1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/ktls.h> 41 #include <sys/lock.h> 42 #include <sys/mbuf.h> 43 #include <sys/mutex.h> 44 #include <sys/rmlock.h> 45 #include <sys/proc.h> 46 #include <sys/protosw.h> 47 #include <sys/refcount.h> 48 #include <sys/smp.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/sysctl.h> 52 #include <sys/taskqueue.h> 53 #include <sys/kthread.h> 54 #include <sys/uio.h> 55 #include <sys/vmmeter.h> 56 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 57 #include <machine/pcb.h> 58 #endif 59 #include <machine/vmparam.h> 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #ifdef RSS 63 #include <net/netisr.h> 64 #include <net/rss_config.h> 65 #endif 66 #include <net/route.h> 67 #include <net/route/nhop.h> 68 #if defined(INET) || defined(INET6) 69 #include <netinet/in.h> 70 #include <netinet/in_pcb.h> 71 #endif 72 #include <netinet/tcp_var.h> 73 #ifdef TCP_OFFLOAD 74 #include <netinet/tcp_offload.h> 75 #endif 76 #include <opencrypto/xform.h> 77 #include <vm/uma_dbg.h> 78 #include <vm/vm.h> 79 #include <vm/vm_pageout.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pagequeue.h> 82 83 struct ktls_wq { 84 struct mtx mtx; 85 STAILQ_HEAD(, mbuf) m_head; 86 STAILQ_HEAD(, socket) so_head; 87 bool running; 88 int lastallocfail; 89 } __aligned(CACHE_LINE_SIZE); 90 91 struct ktls_alloc_thread { 92 uint64_t wakeups; 93 uint64_t allocs; 94 struct thread *td; 95 int running; 96 }; 97 98 struct ktls_domain_info { 99 int count; 100 int cpu[MAXCPU]; 101 struct ktls_alloc_thread alloc_td; 102 }; 103 104 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 105 static struct ktls_wq *ktls_wq; 106 static struct proc *ktls_proc; 107 static uma_zone_t ktls_session_zone; 108 static uma_zone_t ktls_buffer_zone; 109 static uint16_t ktls_cpuid_lookup[MAXCPU]; 110 111 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 112 "Kernel TLS offload"); 113 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 114 "Kernel TLS offload stats"); 115 116 #ifdef RSS 117 static int ktls_bind_threads = 1; 118 #else 119 static int ktls_bind_threads; 120 #endif 121 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 122 &ktls_bind_threads, 0, 123 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 124 125 static u_int ktls_maxlen = 16384; 126 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 127 &ktls_maxlen, 0, "Maximum TLS record size"); 128 129 static int ktls_number_threads; 130 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 131 &ktls_number_threads, 0, 132 "Number of TLS threads in thread-pool"); 133 134 unsigned int ktls_ifnet_max_rexmit_pct = 2; 135 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 136 &ktls_ifnet_max_rexmit_pct, 2, 137 "Max percent bytes retransmitted before ifnet TLS is disabled"); 138 139 static bool ktls_offload_enable; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 141 &ktls_offload_enable, 0, 142 "Enable support for kernel TLS offload"); 143 144 static bool ktls_cbc_enable = true; 145 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 146 &ktls_cbc_enable, 1, 147 "Enable Support of AES-CBC crypto for kernel TLS"); 148 149 static bool ktls_sw_buffer_cache = true; 150 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 151 &ktls_sw_buffer_cache, 1, 152 "Enable caching of output buffers for SW encryption"); 153 154 static int ktls_max_alloc = 128; 155 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 156 &ktls_max_alloc, 128, 157 "Max number of 16k buffers to allocate in thread context"); 158 159 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 160 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 161 &ktls_tasks_active, "Number of active tasks"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 165 &ktls_cnt_tx_queued, 166 "Number of TLS records in queue to tasks for SW encryption"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 170 &ktls_cnt_rx_queued, 171 "Number of TLS sockets in queue to tasks for SW decryption"); 172 173 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 174 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 175 CTLFLAG_RD, &ktls_offload_total, 176 "Total successful TLS setups (parameters set)"); 177 178 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 179 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 180 CTLFLAG_RD, &ktls_offload_enable_calls, 181 "Total number of TLS enable calls made"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 185 &ktls_offload_active, "Total Active TLS sessions"); 186 187 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 188 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 189 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 190 191 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 193 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 194 195 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 197 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 198 199 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 201 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 202 203 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 204 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 205 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 206 207 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 209 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 210 211 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 212 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 213 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 214 215 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 216 "Software TLS session stats"); 217 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 218 "Hardware (ifnet) TLS session stats"); 219 #ifdef TCP_OFFLOAD 220 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 221 "TOE TLS session stats"); 222 #endif 223 224 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 225 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 226 "Active number of software TLS sessions using AES-CBC"); 227 228 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 229 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 230 "Active number of software TLS sessions using AES-GCM"); 231 232 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 233 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 234 &ktls_sw_chacha20, 235 "Active number of software TLS sessions using Chacha20-Poly1305"); 236 237 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 239 &ktls_ifnet_cbc, 240 "Active number of ifnet TLS sessions using AES-CBC"); 241 242 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 243 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 244 &ktls_ifnet_gcm, 245 "Active number of ifnet TLS sessions using AES-GCM"); 246 247 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 248 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 249 &ktls_ifnet_chacha20, 250 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 251 252 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 253 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 254 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 255 256 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 257 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 258 &ktls_ifnet_reset_dropped, 259 "TLS sessions dropped after failing to update ifnet send tag"); 260 261 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 262 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 263 &ktls_ifnet_reset_failed, 264 "TLS sessions that failed to allocate a new ifnet send tag"); 265 266 static int ktls_ifnet_permitted; 267 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 268 &ktls_ifnet_permitted, 1, 269 "Whether to permit hardware (ifnet) TLS sessions"); 270 271 #ifdef TCP_OFFLOAD 272 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 273 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 274 &ktls_toe_cbc, 275 "Active number of TOE TLS sessions using AES-CBC"); 276 277 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 278 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 279 &ktls_toe_gcm, 280 "Active number of TOE TLS sessions using AES-GCM"); 281 282 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 283 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 284 &ktls_toe_chacha20, 285 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 286 #endif 287 288 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 289 290 static void ktls_cleanup(struct ktls_session *tls); 291 #if defined(INET) || defined(INET6) 292 static void ktls_reset_send_tag(void *context, int pending); 293 #endif 294 static void ktls_work_thread(void *ctx); 295 static void ktls_alloc_thread(void *ctx); 296 297 #if defined(INET) || defined(INET6) 298 static u_int 299 ktls_get_cpu(struct socket *so) 300 { 301 struct inpcb *inp; 302 #ifdef NUMA 303 struct ktls_domain_info *di; 304 #endif 305 u_int cpuid; 306 307 inp = sotoinpcb(so); 308 #ifdef RSS 309 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 310 if (cpuid != NETISR_CPUID_NONE) 311 return (cpuid); 312 #endif 313 /* 314 * Just use the flowid to shard connections in a repeatable 315 * fashion. Note that TLS 1.0 sessions rely on the 316 * serialization provided by having the same connection use 317 * the same queue. 318 */ 319 #ifdef NUMA 320 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 321 di = &ktls_domains[inp->inp_numa_domain]; 322 cpuid = di->cpu[inp->inp_flowid % di->count]; 323 } else 324 #endif 325 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 326 return (cpuid); 327 } 328 #endif 329 330 static int 331 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 332 { 333 vm_page_t m; 334 int i; 335 336 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 337 ("%s: ktls max length %d is not page size-aligned", 338 __func__, ktls_maxlen)); 339 340 for (i = 0; i < count; i++) { 341 m = vm_page_alloc_contig_domain(NULL, 0, domain, 342 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 343 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 344 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 345 VM_MEMATTR_DEFAULT); 346 if (m == NULL) 347 break; 348 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 349 } 350 return (i); 351 } 352 353 static void 354 ktls_buffer_release(void *arg __unused, void **store, int count) 355 { 356 vm_page_t m; 357 int i, j; 358 359 for (i = 0; i < count; i++) { 360 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 361 for (j = 0; j < atop(ktls_maxlen); j++) { 362 (void)vm_page_unwire_noq(m + j); 363 vm_page_free(m + j); 364 } 365 } 366 } 367 368 static void 369 ktls_free_mext_contig(struct mbuf *m) 370 { 371 M_ASSERTEXTPG(m); 372 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 373 } 374 375 static void 376 ktls_init(void *dummy __unused) 377 { 378 struct thread *td; 379 struct pcpu *pc; 380 cpuset_t mask; 381 int count, domain, error, i; 382 383 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 384 M_WAITOK | M_ZERO); 385 386 ktls_session_zone = uma_zcreate("ktls_session", 387 sizeof(struct ktls_session), 388 NULL, NULL, NULL, NULL, 389 UMA_ALIGN_CACHE, 0); 390 391 if (ktls_sw_buffer_cache) { 392 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 393 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 394 ktls_buffer_import, ktls_buffer_release, NULL, 395 UMA_ZONE_FIRSTTOUCH); 396 } 397 398 /* 399 * Initialize the workqueues to run the TLS work. We create a 400 * work queue for each CPU. 401 */ 402 CPU_FOREACH(i) { 403 STAILQ_INIT(&ktls_wq[i].m_head); 404 STAILQ_INIT(&ktls_wq[i].so_head); 405 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 406 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 407 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 408 if (error) 409 panic("Can't add KTLS thread %d error %d", i, error); 410 411 /* 412 * Bind threads to cores. If ktls_bind_threads is > 413 * 1, then we bind to the NUMA domain. 414 */ 415 if (ktls_bind_threads) { 416 if (ktls_bind_threads > 1) { 417 pc = pcpu_find(i); 418 domain = pc->pc_domain; 419 CPU_COPY(&cpuset_domain[domain], &mask); 420 count = ktls_domains[domain].count; 421 ktls_domains[domain].cpu[count] = i; 422 ktls_domains[domain].count++; 423 } else { 424 CPU_SETOF(i, &mask); 425 } 426 error = cpuset_setthread(td->td_tid, &mask); 427 if (error) 428 panic( 429 "Unable to bind KTLS thread for CPU %d error %d", 430 i, error); 431 } 432 ktls_cpuid_lookup[ktls_number_threads] = i; 433 ktls_number_threads++; 434 } 435 436 /* 437 * Start an allocation thread per-domain to perform blocking allocations 438 * of 16k physically contiguous TLS crypto destination buffers. 439 */ 440 if (ktls_sw_buffer_cache) { 441 for (domain = 0; domain < vm_ndomains; domain++) { 442 if (VM_DOMAIN_EMPTY(domain)) 443 continue; 444 if (CPU_EMPTY(&cpuset_domain[domain])) 445 continue; 446 error = kproc_kthread_add(ktls_alloc_thread, 447 &ktls_domains[domain], &ktls_proc, 448 &ktls_domains[domain].alloc_td.td, 449 0, 0, "KTLS", "alloc_%d", domain); 450 if (error) 451 panic("Can't add KTLS alloc thread %d error %d", 452 domain, error); 453 CPU_COPY(&cpuset_domain[domain], &mask); 454 error = cpuset_setthread(ktls_domains[domain].alloc_td.td->td_tid, 455 &mask); 456 if (error) 457 panic("Unable to bind KTLS alloc %d error %d", 458 domain, error); 459 } 460 } 461 462 /* 463 * If we somehow have an empty domain, fall back to choosing 464 * among all KTLS threads. 465 */ 466 if (ktls_bind_threads > 1) { 467 for (i = 0; i < vm_ndomains; i++) { 468 if (ktls_domains[i].count == 0) { 469 ktls_bind_threads = 1; 470 break; 471 } 472 } 473 } 474 475 if (bootverbose) 476 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 477 } 478 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 479 480 #if defined(INET) || defined(INET6) 481 static int 482 ktls_create_session(struct socket *so, struct tls_enable *en, 483 struct ktls_session **tlsp) 484 { 485 struct ktls_session *tls; 486 int error; 487 488 /* Only TLS 1.0 - 1.3 are supported. */ 489 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 490 return (EINVAL); 491 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 492 en->tls_vminor > TLS_MINOR_VER_THREE) 493 return (EINVAL); 494 495 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 496 return (EINVAL); 497 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 498 return (EINVAL); 499 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 500 return (EINVAL); 501 502 /* All supported algorithms require a cipher key. */ 503 if (en->cipher_key_len == 0) 504 return (EINVAL); 505 506 /* No flags are currently supported. */ 507 if (en->flags != 0) 508 return (EINVAL); 509 510 /* Common checks for supported algorithms. */ 511 switch (en->cipher_algorithm) { 512 case CRYPTO_AES_NIST_GCM_16: 513 /* 514 * auth_algorithm isn't used, but permit GMAC values 515 * for compatibility. 516 */ 517 switch (en->auth_algorithm) { 518 case 0: 519 #ifdef COMPAT_FREEBSD12 520 /* XXX: Really 13.0-current COMPAT. */ 521 case CRYPTO_AES_128_NIST_GMAC: 522 case CRYPTO_AES_192_NIST_GMAC: 523 case CRYPTO_AES_256_NIST_GMAC: 524 #endif 525 break; 526 default: 527 return (EINVAL); 528 } 529 if (en->auth_key_len != 0) 530 return (EINVAL); 531 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 532 en->iv_len != TLS_AEAD_GCM_LEN) || 533 (en->tls_vminor == TLS_MINOR_VER_THREE && 534 en->iv_len != TLS_1_3_GCM_IV_LEN)) 535 return (EINVAL); 536 break; 537 case CRYPTO_AES_CBC: 538 switch (en->auth_algorithm) { 539 case CRYPTO_SHA1_HMAC: 540 /* 541 * TLS 1.0 requires an implicit IV. TLS 1.1+ 542 * all use explicit IVs. 543 */ 544 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 545 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 546 return (EINVAL); 547 break; 548 } 549 550 /* FALLTHROUGH */ 551 case CRYPTO_SHA2_256_HMAC: 552 case CRYPTO_SHA2_384_HMAC: 553 /* Ignore any supplied IV. */ 554 en->iv_len = 0; 555 break; 556 default: 557 return (EINVAL); 558 } 559 if (en->auth_key_len == 0) 560 return (EINVAL); 561 break; 562 case CRYPTO_CHACHA20_POLY1305: 563 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 564 return (EINVAL); 565 if (en->tls_vminor != TLS_MINOR_VER_TWO && 566 en->tls_vminor != TLS_MINOR_VER_THREE) 567 return (EINVAL); 568 if (en->iv_len != TLS_CHACHA20_IV_LEN) 569 return (EINVAL); 570 break; 571 default: 572 return (EINVAL); 573 } 574 575 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 576 577 counter_u64_add(ktls_offload_active, 1); 578 579 refcount_init(&tls->refcount, 1); 580 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 581 582 tls->wq_index = ktls_get_cpu(so); 583 584 tls->params.cipher_algorithm = en->cipher_algorithm; 585 tls->params.auth_algorithm = en->auth_algorithm; 586 tls->params.tls_vmajor = en->tls_vmajor; 587 tls->params.tls_vminor = en->tls_vminor; 588 tls->params.flags = en->flags; 589 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 590 591 /* Set the header and trailer lengths. */ 592 tls->params.tls_hlen = sizeof(struct tls_record_layer); 593 switch (en->cipher_algorithm) { 594 case CRYPTO_AES_NIST_GCM_16: 595 /* 596 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 597 * nonce. TLS 1.3 uses a 12 byte implicit IV. 598 */ 599 if (en->tls_vminor < TLS_MINOR_VER_THREE) 600 tls->params.tls_hlen += sizeof(uint64_t); 601 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 602 tls->params.tls_bs = 1; 603 break; 604 case CRYPTO_AES_CBC: 605 switch (en->auth_algorithm) { 606 case CRYPTO_SHA1_HMAC: 607 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 608 /* Implicit IV, no nonce. */ 609 } else { 610 tls->params.tls_hlen += AES_BLOCK_LEN; 611 } 612 tls->params.tls_tlen = AES_BLOCK_LEN + 613 SHA1_HASH_LEN; 614 break; 615 case CRYPTO_SHA2_256_HMAC: 616 tls->params.tls_hlen += AES_BLOCK_LEN; 617 tls->params.tls_tlen = AES_BLOCK_LEN + 618 SHA2_256_HASH_LEN; 619 break; 620 case CRYPTO_SHA2_384_HMAC: 621 tls->params.tls_hlen += AES_BLOCK_LEN; 622 tls->params.tls_tlen = AES_BLOCK_LEN + 623 SHA2_384_HASH_LEN; 624 break; 625 default: 626 panic("invalid hmac"); 627 } 628 tls->params.tls_bs = AES_BLOCK_LEN; 629 break; 630 case CRYPTO_CHACHA20_POLY1305: 631 /* 632 * Chacha20 uses a 12 byte implicit IV. 633 */ 634 tls->params.tls_tlen = POLY1305_HASH_LEN; 635 tls->params.tls_bs = 1; 636 break; 637 default: 638 panic("invalid cipher"); 639 } 640 641 /* 642 * TLS 1.3 includes optional padding which we do not support, 643 * and also puts the "real" record type at the end of the 644 * encrypted data. 645 */ 646 if (en->tls_vminor == TLS_MINOR_VER_THREE) 647 tls->params.tls_tlen += sizeof(uint8_t); 648 649 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 650 ("TLS header length too long: %d", tls->params.tls_hlen)); 651 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 652 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 653 654 if (en->auth_key_len != 0) { 655 tls->params.auth_key_len = en->auth_key_len; 656 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 657 M_WAITOK); 658 error = copyin(en->auth_key, tls->params.auth_key, 659 en->auth_key_len); 660 if (error) 661 goto out; 662 } 663 664 tls->params.cipher_key_len = en->cipher_key_len; 665 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 666 error = copyin(en->cipher_key, tls->params.cipher_key, 667 en->cipher_key_len); 668 if (error) 669 goto out; 670 671 /* 672 * This holds the implicit portion of the nonce for AEAD 673 * ciphers and the initial implicit IV for TLS 1.0. The 674 * explicit portions of the IV are generated in ktls_frame(). 675 */ 676 if (en->iv_len != 0) { 677 tls->params.iv_len = en->iv_len; 678 error = copyin(en->iv, tls->params.iv, en->iv_len); 679 if (error) 680 goto out; 681 682 /* 683 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 684 * counter to generate unique explicit IVs. 685 * 686 * Store this counter in the last 8 bytes of the IV 687 * array so that it is 8-byte aligned. 688 */ 689 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 690 en->tls_vminor == TLS_MINOR_VER_TWO) 691 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 692 } 693 694 *tlsp = tls; 695 return (0); 696 697 out: 698 ktls_cleanup(tls); 699 return (error); 700 } 701 702 static struct ktls_session * 703 ktls_clone_session(struct ktls_session *tls) 704 { 705 struct ktls_session *tls_new; 706 707 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 708 709 counter_u64_add(ktls_offload_active, 1); 710 711 refcount_init(&tls_new->refcount, 1); 712 713 /* Copy fields from existing session. */ 714 tls_new->params = tls->params; 715 tls_new->wq_index = tls->wq_index; 716 717 /* Deep copy keys. */ 718 if (tls_new->params.auth_key != NULL) { 719 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 720 M_KTLS, M_WAITOK); 721 memcpy(tls_new->params.auth_key, tls->params.auth_key, 722 tls->params.auth_key_len); 723 } 724 725 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 726 M_WAITOK); 727 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 728 tls->params.cipher_key_len); 729 730 return (tls_new); 731 } 732 #endif 733 734 static void 735 ktls_cleanup(struct ktls_session *tls) 736 { 737 738 counter_u64_add(ktls_offload_active, -1); 739 switch (tls->mode) { 740 case TCP_TLS_MODE_SW: 741 switch (tls->params.cipher_algorithm) { 742 case CRYPTO_AES_CBC: 743 counter_u64_add(ktls_sw_cbc, -1); 744 break; 745 case CRYPTO_AES_NIST_GCM_16: 746 counter_u64_add(ktls_sw_gcm, -1); 747 break; 748 case CRYPTO_CHACHA20_POLY1305: 749 counter_u64_add(ktls_sw_chacha20, -1); 750 break; 751 } 752 ktls_ocf_free(tls); 753 break; 754 case TCP_TLS_MODE_IFNET: 755 switch (tls->params.cipher_algorithm) { 756 case CRYPTO_AES_CBC: 757 counter_u64_add(ktls_ifnet_cbc, -1); 758 break; 759 case CRYPTO_AES_NIST_GCM_16: 760 counter_u64_add(ktls_ifnet_gcm, -1); 761 break; 762 case CRYPTO_CHACHA20_POLY1305: 763 counter_u64_add(ktls_ifnet_chacha20, -1); 764 break; 765 } 766 if (tls->snd_tag != NULL) 767 m_snd_tag_rele(tls->snd_tag); 768 break; 769 #ifdef TCP_OFFLOAD 770 case TCP_TLS_MODE_TOE: 771 switch (tls->params.cipher_algorithm) { 772 case CRYPTO_AES_CBC: 773 counter_u64_add(ktls_toe_cbc, -1); 774 break; 775 case CRYPTO_AES_NIST_GCM_16: 776 counter_u64_add(ktls_toe_gcm, -1); 777 break; 778 case CRYPTO_CHACHA20_POLY1305: 779 counter_u64_add(ktls_toe_chacha20, -1); 780 break; 781 } 782 break; 783 #endif 784 } 785 if (tls->params.auth_key != NULL) { 786 zfree(tls->params.auth_key, M_KTLS); 787 tls->params.auth_key = NULL; 788 tls->params.auth_key_len = 0; 789 } 790 if (tls->params.cipher_key != NULL) { 791 zfree(tls->params.cipher_key, M_KTLS); 792 tls->params.cipher_key = NULL; 793 tls->params.cipher_key_len = 0; 794 } 795 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 796 } 797 798 #if defined(INET) || defined(INET6) 799 800 #ifdef TCP_OFFLOAD 801 static int 802 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 803 { 804 struct inpcb *inp; 805 struct tcpcb *tp; 806 int error; 807 808 inp = so->so_pcb; 809 INP_WLOCK(inp); 810 if (inp->inp_flags2 & INP_FREED) { 811 INP_WUNLOCK(inp); 812 return (ECONNRESET); 813 } 814 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 815 INP_WUNLOCK(inp); 816 return (ECONNRESET); 817 } 818 if (inp->inp_socket == NULL) { 819 INP_WUNLOCK(inp); 820 return (ECONNRESET); 821 } 822 tp = intotcpcb(inp); 823 if (!(tp->t_flags & TF_TOE)) { 824 INP_WUNLOCK(inp); 825 return (EOPNOTSUPP); 826 } 827 828 error = tcp_offload_alloc_tls_session(tp, tls, direction); 829 INP_WUNLOCK(inp); 830 if (error == 0) { 831 tls->mode = TCP_TLS_MODE_TOE; 832 switch (tls->params.cipher_algorithm) { 833 case CRYPTO_AES_CBC: 834 counter_u64_add(ktls_toe_cbc, 1); 835 break; 836 case CRYPTO_AES_NIST_GCM_16: 837 counter_u64_add(ktls_toe_gcm, 1); 838 break; 839 case CRYPTO_CHACHA20_POLY1305: 840 counter_u64_add(ktls_toe_chacha20, 1); 841 break; 842 } 843 } 844 return (error); 845 } 846 #endif 847 848 /* 849 * Common code used when first enabling ifnet TLS on a connection or 850 * when allocating a new ifnet TLS session due to a routing change. 851 * This function allocates a new TLS send tag on whatever interface 852 * the connection is currently routed over. 853 */ 854 static int 855 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 856 struct m_snd_tag **mstp) 857 { 858 union if_snd_tag_alloc_params params; 859 struct ifnet *ifp; 860 struct nhop_object *nh; 861 struct tcpcb *tp; 862 int error; 863 864 INP_RLOCK(inp); 865 if (inp->inp_flags2 & INP_FREED) { 866 INP_RUNLOCK(inp); 867 return (ECONNRESET); 868 } 869 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 870 INP_RUNLOCK(inp); 871 return (ECONNRESET); 872 } 873 if (inp->inp_socket == NULL) { 874 INP_RUNLOCK(inp); 875 return (ECONNRESET); 876 } 877 tp = intotcpcb(inp); 878 879 /* 880 * Check administrative controls on ifnet TLS to determine if 881 * ifnet TLS should be denied. 882 * 883 * - Always permit 'force' requests. 884 * - ktls_ifnet_permitted == 0: always deny. 885 */ 886 if (!force && ktls_ifnet_permitted == 0) { 887 INP_RUNLOCK(inp); 888 return (ENXIO); 889 } 890 891 /* 892 * XXX: Use the cached route in the inpcb to find the 893 * interface. This should perhaps instead use 894 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 895 * enabled after a connection has completed key negotiation in 896 * userland, the cached route will be present in practice. 897 */ 898 nh = inp->inp_route.ro_nh; 899 if (nh == NULL) { 900 INP_RUNLOCK(inp); 901 return (ENXIO); 902 } 903 ifp = nh->nh_ifp; 904 if_ref(ifp); 905 906 /* 907 * Allocate a TLS + ratelimit tag if the connection has an 908 * existing pacing rate. 909 */ 910 if (tp->t_pacing_rate != -1 && 911 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 912 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 913 params.tls_rate_limit.inp = inp; 914 params.tls_rate_limit.tls = tls; 915 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 916 } else { 917 params.hdr.type = IF_SND_TAG_TYPE_TLS; 918 params.tls.inp = inp; 919 params.tls.tls = tls; 920 } 921 params.hdr.flowid = inp->inp_flowid; 922 params.hdr.flowtype = inp->inp_flowtype; 923 params.hdr.numa_domain = inp->inp_numa_domain; 924 INP_RUNLOCK(inp); 925 926 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 927 error = EOPNOTSUPP; 928 goto out; 929 } 930 if (inp->inp_vflag & INP_IPV6) { 931 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 932 error = EOPNOTSUPP; 933 goto out; 934 } 935 } else { 936 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 937 error = EOPNOTSUPP; 938 goto out; 939 } 940 } 941 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 942 out: 943 if_rele(ifp); 944 return (error); 945 } 946 947 static int 948 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 949 { 950 struct m_snd_tag *mst; 951 int error; 952 953 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 954 if (error == 0) { 955 tls->mode = TCP_TLS_MODE_IFNET; 956 tls->snd_tag = mst; 957 switch (tls->params.cipher_algorithm) { 958 case CRYPTO_AES_CBC: 959 counter_u64_add(ktls_ifnet_cbc, 1); 960 break; 961 case CRYPTO_AES_NIST_GCM_16: 962 counter_u64_add(ktls_ifnet_gcm, 1); 963 break; 964 case CRYPTO_CHACHA20_POLY1305: 965 counter_u64_add(ktls_ifnet_chacha20, 1); 966 break; 967 } 968 } 969 return (error); 970 } 971 972 static int 973 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 974 { 975 int error; 976 977 error = ktls_ocf_try(so, tls, direction); 978 if (error) 979 return (error); 980 tls->mode = TCP_TLS_MODE_SW; 981 switch (tls->params.cipher_algorithm) { 982 case CRYPTO_AES_CBC: 983 counter_u64_add(ktls_sw_cbc, 1); 984 break; 985 case CRYPTO_AES_NIST_GCM_16: 986 counter_u64_add(ktls_sw_gcm, 1); 987 break; 988 case CRYPTO_CHACHA20_POLY1305: 989 counter_u64_add(ktls_sw_chacha20, 1); 990 break; 991 } 992 return (0); 993 } 994 995 /* 996 * KTLS RX stores data in the socket buffer as a list of TLS records, 997 * where each record is stored as a control message containg the TLS 998 * header followed by data mbufs containing the decrypted data. This 999 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1000 * both encrypted and decrypted data. TLS records decrypted by a NIC 1001 * should be queued to the socket buffer as records, but encrypted 1002 * data which needs to be decrypted by software arrives as a stream of 1003 * regular mbufs which need to be converted. In addition, there may 1004 * already be pending encrypted data in the socket buffer when KTLS RX 1005 * is enabled. 1006 * 1007 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1008 * is used: 1009 * 1010 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1011 * 1012 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1013 * from the first mbuf. Once all of the data for that TLS record is 1014 * queued, the socket is queued to a worker thread. 1015 * 1016 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1017 * the TLS chain. Each TLS record is detached from the TLS chain, 1018 * decrypted, and inserted into the regular socket buffer chain as 1019 * record starting with a control message holding the TLS header and 1020 * a chain of mbufs holding the encrypted data. 1021 */ 1022 1023 static void 1024 sb_mark_notready(struct sockbuf *sb) 1025 { 1026 struct mbuf *m; 1027 1028 m = sb->sb_mb; 1029 sb->sb_mtls = m; 1030 sb->sb_mb = NULL; 1031 sb->sb_mbtail = NULL; 1032 sb->sb_lastrecord = NULL; 1033 for (; m != NULL; m = m->m_next) { 1034 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1035 __func__)); 1036 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1037 __func__)); 1038 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1039 __func__)); 1040 m->m_flags |= M_NOTREADY; 1041 sb->sb_acc -= m->m_len; 1042 sb->sb_tlscc += m->m_len; 1043 sb->sb_mtlstail = m; 1044 } 1045 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1046 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1047 sb->sb_ccc)); 1048 } 1049 1050 int 1051 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1052 { 1053 struct ktls_session *tls; 1054 int error; 1055 1056 if (!ktls_offload_enable) 1057 return (ENOTSUP); 1058 if (SOLISTENING(so)) 1059 return (EINVAL); 1060 1061 counter_u64_add(ktls_offload_enable_calls, 1); 1062 1063 /* 1064 * This should always be true since only the TCP socket option 1065 * invokes this function. 1066 */ 1067 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1068 return (EINVAL); 1069 1070 /* 1071 * XXX: Don't overwrite existing sessions. We should permit 1072 * this to support rekeying in the future. 1073 */ 1074 if (so->so_rcv.sb_tls_info != NULL) 1075 return (EALREADY); 1076 1077 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1078 return (ENOTSUP); 1079 1080 /* TLS 1.3 is not yet supported. */ 1081 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1082 en->tls_vminor == TLS_MINOR_VER_THREE) 1083 return (ENOTSUP); 1084 1085 error = ktls_create_session(so, en, &tls); 1086 if (error) 1087 return (error); 1088 1089 #ifdef TCP_OFFLOAD 1090 error = ktls_try_toe(so, tls, KTLS_RX); 1091 if (error) 1092 #endif 1093 error = ktls_try_sw(so, tls, KTLS_RX); 1094 1095 if (error) { 1096 ktls_cleanup(tls); 1097 return (error); 1098 } 1099 1100 /* Mark the socket as using TLS offload. */ 1101 SOCKBUF_LOCK(&so->so_rcv); 1102 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1103 so->so_rcv.sb_tls_info = tls; 1104 so->so_rcv.sb_flags |= SB_TLS_RX; 1105 1106 /* Mark existing data as not ready until it can be decrypted. */ 1107 if (tls->mode != TCP_TLS_MODE_TOE) { 1108 sb_mark_notready(&so->so_rcv); 1109 ktls_check_rx(&so->so_rcv); 1110 } 1111 SOCKBUF_UNLOCK(&so->so_rcv); 1112 1113 counter_u64_add(ktls_offload_total, 1); 1114 1115 return (0); 1116 } 1117 1118 int 1119 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1120 { 1121 struct ktls_session *tls; 1122 struct inpcb *inp; 1123 int error; 1124 1125 if (!ktls_offload_enable) 1126 return (ENOTSUP); 1127 if (SOLISTENING(so)) 1128 return (EINVAL); 1129 1130 counter_u64_add(ktls_offload_enable_calls, 1); 1131 1132 /* 1133 * This should always be true since only the TCP socket option 1134 * invokes this function. 1135 */ 1136 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1137 return (EINVAL); 1138 1139 /* 1140 * XXX: Don't overwrite existing sessions. We should permit 1141 * this to support rekeying in the future. 1142 */ 1143 if (so->so_snd.sb_tls_info != NULL) 1144 return (EALREADY); 1145 1146 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1147 return (ENOTSUP); 1148 1149 /* TLS requires ext pgs */ 1150 if (mb_use_ext_pgs == 0) 1151 return (ENXIO); 1152 1153 error = ktls_create_session(so, en, &tls); 1154 if (error) 1155 return (error); 1156 1157 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1158 #ifdef TCP_OFFLOAD 1159 error = ktls_try_toe(so, tls, KTLS_TX); 1160 if (error) 1161 #endif 1162 error = ktls_try_ifnet(so, tls, false); 1163 if (error) 1164 error = ktls_try_sw(so, tls, KTLS_TX); 1165 1166 if (error) { 1167 ktls_cleanup(tls); 1168 return (error); 1169 } 1170 1171 error = sblock(&so->so_snd, SBL_WAIT); 1172 if (error) { 1173 ktls_cleanup(tls); 1174 return (error); 1175 } 1176 1177 /* 1178 * Write lock the INP when setting sb_tls_info so that 1179 * routines in tcp_ratelimit.c can read sb_tls_info while 1180 * holding the INP lock. 1181 */ 1182 inp = so->so_pcb; 1183 INP_WLOCK(inp); 1184 SOCKBUF_LOCK(&so->so_snd); 1185 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1186 so->so_snd.sb_tls_info = tls; 1187 if (tls->mode != TCP_TLS_MODE_SW) 1188 so->so_snd.sb_flags |= SB_TLS_IFNET; 1189 SOCKBUF_UNLOCK(&so->so_snd); 1190 INP_WUNLOCK(inp); 1191 sbunlock(&so->so_snd); 1192 1193 counter_u64_add(ktls_offload_total, 1); 1194 1195 return (0); 1196 } 1197 1198 int 1199 ktls_get_rx_mode(struct socket *so) 1200 { 1201 struct ktls_session *tls; 1202 struct inpcb *inp; 1203 int mode; 1204 1205 if (SOLISTENING(so)) 1206 return (EINVAL); 1207 inp = so->so_pcb; 1208 INP_WLOCK_ASSERT(inp); 1209 SOCKBUF_LOCK(&so->so_rcv); 1210 tls = so->so_rcv.sb_tls_info; 1211 if (tls == NULL) 1212 mode = TCP_TLS_MODE_NONE; 1213 else 1214 mode = tls->mode; 1215 SOCKBUF_UNLOCK(&so->so_rcv); 1216 return (mode); 1217 } 1218 1219 int 1220 ktls_get_tx_mode(struct socket *so) 1221 { 1222 struct ktls_session *tls; 1223 struct inpcb *inp; 1224 int mode; 1225 1226 if (SOLISTENING(so)) 1227 return (EINVAL); 1228 inp = so->so_pcb; 1229 INP_WLOCK_ASSERT(inp); 1230 SOCKBUF_LOCK(&so->so_snd); 1231 tls = so->so_snd.sb_tls_info; 1232 if (tls == NULL) 1233 mode = TCP_TLS_MODE_NONE; 1234 else 1235 mode = tls->mode; 1236 SOCKBUF_UNLOCK(&so->so_snd); 1237 return (mode); 1238 } 1239 1240 /* 1241 * Switch between SW and ifnet TLS sessions as requested. 1242 */ 1243 int 1244 ktls_set_tx_mode(struct socket *so, int mode) 1245 { 1246 struct ktls_session *tls, *tls_new; 1247 struct inpcb *inp; 1248 int error; 1249 1250 if (SOLISTENING(so)) 1251 return (EINVAL); 1252 switch (mode) { 1253 case TCP_TLS_MODE_SW: 1254 case TCP_TLS_MODE_IFNET: 1255 break; 1256 default: 1257 return (EINVAL); 1258 } 1259 1260 inp = so->so_pcb; 1261 INP_WLOCK_ASSERT(inp); 1262 SOCKBUF_LOCK(&so->so_snd); 1263 tls = so->so_snd.sb_tls_info; 1264 if (tls == NULL) { 1265 SOCKBUF_UNLOCK(&so->so_snd); 1266 return (0); 1267 } 1268 1269 if (tls->mode == mode) { 1270 SOCKBUF_UNLOCK(&so->so_snd); 1271 return (0); 1272 } 1273 1274 tls = ktls_hold(tls); 1275 SOCKBUF_UNLOCK(&so->so_snd); 1276 INP_WUNLOCK(inp); 1277 1278 tls_new = ktls_clone_session(tls); 1279 1280 if (mode == TCP_TLS_MODE_IFNET) 1281 error = ktls_try_ifnet(so, tls_new, true); 1282 else 1283 error = ktls_try_sw(so, tls_new, KTLS_TX); 1284 if (error) { 1285 counter_u64_add(ktls_switch_failed, 1); 1286 ktls_free(tls_new); 1287 ktls_free(tls); 1288 INP_WLOCK(inp); 1289 return (error); 1290 } 1291 1292 error = sblock(&so->so_snd, SBL_WAIT); 1293 if (error) { 1294 counter_u64_add(ktls_switch_failed, 1); 1295 ktls_free(tls_new); 1296 ktls_free(tls); 1297 INP_WLOCK(inp); 1298 return (error); 1299 } 1300 1301 /* 1302 * If we raced with another session change, keep the existing 1303 * session. 1304 */ 1305 if (tls != so->so_snd.sb_tls_info) { 1306 counter_u64_add(ktls_switch_failed, 1); 1307 sbunlock(&so->so_snd); 1308 ktls_free(tls_new); 1309 ktls_free(tls); 1310 INP_WLOCK(inp); 1311 return (EBUSY); 1312 } 1313 1314 SOCKBUF_LOCK(&so->so_snd); 1315 so->so_snd.sb_tls_info = tls_new; 1316 if (tls_new->mode != TCP_TLS_MODE_SW) 1317 so->so_snd.sb_flags |= SB_TLS_IFNET; 1318 SOCKBUF_UNLOCK(&so->so_snd); 1319 sbunlock(&so->so_snd); 1320 1321 /* 1322 * Drop two references on 'tls'. The first is for the 1323 * ktls_hold() above. The second drops the reference from the 1324 * socket buffer. 1325 */ 1326 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1327 ktls_free(tls); 1328 ktls_free(tls); 1329 1330 if (mode == TCP_TLS_MODE_IFNET) 1331 counter_u64_add(ktls_switch_to_ifnet, 1); 1332 else 1333 counter_u64_add(ktls_switch_to_sw, 1); 1334 1335 INP_WLOCK(inp); 1336 return (0); 1337 } 1338 1339 /* 1340 * Try to allocate a new TLS send tag. This task is scheduled when 1341 * ip_output detects a route change while trying to transmit a packet 1342 * holding a TLS record. If a new tag is allocated, replace the tag 1343 * in the TLS session. Subsequent packets on the connection will use 1344 * the new tag. If a new tag cannot be allocated, drop the 1345 * connection. 1346 */ 1347 static void 1348 ktls_reset_send_tag(void *context, int pending) 1349 { 1350 struct epoch_tracker et; 1351 struct ktls_session *tls; 1352 struct m_snd_tag *old, *new; 1353 struct inpcb *inp; 1354 struct tcpcb *tp; 1355 int error; 1356 1357 MPASS(pending == 1); 1358 1359 tls = context; 1360 inp = tls->inp; 1361 1362 /* 1363 * Free the old tag first before allocating a new one. 1364 * ip[6]_output_send() will treat a NULL send tag the same as 1365 * an ifp mismatch and drop packets until a new tag is 1366 * allocated. 1367 * 1368 * Write-lock the INP when changing tls->snd_tag since 1369 * ip[6]_output_send() holds a read-lock when reading the 1370 * pointer. 1371 */ 1372 INP_WLOCK(inp); 1373 old = tls->snd_tag; 1374 tls->snd_tag = NULL; 1375 INP_WUNLOCK(inp); 1376 if (old != NULL) 1377 m_snd_tag_rele(old); 1378 1379 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1380 1381 if (error == 0) { 1382 INP_WLOCK(inp); 1383 tls->snd_tag = new; 1384 mtx_pool_lock(mtxpool_sleep, tls); 1385 tls->reset_pending = false; 1386 mtx_pool_unlock(mtxpool_sleep, tls); 1387 if (!in_pcbrele_wlocked(inp)) 1388 INP_WUNLOCK(inp); 1389 1390 counter_u64_add(ktls_ifnet_reset, 1); 1391 1392 /* 1393 * XXX: Should we kick tcp_output explicitly now that 1394 * the send tag is fixed or just rely on timers? 1395 */ 1396 } else { 1397 NET_EPOCH_ENTER(et); 1398 INP_WLOCK(inp); 1399 if (!in_pcbrele_wlocked(inp)) { 1400 if (!(inp->inp_flags & INP_TIMEWAIT) && 1401 !(inp->inp_flags & INP_DROPPED)) { 1402 tp = intotcpcb(inp); 1403 CURVNET_SET(tp->t_vnet); 1404 tp = tcp_drop(tp, ECONNABORTED); 1405 CURVNET_RESTORE(); 1406 if (tp != NULL) 1407 INP_WUNLOCK(inp); 1408 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1409 } else 1410 INP_WUNLOCK(inp); 1411 } 1412 NET_EPOCH_EXIT(et); 1413 1414 counter_u64_add(ktls_ifnet_reset_failed, 1); 1415 1416 /* 1417 * Leave reset_pending true to avoid future tasks while 1418 * the socket goes away. 1419 */ 1420 } 1421 1422 ktls_free(tls); 1423 } 1424 1425 int 1426 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1427 { 1428 1429 if (inp == NULL) 1430 return (ENOBUFS); 1431 1432 INP_LOCK_ASSERT(inp); 1433 1434 /* 1435 * See if we should schedule a task to update the send tag for 1436 * this session. 1437 */ 1438 mtx_pool_lock(mtxpool_sleep, tls); 1439 if (!tls->reset_pending) { 1440 (void) ktls_hold(tls); 1441 in_pcbref(inp); 1442 tls->inp = inp; 1443 tls->reset_pending = true; 1444 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1445 } 1446 mtx_pool_unlock(mtxpool_sleep, tls); 1447 return (ENOBUFS); 1448 } 1449 1450 #ifdef RATELIMIT 1451 int 1452 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1453 { 1454 union if_snd_tag_modify_params params = { 1455 .rate_limit.max_rate = max_pacing_rate, 1456 .rate_limit.flags = M_NOWAIT, 1457 }; 1458 struct m_snd_tag *mst; 1459 struct ifnet *ifp; 1460 1461 /* Can't get to the inp, but it should be locked. */ 1462 /* INP_LOCK_ASSERT(inp); */ 1463 1464 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1465 1466 if (tls->snd_tag == NULL) { 1467 /* 1468 * Resetting send tag, ignore this change. The 1469 * pending reset may or may not see this updated rate 1470 * in the tcpcb. If it doesn't, we will just lose 1471 * this rate change. 1472 */ 1473 return (0); 1474 } 1475 1476 MPASS(tls->snd_tag != NULL); 1477 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1478 1479 mst = tls->snd_tag; 1480 ifp = mst->ifp; 1481 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1482 } 1483 #endif 1484 #endif 1485 1486 void 1487 ktls_destroy(struct ktls_session *tls) 1488 { 1489 1490 ktls_cleanup(tls); 1491 uma_zfree(ktls_session_zone, tls); 1492 } 1493 1494 void 1495 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1496 { 1497 1498 for (; m != NULL; m = m->m_next) { 1499 KASSERT((m->m_flags & M_EXTPG) != 0, 1500 ("ktls_seq: mapped mbuf %p", m)); 1501 1502 m->m_epg_seqno = sb->sb_tls_seqno; 1503 sb->sb_tls_seqno++; 1504 } 1505 } 1506 1507 /* 1508 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1509 * mbuf in the chain must be an unmapped mbuf. The payload of the 1510 * mbuf must be populated with the payload of each TLS record. 1511 * 1512 * The record_type argument specifies the TLS record type used when 1513 * populating the TLS header. 1514 * 1515 * The enq_count argument on return is set to the number of pages of 1516 * payload data for this entire chain that need to be encrypted via SW 1517 * encryption. The returned value should be passed to ktls_enqueue 1518 * when scheduling encryption of this chain of mbufs. To handle the 1519 * special case of empty fragments for TLS 1.0 sessions, an empty 1520 * fragment counts as one page. 1521 */ 1522 void 1523 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1524 uint8_t record_type) 1525 { 1526 struct tls_record_layer *tlshdr; 1527 struct mbuf *m; 1528 uint64_t *noncep; 1529 uint16_t tls_len; 1530 int maxlen; 1531 1532 maxlen = tls->params.max_frame_len; 1533 *enq_cnt = 0; 1534 for (m = top; m != NULL; m = m->m_next) { 1535 /* 1536 * All mbufs in the chain should be TLS records whose 1537 * payload does not exceed the maximum frame length. 1538 * 1539 * Empty TLS records are permitted when using CBC. 1540 */ 1541 KASSERT(m->m_len <= maxlen && 1542 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1543 m->m_len >= 0 : m->m_len > 0), 1544 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1545 1546 /* 1547 * TLS frames require unmapped mbufs to store session 1548 * info. 1549 */ 1550 KASSERT((m->m_flags & M_EXTPG) != 0, 1551 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1552 1553 tls_len = m->m_len; 1554 1555 /* Save a reference to the session. */ 1556 m->m_epg_tls = ktls_hold(tls); 1557 1558 m->m_epg_hdrlen = tls->params.tls_hlen; 1559 m->m_epg_trllen = tls->params.tls_tlen; 1560 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1561 int bs, delta; 1562 1563 /* 1564 * AES-CBC pads messages to a multiple of the 1565 * block size. Note that the padding is 1566 * applied after the digest and the encryption 1567 * is done on the "plaintext || mac || padding". 1568 * At least one byte of padding is always 1569 * present. 1570 * 1571 * Compute the final trailer length assuming 1572 * at most one block of padding. 1573 * tls->params.tls_tlen is the maximum 1574 * possible trailer length (padding + digest). 1575 * delta holds the number of excess padding 1576 * bytes if the maximum were used. Those 1577 * extra bytes are removed. 1578 */ 1579 bs = tls->params.tls_bs; 1580 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1581 m->m_epg_trllen -= delta; 1582 } 1583 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1584 1585 /* Populate the TLS header. */ 1586 tlshdr = (void *)m->m_epg_hdr; 1587 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1588 1589 /* 1590 * TLS 1.3 masquarades as TLS 1.2 with a record type 1591 * of TLS_RLTYPE_APP. 1592 */ 1593 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1594 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1595 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1596 tlshdr->tls_type = TLS_RLTYPE_APP; 1597 /* save the real record type for later */ 1598 m->m_epg_record_type = record_type; 1599 m->m_epg_trail[0] = record_type; 1600 } else { 1601 tlshdr->tls_vminor = tls->params.tls_vminor; 1602 tlshdr->tls_type = record_type; 1603 } 1604 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1605 1606 /* 1607 * Store nonces / explicit IVs after the end of the 1608 * TLS header. 1609 * 1610 * For GCM with TLS 1.2, an 8 byte nonce is copied 1611 * from the end of the IV. The nonce is then 1612 * incremented for use by the next record. 1613 * 1614 * For CBC, a random nonce is inserted for TLS 1.1+. 1615 */ 1616 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1617 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1618 noncep = (uint64_t *)(tls->params.iv + 8); 1619 be64enc(tlshdr + 1, *noncep); 1620 (*noncep)++; 1621 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1622 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1623 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1624 1625 /* 1626 * When using SW encryption, mark the mbuf not ready. 1627 * It will be marked ready via sbready() after the 1628 * record has been encrypted. 1629 * 1630 * When using ifnet TLS, unencrypted TLS records are 1631 * sent down the stack to the NIC. 1632 */ 1633 if (tls->mode == TCP_TLS_MODE_SW) { 1634 m->m_flags |= M_NOTREADY; 1635 m->m_epg_nrdy = m->m_epg_npgs; 1636 if (__predict_false(tls_len == 0)) { 1637 /* TLS 1.0 empty fragment. */ 1638 *enq_cnt += 1; 1639 } else 1640 *enq_cnt += m->m_epg_npgs; 1641 } 1642 } 1643 } 1644 1645 void 1646 ktls_check_rx(struct sockbuf *sb) 1647 { 1648 struct tls_record_layer hdr; 1649 struct ktls_wq *wq; 1650 struct socket *so; 1651 bool running; 1652 1653 SOCKBUF_LOCK_ASSERT(sb); 1654 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1655 __func__, sb)); 1656 so = __containerof(sb, struct socket, so_rcv); 1657 1658 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1659 return; 1660 1661 /* Is there enough queued for a TLS header? */ 1662 if (sb->sb_tlscc < sizeof(hdr)) { 1663 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1664 so->so_error = EMSGSIZE; 1665 return; 1666 } 1667 1668 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1669 1670 /* Is the entire record queued? */ 1671 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1672 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1673 so->so_error = EMSGSIZE; 1674 return; 1675 } 1676 1677 sb->sb_flags |= SB_TLS_RX_RUNNING; 1678 1679 soref(so); 1680 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1681 mtx_lock(&wq->mtx); 1682 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1683 running = wq->running; 1684 mtx_unlock(&wq->mtx); 1685 if (!running) 1686 wakeup(wq); 1687 counter_u64_add(ktls_cnt_rx_queued, 1); 1688 } 1689 1690 static struct mbuf * 1691 ktls_detach_record(struct sockbuf *sb, int len) 1692 { 1693 struct mbuf *m, *n, *top; 1694 int remain; 1695 1696 SOCKBUF_LOCK_ASSERT(sb); 1697 MPASS(len <= sb->sb_tlscc); 1698 1699 /* 1700 * If TLS chain is the exact size of the record, 1701 * just grab the whole record. 1702 */ 1703 top = sb->sb_mtls; 1704 if (sb->sb_tlscc == len) { 1705 sb->sb_mtls = NULL; 1706 sb->sb_mtlstail = NULL; 1707 goto out; 1708 } 1709 1710 /* 1711 * While it would be nice to use m_split() here, we need 1712 * to know exactly what m_split() allocates to update the 1713 * accounting, so do it inline instead. 1714 */ 1715 remain = len; 1716 for (m = top; remain > m->m_len; m = m->m_next) 1717 remain -= m->m_len; 1718 1719 /* Easy case: don't have to split 'm'. */ 1720 if (remain == m->m_len) { 1721 sb->sb_mtls = m->m_next; 1722 if (sb->sb_mtls == NULL) 1723 sb->sb_mtlstail = NULL; 1724 m->m_next = NULL; 1725 goto out; 1726 } 1727 1728 /* 1729 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1730 * with M_NOWAIT first. 1731 */ 1732 n = m_get(M_NOWAIT, MT_DATA); 1733 if (n == NULL) { 1734 /* 1735 * Use M_WAITOK with socket buffer unlocked. If 1736 * 'sb_mtls' changes while the lock is dropped, return 1737 * NULL to force the caller to retry. 1738 */ 1739 SOCKBUF_UNLOCK(sb); 1740 1741 n = m_get(M_WAITOK, MT_DATA); 1742 1743 SOCKBUF_LOCK(sb); 1744 if (sb->sb_mtls != top) { 1745 m_free(n); 1746 return (NULL); 1747 } 1748 } 1749 n->m_flags |= M_NOTREADY; 1750 1751 /* Store remainder in 'n'. */ 1752 n->m_len = m->m_len - remain; 1753 if (m->m_flags & M_EXT) { 1754 n->m_data = m->m_data + remain; 1755 mb_dupcl(n, m); 1756 } else { 1757 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1758 } 1759 1760 /* Trim 'm' and update accounting. */ 1761 m->m_len -= n->m_len; 1762 sb->sb_tlscc -= n->m_len; 1763 sb->sb_ccc -= n->m_len; 1764 1765 /* Account for 'n'. */ 1766 sballoc_ktls_rx(sb, n); 1767 1768 /* Insert 'n' into the TLS chain. */ 1769 sb->sb_mtls = n; 1770 n->m_next = m->m_next; 1771 if (sb->sb_mtlstail == m) 1772 sb->sb_mtlstail = n; 1773 1774 /* Detach the record from the TLS chain. */ 1775 m->m_next = NULL; 1776 1777 out: 1778 MPASS(m_length(top, NULL) == len); 1779 for (m = top; m != NULL; m = m->m_next) 1780 sbfree_ktls_rx(sb, m); 1781 sb->sb_tlsdcc = len; 1782 sb->sb_ccc += len; 1783 SBCHECK(sb); 1784 return (top); 1785 } 1786 1787 static void 1788 ktls_decrypt(struct socket *so) 1789 { 1790 char tls_header[MBUF_PEXT_HDR_LEN]; 1791 struct ktls_session *tls; 1792 struct sockbuf *sb; 1793 struct tls_record_layer *hdr; 1794 struct tls_get_record tgr; 1795 struct mbuf *control, *data, *m; 1796 uint64_t seqno; 1797 int error, remain, tls_len, trail_len; 1798 1799 hdr = (struct tls_record_layer *)tls_header; 1800 sb = &so->so_rcv; 1801 SOCKBUF_LOCK(sb); 1802 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1803 ("%s: socket %p not running", __func__, so)); 1804 1805 tls = sb->sb_tls_info; 1806 MPASS(tls != NULL); 1807 1808 for (;;) { 1809 /* Is there enough queued for a TLS header? */ 1810 if (sb->sb_tlscc < tls->params.tls_hlen) 1811 break; 1812 1813 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1814 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1815 1816 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1817 hdr->tls_vminor != tls->params.tls_vminor) 1818 error = EINVAL; 1819 else if (tls_len < tls->params.tls_hlen || tls_len > 1820 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1821 tls->params.tls_tlen) 1822 error = EMSGSIZE; 1823 else 1824 error = 0; 1825 if (__predict_false(error != 0)) { 1826 /* 1827 * We have a corrupted record and are likely 1828 * out of sync. The connection isn't 1829 * recoverable at this point, so abort it. 1830 */ 1831 SOCKBUF_UNLOCK(sb); 1832 counter_u64_add(ktls_offload_corrupted_records, 1); 1833 1834 CURVNET_SET(so->so_vnet); 1835 so->so_proto->pr_usrreqs->pru_abort(so); 1836 so->so_error = error; 1837 CURVNET_RESTORE(); 1838 goto deref; 1839 } 1840 1841 /* Is the entire record queued? */ 1842 if (sb->sb_tlscc < tls_len) 1843 break; 1844 1845 /* 1846 * Split out the portion of the mbuf chain containing 1847 * this TLS record. 1848 */ 1849 data = ktls_detach_record(sb, tls_len); 1850 if (data == NULL) 1851 continue; 1852 MPASS(sb->sb_tlsdcc == tls_len); 1853 1854 seqno = sb->sb_tls_seqno; 1855 sb->sb_tls_seqno++; 1856 SBCHECK(sb); 1857 SOCKBUF_UNLOCK(sb); 1858 1859 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1860 if (error) { 1861 counter_u64_add(ktls_offload_failed_crypto, 1); 1862 1863 SOCKBUF_LOCK(sb); 1864 if (sb->sb_tlsdcc == 0) { 1865 /* 1866 * sbcut/drop/flush discarded these 1867 * mbufs. 1868 */ 1869 m_freem(data); 1870 break; 1871 } 1872 1873 /* 1874 * Drop this TLS record's data, but keep 1875 * decrypting subsequent records. 1876 */ 1877 sb->sb_ccc -= tls_len; 1878 sb->sb_tlsdcc = 0; 1879 1880 CURVNET_SET(so->so_vnet); 1881 so->so_error = EBADMSG; 1882 sorwakeup_locked(so); 1883 CURVNET_RESTORE(); 1884 1885 m_freem(data); 1886 1887 SOCKBUF_LOCK(sb); 1888 continue; 1889 } 1890 1891 /* Allocate the control mbuf. */ 1892 tgr.tls_type = hdr->tls_type; 1893 tgr.tls_vmajor = hdr->tls_vmajor; 1894 tgr.tls_vminor = hdr->tls_vminor; 1895 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1896 trail_len); 1897 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1898 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1899 1900 SOCKBUF_LOCK(sb); 1901 if (sb->sb_tlsdcc == 0) { 1902 /* sbcut/drop/flush discarded these mbufs. */ 1903 MPASS(sb->sb_tlscc == 0); 1904 m_freem(data); 1905 m_freem(control); 1906 break; 1907 } 1908 1909 /* 1910 * Clear the 'dcc' accounting in preparation for 1911 * adding the decrypted record. 1912 */ 1913 sb->sb_ccc -= tls_len; 1914 sb->sb_tlsdcc = 0; 1915 SBCHECK(sb); 1916 1917 /* If there is no payload, drop all of the data. */ 1918 if (tgr.tls_length == htobe16(0)) { 1919 m_freem(data); 1920 data = NULL; 1921 } else { 1922 /* Trim header. */ 1923 remain = tls->params.tls_hlen; 1924 while (remain > 0) { 1925 if (data->m_len > remain) { 1926 data->m_data += remain; 1927 data->m_len -= remain; 1928 break; 1929 } 1930 remain -= data->m_len; 1931 data = m_free(data); 1932 } 1933 1934 /* Trim trailer and clear M_NOTREADY. */ 1935 remain = be16toh(tgr.tls_length); 1936 m = data; 1937 for (m = data; remain > m->m_len; m = m->m_next) { 1938 m->m_flags &= ~M_NOTREADY; 1939 remain -= m->m_len; 1940 } 1941 m->m_len = remain; 1942 m_freem(m->m_next); 1943 m->m_next = NULL; 1944 m->m_flags &= ~M_NOTREADY; 1945 1946 /* Set EOR on the final mbuf. */ 1947 m->m_flags |= M_EOR; 1948 } 1949 1950 sbappendcontrol_locked(sb, data, control, 0); 1951 } 1952 1953 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1954 1955 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1956 so->so_error = EMSGSIZE; 1957 1958 sorwakeup_locked(so); 1959 1960 deref: 1961 SOCKBUF_UNLOCK_ASSERT(sb); 1962 1963 CURVNET_SET(so->so_vnet); 1964 SOCK_LOCK(so); 1965 sorele(so); 1966 CURVNET_RESTORE(); 1967 } 1968 1969 void 1970 ktls_enqueue_to_free(struct mbuf *m) 1971 { 1972 struct ktls_wq *wq; 1973 bool running; 1974 1975 /* Mark it for freeing. */ 1976 m->m_epg_flags |= EPG_FLAG_2FREE; 1977 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1978 mtx_lock(&wq->mtx); 1979 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1980 running = wq->running; 1981 mtx_unlock(&wq->mtx); 1982 if (!running) 1983 wakeup(wq); 1984 } 1985 1986 static void * 1987 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 1988 { 1989 void *buf; 1990 int domain, running; 1991 1992 if (m->m_epg_npgs <= 2) 1993 return (NULL); 1994 if (ktls_buffer_zone == NULL) 1995 return (NULL); 1996 if ((u_int)(ticks - wq->lastallocfail) < hz) { 1997 /* 1998 * Rate-limit allocation attempts after a failure. 1999 * ktls_buffer_import() will acquire a per-domain mutex to check 2000 * the free page queues and may fail consistently if memory is 2001 * fragmented. 2002 */ 2003 return (NULL); 2004 } 2005 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2006 if (buf == NULL) { 2007 domain = PCPU_GET(domain); 2008 wq->lastallocfail = ticks; 2009 2010 /* 2011 * Note that this check is "racy", but the races are 2012 * harmless, and are either a spurious wakeup if 2013 * multiple threads fail allocations before the alloc 2014 * thread wakes, or waiting an extra second in case we 2015 * see an old value of running == true. 2016 */ 2017 if (!VM_DOMAIN_EMPTY(domain)) { 2018 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2019 if (!running) 2020 wakeup(&ktls_domains[domain].alloc_td); 2021 } 2022 } 2023 return (buf); 2024 } 2025 2026 void 2027 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2028 { 2029 struct ktls_wq *wq; 2030 bool running; 2031 2032 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2033 (M_EXTPG | M_NOTREADY)), 2034 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2035 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2036 2037 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2038 2039 m->m_epg_enc_cnt = page_count; 2040 2041 /* 2042 * Save a pointer to the socket. The caller is responsible 2043 * for taking an additional reference via soref(). 2044 */ 2045 m->m_epg_so = so; 2046 2047 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2048 mtx_lock(&wq->mtx); 2049 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2050 running = wq->running; 2051 mtx_unlock(&wq->mtx); 2052 if (!running) 2053 wakeup(wq); 2054 counter_u64_add(ktls_cnt_tx_queued, 1); 2055 } 2056 2057 #define MAX_TLS_PAGES (1 + btoc(TLS_MAX_MSG_SIZE_V10_2)) 2058 2059 static __noinline void 2060 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2061 { 2062 struct ktls_session *tls; 2063 struct socket *so; 2064 struct mbuf *m; 2065 vm_paddr_t parray[MAX_TLS_PAGES + 1]; 2066 struct iovec dst_iov[MAX_TLS_PAGES + 2]; 2067 vm_page_t pg; 2068 void *cbuf; 2069 int error, i, len, npages, off, total_pages; 2070 2071 so = top->m_epg_so; 2072 tls = top->m_epg_tls; 2073 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2074 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2075 #ifdef INVARIANTS 2076 top->m_epg_so = NULL; 2077 #endif 2078 total_pages = top->m_epg_enc_cnt; 2079 npages = 0; 2080 2081 /* 2082 * Encrypt the TLS records in the chain of mbufs starting with 2083 * 'top'. 'total_pages' gives us a total count of pages and is 2084 * used to know when we have finished encrypting the TLS 2085 * records originally queued with 'top'. 2086 * 2087 * NB: These mbufs are queued in the socket buffer and 2088 * 'm_next' is traversing the mbufs in the socket buffer. The 2089 * socket buffer lock is not held while traversing this chain. 2090 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2091 * pointers should be stable. However, the 'm_next' of the 2092 * last mbuf encrypted is not necessarily NULL. It can point 2093 * to other mbufs appended while 'top' was on the TLS work 2094 * queue. 2095 * 2096 * Each mbuf holds an entire TLS record. 2097 */ 2098 error = 0; 2099 for (m = top; npages != total_pages; m = m->m_next) { 2100 KASSERT(m->m_epg_tls == tls, 2101 ("different TLS sessions in a single mbuf chain: %p vs %p", 2102 tls, m->m_epg_tls)); 2103 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2104 (M_EXTPG | M_NOTREADY), 2105 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2106 KASSERT(npages + m->m_epg_npgs <= total_pages, 2107 ("page count mismatch: top %p, total_pages %d, m %p", top, 2108 total_pages, m)); 2109 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2110 ("page count %d larger than maximum frame length %d", 2111 m->m_epg_npgs, ktls_maxlen)); 2112 2113 /* 2114 * For anonymous mbufs, encryption is done in place. 2115 * For file-backed mbufs (from sendfile), anonymous 2116 * wired pages are allocated and used as the 2117 * encryption destination. 2118 */ 2119 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) { 2120 error = (*tls->sw_encrypt)(tls, m, NULL, 0); 2121 } else { 2122 if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2123 len = ptoa(m->m_epg_npgs - 1) + 2124 m->m_epg_last_len - m->m_epg_1st_off; 2125 dst_iov[0].iov_base = (char *)cbuf + 2126 m->m_epg_1st_off; 2127 dst_iov[0].iov_len = len; 2128 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2129 i = 1; 2130 } else { 2131 off = m->m_epg_1st_off; 2132 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2133 do { 2134 pg = vm_page_alloc(NULL, 0, 2135 VM_ALLOC_NORMAL | 2136 VM_ALLOC_NOOBJ | 2137 VM_ALLOC_NODUMP | 2138 VM_ALLOC_WIRED | 2139 VM_ALLOC_WAITFAIL); 2140 } while (pg == NULL); 2141 2142 len = m_epg_pagelen(m, i, off); 2143 parray[i] = VM_PAGE_TO_PHYS(pg); 2144 dst_iov[i].iov_base = 2145 (char *)(void *)PHYS_TO_DMAP( 2146 parray[i]) + off; 2147 dst_iov[i].iov_len = len; 2148 } 2149 } 2150 KASSERT(i + 1 <= nitems(dst_iov), 2151 ("dst_iov is too small")); 2152 dst_iov[i].iov_base = m->m_epg_trail; 2153 dst_iov[i].iov_len = m->m_epg_trllen; 2154 2155 error = (*tls->sw_encrypt)(tls, m, dst_iov, i + 1); 2156 2157 /* Free the old pages. */ 2158 m->m_ext.ext_free(m); 2159 2160 /* Replace them with the new pages. */ 2161 if (cbuf != NULL) { 2162 for (i = 0; i < m->m_epg_npgs; i++) 2163 m->m_epg_pa[i] = parray[0] + ptoa(i); 2164 2165 /* Contig pages should go back to the cache. */ 2166 m->m_ext.ext_free = ktls_free_mext_contig; 2167 } else { 2168 for (i = 0; i < m->m_epg_npgs; i++) 2169 m->m_epg_pa[i] = parray[i]; 2170 2171 /* Use the basic free routine. */ 2172 m->m_ext.ext_free = mb_free_mext_pgs; 2173 } 2174 2175 /* Pages are now writable. */ 2176 m->m_epg_flags |= EPG_FLAG_ANON; 2177 } 2178 if (error) { 2179 counter_u64_add(ktls_offload_failed_crypto, 1); 2180 break; 2181 } 2182 2183 if (__predict_false(m->m_epg_npgs == 0)) { 2184 /* TLS 1.0 empty fragment. */ 2185 npages++; 2186 } else 2187 npages += m->m_epg_npgs; 2188 2189 /* 2190 * Drop a reference to the session now that it is no 2191 * longer needed. Existing code depends on encrypted 2192 * records having no associated session vs 2193 * yet-to-be-encrypted records having an associated 2194 * session. 2195 */ 2196 m->m_epg_tls = NULL; 2197 ktls_free(tls); 2198 } 2199 2200 CURVNET_SET(so->so_vnet); 2201 if (error == 0) { 2202 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2203 } else { 2204 so->so_proto->pr_usrreqs->pru_abort(so); 2205 so->so_error = EIO; 2206 mb_free_notready(top, total_pages); 2207 } 2208 2209 SOCK_LOCK(so); 2210 sorele(so); 2211 CURVNET_RESTORE(); 2212 } 2213 2214 static void 2215 ktls_alloc_thread(void *ctx) 2216 { 2217 struct ktls_domain_info *ktls_domain = ctx; 2218 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 2219 void **buf; 2220 struct sysctl_oid *oid; 2221 char name[80]; 2222 int i, nbufs; 2223 2224 curthread->td_domain.dr_policy = 2225 DOMAINSET_PREF(PCPU_GET(domain)); 2226 snprintf(name, sizeof(name), "domain%d", PCPU_GET(domain)); 2227 if (bootverbose) 2228 printf("Starting KTLS alloc thread for domain %d\n", 2229 PCPU_GET(domain)); 2230 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 2231 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2232 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 2233 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 2234 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 2235 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 2236 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 2237 CTLFLAG_RD, &sc->running, 0, "thread running"); 2238 2239 buf = NULL; 2240 nbufs = 0; 2241 for (;;) { 2242 atomic_store_int(&sc->running, 0); 2243 tsleep(sc, PZERO | PNOLOCK, "-", 0); 2244 atomic_store_int(&sc->running, 1); 2245 sc->wakeups++; 2246 if (nbufs != ktls_max_alloc) { 2247 free(buf, M_KTLS); 2248 nbufs = atomic_load_int(&ktls_max_alloc); 2249 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 2250 M_WAITOK | M_ZERO); 2251 } 2252 /* 2253 * Below we allocate nbufs with different allocation 2254 * flags than we use when allocating normally during 2255 * encryption in the ktls worker thread. We specify 2256 * M_NORECLAIM in the worker thread. However, we omit 2257 * that flag here and add M_WAITOK so that the VM 2258 * system is permitted to perform expensive work to 2259 * defragment memory. We do this here, as it does not 2260 * matter if this thread blocks. If we block a ktls 2261 * worker thread, we risk developing backlogs of 2262 * buffers to be encrypted, leading to surges of 2263 * traffic and potential NIC output drops. 2264 */ 2265 for (i = 0; i < nbufs; i++) { 2266 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 2267 sc->allocs++; 2268 } 2269 for (i = 0; i < nbufs; i++) { 2270 uma_zfree(ktls_buffer_zone, buf[i]); 2271 buf[i] = NULL; 2272 } 2273 } 2274 } 2275 2276 static void 2277 ktls_work_thread(void *ctx) 2278 { 2279 struct ktls_wq *wq = ctx; 2280 struct mbuf *m, *n; 2281 struct socket *so, *son; 2282 STAILQ_HEAD(, mbuf) local_m_head; 2283 STAILQ_HEAD(, socket) local_so_head; 2284 2285 if (ktls_bind_threads > 1) { 2286 curthread->td_domain.dr_policy = 2287 DOMAINSET_PREF(PCPU_GET(domain)); 2288 } 2289 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2290 fpu_kern_thread(0); 2291 #endif 2292 for (;;) { 2293 mtx_lock(&wq->mtx); 2294 while (STAILQ_EMPTY(&wq->m_head) && 2295 STAILQ_EMPTY(&wq->so_head)) { 2296 wq->running = false; 2297 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2298 wq->running = true; 2299 } 2300 2301 STAILQ_INIT(&local_m_head); 2302 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2303 STAILQ_INIT(&local_so_head); 2304 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2305 mtx_unlock(&wq->mtx); 2306 2307 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2308 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2309 ktls_free(m->m_epg_tls); 2310 m_free_raw(m); 2311 } else { 2312 ktls_encrypt(wq, m); 2313 counter_u64_add(ktls_cnt_tx_queued, -1); 2314 } 2315 } 2316 2317 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2318 ktls_decrypt(so); 2319 counter_u64_add(ktls_cnt_rx_queued, -1); 2320 } 2321 } 2322 } 2323 2324 #if defined(INET) || defined(INET6) 2325 static void 2326 ktls_disable_ifnet_help(void *context, int pending __unused) 2327 { 2328 struct ktls_session *tls; 2329 struct inpcb *inp; 2330 struct tcpcb *tp; 2331 struct socket *so; 2332 int err; 2333 2334 tls = context; 2335 inp = tls->inp; 2336 if (inp == NULL) 2337 return; 2338 INP_WLOCK(inp); 2339 so = inp->inp_socket; 2340 MPASS(so != NULL); 2341 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 2342 (inp->inp_flags2 & INP_FREED)) { 2343 goto out; 2344 } 2345 2346 if (so->so_snd.sb_tls_info != NULL) 2347 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 2348 else 2349 err = ENXIO; 2350 if (err == 0) { 2351 counter_u64_add(ktls_ifnet_disable_ok, 1); 2352 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 2353 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0 && 2354 (inp->inp_flags2 & INP_FREED) == 0 && 2355 (tp = intotcpcb(inp)) != NULL && 2356 tp->t_fb->tfb_hwtls_change != NULL) 2357 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 2358 } else { 2359 counter_u64_add(ktls_ifnet_disable_fail, 1); 2360 } 2361 2362 out: 2363 SOCK_LOCK(so); 2364 sorele(so); 2365 if (!in_pcbrele_wlocked(inp)) 2366 INP_WUNLOCK(inp); 2367 ktls_free(tls); 2368 } 2369 2370 /* 2371 * Called when re-transmits are becoming a substantial portion of the 2372 * sends on this connection. When this happens, we transition the 2373 * connection to software TLS. This is needed because most inline TLS 2374 * NICs keep crypto state only for in-order transmits. This means 2375 * that to handle a TCP rexmit (which is out-of-order), the NIC must 2376 * re-DMA the entire TLS record up to and including the current 2377 * segment. This means that when re-transmitting the last ~1448 byte 2378 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 2379 * of magnitude more data than we are sending. This can cause the 2380 * PCIe link to saturate well before the network, which can cause 2381 * output drops, and a general loss of capacity. 2382 */ 2383 void 2384 ktls_disable_ifnet(void *arg) 2385 { 2386 struct tcpcb *tp; 2387 struct inpcb *inp; 2388 struct socket *so; 2389 struct ktls_session *tls; 2390 2391 tp = arg; 2392 inp = tp->t_inpcb; 2393 INP_WLOCK_ASSERT(inp); 2394 so = inp->inp_socket; 2395 SOCK_LOCK(so); 2396 tls = so->so_snd.sb_tls_info; 2397 if (tls->disable_ifnet_pending) { 2398 SOCK_UNLOCK(so); 2399 return; 2400 } 2401 2402 /* 2403 * note that disable_ifnet_pending is never cleared; disabling 2404 * ifnet can only be done once per session, so we never want 2405 * to do it again 2406 */ 2407 2408 (void)ktls_hold(tls); 2409 in_pcbref(inp); 2410 soref(so); 2411 tls->disable_ifnet_pending = true; 2412 tls->inp = inp; 2413 SOCK_UNLOCK(so); 2414 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 2415 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 2416 } 2417 #endif 2418