead. 2295 */ 2296 remain = len; 2297 for (m = top; remain > m->m_len; m = m->m_next) 2298 remain -= m->m_len; 2299 2300 /* Easy case: don't have to split 'm'. */ 2301 if (remain == m->m_len) { 2302 sb->sb_mtls = m->m_next; 2303 if (sb->sb_mtls == NULL) 2304 sb->sb_mtlstail = NULL; 2305 m->m_next = NULL; 2306 goto out; 2307 } 2308 2309 /* 2310 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2311 * with M_NOWAIT first. 2312 */ 2313 n = m_get(M_NOWAIT, MT_DATA); 2314 if (n == NULL) { 2315 /* 2316 * Use M_WAITOK with socket buffer unlocked. If 2317 * 'sb_mtls' changes while the lock is dropped, return 2318 * NULL to force the caller to retry. 2319 */ 2320 SOCKBUF_UNLOCK(sb); 2321 2322 n = m_get(M_WAITOK, MT_DATA); 2323 2324 SOCKBUF_LOCK(sb); 2325 if (sb->sb_mtls != top) { 2326 m_free(n); 2327 return (NULL); 2328 } 2329 } 2330 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2331 2332 /* Store remainder in 'n'. */ 2333 n->m_len = m->m_len - remain; 2334 if (m->m_flags & M_EXT) { 2335 n->m_data = m->m_data + remain; 2336 mb_dupcl(n, m); 2337 } else { 2338 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2339 } 2340 2341 /* Trim 'm' and update accounting. */ 2342 m->m_len -= n->m_len; 2343 sb->sb_tlscc -= n->m_len; 2344 sb->sb_ccc -= n->m_len; 2345 2346 /* Account for 'n'. */ 2347 sballoc_ktls_rx(sb, n); 2348 2349 /* Insert 'n' into the TLS chain. */ 2350 sb->sb_mtls = n; 2351 n->m_next = m->m_next; 2352 if (sb->sb_mtlstail == m) 2353 sb->sb_mtlstail = n; 2354 2355 /* Detach the record from the TLS chain. */ 2356 m->m_next = NULL; 2357 2358 out: 2359 MPASS(m_length(top, NULL) == len); 2360 for (m = top; m != NULL; m = m->m_next) 2361 sbfree_ktls_rx(sb, m); 2362 sb->sb_tlsdcc = len; 2363 sb->sb_ccc += len; 2364 SBCHECK(sb); 2365 return (top); 2366 } 2367 2368 /* 2369 * Determine the length of the trailing zero padding and find the real 2370 * record type in the byte before the padding. 2371 * 2372 * Walking the mbuf chain backwards is clumsy, so another option would 2373 * be to scan forwards remembering the last non-zero byte before the 2374 * trailer. However, it would be expensive to scan the entire record. 2375 * Instead, find the last non-zero byte of each mbuf in the chain 2376 * keeping track of the relative offset of that nonzero byte. 2377 * 2378 * trail_len is the size of the MAC/tag on input and is set to the 2379 * size of the full trailer including padding and the record type on 2380 * return. 2381 */ 2382 static int 2383 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2384 int *trailer_len, uint8_t *record_typep) 2385 { 2386 char *cp; 2387 u_int digest_start, last_offset, m_len, offset; 2388 uint8_t record_type; 2389 2390 digest_start = tls_len - *trailer_len; 2391 last_offset = 0; 2392 offset = 0; 2393 for (; m != NULL && offset < digest_start; 2394 offset += m->m_len, m = m->m_next) { 2395 /* Don't look for padding in the tag. */ 2396 m_len = min(digest_start - offset, m->m_len); 2397 cp = mtod(m, char *); 2398 2399 /* Find last non-zero byte in this mbuf. */ 2400 while (m_len > 0 && cp[m_len - 1] == 0) 2401 m_len--; 2402 if (m_len > 0) { 2403 record_type = cp[m_len - 1]; 2404 last_offset = offset + m_len; 2405 } 2406 } 2407 if (last_offset < tls->params.tls_hlen) 2408 return (EBADMSG); 2409 2410 *record_typep = record_type; 2411 *trailer_len = tls_len - last_offset + 1; 2412 return (0); 2413 } 2414 2415 /* 2416 * Check if a mbuf chain is fully decrypted at the given offset and 2417 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2418 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2419 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2420 * is encrypted. 2421 */ 2422 ktls_mbuf_crypto_st_t 2423 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2424 { 2425 int m_flags_ored = 0; 2426 int m_flags_anded = -1; 2427 2428 for (; mb != NULL; mb = mb->m_next) { 2429 if (offset < mb->m_len) 2430 break; 2431 offset -= mb->m_len; 2432 } 2433 offset += len; 2434 2435 for (; mb != NULL; mb = mb->m_next) { 2436 m_flags_ored |= mb->m_flags; 2437 m_flags_anded &= mb->m_flags; 2438 2439 if (offset <= mb->m_len) 2440 break; 2441 offset -= mb->m_len; 2442 } 2443 MPASS(mb != NULL || offset == 0); 2444 2445 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2446 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2447 else 2448 return ((m_flags_ored & M_DECRYPTED) ? 2449 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2450 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2451 } 2452 2453 /* 2454 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2455 */ 2456 static int 2457 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2458 { 2459 union if_snd_tag_modify_params params; 2460 struct m_snd_tag *mst; 2461 struct inpcb *inp; 2462 struct tcpcb *tp; 2463 2464 mst = so->so_rcv.sb_tls_info->snd_tag; 2465 if (__predict_false(mst == NULL)) 2466 return (EINVAL); 2467 2468 inp = sotoinpcb(so); 2469 if (__predict_false(inp == NULL)) 2470 return (EINVAL); 2471 2472 INP_RLOCK(inp); 2473 if (inp->inp_flags & INP_DROPPED) { 2474 INP_RUNLOCK(inp); 2475 return (ECONNRESET); 2476 } 2477 2478 tp = intotcpcb(inp); 2479 MPASS(tp != NULL); 2480 2481 /* Get the TCP sequence number of the next valid TLS header. */ 2482 SOCKBUF_LOCK(&so->so_rcv); 2483 params.tls_rx.tls_hdr_tcp_sn = 2484 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2485 params.tls_rx.tls_rec_length = tls_len; 2486 params.tls_rx.tls_seq_number = tls_rcd_num; 2487 SOCKBUF_UNLOCK(&so->so_rcv); 2488 2489 INP_RUNLOCK(inp); 2490 2491 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2492 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2493 } 2494 2495 static void 2496 ktls_drop(struct socket *so, int error) 2497 { 2498 struct epoch_tracker et; 2499 struct inpcb *inp = sotoinpcb(so); 2500 struct tcpcb *tp; 2501 2502 NET_EPOCH_ENTER(et); 2503 INP_WLOCK(inp); 2504 if (!(inp->inp_flags & INP_DROPPED)) { 2505 tp = intotcpcb(inp); 2506 CURVNET_SET(inp->inp_vnet); 2507 tp = tcp_drop(tp, error); 2508 CURVNET_RESTORE(); 2509 if (tp != NULL) 2510 INP_WUNLOCK(inp); 2511 } else { 2512 so->so_error = error; 2513 SOCK_RECVBUF_LOCK(so); 2514 sorwakeup_locked(so); 2515 INP_WUNLOCK(inp); 2516 } 2517 NET_EPOCH_EXIT(et); 2518 } 2519 2520 static void 2521 ktls_decrypt(struct socket *so) 2522 { 2523 char tls_header[MBUF_PEXT_HDR_LEN]; 2524 struct ktls_session *tls; 2525 struct sockbuf *sb; 2526 struct tls_record_layer *hdr; 2527 struct tls_get_record tgr; 2528 struct mbuf *control, *data, *m; 2529 ktls_mbuf_crypto_st_t state; 2530 uint64_t seqno; 2531 int error, remain, tls_len, trail_len; 2532 bool tls13; 2533 uint8_t vminor, record_type; 2534 2535 hdr = (struct tls_record_layer *)tls_header; 2536 sb = &so->so_rcv; 2537 SOCKBUF_LOCK(sb); 2538 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2539 ("%s: socket %p not running", __func__, so)); 2540 2541 tls = sb->sb_tls_info; 2542 MPASS(tls != NULL); 2543 2544 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2545 if (tls13) 2546 vminor = TLS_MINOR_VER_TWO; 2547 else 2548 vminor = tls->params.tls_vminor; 2549 for (;;) { 2550 /* Is there enough queued for a TLS header? */ 2551 if (sb->sb_tlscc < tls->params.tls_hlen) 2552 break; 2553 2554 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2555 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2556 2557 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2558 hdr->tls_vminor != vminor) 2559 error = EINVAL; 2560 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2561 error = EINVAL; 2562 else if (tls_len < tls->params.tls_hlen || tls_len > 2563 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2564 tls->params.tls_tlen) 2565 error = EMSGSIZE; 2566 else 2567 error = 0; 2568 if (__predict_false(error != 0)) { 2569 /* 2570 * We have a corrupted record and are likely 2571 * out of sync. The connection isn't 2572 * recoverable at this point, so abort it. 2573 */ 2574 SOCKBUF_UNLOCK(sb); 2575 counter_u64_add(ktls_offload_corrupted_records, 1); 2576 2577 ktls_drop(so, error); 2578 goto deref; 2579 } 2580 2581 /* Is the entire record queued? */ 2582 if (sb->sb_tlscc < tls_len) 2583 break; 2584 2585 /* 2586 * Split out the portion of the mbuf chain containing 2587 * this TLS record. 2588 */ 2589 data = ktls_detach_record(sb, tls_len); 2590 if (data == NULL) 2591 continue; 2592 MPASS(sb->sb_tlsdcc == tls_len); 2593 2594 seqno = sb->sb_tls_seqno; 2595 sb->sb_tls_seqno++; 2596 SBCHECK(sb); 2597 SOCKBUF_UNLOCK(sb); 2598 2599 /* get crypto state for this TLS record */ 2600 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2601 2602 switch (state) { 2603 case KTLS_MBUF_CRYPTO_ST_MIXED: 2604 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2605 if (error) 2606 break; 2607 /* FALLTHROUGH */ 2608 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2609 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2610 &trail_len); 2611 if (__predict_true(error == 0)) { 2612 if (tls13) { 2613 error = tls13_find_record_type(tls, data, 2614 tls_len, &trail_len, &record_type); 2615 } else { 2616 record_type = hdr->tls_type; 2617 } 2618 } 2619 break; 2620 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2621 /* 2622 * NIC TLS is only supported for AEAD 2623 * ciphersuites which used a fixed sized 2624 * trailer. 2625 */ 2626 if (tls13) { 2627 trail_len = tls->params.tls_tlen - 1; 2628 error = tls13_find_record_type(tls, data, 2629 tls_len, &trail_len, &record_type); 2630 } else { 2631 trail_len = tls->params.tls_tlen; 2632 error = 0; 2633 record_type = hdr->tls_type; 2634 } 2635 break; 2636 default: 2637 error = EINVAL; 2638 break; 2639 } 2640 if (error) { 2641 counter_u64_add(ktls_offload_failed_crypto, 1); 2642 2643 SOCKBUF_LOCK(sb); 2644 if (sb->sb_tlsdcc == 0) { 2645 /* 2646 * sbcut/drop/flush discarded these 2647 * mbufs. 2648 */ 2649 m_freem(data); 2650 break; 2651 } 2652 2653 /* 2654 * Drop this TLS record's data, but keep 2655 * decrypting subsequent records. 2656 */ 2657 sb->sb_ccc -= tls_len; 2658 sb->sb_tlsdcc = 0; 2659 2660 if (error != EMSGSIZE) 2661 error = EBADMSG; 2662 CURVNET_SET(so->so_vnet); 2663 so->so_error = error; 2664 sorwakeup_locked(so); 2665 CURVNET_RESTORE(); 2666 2667 m_freem(data); 2668 2669 SOCKBUF_LOCK(sb); 2670 continue; 2671 } 2672 2673 /* Allocate the control mbuf. */ 2674 memset(&tgr, 0, sizeof(tgr)); 2675 tgr.tls_type = record_type; 2676 tgr.tls_vmajor = hdr->tls_vmajor; 2677 tgr.tls_vminor = hdr->tls_vminor; 2678 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2679 trail_len); 2680 control = sbcreatecontrol(&tgr, sizeof(tgr), 2681 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2682 2683 SOCKBUF_LOCK(sb); 2684 if (sb->sb_tlsdcc == 0) { 2685 /* sbcut/drop/flush discarded these mbufs. */ 2686 MPASS(sb->sb_tlscc == 0); 2687 m_freem(data); 2688 m_freem(control); 2689 break; 2690 } 2691 2692 /* 2693 * Clear the 'dcc' accounting in preparation for 2694 * adding the decrypted record. 2695 */ 2696 sb->sb_ccc -= tls_len; 2697 sb->sb_tlsdcc = 0; 2698 SBCHECK(sb); 2699 2700 /* If there is no payload, drop all of the data. */ 2701 if (tgr.tls_length == htobe16(0)) { 2702 m_freem(data); 2703 data = NULL; 2704 } else { 2705 /* Trim header. */ 2706 remain = tls->params.tls_hlen; 2707 while (remain > 0) { 2708 if (data->m_len > remain) { 2709 data->m_data += remain; 2710 data->m_len -= remain; 2711 break; 2712 } 2713 remain -= data->m_len; 2714 data = m_free(data); 2715 } 2716 2717 /* Trim trailer and clear M_NOTREADY. */ 2718 remain = be16toh(tgr.tls_length); 2719 m = data; 2720 for (m = data; remain > m->m_len; m = m->m_next) { 2721 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2722 remain -= m->m_len; 2723 } 2724 m->m_len = remain; 2725 m_freem(m->m_next); 2726 m->m_next = NULL; 2727 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2728 2729 /* Set EOR on the final mbuf. */ 2730 m->m_flags |= M_EOR; 2731 } 2732 2733 sbappendcontrol_locked(sb, data, control, 0); 2734 2735 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2736 sb->sb_flags |= SB_TLS_RX_RESYNC; 2737 SOCKBUF_UNLOCK(sb); 2738 ktls_resync_ifnet(so, tls_len, seqno); 2739 SOCKBUF_LOCK(sb); 2740 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2741 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2742 SOCKBUF_UNLOCK(sb); 2743 ktls_resync_ifnet(so, 0, seqno); 2744 SOCKBUF_LOCK(sb); 2745 } 2746 } 2747 2748 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2749 2750 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2751 so->so_error = EMSGSIZE; 2752 2753 sorwakeup_locked(so); 2754 2755 deref: 2756 SOCKBUF_UNLOCK_ASSERT(sb); 2757 2758 CURVNET_SET(so->so_vnet); 2759 sorele(so); 2760 CURVNET_RESTORE(); 2761 } 2762 2763 void 2764 ktls_enqueue_to_free(struct mbuf *m) 2765 { 2766 struct ktls_wq *wq; 2767 bool running; 2768 2769 /* Mark it for freeing. */ 2770 m->m_epg_flags |= EPG_FLAG_2FREE; 2771 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2772 mtx_lock(&wq->mtx); 2773 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2774 running = wq->running; 2775 mtx_unlock(&wq->mtx); 2776 if (!running) 2777 wakeup(wq); 2778 } 2779 2780 static void * 2781 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2782 { 2783 void *buf; 2784 int domain, running; 2785 2786 if (m->m_epg_npgs <= 2) 2787 return (NULL); 2788 if (ktls_buffer_zone == NULL) 2789 return (NULL); 2790 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2791 /* 2792 * Rate-limit allocation attempts after a failure. 2793 * ktls_buffer_import() will acquire a per-domain mutex to check 2794 * the free page queues and may fail consistently if memory is 2795 * fragmented. 2796 */ 2797 return (NULL); 2798 } 2799 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2800 if (buf == NULL) { 2801 domain = PCPU_GET(domain); 2802 wq->lastallocfail = ticks; 2803 2804 /* 2805 * Note that this check is "racy", but the races are 2806 * harmless, and are either a spurious wakeup if 2807 * multiple threads fail allocations before the alloc 2808 * thread wakes, or waiting an extra second in case we 2809 * see an old value of running == true. 2810 */ 2811 if (!VM_DOMAIN_EMPTY(domain)) { 2812 running = atomic_load_int(&ktls_domains[domain].reclaim_td.running); 2813 if (!running) 2814 wakeup(&ktls_domains[domain].reclaim_td); 2815 } 2816 } 2817 return (buf); 2818 } 2819 2820 static int 2821 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2822 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2823 { 2824 vm_page_t pg; 2825 int error, i, len, off; 2826 2827 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2828 ("%p not unready & nomap mbuf\n", m)); 2829 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2830 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2831 ktls_maxlen)); 2832 2833 /* Anonymous mbufs are encrypted in place. */ 2834 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2835 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2836 2837 /* 2838 * For file-backed mbufs (from sendfile), anonymous wired 2839 * pages are allocated and used as the encryption destination. 2840 */ 2841 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2842 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2843 m->m_epg_1st_off; 2844 state->dst_iov[0].iov_base = (char *)state->cbuf + 2845 m->m_epg_1st_off; 2846 state->dst_iov[0].iov_len = len; 2847 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2848 i = 1; 2849 } else { 2850 off = m->m_epg_1st_off; 2851 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2852 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2853 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2854 len = m_epg_pagelen(m, i, off); 2855 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2856 state->dst_iov[i].iov_base = 2857 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2858 state->dst_iov[i].iov_len = len; 2859 } 2860 } 2861 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2862 state->dst_iov[i].iov_base = m->m_epg_trail; 2863 state->dst_iov[i].iov_len = m->m_epg_trllen; 2864 2865 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2866 2867 if (__predict_false(error != 0)) { 2868 /* Free the anonymous pages. */ 2869 if (state->cbuf != NULL) 2870 uma_zfree(ktls_buffer_zone, state->cbuf); 2871 else { 2872 for (i = 0; i < m->m_epg_npgs; i++) { 2873 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2874 (void)vm_page_unwire_noq(pg); 2875 vm_page_free(pg); 2876 } 2877 } 2878 } 2879 return (error); 2880 } 2881 2882 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2883 static u_int 2884 ktls_batched_records(struct mbuf *m) 2885 { 2886 int page_count, records; 2887 2888 records = 0; 2889 page_count = m->m_epg_enc_cnt; 2890 while (page_count > 0) { 2891 records++; 2892 page_count -= m->m_epg_nrdy; 2893 m = m->m_next; 2894 } 2895 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2896 return (records); 2897 } 2898 2899 void 2900 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2901 { 2902 struct ktls_session *tls; 2903 struct ktls_wq *wq; 2904 int queued; 2905 bool running; 2906 2907 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2908 (M_EXTPG | M_NOTREADY)), 2909 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2910 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2911 2912 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2913 2914 m->m_epg_enc_cnt = page_count; 2915 2916 /* 2917 * Save a pointer to the socket. The caller is responsible 2918 * for taking an additional reference via soref(). 2919 */ 2920 m->m_epg_so = so; 2921 2922 queued = 1; 2923 tls = m->m_epg_tls; 2924 wq = &ktls_wq[tls->wq_index]; 2925 mtx_lock(&wq->mtx); 2926 if (__predict_false(tls->sequential_records)) { 2927 /* 2928 * For TLS 1.0, records must be encrypted 2929 * sequentially. For a given connection, all records 2930 * queued to the associated work queue are processed 2931 * sequentially. However, sendfile(2) might complete 2932 * I/O requests spanning multiple TLS records out of 2933 * order. Here we ensure TLS records are enqueued to 2934 * the work queue in FIFO order. 2935 * 2936 * tls->next_seqno holds the sequence number of the 2937 * next TLS record that should be enqueued to the work 2938 * queue. If this next record is not tls->next_seqno, 2939 * it must be a future record, so insert it, sorted by 2940 * TLS sequence number, into tls->pending_records and 2941 * return. 2942 * 2943 * If this TLS record matches tls->next_seqno, place 2944 * it in the work queue and then check 2945 * tls->pending_records to see if any 2946 * previously-queued records are now ready for 2947 * encryption. 2948 */ 2949 if (m->m_epg_seqno != tls->next_seqno) { 2950 struct mbuf *n, *p; 2951 2952 p = NULL; 2953 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2954 if (n->m_epg_seqno > m->m_epg_seqno) 2955 break; 2956 p = n; 2957 } 2958 if (n == NULL) 2959 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2960 m_epg_stailq); 2961 else if (p == NULL) 2962 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2963 m_epg_stailq); 2964 else 2965 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2966 m_epg_stailq); 2967 mtx_unlock(&wq->mtx); 2968 counter_u64_add(ktls_cnt_tx_pending, 1); 2969 return; 2970 } 2971 2972 tls->next_seqno += ktls_batched_records(m); 2973 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2974 2975 while (!STAILQ_EMPTY(&tls->pending_records)) { 2976 struct mbuf *n; 2977 2978 n = STAILQ_FIRST(&tls->pending_records); 2979 if (n->m_epg_seqno != tls->next_seqno) 2980 break; 2981 2982 queued++; 2983 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2984 tls->next_seqno += ktls_batched_records(n); 2985 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2986 } 2987 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2988 } else 2989 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2990 2991 running = wq->running; 2992 mtx_unlock(&wq->mtx); 2993 if (!running) 2994 wakeup(wq); 2995 counter_u64_add(ktls_cnt_tx_queued, queued); 2996 } 2997 2998 /* 2999 * Once a file-backed mbuf (from sendfile) has been encrypted, free 3000 * the pages from the file and replace them with the anonymous pages 3001 * allocated in ktls_encrypt_record(). 3002 */ 3003 static void 3004 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 3005 { 3006 int i; 3007 3008 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 3009 3010 /* Free the old pages. */ 3011 m->m_ext.ext_free(m); 3012 3013 /* Replace them with the new pages. */ 3014 if (state->cbuf != NULL) { 3015 for (i = 0; i < m->m_epg_npgs; i++) 3016 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 3017 3018 /* Contig pages should go back to the cache. */ 3019 m->m_ext.ext_free = ktls_free_mext_contig; 3020 } else { 3021 for (i = 0; i < m->m_epg_npgs; i++) 3022 m->m_epg_pa[i] = state->parray[i]; 3023 3024 /* Use the basic free routine. */ 3025 m->m_ext.ext_free = mb_free_mext_pgs; 3026 } 3027 3028 /* Pages are now writable. */ 3029 m->m_epg_flags |= EPG_FLAG_ANON; 3030 } 3031 3032 static __noinline void 3033 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 3034 { 3035 struct ktls_ocf_encrypt_state state; 3036 struct ktls_session *tls; 3037 struct socket *so; 3038 struct mbuf *m; 3039 int error, npages, total_pages; 3040 3041 so = top->m_epg_so; 3042 tls = top->m_epg_tls; 3043 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3044 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3045 #ifdef INVARIANTS 3046 top->m_epg_so = NULL; 3047 #endif 3048 total_pages = top->m_epg_enc_cnt; 3049 npages = 0; 3050 3051 /* 3052 * Encrypt the TLS records in the chain of mbufs starting with 3053 * 'top'. 'total_pages' gives us a total count of pages and is 3054 * used to know when we have finished encrypting the TLS 3055 * records originally queued with 'top'. 3056 * 3057 * NB: These mbufs are queued in the socket buffer and 3058 * 'm_next' is traversing the mbufs in the socket buffer. The 3059 * socket buffer lock is not held while traversing this chain. 3060 * Since the mbufs are all marked M_NOTREADY their 'm_next' 3061 * pointers should be stable. However, the 'm_next' of the 3062 * last mbuf encrypted is not necessarily NULL. It can point 3063 * to other mbufs appended while 'top' was on the TLS work 3064 * queue. 3065 * 3066 * Each mbuf holds an entire TLS record. 3067 */ 3068 error = 0; 3069 for (m = top; npages != total_pages; m = m->m_next) { 3070 KASSERT(m->m_epg_tls == tls, 3071 ("different TLS sessions in a single mbuf chain: %p vs %p", 3072 tls, m->m_epg_tls)); 3073 KASSERT(npages + m->m_epg_npgs <= total_pages, 3074 ("page count mismatch: top %p, total_pages %d, m %p", top, 3075 total_pages, m)); 3076 3077 error = ktls_encrypt_record(wq, m, tls, &state); 3078 if (error) { 3079 counter_u64_add(ktls_offload_failed_crypto, 1); 3080 break; 3081 } 3082 3083 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3084 ktls_finish_nonanon(m, &state); 3085 m->m_flags |= M_RDONLY; 3086 3087 npages += m->m_epg_nrdy; 3088 3089 /* 3090 * Drop a reference to the session now that it is no 3091 * longer needed. Existing code depends on encrypted 3092 * records having no associated session vs 3093 * yet-to-be-encrypted records having an associated 3094 * session. 3095 */ 3096 m->m_epg_tls = NULL; 3097 ktls_free(tls); 3098 } 3099 3100 CURVNET_SET(so->so_vnet); 3101 if (error == 0) { 3102 (void)so->so_proto->pr_ready(so, top, npages); 3103 } else { 3104 ktls_drop(so, EIO); 3105 mb_free_notready(top, total_pages); 3106 } 3107 3108 sorele(so); 3109 CURVNET_RESTORE(); 3110 } 3111 3112 void 3113 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3114 { 3115 struct ktls_session *tls; 3116 struct socket *so; 3117 struct mbuf *m; 3118 int npages; 3119 3120 m = state->m; 3121 3122 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3123 ktls_finish_nonanon(m, state); 3124 m->m_flags |= M_RDONLY; 3125 3126 so = state->so; 3127 free(state, M_KTLS); 3128 3129 /* 3130 * Drop a reference to the session now that it is no longer 3131 * needed. Existing code depends on encrypted records having 3132 * no associated session vs yet-to-be-encrypted records having 3133 * an associated session. 3134 */ 3135 tls = m->m_epg_tls; 3136 m->m_epg_tls = NULL; 3137 ktls_free(tls); 3138 3139 if (error != 0) 3140 counter_u64_add(ktls_offload_failed_crypto, 1); 3141 3142 CURVNET_SET(so->so_vnet); 3143 npages = m->m_epg_nrdy; 3144 3145 if (error == 0) { 3146 (void)so->so_proto->pr_ready(so, m, npages); 3147 } else { 3148 ktls_drop(so, EIO); 3149 mb_free_notready(m, npages); 3150 } 3151 3152 sorele(so); 3153 CURVNET_RESTORE(); 3154 } 3155 3156 /* 3157 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3158 * (coprocessors) where encryption does not use host CPU resources and 3159 * it can be beneficial to queue more requests than CPUs. 3160 */ 3161 static __noinline void 3162 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3163 { 3164 struct ktls_ocf_encrypt_state *state; 3165 struct ktls_session *tls; 3166 struct socket *so; 3167 struct mbuf *m, *n; 3168 int error, mpages, npages, total_pages; 3169 3170 so = top->m_epg_so; 3171 tls = top->m_epg_tls; 3172 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3173 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3174 #ifdef INVARIANTS 3175 top->m_epg_so = NULL; 3176 #endif 3177 total_pages = top->m_epg_enc_cnt; 3178 npages = 0; 3179 3180 error = 0; 3181 for (m = top; npages != total_pages; m = n) { 3182 KASSERT(m->m_epg_tls == tls, 3183 ("different TLS sessions in a single mbuf chain: %p vs %p", 3184 tls, m->m_epg_tls)); 3185 KASSERT(npages + m->m_epg_npgs <= total_pages, 3186 ("page count mismatch: top %p, total_pages %d, m %p", top, 3187 total_pages, m)); 3188 3189 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3190 soref(so); 3191 state->so = so; 3192 state->m = m; 3193 3194 mpages = m->m_epg_nrdy; 3195 n = m->m_next; 3196 3197 error = ktls_encrypt_record(wq, m, tls, state); 3198 if (error) { 3199 counter_u64_add(ktls_offload_failed_crypto, 1); 3200 free(state, M_KTLS); 3201 CURVNET_SET(so->so_vnet); 3202 sorele(so); 3203 CURVNET_RESTORE(); 3204 break; 3205 } 3206 3207 npages += mpages; 3208 } 3209 3210 CURVNET_SET(so->so_vnet); 3211 if (error != 0) { 3212 ktls_drop(so, EIO); 3213 mb_free_notready(m, total_pages - npages); 3214 } 3215 3216 sorele(so); 3217 CURVNET_RESTORE(); 3218 } 3219 3220 static int 3221 ktls_bind_domain(int domain) 3222 { 3223 int error; 3224 3225 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3226 if (error != 0) 3227 return (error); 3228 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3229 return (0); 3230 } 3231 3232 static void 3233 ktls_reclaim_thread(void *ctx) 3234 { 3235 struct ktls_domain_info *ktls_domain = ctx; 3236 struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td; 3237 struct sysctl_oid *oid; 3238 char name[80]; 3239 int error, domain; 3240 3241 domain = ktls_domain - ktls_domains; 3242 if (bootverbose) 3243 printf("Starting KTLS reclaim thread for domain %d\n", domain); 3244 error = ktls_bind_domain(domain); 3245 if (error) 3246 printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n", 3247 domain, error); 3248 snprintf(name, sizeof(name), "domain%d", domain); 3249 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3250 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3251 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims", 3252 CTLFLAG_RD, &sc->reclaims, 0, "buffers reclaimed"); 3253 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3254 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3255 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3256 CTLFLAG_RD, &sc->running, 0, "thread running"); 3257 3258 for (;;) { 3259 atomic_store_int(&sc->running, 0); 3260 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3261 atomic_store_int(&sc->running, 1); 3262 sc->wakeups++; 3263 /* 3264 * Below we attempt to reclaim ktls_max_reclaim 3265 * buffers using vm_page_reclaim_contig_domain_ext(). 3266 * We do this here, as this function can take several 3267 * seconds to scan all of memory and it does not 3268 * matter if this thread pauses for a while. If we 3269 * block a ktls worker thread, we risk developing 3270 * backlogs of buffers to be encrypted, leading to 3271 * surges of traffic and potential NIC output drops. 3272 */ 3273 if (vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL, 3274 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 3275 ktls_max_reclaim) != 0) { 3276 vm_wait_domain(domain); 3277 } else { 3278 sc->reclaims += ktls_max_reclaim; 3279 } 3280 } 3281 } 3282 3283 static void 3284 ktls_work_thread(void *ctx) 3285 { 3286 struct ktls_wq *wq = ctx; 3287 struct mbuf *m, *n; 3288 struct socket *so, *son; 3289 STAILQ_HEAD(, mbuf) local_m_head; 3290 STAILQ_HEAD(, socket) local_so_head; 3291 int cpu; 3292 3293 cpu = wq - ktls_wq; 3294 if (bootverbose) 3295 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3296 3297 /* 3298 * Bind to a core. If ktls_bind_threads is > 1, then 3299 * we bind to the NUMA domain instead. 3300 */ 3301 if (ktls_bind_threads) { 3302 int error; 3303 3304 if (ktls_bind_threads > 1) { 3305 struct pcpu *pc = pcpu_find(cpu); 3306 3307 error = ktls_bind_domain(pc->pc_domain); 3308 } else { 3309 cpuset_t mask; 3310 3311 CPU_SETOF(cpu, &mask); 3312 error = cpuset_setthread(curthread->td_tid, &mask); 3313 } 3314 if (error) 3315 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3316 cpu, error); 3317 } 3318 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3319 fpu_kern_thread(0); 3320 #endif 3321 for (;;) { 3322 mtx_lock(&wq->mtx); 3323 while (STAILQ_EMPTY(&wq->m_head) && 3324 STAILQ_EMPTY(&wq->so_head)) { 3325 wq->running = false; 3326 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3327 wq->running = true; 3328 } 3329 3330 STAILQ_INIT(&local_m_head); 3331 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3332 STAILQ_INIT(&local_so_head); 3333 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3334 mtx_unlock(&wq->mtx); 3335 3336 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3337 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3338 ktls_free(m->m_epg_tls); 3339 m_free_raw(m); 3340 } else { 3341 if (m->m_epg_tls->sync_dispatch) 3342 ktls_encrypt(wq, m); 3343 else 3344 ktls_encrypt_async(wq, m); 3345 counter_u64_add(ktls_cnt_tx_queued, -1); 3346 } 3347 } 3348 3349 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3350 ktls_decrypt(so); 3351 counter_u64_add(ktls_cnt_rx_queued, -1); 3352 } 3353 } 3354 } 3355 3356 static void 3357 ktls_disable_ifnet_help(void *context, int pending __unused) 3358 { 3359 struct ktls_session *tls; 3360 struct inpcb *inp; 3361 struct tcpcb *tp; 3362 struct socket *so; 3363 int err; 3364 3365 tls = context; 3366 inp = tls->inp; 3367 if (inp == NULL) 3368 return; 3369 INP_WLOCK(inp); 3370 so = inp->inp_socket; 3371 MPASS(so != NULL); 3372 if (inp->inp_flags & INP_DROPPED) { 3373 goto out; 3374 } 3375 3376 if (so->so_snd.sb_tls_info != NULL) 3377 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3378 else 3379 err = ENXIO; 3380 if (err == 0) { 3381 counter_u64_add(ktls_ifnet_disable_ok, 1); 3382 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3383 if ((inp->inp_flags & INP_DROPPED) == 0 && 3384 (tp = intotcpcb(inp)) != NULL && 3385 tp->t_fb->tfb_hwtls_change != NULL) 3386 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3387 } else { 3388 counter_u64_add(ktls_ifnet_disable_fail, 1); 3389 } 3390 3391 out: 3392 CURVNET_SET(so->so_vnet); 3393 sorele(so); 3394 CURVNET_RESTORE(); 3395 INP_WUNLOCK(inp); 3396 ktls_free(tls); 3397 } 3398 3399 /* 3400 * Called when re-transmits are becoming a substantial portion of the 3401 * sends on this connection. When this happens, we transition the 3402 * connection to software TLS. This is needed because most inline TLS 3403 * NICs keep crypto state only for in-order transmits. This means 3404 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3405 * re-DMA the entire TLS record up to and including the current 3406 * segment. This means that when re-transmitting the last ~1448 byte 3407 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3408 * of magnitude more data than we are sending. This can cause the 3409 * PCIe link to saturate well before the network, which can cause 3410 * output drops, and a general loss of capacity. 3411 */ 3412 void 3413 ktls_disable_ifnet(void *arg) 3414 { 3415 struct tcpcb *tp; 3416 struct inpcb *inp; 3417 struct socket *so; 3418 struct ktls_session *tls; 3419 3420 tp = arg; 3421 inp = tptoinpcb(tp); 3422 INP_WLOCK_ASSERT(inp); 3423 so = inp->inp_socket; 3424 SOCK_LOCK(so); 3425 tls = so->so_snd.sb_tls_info; 3426 if (tp->t_nic_ktls_xmit_dis == 1) { 3427 SOCK_UNLOCK(so); 3428 return; 3429 } 3430 3431 /* 3432 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3433 * ifnet can only be done once per connection, so we never want 3434 * to do it again 3435 */ 3436 3437 (void)ktls_hold(tls); 3438 soref(so); 3439 tp->t_nic_ktls_xmit_dis = 1; 3440 SOCK_UNLOCK(so); 3441 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3442 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3443 } 3444 3445 void 3446 ktls_session_to_xktls_onedir(const struct ktls_session *ktls, bool export_keys, 3447 struct xktls_session_onedir *xk) 3448 { 3449 if_t ifp; 3450 struct m_snd_tag *st; 3451 3452 xk->gen = ktls->gen; 3453 #define A(m) xk->m = ktls->params.m 3454 A(cipher_algorithm); 3455 A(auth_algorithm); 3456 A(cipher_key_len); 3457 A(auth_key_len); 3458 A(max_frame_len); 3459 A(tls_vmajor); 3460 A(tls_vminor); 3461 A(tls_hlen); 3462 A(tls_tlen); 3463 A(tls_bs); 3464 A(flags); 3465 if (export_keys) { 3466 memcpy(&xk->iv, &ktls->params.iv, XKTLS_SESSION_IV_BUF_LEN); 3467 A(iv_len); 3468 } else { 3469 memset(&xk->iv, 0, XKTLS_SESSION_IV_BUF_LEN); 3470 xk->iv_len = 0; 3471 } 3472 #undef A 3473 if ((st = ktls->snd_tag) != NULL && 3474 (ifp = ktls->snd_tag->ifp) != NULL) 3475 strncpy(xk->ifnet, if_name(ifp), sizeof(xk->ifnet)); 3476 } 3477 3478 void 3479 ktls_session_copy_keys(const struct ktls_session *ktls, 3480 uint8_t *data, size_t *sz) 3481 { 3482 size_t t, ta, tc; 3483 3484 if (ktls == NULL) { 3485 *sz = 0; 3486 return; 3487 } 3488 t = *sz; 3489 tc = MIN(t, ktls->params.cipher_key_len); 3490 if (data != NULL) 3491 memcpy(data, ktls->params.cipher_key, tc); 3492 ta = MIN(t - tc, ktls->params.auth_key_len); 3493 if (data != NULL) 3494 memcpy(data + tc, ktls->params.auth_key, ta); 3495 *sz = ta + tc; 3496 } 3497