1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/domainset.h> 40 #include <sys/endian.h> 41 #include <sys/ktls.h> 42 #include <sys/lock.h> 43 #include <sys/mbuf.h> 44 #include <sys/mutex.h> 45 #include <sys/rmlock.h> 46 #include <sys/proc.h> 47 #include <sys/protosw.h> 48 #include <sys/refcount.h> 49 #include <sys/smp.h> 50 #include <sys/socket.h> 51 #include <sys/socketvar.h> 52 #include <sys/sysctl.h> 53 #include <sys/taskqueue.h> 54 #include <sys/kthread.h> 55 #include <sys/uio.h> 56 #include <sys/vmmeter.h> 57 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 58 #include <machine/pcb.h> 59 #endif 60 #include <machine/vmparam.h> 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #ifdef RSS 64 #include <net/netisr.h> 65 #include <net/rss_config.h> 66 #endif 67 #include <net/route.h> 68 #include <net/route/nhop.h> 69 #include <netinet/in.h> 70 #include <netinet/in_pcb.h> 71 #include <netinet/tcp_var.h> 72 #ifdef TCP_OFFLOAD 73 #include <netinet/tcp_offload.h> 74 #endif 75 #include <opencrypto/cryptodev.h> 76 #include <opencrypto/ktls.h> 77 #include <vm/uma_dbg.h> 78 #include <vm/vm.h> 79 #include <vm/vm_pageout.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_pagequeue.h> 82 83 struct ktls_wq { 84 struct mtx mtx; 85 STAILQ_HEAD(, mbuf) m_head; 86 STAILQ_HEAD(, socket) so_head; 87 bool running; 88 int lastallocfail; 89 } __aligned(CACHE_LINE_SIZE); 90 91 struct ktls_alloc_thread { 92 uint64_t wakeups; 93 uint64_t allocs; 94 struct thread *td; 95 int running; 96 }; 97 98 struct ktls_domain_info { 99 int count; 100 int cpu[MAXCPU]; 101 struct ktls_alloc_thread alloc_td; 102 }; 103 104 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 105 static struct ktls_wq *ktls_wq; 106 static struct proc *ktls_proc; 107 static uma_zone_t ktls_session_zone; 108 static uma_zone_t ktls_buffer_zone; 109 static uint16_t ktls_cpuid_lookup[MAXCPU]; 110 static int ktls_init_state; 111 static struct sx ktls_init_lock; 112 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init"); 113 114 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 115 "Kernel TLS offload"); 116 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 117 "Kernel TLS offload stats"); 118 119 #ifdef RSS 120 static int ktls_bind_threads = 1; 121 #else 122 static int ktls_bind_threads; 123 #endif 124 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 125 &ktls_bind_threads, 0, 126 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 127 128 static u_int ktls_maxlen = 16384; 129 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 130 &ktls_maxlen, 0, "Maximum TLS record size"); 131 132 static int ktls_number_threads; 133 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 134 &ktls_number_threads, 0, 135 "Number of TLS threads in thread-pool"); 136 137 unsigned int ktls_ifnet_max_rexmit_pct = 2; 138 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN, 139 &ktls_ifnet_max_rexmit_pct, 2, 140 "Max percent bytes retransmitted before ifnet TLS is disabled"); 141 142 static bool ktls_offload_enable; 143 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 144 &ktls_offload_enable, 0, 145 "Enable support for kernel TLS offload"); 146 147 static bool ktls_cbc_enable = true; 148 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 149 &ktls_cbc_enable, 1, 150 "Enable support of AES-CBC crypto for kernel TLS"); 151 152 static bool ktls_sw_buffer_cache = true; 153 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 154 &ktls_sw_buffer_cache, 1, 155 "Enable caching of output buffers for SW encryption"); 156 157 static int ktls_max_alloc = 128; 158 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_alloc, CTLFLAG_RWTUN, 159 &ktls_max_alloc, 128, 160 "Max number of 16k buffers to allocate in thread context"); 161 162 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 163 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 164 &ktls_tasks_active, "Number of active tasks"); 165 166 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending); 167 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD, 168 &ktls_cnt_tx_pending, 169 "Number of TLS 1.0 records waiting for earlier TLS records"); 170 171 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 172 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 173 &ktls_cnt_tx_queued, 174 "Number of TLS records in queue to tasks for SW encryption"); 175 176 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 178 &ktls_cnt_rx_queued, 179 "Number of TLS sockets in queue to tasks for SW decryption"); 180 181 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 182 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 183 CTLFLAG_RD, &ktls_offload_total, 184 "Total successful TLS setups (parameters set)"); 185 186 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 187 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 188 CTLFLAG_RD, &ktls_offload_enable_calls, 189 "Total number of TLS enable calls made"); 190 191 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 192 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 193 &ktls_offload_active, "Total Active TLS sessions"); 194 195 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 196 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 197 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 198 199 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 200 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 201 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 202 203 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 204 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 205 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 206 207 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 208 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 209 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 210 211 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 212 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 213 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 214 215 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail); 216 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD, 217 &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet"); 218 219 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok); 220 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD, 221 &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet"); 222 223 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task); 224 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD, 225 &ktls_destroy_task, 226 "Number of times ktls session was destroyed via taskqueue"); 227 228 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 229 "Software TLS session stats"); 230 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 231 "Hardware (ifnet) TLS session stats"); 232 #ifdef TCP_OFFLOAD 233 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 234 "TOE TLS session stats"); 235 #endif 236 237 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 238 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 239 "Active number of software TLS sessions using AES-CBC"); 240 241 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 242 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 243 "Active number of software TLS sessions using AES-GCM"); 244 245 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 246 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 247 &ktls_sw_chacha20, 248 "Active number of software TLS sessions using Chacha20-Poly1305"); 249 250 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 251 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 252 &ktls_ifnet_cbc, 253 "Active number of ifnet TLS sessions using AES-CBC"); 254 255 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 256 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 257 &ktls_ifnet_gcm, 258 "Active number of ifnet TLS sessions using AES-GCM"); 259 260 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 261 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 262 &ktls_ifnet_chacha20, 263 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 264 265 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 266 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 267 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 268 269 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 270 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 271 &ktls_ifnet_reset_dropped, 272 "TLS sessions dropped after failing to update ifnet send tag"); 273 274 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 275 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 276 &ktls_ifnet_reset_failed, 277 "TLS sessions that failed to allocate a new ifnet send tag"); 278 279 static int ktls_ifnet_permitted; 280 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 281 &ktls_ifnet_permitted, 1, 282 "Whether to permit hardware (ifnet) TLS sessions"); 283 284 #ifdef TCP_OFFLOAD 285 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 286 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 287 &ktls_toe_cbc, 288 "Active number of TOE TLS sessions using AES-CBC"); 289 290 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 291 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 292 &ktls_toe_gcm, 293 "Active number of TOE TLS sessions using AES-GCM"); 294 295 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 296 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 297 &ktls_toe_chacha20, 298 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 299 #endif 300 301 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 302 303 static void ktls_reset_receive_tag(void *context, int pending); 304 static void ktls_reset_send_tag(void *context, int pending); 305 static void ktls_work_thread(void *ctx); 306 static void ktls_alloc_thread(void *ctx); 307 308 static u_int 309 ktls_get_cpu(struct socket *so) 310 { 311 struct inpcb *inp; 312 #ifdef NUMA 313 struct ktls_domain_info *di; 314 #endif 315 u_int cpuid; 316 317 inp = sotoinpcb(so); 318 #ifdef RSS 319 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 320 if (cpuid != NETISR_CPUID_NONE) 321 return (cpuid); 322 #endif 323 /* 324 * Just use the flowid to shard connections in a repeatable 325 * fashion. Note that TLS 1.0 sessions rely on the 326 * serialization provided by having the same connection use 327 * the same queue. 328 */ 329 #ifdef NUMA 330 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 331 di = &ktls_domains[inp->inp_numa_domain]; 332 cpuid = di->cpu[inp->inp_flowid % di->count]; 333 } else 334 #endif 335 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 336 return (cpuid); 337 } 338 339 static int 340 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 341 { 342 vm_page_t m; 343 int i, req; 344 345 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 346 ("%s: ktls max length %d is not page size-aligned", 347 __func__, ktls_maxlen)); 348 349 req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags); 350 for (i = 0; i < count; i++) { 351 m = vm_page_alloc_noobj_contig_domain(domain, req, 352 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 353 VM_MEMATTR_DEFAULT); 354 if (m == NULL) 355 break; 356 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 357 } 358 return (i); 359 } 360 361 static void 362 ktls_buffer_release(void *arg __unused, void **store, int count) 363 { 364 vm_page_t m; 365 int i, j; 366 367 for (i = 0; i < count; i++) { 368 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 369 for (j = 0; j < atop(ktls_maxlen); j++) { 370 (void)vm_page_unwire_noq(m + j); 371 vm_page_free(m + j); 372 } 373 } 374 } 375 376 static void 377 ktls_free_mext_contig(struct mbuf *m) 378 { 379 M_ASSERTEXTPG(m); 380 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 381 } 382 383 static int 384 ktls_init(void) 385 { 386 struct thread *td; 387 struct pcpu *pc; 388 int count, domain, error, i; 389 390 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 391 M_WAITOK | M_ZERO); 392 393 ktls_session_zone = uma_zcreate("ktls_session", 394 sizeof(struct ktls_session), 395 NULL, NULL, NULL, NULL, 396 UMA_ALIGN_CACHE, 0); 397 398 if (ktls_sw_buffer_cache) { 399 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 400 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 401 ktls_buffer_import, ktls_buffer_release, NULL, 402 UMA_ZONE_FIRSTTOUCH); 403 } 404 405 /* 406 * Initialize the workqueues to run the TLS work. We create a 407 * work queue for each CPU. 408 */ 409 CPU_FOREACH(i) { 410 STAILQ_INIT(&ktls_wq[i].m_head); 411 STAILQ_INIT(&ktls_wq[i].so_head); 412 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 413 if (ktls_bind_threads > 1) { 414 pc = pcpu_find(i); 415 domain = pc->pc_domain; 416 count = ktls_domains[domain].count; 417 ktls_domains[domain].cpu[count] = i; 418 ktls_domains[domain].count++; 419 } 420 ktls_cpuid_lookup[ktls_number_threads] = i; 421 ktls_number_threads++; 422 } 423 424 /* 425 * If we somehow have an empty domain, fall back to choosing 426 * among all KTLS threads. 427 */ 428 if (ktls_bind_threads > 1) { 429 for (i = 0; i < vm_ndomains; i++) { 430 if (ktls_domains[i].count == 0) { 431 ktls_bind_threads = 1; 432 break; 433 } 434 } 435 } 436 437 /* Start kthreads for each workqueue. */ 438 CPU_FOREACH(i) { 439 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 440 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 441 if (error) { 442 printf("Can't add KTLS thread %d error %d\n", i, error); 443 return (error); 444 } 445 } 446 447 /* 448 * Start an allocation thread per-domain to perform blocking allocations 449 * of 16k physically contiguous TLS crypto destination buffers. 450 */ 451 if (ktls_sw_buffer_cache) { 452 for (domain = 0; domain < vm_ndomains; domain++) { 453 if (VM_DOMAIN_EMPTY(domain)) 454 continue; 455 if (CPU_EMPTY(&cpuset_domain[domain])) 456 continue; 457 error = kproc_kthread_add(ktls_alloc_thread, 458 &ktls_domains[domain], &ktls_proc, 459 &ktls_domains[domain].alloc_td.td, 460 0, 0, "KTLS", "alloc_%d", domain); 461 if (error) { 462 printf("Can't add KTLS alloc thread %d error %d\n", 463 domain, error); 464 return (error); 465 } 466 } 467 } 468 469 if (bootverbose) 470 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 471 return (0); 472 } 473 474 static int 475 ktls_start_kthreads(void) 476 { 477 int error, state; 478 479 start: 480 state = atomic_load_acq_int(&ktls_init_state); 481 if (__predict_true(state > 0)) 482 return (0); 483 if (state < 0) 484 return (ENXIO); 485 486 sx_xlock(&ktls_init_lock); 487 if (ktls_init_state != 0) { 488 sx_xunlock(&ktls_init_lock); 489 goto start; 490 } 491 492 error = ktls_init(); 493 if (error == 0) 494 state = 1; 495 else 496 state = -1; 497 atomic_store_rel_int(&ktls_init_state, state); 498 sx_xunlock(&ktls_init_lock); 499 return (error); 500 } 501 502 static int 503 ktls_create_session(struct socket *so, struct tls_enable *en, 504 struct ktls_session **tlsp, int direction) 505 { 506 struct ktls_session *tls; 507 int error; 508 509 /* Only TLS 1.0 - 1.3 are supported. */ 510 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 511 return (EINVAL); 512 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 513 en->tls_vminor > TLS_MINOR_VER_THREE) 514 return (EINVAL); 515 516 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 517 return (EINVAL); 518 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 519 return (EINVAL); 520 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 521 return (EINVAL); 522 523 /* All supported algorithms require a cipher key. */ 524 if (en->cipher_key_len == 0) 525 return (EINVAL); 526 527 /* No flags are currently supported. */ 528 if (en->flags != 0) 529 return (EINVAL); 530 531 /* Common checks for supported algorithms. */ 532 switch (en->cipher_algorithm) { 533 case CRYPTO_AES_NIST_GCM_16: 534 /* 535 * auth_algorithm isn't used, but permit GMAC values 536 * for compatibility. 537 */ 538 switch (en->auth_algorithm) { 539 case 0: 540 #ifdef COMPAT_FREEBSD12 541 /* XXX: Really 13.0-current COMPAT. */ 542 case CRYPTO_AES_128_NIST_GMAC: 543 case CRYPTO_AES_192_NIST_GMAC: 544 case CRYPTO_AES_256_NIST_GMAC: 545 #endif 546 break; 547 default: 548 return (EINVAL); 549 } 550 if (en->auth_key_len != 0) 551 return (EINVAL); 552 switch (en->tls_vminor) { 553 case TLS_MINOR_VER_TWO: 554 if (en->iv_len != TLS_AEAD_GCM_LEN) 555 return (EINVAL); 556 break; 557 case TLS_MINOR_VER_THREE: 558 if (en->iv_len != TLS_1_3_GCM_IV_LEN) 559 return (EINVAL); 560 break; 561 default: 562 return (EINVAL); 563 } 564 break; 565 case CRYPTO_AES_CBC: 566 switch (en->auth_algorithm) { 567 case CRYPTO_SHA1_HMAC: 568 break; 569 case CRYPTO_SHA2_256_HMAC: 570 case CRYPTO_SHA2_384_HMAC: 571 if (en->tls_vminor != TLS_MINOR_VER_TWO) 572 return (EINVAL); 573 break; 574 default: 575 return (EINVAL); 576 } 577 if (en->auth_key_len == 0) 578 return (EINVAL); 579 580 /* 581 * TLS 1.0 requires an implicit IV. TLS 1.1 and 1.2 582 * use explicit IVs. 583 */ 584 switch (en->tls_vminor) { 585 case TLS_MINOR_VER_ZERO: 586 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 587 return (EINVAL); 588 break; 589 case TLS_MINOR_VER_ONE: 590 case TLS_MINOR_VER_TWO: 591 /* Ignore any supplied IV. */ 592 en->iv_len = 0; 593 break; 594 default: 595 return (EINVAL); 596 } 597 break; 598 case CRYPTO_CHACHA20_POLY1305: 599 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 600 return (EINVAL); 601 if (en->tls_vminor != TLS_MINOR_VER_TWO && 602 en->tls_vminor != TLS_MINOR_VER_THREE) 603 return (EINVAL); 604 if (en->iv_len != TLS_CHACHA20_IV_LEN) 605 return (EINVAL); 606 break; 607 default: 608 return (EINVAL); 609 } 610 611 error = ktls_start_kthreads(); 612 if (error != 0) 613 return (error); 614 615 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 616 617 counter_u64_add(ktls_offload_active, 1); 618 619 refcount_init(&tls->refcount, 1); 620 if (direction == KTLS_RX) { 621 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls); 622 } else { 623 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 624 tls->inp = so->so_pcb; 625 in_pcbref(tls->inp); 626 tls->tx = true; 627 } 628 629 tls->wq_index = ktls_get_cpu(so); 630 631 tls->params.cipher_algorithm = en->cipher_algorithm; 632 tls->params.auth_algorithm = en->auth_algorithm; 633 tls->params.tls_vmajor = en->tls_vmajor; 634 tls->params.tls_vminor = en->tls_vminor; 635 tls->params.flags = en->flags; 636 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 637 638 /* Set the header and trailer lengths. */ 639 tls->params.tls_hlen = sizeof(struct tls_record_layer); 640 switch (en->cipher_algorithm) { 641 case CRYPTO_AES_NIST_GCM_16: 642 /* 643 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 644 * nonce. TLS 1.3 uses a 12 byte implicit IV. 645 */ 646 if (en->tls_vminor < TLS_MINOR_VER_THREE) 647 tls->params.tls_hlen += sizeof(uint64_t); 648 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 649 tls->params.tls_bs = 1; 650 break; 651 case CRYPTO_AES_CBC: 652 switch (en->auth_algorithm) { 653 case CRYPTO_SHA1_HMAC: 654 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 655 /* Implicit IV, no nonce. */ 656 tls->sequential_records = true; 657 tls->next_seqno = be64dec(en->rec_seq); 658 STAILQ_INIT(&tls->pending_records); 659 } else { 660 tls->params.tls_hlen += AES_BLOCK_LEN; 661 } 662 tls->params.tls_tlen = AES_BLOCK_LEN + 663 SHA1_HASH_LEN; 664 break; 665 case CRYPTO_SHA2_256_HMAC: 666 tls->params.tls_hlen += AES_BLOCK_LEN; 667 tls->params.tls_tlen = AES_BLOCK_LEN + 668 SHA2_256_HASH_LEN; 669 break; 670 case CRYPTO_SHA2_384_HMAC: 671 tls->params.tls_hlen += AES_BLOCK_LEN; 672 tls->params.tls_tlen = AES_BLOCK_LEN + 673 SHA2_384_HASH_LEN; 674 break; 675 default: 676 panic("invalid hmac"); 677 } 678 tls->params.tls_bs = AES_BLOCK_LEN; 679 break; 680 case CRYPTO_CHACHA20_POLY1305: 681 /* 682 * Chacha20 uses a 12 byte implicit IV. 683 */ 684 tls->params.tls_tlen = POLY1305_HASH_LEN; 685 tls->params.tls_bs = 1; 686 break; 687 default: 688 panic("invalid cipher"); 689 } 690 691 /* 692 * TLS 1.3 includes optional padding which we do not support, 693 * and also puts the "real" record type at the end of the 694 * encrypted data. 695 */ 696 if (en->tls_vminor == TLS_MINOR_VER_THREE) 697 tls->params.tls_tlen += sizeof(uint8_t); 698 699 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 700 ("TLS header length too long: %d", tls->params.tls_hlen)); 701 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 702 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 703 704 if (en->auth_key_len != 0) { 705 tls->params.auth_key_len = en->auth_key_len; 706 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 707 M_WAITOK); 708 error = copyin(en->auth_key, tls->params.auth_key, 709 en->auth_key_len); 710 if (error) 711 goto out; 712 } 713 714 tls->params.cipher_key_len = en->cipher_key_len; 715 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 716 error = copyin(en->cipher_key, tls->params.cipher_key, 717 en->cipher_key_len); 718 if (error) 719 goto out; 720 721 /* 722 * This holds the implicit portion of the nonce for AEAD 723 * ciphers and the initial implicit IV for TLS 1.0. The 724 * explicit portions of the IV are generated in ktls_frame(). 725 */ 726 if (en->iv_len != 0) { 727 tls->params.iv_len = en->iv_len; 728 error = copyin(en->iv, tls->params.iv, en->iv_len); 729 if (error) 730 goto out; 731 732 /* 733 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 734 * counter to generate unique explicit IVs. 735 * 736 * Store this counter in the last 8 bytes of the IV 737 * array so that it is 8-byte aligned. 738 */ 739 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 740 en->tls_vminor == TLS_MINOR_VER_TWO) 741 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 742 } 743 744 *tlsp = tls; 745 return (0); 746 747 out: 748 ktls_free(tls); 749 return (error); 750 } 751 752 static struct ktls_session * 753 ktls_clone_session(struct ktls_session *tls, int direction) 754 { 755 struct ktls_session *tls_new; 756 757 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 758 759 counter_u64_add(ktls_offload_active, 1); 760 761 refcount_init(&tls_new->refcount, 1); 762 if (direction == KTLS_RX) { 763 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag, 764 tls_new); 765 } else { 766 TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag, 767 tls_new); 768 tls_new->inp = tls->inp; 769 tls_new->tx = true; 770 in_pcbref(tls_new->inp); 771 } 772 773 /* Copy fields from existing session. */ 774 tls_new->params = tls->params; 775 tls_new->wq_index = tls->wq_index; 776 777 /* Deep copy keys. */ 778 if (tls_new->params.auth_key != NULL) { 779 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 780 M_KTLS, M_WAITOK); 781 memcpy(tls_new->params.auth_key, tls->params.auth_key, 782 tls->params.auth_key_len); 783 } 784 785 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 786 M_WAITOK); 787 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 788 tls->params.cipher_key_len); 789 790 return (tls_new); 791 } 792 793 #ifdef TCP_OFFLOAD 794 static int 795 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 796 { 797 struct inpcb *inp; 798 struct tcpcb *tp; 799 int error; 800 801 inp = so->so_pcb; 802 INP_WLOCK(inp); 803 if (inp->inp_flags & INP_DROPPED) { 804 INP_WUNLOCK(inp); 805 return (ECONNRESET); 806 } 807 if (inp->inp_socket == NULL) { 808 INP_WUNLOCK(inp); 809 return (ECONNRESET); 810 } 811 tp = intotcpcb(inp); 812 if (!(tp->t_flags & TF_TOE)) { 813 INP_WUNLOCK(inp); 814 return (EOPNOTSUPP); 815 } 816 817 error = tcp_offload_alloc_tls_session(tp, tls, direction); 818 INP_WUNLOCK(inp); 819 if (error == 0) { 820 tls->mode = TCP_TLS_MODE_TOE; 821 switch (tls->params.cipher_algorithm) { 822 case CRYPTO_AES_CBC: 823 counter_u64_add(ktls_toe_cbc, 1); 824 break; 825 case CRYPTO_AES_NIST_GCM_16: 826 counter_u64_add(ktls_toe_gcm, 1); 827 break; 828 case CRYPTO_CHACHA20_POLY1305: 829 counter_u64_add(ktls_toe_chacha20, 1); 830 break; 831 } 832 } 833 return (error); 834 } 835 #endif 836 837 /* 838 * Common code used when first enabling ifnet TLS on a connection or 839 * when allocating a new ifnet TLS session due to a routing change. 840 * This function allocates a new TLS send tag on whatever interface 841 * the connection is currently routed over. 842 */ 843 static int 844 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 845 struct m_snd_tag **mstp) 846 { 847 union if_snd_tag_alloc_params params; 848 struct ifnet *ifp; 849 struct nhop_object *nh; 850 struct tcpcb *tp; 851 int error; 852 853 INP_RLOCK(inp); 854 if (inp->inp_flags & INP_DROPPED) { 855 INP_RUNLOCK(inp); 856 return (ECONNRESET); 857 } 858 if (inp->inp_socket == NULL) { 859 INP_RUNLOCK(inp); 860 return (ECONNRESET); 861 } 862 tp = intotcpcb(inp); 863 864 /* 865 * Check administrative controls on ifnet TLS to determine if 866 * ifnet TLS should be denied. 867 * 868 * - Always permit 'force' requests. 869 * - ktls_ifnet_permitted == 0: always deny. 870 */ 871 if (!force && ktls_ifnet_permitted == 0) { 872 INP_RUNLOCK(inp); 873 return (ENXIO); 874 } 875 876 /* 877 * XXX: Use the cached route in the inpcb to find the 878 * interface. This should perhaps instead use 879 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 880 * enabled after a connection has completed key negotiation in 881 * userland, the cached route will be present in practice. 882 */ 883 nh = inp->inp_route.ro_nh; 884 if (nh == NULL) { 885 INP_RUNLOCK(inp); 886 return (ENXIO); 887 } 888 ifp = nh->nh_ifp; 889 if_ref(ifp); 890 891 /* 892 * Allocate a TLS + ratelimit tag if the connection has an 893 * existing pacing rate. 894 */ 895 if (tp->t_pacing_rate != -1 && 896 (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) { 897 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 898 params.tls_rate_limit.inp = inp; 899 params.tls_rate_limit.tls = tls; 900 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 901 } else { 902 params.hdr.type = IF_SND_TAG_TYPE_TLS; 903 params.tls.inp = inp; 904 params.tls.tls = tls; 905 } 906 params.hdr.flowid = inp->inp_flowid; 907 params.hdr.flowtype = inp->inp_flowtype; 908 params.hdr.numa_domain = inp->inp_numa_domain; 909 INP_RUNLOCK(inp); 910 911 if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) { 912 error = EOPNOTSUPP; 913 goto out; 914 } 915 if (inp->inp_vflag & INP_IPV6) { 916 if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) { 917 error = EOPNOTSUPP; 918 goto out; 919 } 920 } else { 921 if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) { 922 error = EOPNOTSUPP; 923 goto out; 924 } 925 } 926 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 927 out: 928 if_rele(ifp); 929 return (error); 930 } 931 932 /* 933 * Allocate an initial TLS receive tag for doing HW decryption of TLS 934 * data. 935 * 936 * This function allocates a new TLS receive tag on whatever interface 937 * the connection is currently routed over. If the connection ends up 938 * using a different interface for receive this will get fixed up via 939 * ktls_input_ifp_mismatch as future packets arrive. 940 */ 941 static int 942 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls, 943 struct m_snd_tag **mstp) 944 { 945 union if_snd_tag_alloc_params params; 946 struct ifnet *ifp; 947 struct nhop_object *nh; 948 int error; 949 950 if (!ktls_ocf_recrypt_supported(tls)) 951 return (ENXIO); 952 953 INP_RLOCK(inp); 954 if (inp->inp_flags & INP_DROPPED) { 955 INP_RUNLOCK(inp); 956 return (ECONNRESET); 957 } 958 if (inp->inp_socket == NULL) { 959 INP_RUNLOCK(inp); 960 return (ECONNRESET); 961 } 962 963 /* 964 * Check administrative controls on ifnet TLS to determine if 965 * ifnet TLS should be denied. 966 */ 967 if (ktls_ifnet_permitted == 0) { 968 INP_RUNLOCK(inp); 969 return (ENXIO); 970 } 971 972 /* 973 * XXX: As with ktls_alloc_snd_tag, use the cached route in 974 * the inpcb to find the interface. 975 */ 976 nh = inp->inp_route.ro_nh; 977 if (nh == NULL) { 978 INP_RUNLOCK(inp); 979 return (ENXIO); 980 } 981 ifp = nh->nh_ifp; 982 if_ref(ifp); 983 tls->rx_ifp = ifp; 984 985 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 986 params.hdr.flowid = inp->inp_flowid; 987 params.hdr.flowtype = inp->inp_flowtype; 988 params.hdr.numa_domain = inp->inp_numa_domain; 989 params.tls_rx.inp = inp; 990 params.tls_rx.tls = tls; 991 params.tls_rx.vlan_id = 0; 992 993 INP_RUNLOCK(inp); 994 995 if (inp->inp_vflag & INP_IPV6) { 996 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) { 997 error = EOPNOTSUPP; 998 goto out; 999 } 1000 } else { 1001 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) { 1002 error = EOPNOTSUPP; 1003 goto out; 1004 } 1005 } 1006 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 1007 1008 /* 1009 * If this connection is over a vlan, vlan_snd_tag_alloc 1010 * rewrites vlan_id with the saved interface. Save the VLAN 1011 * ID for use in ktls_reset_receive_tag which allocates new 1012 * receive tags directly from the leaf interface bypassing 1013 * if_vlan. 1014 */ 1015 if (error == 0) 1016 tls->rx_vlan_id = params.tls_rx.vlan_id; 1017 out: 1018 return (error); 1019 } 1020 1021 static int 1022 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction, 1023 bool force) 1024 { 1025 struct m_snd_tag *mst; 1026 int error; 1027 1028 switch (direction) { 1029 case KTLS_TX: 1030 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 1031 if (__predict_false(error != 0)) 1032 goto done; 1033 break; 1034 case KTLS_RX: 1035 KASSERT(!force, ("%s: forced receive tag", __func__)); 1036 error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst); 1037 if (__predict_false(error != 0)) 1038 goto done; 1039 break; 1040 default: 1041 __assert_unreachable(); 1042 } 1043 1044 tls->mode = TCP_TLS_MODE_IFNET; 1045 tls->snd_tag = mst; 1046 1047 switch (tls->params.cipher_algorithm) { 1048 case CRYPTO_AES_CBC: 1049 counter_u64_add(ktls_ifnet_cbc, 1); 1050 break; 1051 case CRYPTO_AES_NIST_GCM_16: 1052 counter_u64_add(ktls_ifnet_gcm, 1); 1053 break; 1054 case CRYPTO_CHACHA20_POLY1305: 1055 counter_u64_add(ktls_ifnet_chacha20, 1); 1056 break; 1057 default: 1058 break; 1059 } 1060 done: 1061 return (error); 1062 } 1063 1064 static void 1065 ktls_use_sw(struct ktls_session *tls) 1066 { 1067 tls->mode = TCP_TLS_MODE_SW; 1068 switch (tls->params.cipher_algorithm) { 1069 case CRYPTO_AES_CBC: 1070 counter_u64_add(ktls_sw_cbc, 1); 1071 break; 1072 case CRYPTO_AES_NIST_GCM_16: 1073 counter_u64_add(ktls_sw_gcm, 1); 1074 break; 1075 case CRYPTO_CHACHA20_POLY1305: 1076 counter_u64_add(ktls_sw_chacha20, 1); 1077 break; 1078 } 1079 } 1080 1081 static int 1082 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 1083 { 1084 int error; 1085 1086 error = ktls_ocf_try(so, tls, direction); 1087 if (error) 1088 return (error); 1089 ktls_use_sw(tls); 1090 return (0); 1091 } 1092 1093 /* 1094 * KTLS RX stores data in the socket buffer as a list of TLS records, 1095 * where each record is stored as a control message containg the TLS 1096 * header followed by data mbufs containing the decrypted data. This 1097 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1098 * both encrypted and decrypted data. TLS records decrypted by a NIC 1099 * should be queued to the socket buffer as records, but encrypted 1100 * data which needs to be decrypted by software arrives as a stream of 1101 * regular mbufs which need to be converted. In addition, there may 1102 * already be pending encrypted data in the socket buffer when KTLS RX 1103 * is enabled. 1104 * 1105 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1106 * is used: 1107 * 1108 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1109 * 1110 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1111 * from the first mbuf. Once all of the data for that TLS record is 1112 * queued, the socket is queued to a worker thread. 1113 * 1114 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1115 * the TLS chain. Each TLS record is detached from the TLS chain, 1116 * decrypted, and inserted into the regular socket buffer chain as 1117 * record starting with a control message holding the TLS header and 1118 * a chain of mbufs holding the encrypted data. 1119 */ 1120 1121 static void 1122 sb_mark_notready(struct sockbuf *sb) 1123 { 1124 struct mbuf *m; 1125 1126 m = sb->sb_mb; 1127 sb->sb_mtls = m; 1128 sb->sb_mb = NULL; 1129 sb->sb_mbtail = NULL; 1130 sb->sb_lastrecord = NULL; 1131 for (; m != NULL; m = m->m_next) { 1132 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1133 __func__)); 1134 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1135 __func__)); 1136 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1137 __func__)); 1138 m->m_flags |= M_NOTREADY; 1139 sb->sb_acc -= m->m_len; 1140 sb->sb_tlscc += m->m_len; 1141 sb->sb_mtlstail = m; 1142 } 1143 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1144 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1145 sb->sb_ccc)); 1146 } 1147 1148 /* 1149 * Return information about the pending TLS data in a socket 1150 * buffer. On return, 'seqno' is set to the sequence number 1151 * of the next TLS record to be received, 'resid' is set to 1152 * the amount of bytes still needed for the last pending 1153 * record. The function returns 'false' if the last pending 1154 * record contains a partial TLS header. In that case, 'resid' 1155 * is the number of bytes needed to complete the TLS header. 1156 */ 1157 bool 1158 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp) 1159 { 1160 struct tls_record_layer hdr; 1161 struct mbuf *m; 1162 uint64_t seqno; 1163 size_t resid; 1164 u_int offset, record_len; 1165 1166 SOCKBUF_LOCK_ASSERT(sb); 1167 MPASS(sb->sb_flags & SB_TLS_RX); 1168 seqno = sb->sb_tls_seqno; 1169 resid = sb->sb_tlscc; 1170 m = sb->sb_mtls; 1171 offset = 0; 1172 1173 if (resid == 0) { 1174 *seqnop = seqno; 1175 *residp = 0; 1176 return (true); 1177 } 1178 1179 for (;;) { 1180 seqno++; 1181 1182 if (resid < sizeof(hdr)) { 1183 *seqnop = seqno; 1184 *residp = sizeof(hdr) - resid; 1185 return (false); 1186 } 1187 1188 m_copydata(m, offset, sizeof(hdr), (void *)&hdr); 1189 1190 record_len = sizeof(hdr) + ntohs(hdr.tls_length); 1191 if (resid <= record_len) { 1192 *seqnop = seqno; 1193 *residp = record_len - resid; 1194 return (true); 1195 } 1196 resid -= record_len; 1197 1198 while (record_len != 0) { 1199 if (m->m_len - offset > record_len) { 1200 offset += record_len; 1201 break; 1202 } 1203 1204 record_len -= (m->m_len - offset); 1205 offset = 0; 1206 m = m->m_next; 1207 } 1208 } 1209 } 1210 1211 int 1212 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1213 { 1214 struct ktls_session *tls; 1215 int error; 1216 1217 if (!ktls_offload_enable) 1218 return (ENOTSUP); 1219 1220 counter_u64_add(ktls_offload_enable_calls, 1); 1221 1222 /* 1223 * This should always be true since only the TCP socket option 1224 * invokes this function. 1225 */ 1226 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1227 return (EINVAL); 1228 1229 /* 1230 * XXX: Don't overwrite existing sessions. We should permit 1231 * this to support rekeying in the future. 1232 */ 1233 if (so->so_rcv.sb_tls_info != NULL) 1234 return (EALREADY); 1235 1236 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1237 return (ENOTSUP); 1238 1239 error = ktls_create_session(so, en, &tls, KTLS_RX); 1240 if (error) 1241 return (error); 1242 1243 error = ktls_ocf_try(so, tls, KTLS_RX); 1244 if (error) { 1245 ktls_free(tls); 1246 return (error); 1247 } 1248 1249 /* Mark the socket as using TLS offload. */ 1250 SOCK_RECVBUF_LOCK(so); 1251 if (SOLISTENING(so)) { 1252 SOCK_RECVBUF_UNLOCK(so); 1253 ktls_free(tls); 1254 return (EINVAL); 1255 } 1256 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1257 so->so_rcv.sb_tls_info = tls; 1258 so->so_rcv.sb_flags |= SB_TLS_RX; 1259 1260 /* Mark existing data as not ready until it can be decrypted. */ 1261 sb_mark_notready(&so->so_rcv); 1262 ktls_check_rx(&so->so_rcv); 1263 SOCK_RECVBUF_UNLOCK(so); 1264 1265 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1266 #ifdef TCP_OFFLOAD 1267 error = ktls_try_toe(so, tls, KTLS_RX); 1268 if (error) 1269 #endif 1270 error = ktls_try_ifnet(so, tls, KTLS_RX, false); 1271 if (error) 1272 ktls_use_sw(tls); 1273 1274 counter_u64_add(ktls_offload_total, 1); 1275 1276 return (0); 1277 } 1278 1279 int 1280 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1281 { 1282 struct ktls_session *tls; 1283 struct inpcb *inp; 1284 struct tcpcb *tp; 1285 int error; 1286 1287 if (!ktls_offload_enable) 1288 return (ENOTSUP); 1289 1290 counter_u64_add(ktls_offload_enable_calls, 1); 1291 1292 /* 1293 * This should always be true since only the TCP socket option 1294 * invokes this function. 1295 */ 1296 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1297 return (EINVAL); 1298 1299 /* 1300 * XXX: Don't overwrite existing sessions. We should permit 1301 * this to support rekeying in the future. 1302 */ 1303 if (so->so_snd.sb_tls_info != NULL) 1304 return (EALREADY); 1305 1306 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1307 return (ENOTSUP); 1308 1309 /* TLS requires ext pgs */ 1310 if (mb_use_ext_pgs == 0) 1311 return (ENXIO); 1312 1313 error = ktls_create_session(so, en, &tls, KTLS_TX); 1314 if (error) 1315 return (error); 1316 1317 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1318 #ifdef TCP_OFFLOAD 1319 error = ktls_try_toe(so, tls, KTLS_TX); 1320 if (error) 1321 #endif 1322 error = ktls_try_ifnet(so, tls, KTLS_TX, false); 1323 if (error) 1324 error = ktls_try_sw(so, tls, KTLS_TX); 1325 1326 if (error) { 1327 ktls_free(tls); 1328 return (error); 1329 } 1330 1331 /* 1332 * Serialize with sosend_generic() and make sure that we're not 1333 * operating on a listening socket. 1334 */ 1335 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1336 if (error) { 1337 ktls_free(tls); 1338 return (error); 1339 } 1340 1341 /* 1342 * Write lock the INP when setting sb_tls_info so that 1343 * routines in tcp_ratelimit.c can read sb_tls_info while 1344 * holding the INP lock. 1345 */ 1346 inp = so->so_pcb; 1347 INP_WLOCK(inp); 1348 SOCK_SENDBUF_LOCK(so); 1349 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1350 so->so_snd.sb_tls_info = tls; 1351 if (tls->mode != TCP_TLS_MODE_SW) { 1352 tp = intotcpcb(inp); 1353 MPASS(tp->t_nic_ktls_xmit == 0); 1354 tp->t_nic_ktls_xmit = 1; 1355 if (tp->t_fb->tfb_hwtls_change != NULL) 1356 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1357 } 1358 SOCK_SENDBUF_UNLOCK(so); 1359 INP_WUNLOCK(inp); 1360 SOCK_IO_SEND_UNLOCK(so); 1361 1362 counter_u64_add(ktls_offload_total, 1); 1363 1364 return (0); 1365 } 1366 1367 int 1368 ktls_get_rx_mode(struct socket *so, int *modep) 1369 { 1370 struct ktls_session *tls; 1371 struct inpcb *inp __diagused; 1372 1373 if (SOLISTENING(so)) 1374 return (EINVAL); 1375 inp = so->so_pcb; 1376 INP_WLOCK_ASSERT(inp); 1377 SOCK_RECVBUF_LOCK(so); 1378 tls = so->so_rcv.sb_tls_info; 1379 if (tls == NULL) 1380 *modep = TCP_TLS_MODE_NONE; 1381 else 1382 *modep = tls->mode; 1383 SOCK_RECVBUF_UNLOCK(so); 1384 return (0); 1385 } 1386 1387 /* 1388 * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number. 1389 * 1390 * This function gets information about the next TCP- and TLS- 1391 * sequence number to be processed by the TLS receive worker 1392 * thread. The information is extracted from the given "inpcb" 1393 * structure. The values are stored in host endian format at the two 1394 * given output pointer locations. The TCP sequence number points to 1395 * the beginning of the TLS header. 1396 * 1397 * This function returns zero on success, else a non-zero error code 1398 * is returned. 1399 */ 1400 int 1401 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq) 1402 { 1403 struct socket *so; 1404 struct tcpcb *tp; 1405 1406 INP_RLOCK(inp); 1407 so = inp->inp_socket; 1408 if (__predict_false(so == NULL)) { 1409 INP_RUNLOCK(inp); 1410 return (EINVAL); 1411 } 1412 if (inp->inp_flags & INP_DROPPED) { 1413 INP_RUNLOCK(inp); 1414 return (ECONNRESET); 1415 } 1416 1417 tp = intotcpcb(inp); 1418 MPASS(tp != NULL); 1419 1420 SOCKBUF_LOCK(&so->so_rcv); 1421 *tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc; 1422 *tlsseq = so->so_rcv.sb_tls_seqno; 1423 SOCKBUF_UNLOCK(&so->so_rcv); 1424 1425 INP_RUNLOCK(inp); 1426 1427 return (0); 1428 } 1429 1430 int 1431 ktls_get_tx_mode(struct socket *so, int *modep) 1432 { 1433 struct ktls_session *tls; 1434 struct inpcb *inp __diagused; 1435 1436 if (SOLISTENING(so)) 1437 return (EINVAL); 1438 inp = so->so_pcb; 1439 INP_WLOCK_ASSERT(inp); 1440 SOCK_SENDBUF_LOCK(so); 1441 tls = so->so_snd.sb_tls_info; 1442 if (tls == NULL) 1443 *modep = TCP_TLS_MODE_NONE; 1444 else 1445 *modep = tls->mode; 1446 SOCK_SENDBUF_UNLOCK(so); 1447 return (0); 1448 } 1449 1450 /* 1451 * Switch between SW and ifnet TLS sessions as requested. 1452 */ 1453 int 1454 ktls_set_tx_mode(struct socket *so, int mode) 1455 { 1456 struct ktls_session *tls, *tls_new; 1457 struct inpcb *inp; 1458 struct tcpcb *tp; 1459 int error; 1460 1461 if (SOLISTENING(so)) 1462 return (EINVAL); 1463 switch (mode) { 1464 case TCP_TLS_MODE_SW: 1465 case TCP_TLS_MODE_IFNET: 1466 break; 1467 default: 1468 return (EINVAL); 1469 } 1470 1471 inp = so->so_pcb; 1472 INP_WLOCK_ASSERT(inp); 1473 tp = intotcpcb(inp); 1474 1475 if (mode == TCP_TLS_MODE_IFNET) { 1476 /* Don't allow enabling ifnet ktls multiple times */ 1477 if (tp->t_nic_ktls_xmit) 1478 return (EALREADY); 1479 1480 /* 1481 * Don't enable ifnet ktls if we disabled it due to an 1482 * excessive retransmission rate 1483 */ 1484 if (tp->t_nic_ktls_xmit_dis) 1485 return (ENXIO); 1486 } 1487 1488 SOCKBUF_LOCK(&so->so_snd); 1489 tls = so->so_snd.sb_tls_info; 1490 if (tls == NULL) { 1491 SOCKBUF_UNLOCK(&so->so_snd); 1492 return (0); 1493 } 1494 1495 if (tls->mode == mode) { 1496 SOCKBUF_UNLOCK(&so->so_snd); 1497 return (0); 1498 } 1499 1500 tls = ktls_hold(tls); 1501 SOCKBUF_UNLOCK(&so->so_snd); 1502 INP_WUNLOCK(inp); 1503 1504 tls_new = ktls_clone_session(tls, KTLS_TX); 1505 1506 if (mode == TCP_TLS_MODE_IFNET) 1507 error = ktls_try_ifnet(so, tls_new, KTLS_TX, true); 1508 else 1509 error = ktls_try_sw(so, tls_new, KTLS_TX); 1510 if (error) { 1511 counter_u64_add(ktls_switch_failed, 1); 1512 ktls_free(tls_new); 1513 ktls_free(tls); 1514 INP_WLOCK(inp); 1515 return (error); 1516 } 1517 1518 error = SOCK_IO_SEND_LOCK(so, SBL_WAIT); 1519 if (error) { 1520 counter_u64_add(ktls_switch_failed, 1); 1521 ktls_free(tls_new); 1522 ktls_free(tls); 1523 INP_WLOCK(inp); 1524 return (error); 1525 } 1526 1527 /* 1528 * If we raced with another session change, keep the existing 1529 * session. 1530 */ 1531 if (tls != so->so_snd.sb_tls_info) { 1532 counter_u64_add(ktls_switch_failed, 1); 1533 SOCK_IO_SEND_UNLOCK(so); 1534 ktls_free(tls_new); 1535 ktls_free(tls); 1536 INP_WLOCK(inp); 1537 return (EBUSY); 1538 } 1539 1540 INP_WLOCK(inp); 1541 SOCKBUF_LOCK(&so->so_snd); 1542 so->so_snd.sb_tls_info = tls_new; 1543 if (tls_new->mode != TCP_TLS_MODE_SW) { 1544 MPASS(tp->t_nic_ktls_xmit == 0); 1545 tp->t_nic_ktls_xmit = 1; 1546 if (tp->t_fb->tfb_hwtls_change != NULL) 1547 (*tp->t_fb->tfb_hwtls_change)(tp, 1); 1548 } 1549 SOCKBUF_UNLOCK(&so->so_snd); 1550 SOCK_IO_SEND_UNLOCK(so); 1551 1552 /* 1553 * Drop two references on 'tls'. The first is for the 1554 * ktls_hold() above. The second drops the reference from the 1555 * socket buffer. 1556 */ 1557 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1558 ktls_free(tls); 1559 ktls_free(tls); 1560 1561 if (mode == TCP_TLS_MODE_IFNET) 1562 counter_u64_add(ktls_switch_to_ifnet, 1); 1563 else 1564 counter_u64_add(ktls_switch_to_sw, 1); 1565 1566 return (0); 1567 } 1568 1569 /* 1570 * Try to allocate a new TLS receive tag. This task is scheduled when 1571 * sbappend_ktls_rx detects an input path change. If a new tag is 1572 * allocated, replace the tag in the TLS session. If a new tag cannot 1573 * be allocated, let the session fall back to software decryption. 1574 */ 1575 static void 1576 ktls_reset_receive_tag(void *context, int pending) 1577 { 1578 union if_snd_tag_alloc_params params; 1579 struct ktls_session *tls; 1580 struct m_snd_tag *mst; 1581 struct inpcb *inp; 1582 struct ifnet *ifp; 1583 struct socket *so; 1584 int error; 1585 1586 MPASS(pending == 1); 1587 1588 tls = context; 1589 so = tls->so; 1590 inp = so->so_pcb; 1591 ifp = NULL; 1592 1593 INP_RLOCK(inp); 1594 if (inp->inp_flags & INP_DROPPED) { 1595 INP_RUNLOCK(inp); 1596 goto out; 1597 } 1598 1599 SOCKBUF_LOCK(&so->so_rcv); 1600 mst = tls->snd_tag; 1601 tls->snd_tag = NULL; 1602 if (mst != NULL) 1603 m_snd_tag_rele(mst); 1604 1605 ifp = tls->rx_ifp; 1606 if_ref(ifp); 1607 SOCKBUF_UNLOCK(&so->so_rcv); 1608 1609 params.hdr.type = IF_SND_TAG_TYPE_TLS_RX; 1610 params.hdr.flowid = inp->inp_flowid; 1611 params.hdr.flowtype = inp->inp_flowtype; 1612 params.hdr.numa_domain = inp->inp_numa_domain; 1613 params.tls_rx.inp = inp; 1614 params.tls_rx.tls = tls; 1615 params.tls_rx.vlan_id = tls->rx_vlan_id; 1616 INP_RUNLOCK(inp); 1617 1618 if (inp->inp_vflag & INP_IPV6) { 1619 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0) 1620 goto out; 1621 } else { 1622 if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0) 1623 goto out; 1624 } 1625 1626 error = m_snd_tag_alloc(ifp, ¶ms, &mst); 1627 if (error == 0) { 1628 SOCKBUF_LOCK(&so->so_rcv); 1629 tls->snd_tag = mst; 1630 SOCKBUF_UNLOCK(&so->so_rcv); 1631 1632 counter_u64_add(ktls_ifnet_reset, 1); 1633 } else { 1634 /* 1635 * Just fall back to software decryption if a tag 1636 * cannot be allocated leaving the connection intact. 1637 * If a future input path change switches to another 1638 * interface this connection will resume ifnet TLS. 1639 */ 1640 counter_u64_add(ktls_ifnet_reset_failed, 1); 1641 } 1642 1643 out: 1644 mtx_pool_lock(mtxpool_sleep, tls); 1645 tls->reset_pending = false; 1646 mtx_pool_unlock(mtxpool_sleep, tls); 1647 1648 if (ifp != NULL) 1649 if_rele(ifp); 1650 sorele(so); 1651 ktls_free(tls); 1652 } 1653 1654 /* 1655 * Try to allocate a new TLS send tag. This task is scheduled when 1656 * ip_output detects a route change while trying to transmit a packet 1657 * holding a TLS record. If a new tag is allocated, replace the tag 1658 * in the TLS session. Subsequent packets on the connection will use 1659 * the new tag. If a new tag cannot be allocated, drop the 1660 * connection. 1661 */ 1662 static void 1663 ktls_reset_send_tag(void *context, int pending) 1664 { 1665 struct epoch_tracker et; 1666 struct ktls_session *tls; 1667 struct m_snd_tag *old, *new; 1668 struct inpcb *inp; 1669 struct tcpcb *tp; 1670 int error; 1671 1672 MPASS(pending == 1); 1673 1674 tls = context; 1675 inp = tls->inp; 1676 1677 /* 1678 * Free the old tag first before allocating a new one. 1679 * ip[6]_output_send() will treat a NULL send tag the same as 1680 * an ifp mismatch and drop packets until a new tag is 1681 * allocated. 1682 * 1683 * Write-lock the INP when changing tls->snd_tag since 1684 * ip[6]_output_send() holds a read-lock when reading the 1685 * pointer. 1686 */ 1687 INP_WLOCK(inp); 1688 old = tls->snd_tag; 1689 tls->snd_tag = NULL; 1690 INP_WUNLOCK(inp); 1691 if (old != NULL) 1692 m_snd_tag_rele(old); 1693 1694 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1695 1696 if (error == 0) { 1697 INP_WLOCK(inp); 1698 tls->snd_tag = new; 1699 mtx_pool_lock(mtxpool_sleep, tls); 1700 tls->reset_pending = false; 1701 mtx_pool_unlock(mtxpool_sleep, tls); 1702 INP_WUNLOCK(inp); 1703 1704 counter_u64_add(ktls_ifnet_reset, 1); 1705 1706 /* 1707 * XXX: Should we kick tcp_output explicitly now that 1708 * the send tag is fixed or just rely on timers? 1709 */ 1710 } else { 1711 NET_EPOCH_ENTER(et); 1712 INP_WLOCK(inp); 1713 if (!(inp->inp_flags & INP_DROPPED)) { 1714 tp = intotcpcb(inp); 1715 CURVNET_SET(inp->inp_vnet); 1716 tp = tcp_drop(tp, ECONNABORTED); 1717 CURVNET_RESTORE(); 1718 if (tp != NULL) 1719 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1720 } 1721 INP_WUNLOCK(inp); 1722 NET_EPOCH_EXIT(et); 1723 1724 counter_u64_add(ktls_ifnet_reset_failed, 1); 1725 1726 /* 1727 * Leave reset_pending true to avoid future tasks while 1728 * the socket goes away. 1729 */ 1730 } 1731 1732 ktls_free(tls); 1733 } 1734 1735 void 1736 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp) 1737 { 1738 struct ktls_session *tls; 1739 struct socket *so; 1740 1741 SOCKBUF_LOCK_ASSERT(sb); 1742 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1743 __func__, sb)); 1744 so = __containerof(sb, struct socket, so_rcv); 1745 1746 tls = sb->sb_tls_info; 1747 if_rele(tls->rx_ifp); 1748 if_ref(ifp); 1749 tls->rx_ifp = ifp; 1750 1751 /* 1752 * See if we should schedule a task to update the receive tag for 1753 * this session. 1754 */ 1755 mtx_pool_lock(mtxpool_sleep, tls); 1756 if (!tls->reset_pending) { 1757 (void) ktls_hold(tls); 1758 soref(so); 1759 tls->so = so; 1760 tls->reset_pending = true; 1761 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1762 } 1763 mtx_pool_unlock(mtxpool_sleep, tls); 1764 } 1765 1766 int 1767 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1768 { 1769 1770 if (inp == NULL) 1771 return (ENOBUFS); 1772 1773 INP_LOCK_ASSERT(inp); 1774 1775 /* 1776 * See if we should schedule a task to update the send tag for 1777 * this session. 1778 */ 1779 mtx_pool_lock(mtxpool_sleep, tls); 1780 if (!tls->reset_pending) { 1781 (void) ktls_hold(tls); 1782 tls->reset_pending = true; 1783 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1784 } 1785 mtx_pool_unlock(mtxpool_sleep, tls); 1786 return (ENOBUFS); 1787 } 1788 1789 #ifdef RATELIMIT 1790 int 1791 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1792 { 1793 union if_snd_tag_modify_params params = { 1794 .rate_limit.max_rate = max_pacing_rate, 1795 .rate_limit.flags = M_NOWAIT, 1796 }; 1797 struct m_snd_tag *mst; 1798 1799 /* Can't get to the inp, but it should be locked. */ 1800 /* INP_LOCK_ASSERT(inp); */ 1801 1802 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1803 1804 if (tls->snd_tag == NULL) { 1805 /* 1806 * Resetting send tag, ignore this change. The 1807 * pending reset may or may not see this updated rate 1808 * in the tcpcb. If it doesn't, we will just lose 1809 * this rate change. 1810 */ 1811 return (0); 1812 } 1813 1814 mst = tls->snd_tag; 1815 1816 MPASS(mst != NULL); 1817 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1818 1819 return (mst->sw->snd_tag_modify(mst, ¶ms)); 1820 } 1821 #endif 1822 1823 static void 1824 ktls_destroy_help(void *context, int pending __unused) 1825 { 1826 ktls_destroy(context); 1827 } 1828 1829 void 1830 ktls_destroy(struct ktls_session *tls) 1831 { 1832 struct inpcb *inp; 1833 struct tcpcb *tp; 1834 bool wlocked; 1835 1836 MPASS(tls->refcount == 0); 1837 1838 inp = tls->inp; 1839 if (tls->tx) { 1840 wlocked = INP_WLOCKED(inp); 1841 if (!wlocked && !INP_TRY_WLOCK(inp)) { 1842 /* 1843 * rwlocks read locks are anonymous, and there 1844 * is no way to know if our current thread 1845 * holds an rlock on the inp. As a rough 1846 * estimate, check to see if the thread holds 1847 * *any* rlocks at all. If it does not, then we 1848 * know that we don't hold the inp rlock, and 1849 * can safely take the wlock 1850 */ 1851 if (curthread->td_rw_rlocks == 0) { 1852 INP_WLOCK(inp); 1853 } else { 1854 /* 1855 * We might hold the rlock, so let's 1856 * do the destroy in a taskqueue 1857 * context to avoid a potential 1858 * deadlock. This should be very 1859 * rare. 1860 */ 1861 counter_u64_add(ktls_destroy_task, 1); 1862 TASK_INIT(&tls->destroy_task, 0, 1863 ktls_destroy_help, tls); 1864 (void)taskqueue_enqueue(taskqueue_thread, 1865 &tls->destroy_task); 1866 return; 1867 } 1868 } 1869 } 1870 1871 if (tls->sequential_records) { 1872 struct mbuf *m, *n; 1873 int page_count; 1874 1875 STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) { 1876 page_count = m->m_epg_enc_cnt; 1877 while (page_count > 0) { 1878 KASSERT(page_count >= m->m_epg_nrdy, 1879 ("%s: too few pages", __func__)); 1880 page_count -= m->m_epg_nrdy; 1881 m = m_free(m); 1882 } 1883 } 1884 } 1885 1886 counter_u64_add(ktls_offload_active, -1); 1887 switch (tls->mode) { 1888 case TCP_TLS_MODE_SW: 1889 switch (tls->params.cipher_algorithm) { 1890 case CRYPTO_AES_CBC: 1891 counter_u64_add(ktls_sw_cbc, -1); 1892 break; 1893 case CRYPTO_AES_NIST_GCM_16: 1894 counter_u64_add(ktls_sw_gcm, -1); 1895 break; 1896 case CRYPTO_CHACHA20_POLY1305: 1897 counter_u64_add(ktls_sw_chacha20, -1); 1898 break; 1899 } 1900 break; 1901 case TCP_TLS_MODE_IFNET: 1902 switch (tls->params.cipher_algorithm) { 1903 case CRYPTO_AES_CBC: 1904 counter_u64_add(ktls_ifnet_cbc, -1); 1905 break; 1906 case CRYPTO_AES_NIST_GCM_16: 1907 counter_u64_add(ktls_ifnet_gcm, -1); 1908 break; 1909 case CRYPTO_CHACHA20_POLY1305: 1910 counter_u64_add(ktls_ifnet_chacha20, -1); 1911 break; 1912 } 1913 if (tls->snd_tag != NULL) 1914 m_snd_tag_rele(tls->snd_tag); 1915 if (tls->rx_ifp != NULL) 1916 if_rele(tls->rx_ifp); 1917 if (tls->tx) { 1918 INP_WLOCK_ASSERT(inp); 1919 tp = intotcpcb(inp); 1920 MPASS(tp->t_nic_ktls_xmit == 1); 1921 tp->t_nic_ktls_xmit = 0; 1922 } 1923 break; 1924 #ifdef TCP_OFFLOAD 1925 case TCP_TLS_MODE_TOE: 1926 switch (tls->params.cipher_algorithm) { 1927 case CRYPTO_AES_CBC: 1928 counter_u64_add(ktls_toe_cbc, -1); 1929 break; 1930 case CRYPTO_AES_NIST_GCM_16: 1931 counter_u64_add(ktls_toe_gcm, -1); 1932 break; 1933 case CRYPTO_CHACHA20_POLY1305: 1934 counter_u64_add(ktls_toe_chacha20, -1); 1935 break; 1936 } 1937 break; 1938 #endif 1939 } 1940 if (tls->ocf_session != NULL) 1941 ktls_ocf_free(tls); 1942 if (tls->params.auth_key != NULL) { 1943 zfree(tls->params.auth_key, M_KTLS); 1944 tls->params.auth_key = NULL; 1945 tls->params.auth_key_len = 0; 1946 } 1947 if (tls->params.cipher_key != NULL) { 1948 zfree(tls->params.cipher_key, M_KTLS); 1949 tls->params.cipher_key = NULL; 1950 tls->params.cipher_key_len = 0; 1951 } 1952 if (tls->tx) { 1953 INP_WLOCK_ASSERT(inp); 1954 if (!in_pcbrele_wlocked(inp) && !wlocked) 1955 INP_WUNLOCK(inp); 1956 } 1957 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 1958 1959 uma_zfree(ktls_session_zone, tls); 1960 } 1961 1962 void 1963 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1964 { 1965 1966 for (; m != NULL; m = m->m_next) { 1967 KASSERT((m->m_flags & M_EXTPG) != 0, 1968 ("ktls_seq: mapped mbuf %p", m)); 1969 1970 m->m_epg_seqno = sb->sb_tls_seqno; 1971 sb->sb_tls_seqno++; 1972 } 1973 } 1974 1975 /* 1976 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1977 * mbuf in the chain must be an unmapped mbuf. The payload of the 1978 * mbuf must be populated with the payload of each TLS record. 1979 * 1980 * The record_type argument specifies the TLS record type used when 1981 * populating the TLS header. 1982 * 1983 * The enq_count argument on return is set to the number of pages of 1984 * payload data for this entire chain that need to be encrypted via SW 1985 * encryption. The returned value should be passed to ktls_enqueue 1986 * when scheduling encryption of this chain of mbufs. To handle the 1987 * special case of empty fragments for TLS 1.0 sessions, an empty 1988 * fragment counts as one page. 1989 */ 1990 void 1991 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1992 uint8_t record_type) 1993 { 1994 struct tls_record_layer *tlshdr; 1995 struct mbuf *m; 1996 uint64_t *noncep; 1997 uint16_t tls_len; 1998 int maxlen __diagused; 1999 2000 maxlen = tls->params.max_frame_len; 2001 *enq_cnt = 0; 2002 for (m = top; m != NULL; m = m->m_next) { 2003 /* 2004 * All mbufs in the chain should be TLS records whose 2005 * payload does not exceed the maximum frame length. 2006 * 2007 * Empty TLS 1.0 records are permitted when using CBC. 2008 */ 2009 KASSERT(m->m_len <= maxlen && m->m_len >= 0 && 2010 (m->m_len > 0 || ktls_permit_empty_frames(tls)), 2011 ("ktls_frame: m %p len %d", m, m->m_len)); 2012 2013 /* 2014 * TLS frames require unmapped mbufs to store session 2015 * info. 2016 */ 2017 KASSERT((m->m_flags & M_EXTPG) != 0, 2018 ("ktls_frame: mapped mbuf %p (top = %p)", m, top)); 2019 2020 tls_len = m->m_len; 2021 2022 /* Save a reference to the session. */ 2023 m->m_epg_tls = ktls_hold(tls); 2024 2025 m->m_epg_hdrlen = tls->params.tls_hlen; 2026 m->m_epg_trllen = tls->params.tls_tlen; 2027 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 2028 int bs, delta; 2029 2030 /* 2031 * AES-CBC pads messages to a multiple of the 2032 * block size. Note that the padding is 2033 * applied after the digest and the encryption 2034 * is done on the "plaintext || mac || padding". 2035 * At least one byte of padding is always 2036 * present. 2037 * 2038 * Compute the final trailer length assuming 2039 * at most one block of padding. 2040 * tls->params.tls_tlen is the maximum 2041 * possible trailer length (padding + digest). 2042 * delta holds the number of excess padding 2043 * bytes if the maximum were used. Those 2044 * extra bytes are removed. 2045 */ 2046 bs = tls->params.tls_bs; 2047 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 2048 m->m_epg_trllen -= delta; 2049 } 2050 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 2051 2052 /* Populate the TLS header. */ 2053 tlshdr = (void *)m->m_epg_hdr; 2054 tlshdr->tls_vmajor = tls->params.tls_vmajor; 2055 2056 /* 2057 * TLS 1.3 masquarades as TLS 1.2 with a record type 2058 * of TLS_RLTYPE_APP. 2059 */ 2060 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 2061 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 2062 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 2063 tlshdr->tls_type = TLS_RLTYPE_APP; 2064 /* save the real record type for later */ 2065 m->m_epg_record_type = record_type; 2066 m->m_epg_trail[0] = record_type; 2067 } else { 2068 tlshdr->tls_vminor = tls->params.tls_vminor; 2069 tlshdr->tls_type = record_type; 2070 } 2071 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 2072 2073 /* 2074 * Store nonces / explicit IVs after the end of the 2075 * TLS header. 2076 * 2077 * For GCM with TLS 1.2, an 8 byte nonce is copied 2078 * from the end of the IV. The nonce is then 2079 * incremented for use by the next record. 2080 * 2081 * For CBC, a random nonce is inserted for TLS 1.1+. 2082 */ 2083 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 2084 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 2085 noncep = (uint64_t *)(tls->params.iv + 8); 2086 be64enc(tlshdr + 1, *noncep); 2087 (*noncep)++; 2088 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2089 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 2090 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 2091 2092 /* 2093 * When using SW encryption, mark the mbuf not ready. 2094 * It will be marked ready via sbready() after the 2095 * record has been encrypted. 2096 * 2097 * When using ifnet TLS, unencrypted TLS records are 2098 * sent down the stack to the NIC. 2099 */ 2100 if (tls->mode == TCP_TLS_MODE_SW) { 2101 m->m_flags |= M_NOTREADY; 2102 if (__predict_false(tls_len == 0)) { 2103 /* TLS 1.0 empty fragment. */ 2104 m->m_epg_nrdy = 1; 2105 } else 2106 m->m_epg_nrdy = m->m_epg_npgs; 2107 *enq_cnt += m->m_epg_nrdy; 2108 } 2109 } 2110 } 2111 2112 bool 2113 ktls_permit_empty_frames(struct ktls_session *tls) 2114 { 2115 return (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 2116 tls->params.tls_vminor == TLS_MINOR_VER_ZERO); 2117 } 2118 2119 void 2120 ktls_check_rx(struct sockbuf *sb) 2121 { 2122 struct tls_record_layer hdr; 2123 struct ktls_wq *wq; 2124 struct socket *so; 2125 bool running; 2126 2127 SOCKBUF_LOCK_ASSERT(sb); 2128 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 2129 __func__, sb)); 2130 so = __containerof(sb, struct socket, so_rcv); 2131 2132 if (sb->sb_flags & SB_TLS_RX_RUNNING) 2133 return; 2134 2135 /* Is there enough queued for a TLS header? */ 2136 if (sb->sb_tlscc < sizeof(hdr)) { 2137 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 2138 so->so_error = EMSGSIZE; 2139 return; 2140 } 2141 2142 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 2143 2144 /* Is the entire record queued? */ 2145 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 2146 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 2147 so->so_error = EMSGSIZE; 2148 return; 2149 } 2150 2151 sb->sb_flags |= SB_TLS_RX_RUNNING; 2152 2153 soref(so); 2154 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 2155 mtx_lock(&wq->mtx); 2156 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 2157 running = wq->running; 2158 mtx_unlock(&wq->mtx); 2159 if (!running) 2160 wakeup(wq); 2161 counter_u64_add(ktls_cnt_rx_queued, 1); 2162 } 2163 2164 static struct mbuf * 2165 ktls_detach_record(struct sockbuf *sb, int len) 2166 { 2167 struct mbuf *m, *n, *top; 2168 int remain; 2169 2170 SOCKBUF_LOCK_ASSERT(sb); 2171 MPASS(len <= sb->sb_tlscc); 2172 2173 /* 2174 * If TLS chain is the exact size of the record, 2175 * just grab the whole record. 2176 */ 2177 top = sb->sb_mtls; 2178 if (sb->sb_tlscc == len) { 2179 sb->sb_mtls = NULL; 2180 sb->sb_mtlstail = NULL; 2181 goto out; 2182 } 2183 2184 /* 2185 * While it would be nice to use m_split() here, we need 2186 * to know exactly what m_split() allocates to update the 2187 * accounting, so do it inline instead. 2188 */ 2189 remain = len; 2190 for (m = top; remain > m->m_len; m = m->m_next) 2191 remain -= m->m_len; 2192 2193 /* Easy case: don't have to split 'm'. */ 2194 if (remain == m->m_len) { 2195 sb->sb_mtls = m->m_next; 2196 if (sb->sb_mtls == NULL) 2197 sb->sb_mtlstail = NULL; 2198 m->m_next = NULL; 2199 goto out; 2200 } 2201 2202 /* 2203 * Need to allocate an mbuf to hold the remainder of 'm'. Try 2204 * with M_NOWAIT first. 2205 */ 2206 n = m_get(M_NOWAIT, MT_DATA); 2207 if (n == NULL) { 2208 /* 2209 * Use M_WAITOK with socket buffer unlocked. If 2210 * 'sb_mtls' changes while the lock is dropped, return 2211 * NULL to force the caller to retry. 2212 */ 2213 SOCKBUF_UNLOCK(sb); 2214 2215 n = m_get(M_WAITOK, MT_DATA); 2216 2217 SOCKBUF_LOCK(sb); 2218 if (sb->sb_mtls != top) { 2219 m_free(n); 2220 return (NULL); 2221 } 2222 } 2223 n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED)); 2224 2225 /* Store remainder in 'n'. */ 2226 n->m_len = m->m_len - remain; 2227 if (m->m_flags & M_EXT) { 2228 n->m_data = m->m_data + remain; 2229 mb_dupcl(n, m); 2230 } else { 2231 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 2232 } 2233 2234 /* Trim 'm' and update accounting. */ 2235 m->m_len -= n->m_len; 2236 sb->sb_tlscc -= n->m_len; 2237 sb->sb_ccc -= n->m_len; 2238 2239 /* Account for 'n'. */ 2240 sballoc_ktls_rx(sb, n); 2241 2242 /* Insert 'n' into the TLS chain. */ 2243 sb->sb_mtls = n; 2244 n->m_next = m->m_next; 2245 if (sb->sb_mtlstail == m) 2246 sb->sb_mtlstail = n; 2247 2248 /* Detach the record from the TLS chain. */ 2249 m->m_next = NULL; 2250 2251 out: 2252 MPASS(m_length(top, NULL) == len); 2253 for (m = top; m != NULL; m = m->m_next) 2254 sbfree_ktls_rx(sb, m); 2255 sb->sb_tlsdcc = len; 2256 sb->sb_ccc += len; 2257 SBCHECK(sb); 2258 return (top); 2259 } 2260 2261 /* 2262 * Determine the length of the trailing zero padding and find the real 2263 * record type in the byte before the padding. 2264 * 2265 * Walking the mbuf chain backwards is clumsy, so another option would 2266 * be to scan forwards remembering the last non-zero byte before the 2267 * trailer. However, it would be expensive to scan the entire record. 2268 * Instead, find the last non-zero byte of each mbuf in the chain 2269 * keeping track of the relative offset of that nonzero byte. 2270 * 2271 * trail_len is the size of the MAC/tag on input and is set to the 2272 * size of the full trailer including padding and the record type on 2273 * return. 2274 */ 2275 static int 2276 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len, 2277 int *trailer_len, uint8_t *record_typep) 2278 { 2279 char *cp; 2280 u_int digest_start, last_offset, m_len, offset; 2281 uint8_t record_type; 2282 2283 digest_start = tls_len - *trailer_len; 2284 last_offset = 0; 2285 offset = 0; 2286 for (; m != NULL && offset < digest_start; 2287 offset += m->m_len, m = m->m_next) { 2288 /* Don't look for padding in the tag. */ 2289 m_len = min(digest_start - offset, m->m_len); 2290 cp = mtod(m, char *); 2291 2292 /* Find last non-zero byte in this mbuf. */ 2293 while (m_len > 0 && cp[m_len - 1] == 0) 2294 m_len--; 2295 if (m_len > 0) { 2296 record_type = cp[m_len - 1]; 2297 last_offset = offset + m_len; 2298 } 2299 } 2300 if (last_offset < tls->params.tls_hlen) 2301 return (EBADMSG); 2302 2303 *record_typep = record_type; 2304 *trailer_len = tls_len - last_offset + 1; 2305 return (0); 2306 } 2307 2308 /* 2309 * Check if a mbuf chain is fully decrypted at the given offset and 2310 * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is 2311 * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted 2312 * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data 2313 * is encrypted. 2314 */ 2315 ktls_mbuf_crypto_st_t 2316 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len) 2317 { 2318 int m_flags_ored = 0; 2319 int m_flags_anded = -1; 2320 2321 for (; mb != NULL; mb = mb->m_next) { 2322 if (offset < mb->m_len) 2323 break; 2324 offset -= mb->m_len; 2325 } 2326 offset += len; 2327 2328 for (; mb != NULL; mb = mb->m_next) { 2329 m_flags_ored |= mb->m_flags; 2330 m_flags_anded &= mb->m_flags; 2331 2332 if (offset <= mb->m_len) 2333 break; 2334 offset -= mb->m_len; 2335 } 2336 MPASS(mb != NULL || offset == 0); 2337 2338 if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED) 2339 return (KTLS_MBUF_CRYPTO_ST_MIXED); 2340 else 2341 return ((m_flags_ored & M_DECRYPTED) ? 2342 KTLS_MBUF_CRYPTO_ST_DECRYPTED : 2343 KTLS_MBUF_CRYPTO_ST_ENCRYPTED); 2344 } 2345 2346 /* 2347 * ktls_resync_ifnet - get HW TLS RX back on track after packet loss 2348 */ 2349 static int 2350 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num) 2351 { 2352 union if_snd_tag_modify_params params; 2353 struct m_snd_tag *mst; 2354 struct inpcb *inp; 2355 struct tcpcb *tp; 2356 2357 mst = so->so_rcv.sb_tls_info->snd_tag; 2358 if (__predict_false(mst == NULL)) 2359 return (EINVAL); 2360 2361 inp = sotoinpcb(so); 2362 if (__predict_false(inp == NULL)) 2363 return (EINVAL); 2364 2365 INP_RLOCK(inp); 2366 if (inp->inp_flags & INP_DROPPED) { 2367 INP_RUNLOCK(inp); 2368 return (ECONNRESET); 2369 } 2370 2371 tp = intotcpcb(inp); 2372 MPASS(tp != NULL); 2373 2374 /* Get the TCP sequence number of the next valid TLS header. */ 2375 SOCKBUF_LOCK(&so->so_rcv); 2376 params.tls_rx.tls_hdr_tcp_sn = 2377 tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len; 2378 params.tls_rx.tls_rec_length = tls_len; 2379 params.tls_rx.tls_seq_number = tls_rcd_num; 2380 SOCKBUF_UNLOCK(&so->so_rcv); 2381 2382 INP_RUNLOCK(inp); 2383 2384 MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX); 2385 return (mst->sw->snd_tag_modify(mst, ¶ms)); 2386 } 2387 2388 static void 2389 ktls_drop(struct socket *so, int error) 2390 { 2391 struct epoch_tracker et; 2392 struct inpcb *inp = sotoinpcb(so); 2393 struct tcpcb *tp; 2394 2395 NET_EPOCH_ENTER(et); 2396 INP_WLOCK(inp); 2397 if (!(inp->inp_flags & INP_DROPPED)) { 2398 tp = intotcpcb(inp); 2399 CURVNET_SET(inp->inp_vnet); 2400 tp = tcp_drop(tp, error); 2401 CURVNET_RESTORE(); 2402 if (tp != NULL) 2403 INP_WUNLOCK(inp); 2404 } else { 2405 so->so_error = error; 2406 SOCK_RECVBUF_LOCK(so); 2407 sorwakeup_locked(so); 2408 INP_WUNLOCK(inp); 2409 } 2410 NET_EPOCH_EXIT(et); 2411 } 2412 2413 static void 2414 ktls_decrypt(struct socket *so) 2415 { 2416 char tls_header[MBUF_PEXT_HDR_LEN]; 2417 struct ktls_session *tls; 2418 struct sockbuf *sb; 2419 struct tls_record_layer *hdr; 2420 struct tls_get_record tgr; 2421 struct mbuf *control, *data, *m; 2422 ktls_mbuf_crypto_st_t state; 2423 uint64_t seqno; 2424 int error, remain, tls_len, trail_len; 2425 bool tls13; 2426 uint8_t vminor, record_type; 2427 2428 hdr = (struct tls_record_layer *)tls_header; 2429 sb = &so->so_rcv; 2430 SOCKBUF_LOCK(sb); 2431 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 2432 ("%s: socket %p not running", __func__, so)); 2433 2434 tls = sb->sb_tls_info; 2435 MPASS(tls != NULL); 2436 2437 tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE); 2438 if (tls13) 2439 vminor = TLS_MINOR_VER_TWO; 2440 else 2441 vminor = tls->params.tls_vminor; 2442 for (;;) { 2443 /* Is there enough queued for a TLS header? */ 2444 if (sb->sb_tlscc < tls->params.tls_hlen) 2445 break; 2446 2447 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 2448 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 2449 2450 if (hdr->tls_vmajor != tls->params.tls_vmajor || 2451 hdr->tls_vminor != vminor) 2452 error = EINVAL; 2453 else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP) 2454 error = EINVAL; 2455 else if (tls_len < tls->params.tls_hlen || tls_len > 2456 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 2457 tls->params.tls_tlen) 2458 error = EMSGSIZE; 2459 else 2460 error = 0; 2461 if (__predict_false(error != 0)) { 2462 /* 2463 * We have a corrupted record and are likely 2464 * out of sync. The connection isn't 2465 * recoverable at this point, so abort it. 2466 */ 2467 SOCKBUF_UNLOCK(sb); 2468 counter_u64_add(ktls_offload_corrupted_records, 1); 2469 2470 ktls_drop(so, error); 2471 goto deref; 2472 } 2473 2474 /* Is the entire record queued? */ 2475 if (sb->sb_tlscc < tls_len) 2476 break; 2477 2478 /* 2479 * Split out the portion of the mbuf chain containing 2480 * this TLS record. 2481 */ 2482 data = ktls_detach_record(sb, tls_len); 2483 if (data == NULL) 2484 continue; 2485 MPASS(sb->sb_tlsdcc == tls_len); 2486 2487 seqno = sb->sb_tls_seqno; 2488 sb->sb_tls_seqno++; 2489 SBCHECK(sb); 2490 SOCKBUF_UNLOCK(sb); 2491 2492 /* get crypto state for this TLS record */ 2493 state = ktls_mbuf_crypto_state(data, 0, tls_len); 2494 2495 switch (state) { 2496 case KTLS_MBUF_CRYPTO_ST_MIXED: 2497 error = ktls_ocf_recrypt(tls, hdr, data, seqno); 2498 if (error) 2499 break; 2500 /* FALLTHROUGH */ 2501 case KTLS_MBUF_CRYPTO_ST_ENCRYPTED: 2502 error = ktls_ocf_decrypt(tls, hdr, data, seqno, 2503 &trail_len); 2504 if (__predict_true(error == 0)) { 2505 if (tls13) { 2506 error = tls13_find_record_type(tls, data, 2507 tls_len, &trail_len, &record_type); 2508 } else { 2509 record_type = hdr->tls_type; 2510 } 2511 } 2512 break; 2513 case KTLS_MBUF_CRYPTO_ST_DECRYPTED: 2514 /* 2515 * NIC TLS is only supported for AEAD 2516 * ciphersuites which used a fixed sized 2517 * trailer. 2518 */ 2519 if (tls13) { 2520 trail_len = tls->params.tls_tlen - 1; 2521 error = tls13_find_record_type(tls, data, 2522 tls_len, &trail_len, &record_type); 2523 } else { 2524 trail_len = tls->params.tls_tlen; 2525 error = 0; 2526 record_type = hdr->tls_type; 2527 } 2528 break; 2529 default: 2530 error = EINVAL; 2531 break; 2532 } 2533 if (error) { 2534 counter_u64_add(ktls_offload_failed_crypto, 1); 2535 2536 SOCKBUF_LOCK(sb); 2537 if (sb->sb_tlsdcc == 0) { 2538 /* 2539 * sbcut/drop/flush discarded these 2540 * mbufs. 2541 */ 2542 m_freem(data); 2543 break; 2544 } 2545 2546 /* 2547 * Drop this TLS record's data, but keep 2548 * decrypting subsequent records. 2549 */ 2550 sb->sb_ccc -= tls_len; 2551 sb->sb_tlsdcc = 0; 2552 2553 if (error != EMSGSIZE) 2554 error = EBADMSG; 2555 CURVNET_SET(so->so_vnet); 2556 so->so_error = error; 2557 sorwakeup_locked(so); 2558 CURVNET_RESTORE(); 2559 2560 m_freem(data); 2561 2562 SOCKBUF_LOCK(sb); 2563 continue; 2564 } 2565 2566 /* Allocate the control mbuf. */ 2567 memset(&tgr, 0, sizeof(tgr)); 2568 tgr.tls_type = record_type; 2569 tgr.tls_vmajor = hdr->tls_vmajor; 2570 tgr.tls_vminor = hdr->tls_vminor; 2571 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 2572 trail_len); 2573 control = sbcreatecontrol(&tgr, sizeof(tgr), 2574 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 2575 2576 SOCKBUF_LOCK(sb); 2577 if (sb->sb_tlsdcc == 0) { 2578 /* sbcut/drop/flush discarded these mbufs. */ 2579 MPASS(sb->sb_tlscc == 0); 2580 m_freem(data); 2581 m_freem(control); 2582 break; 2583 } 2584 2585 /* 2586 * Clear the 'dcc' accounting in preparation for 2587 * adding the decrypted record. 2588 */ 2589 sb->sb_ccc -= tls_len; 2590 sb->sb_tlsdcc = 0; 2591 SBCHECK(sb); 2592 2593 /* If there is no payload, drop all of the data. */ 2594 if (tgr.tls_length == htobe16(0)) { 2595 m_freem(data); 2596 data = NULL; 2597 } else { 2598 /* Trim header. */ 2599 remain = tls->params.tls_hlen; 2600 while (remain > 0) { 2601 if (data->m_len > remain) { 2602 data->m_data += remain; 2603 data->m_len -= remain; 2604 break; 2605 } 2606 remain -= data->m_len; 2607 data = m_free(data); 2608 } 2609 2610 /* Trim trailer and clear M_NOTREADY. */ 2611 remain = be16toh(tgr.tls_length); 2612 m = data; 2613 for (m = data; remain > m->m_len; m = m->m_next) { 2614 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2615 remain -= m->m_len; 2616 } 2617 m->m_len = remain; 2618 m_freem(m->m_next); 2619 m->m_next = NULL; 2620 m->m_flags &= ~(M_NOTREADY | M_DECRYPTED); 2621 2622 /* Set EOR on the final mbuf. */ 2623 m->m_flags |= M_EOR; 2624 } 2625 2626 sbappendcontrol_locked(sb, data, control, 0); 2627 2628 if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) { 2629 sb->sb_flags |= SB_TLS_RX_RESYNC; 2630 SOCKBUF_UNLOCK(sb); 2631 ktls_resync_ifnet(so, tls_len, seqno); 2632 SOCKBUF_LOCK(sb); 2633 } else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) { 2634 sb->sb_flags &= ~SB_TLS_RX_RESYNC; 2635 SOCKBUF_UNLOCK(sb); 2636 ktls_resync_ifnet(so, 0, seqno); 2637 SOCKBUF_LOCK(sb); 2638 } 2639 } 2640 2641 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2642 2643 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2644 so->so_error = EMSGSIZE; 2645 2646 sorwakeup_locked(so); 2647 2648 deref: 2649 SOCKBUF_UNLOCK_ASSERT(sb); 2650 2651 CURVNET_SET(so->so_vnet); 2652 sorele(so); 2653 CURVNET_RESTORE(); 2654 } 2655 2656 void 2657 ktls_enqueue_to_free(struct mbuf *m) 2658 { 2659 struct ktls_wq *wq; 2660 bool running; 2661 2662 /* Mark it for freeing. */ 2663 m->m_epg_flags |= EPG_FLAG_2FREE; 2664 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2665 mtx_lock(&wq->mtx); 2666 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2667 running = wq->running; 2668 mtx_unlock(&wq->mtx); 2669 if (!running) 2670 wakeup(wq); 2671 } 2672 2673 static void * 2674 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2675 { 2676 void *buf; 2677 int domain, running; 2678 2679 if (m->m_epg_npgs <= 2) 2680 return (NULL); 2681 if (ktls_buffer_zone == NULL) 2682 return (NULL); 2683 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2684 /* 2685 * Rate-limit allocation attempts after a failure. 2686 * ktls_buffer_import() will acquire a per-domain mutex to check 2687 * the free page queues and may fail consistently if memory is 2688 * fragmented. 2689 */ 2690 return (NULL); 2691 } 2692 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2693 if (buf == NULL) { 2694 domain = PCPU_GET(domain); 2695 wq->lastallocfail = ticks; 2696 2697 /* 2698 * Note that this check is "racy", but the races are 2699 * harmless, and are either a spurious wakeup if 2700 * multiple threads fail allocations before the alloc 2701 * thread wakes, or waiting an extra second in case we 2702 * see an old value of running == true. 2703 */ 2704 if (!VM_DOMAIN_EMPTY(domain)) { 2705 running = atomic_load_int(&ktls_domains[domain].alloc_td.running); 2706 if (!running) 2707 wakeup(&ktls_domains[domain].alloc_td); 2708 } 2709 } 2710 return (buf); 2711 } 2712 2713 static int 2714 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m, 2715 struct ktls_session *tls, struct ktls_ocf_encrypt_state *state) 2716 { 2717 vm_page_t pg; 2718 int error, i, len, off; 2719 2720 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY), 2721 ("%p not unready & nomap mbuf\n", m)); 2722 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2723 ("page count %d larger than maximum frame length %d", m->m_epg_npgs, 2724 ktls_maxlen)); 2725 2726 /* Anonymous mbufs are encrypted in place. */ 2727 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) 2728 return (ktls_ocf_encrypt(state, tls, m, NULL, 0)); 2729 2730 /* 2731 * For file-backed mbufs (from sendfile), anonymous wired 2732 * pages are allocated and used as the encryption destination. 2733 */ 2734 if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2735 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2736 m->m_epg_1st_off; 2737 state->dst_iov[0].iov_base = (char *)state->cbuf + 2738 m->m_epg_1st_off; 2739 state->dst_iov[0].iov_len = len; 2740 state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf); 2741 i = 1; 2742 } else { 2743 off = m->m_epg_1st_off; 2744 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2745 pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP | 2746 VM_ALLOC_WIRED | VM_ALLOC_WAITOK); 2747 len = m_epg_pagelen(m, i, off); 2748 state->parray[i] = VM_PAGE_TO_PHYS(pg); 2749 state->dst_iov[i].iov_base = 2750 (char *)PHYS_TO_DMAP(state->parray[i]) + off; 2751 state->dst_iov[i].iov_len = len; 2752 } 2753 } 2754 KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small")); 2755 state->dst_iov[i].iov_base = m->m_epg_trail; 2756 state->dst_iov[i].iov_len = m->m_epg_trllen; 2757 2758 error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1); 2759 2760 if (__predict_false(error != 0)) { 2761 /* Free the anonymous pages. */ 2762 if (state->cbuf != NULL) 2763 uma_zfree(ktls_buffer_zone, state->cbuf); 2764 else { 2765 for (i = 0; i < m->m_epg_npgs; i++) { 2766 pg = PHYS_TO_VM_PAGE(state->parray[i]); 2767 (void)vm_page_unwire_noq(pg); 2768 vm_page_free(pg); 2769 } 2770 } 2771 } 2772 return (error); 2773 } 2774 2775 /* Number of TLS records in a batch passed to ktls_enqueue(). */ 2776 static u_int 2777 ktls_batched_records(struct mbuf *m) 2778 { 2779 int page_count, records; 2780 2781 records = 0; 2782 page_count = m->m_epg_enc_cnt; 2783 while (page_count > 0) { 2784 records++; 2785 page_count -= m->m_epg_nrdy; 2786 m = m->m_next; 2787 } 2788 KASSERT(page_count == 0, ("%s: mismatched page count", __func__)); 2789 return (records); 2790 } 2791 2792 void 2793 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2794 { 2795 struct ktls_session *tls; 2796 struct ktls_wq *wq; 2797 int queued; 2798 bool running; 2799 2800 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2801 (M_EXTPG | M_NOTREADY)), 2802 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2803 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2804 2805 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2806 2807 m->m_epg_enc_cnt = page_count; 2808 2809 /* 2810 * Save a pointer to the socket. The caller is responsible 2811 * for taking an additional reference via soref(). 2812 */ 2813 m->m_epg_so = so; 2814 2815 queued = 1; 2816 tls = m->m_epg_tls; 2817 wq = &ktls_wq[tls->wq_index]; 2818 mtx_lock(&wq->mtx); 2819 if (__predict_false(tls->sequential_records)) { 2820 /* 2821 * For TLS 1.0, records must be encrypted 2822 * sequentially. For a given connection, all records 2823 * queued to the associated work queue are processed 2824 * sequentially. However, sendfile(2) might complete 2825 * I/O requests spanning multiple TLS records out of 2826 * order. Here we ensure TLS records are enqueued to 2827 * the work queue in FIFO order. 2828 * 2829 * tls->next_seqno holds the sequence number of the 2830 * next TLS record that should be enqueued to the work 2831 * queue. If this next record is not tls->next_seqno, 2832 * it must be a future record, so insert it, sorted by 2833 * TLS sequence number, into tls->pending_records and 2834 * return. 2835 * 2836 * If this TLS record matches tls->next_seqno, place 2837 * it in the work queue and then check 2838 * tls->pending_records to see if any 2839 * previously-queued records are now ready for 2840 * encryption. 2841 */ 2842 if (m->m_epg_seqno != tls->next_seqno) { 2843 struct mbuf *n, *p; 2844 2845 p = NULL; 2846 STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) { 2847 if (n->m_epg_seqno > m->m_epg_seqno) 2848 break; 2849 p = n; 2850 } 2851 if (n == NULL) 2852 STAILQ_INSERT_TAIL(&tls->pending_records, m, 2853 m_epg_stailq); 2854 else if (p == NULL) 2855 STAILQ_INSERT_HEAD(&tls->pending_records, m, 2856 m_epg_stailq); 2857 else 2858 STAILQ_INSERT_AFTER(&tls->pending_records, p, m, 2859 m_epg_stailq); 2860 mtx_unlock(&wq->mtx); 2861 counter_u64_add(ktls_cnt_tx_pending, 1); 2862 return; 2863 } 2864 2865 tls->next_seqno += ktls_batched_records(m); 2866 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2867 2868 while (!STAILQ_EMPTY(&tls->pending_records)) { 2869 struct mbuf *n; 2870 2871 n = STAILQ_FIRST(&tls->pending_records); 2872 if (n->m_epg_seqno != tls->next_seqno) 2873 break; 2874 2875 queued++; 2876 STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq); 2877 tls->next_seqno += ktls_batched_records(n); 2878 STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq); 2879 } 2880 counter_u64_add(ktls_cnt_tx_pending, -(queued - 1)); 2881 } else 2882 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2883 2884 running = wq->running; 2885 mtx_unlock(&wq->mtx); 2886 if (!running) 2887 wakeup(wq); 2888 counter_u64_add(ktls_cnt_tx_queued, queued); 2889 } 2890 2891 /* 2892 * Once a file-backed mbuf (from sendfile) has been encrypted, free 2893 * the pages from the file and replace them with the anonymous pages 2894 * allocated in ktls_encrypt_record(). 2895 */ 2896 static void 2897 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state) 2898 { 2899 int i; 2900 2901 MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0); 2902 2903 /* Free the old pages. */ 2904 m->m_ext.ext_free(m); 2905 2906 /* Replace them with the new pages. */ 2907 if (state->cbuf != NULL) { 2908 for (i = 0; i < m->m_epg_npgs; i++) 2909 m->m_epg_pa[i] = state->parray[0] + ptoa(i); 2910 2911 /* Contig pages should go back to the cache. */ 2912 m->m_ext.ext_free = ktls_free_mext_contig; 2913 } else { 2914 for (i = 0; i < m->m_epg_npgs; i++) 2915 m->m_epg_pa[i] = state->parray[i]; 2916 2917 /* Use the basic free routine. */ 2918 m->m_ext.ext_free = mb_free_mext_pgs; 2919 } 2920 2921 /* Pages are now writable. */ 2922 m->m_epg_flags |= EPG_FLAG_ANON; 2923 } 2924 2925 static __noinline void 2926 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2927 { 2928 struct ktls_ocf_encrypt_state state; 2929 struct ktls_session *tls; 2930 struct socket *so; 2931 struct mbuf *m; 2932 int error, npages, total_pages; 2933 2934 so = top->m_epg_so; 2935 tls = top->m_epg_tls; 2936 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2937 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2938 #ifdef INVARIANTS 2939 top->m_epg_so = NULL; 2940 #endif 2941 total_pages = top->m_epg_enc_cnt; 2942 npages = 0; 2943 2944 /* 2945 * Encrypt the TLS records in the chain of mbufs starting with 2946 * 'top'. 'total_pages' gives us a total count of pages and is 2947 * used to know when we have finished encrypting the TLS 2948 * records originally queued with 'top'. 2949 * 2950 * NB: These mbufs are queued in the socket buffer and 2951 * 'm_next' is traversing the mbufs in the socket buffer. The 2952 * socket buffer lock is not held while traversing this chain. 2953 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2954 * pointers should be stable. However, the 'm_next' of the 2955 * last mbuf encrypted is not necessarily NULL. It can point 2956 * to other mbufs appended while 'top' was on the TLS work 2957 * queue. 2958 * 2959 * Each mbuf holds an entire TLS record. 2960 */ 2961 error = 0; 2962 for (m = top; npages != total_pages; m = m->m_next) { 2963 KASSERT(m->m_epg_tls == tls, 2964 ("different TLS sessions in a single mbuf chain: %p vs %p", 2965 tls, m->m_epg_tls)); 2966 KASSERT(npages + m->m_epg_npgs <= total_pages, 2967 ("page count mismatch: top %p, total_pages %d, m %p", top, 2968 total_pages, m)); 2969 2970 error = ktls_encrypt_record(wq, m, tls, &state); 2971 if (error) { 2972 counter_u64_add(ktls_offload_failed_crypto, 1); 2973 break; 2974 } 2975 2976 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 2977 ktls_finish_nonanon(m, &state); 2978 2979 npages += m->m_epg_nrdy; 2980 2981 /* 2982 * Drop a reference to the session now that it is no 2983 * longer needed. Existing code depends on encrypted 2984 * records having no associated session vs 2985 * yet-to-be-encrypted records having an associated 2986 * session. 2987 */ 2988 m->m_epg_tls = NULL; 2989 ktls_free(tls); 2990 } 2991 2992 CURVNET_SET(so->so_vnet); 2993 if (error == 0) { 2994 (void)so->so_proto->pr_ready(so, top, npages); 2995 } else { 2996 ktls_drop(so, EIO); 2997 mb_free_notready(top, total_pages); 2998 } 2999 3000 sorele(so); 3001 CURVNET_RESTORE(); 3002 } 3003 3004 void 3005 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error) 3006 { 3007 struct ktls_session *tls; 3008 struct socket *so; 3009 struct mbuf *m; 3010 int npages; 3011 3012 m = state->m; 3013 3014 if ((m->m_epg_flags & EPG_FLAG_ANON) == 0) 3015 ktls_finish_nonanon(m, state); 3016 3017 so = state->so; 3018 free(state, M_KTLS); 3019 3020 /* 3021 * Drop a reference to the session now that it is no longer 3022 * needed. Existing code depends on encrypted records having 3023 * no associated session vs yet-to-be-encrypted records having 3024 * an associated session. 3025 */ 3026 tls = m->m_epg_tls; 3027 m->m_epg_tls = NULL; 3028 ktls_free(tls); 3029 3030 if (error != 0) 3031 counter_u64_add(ktls_offload_failed_crypto, 1); 3032 3033 CURVNET_SET(so->so_vnet); 3034 npages = m->m_epg_nrdy; 3035 3036 if (error == 0) { 3037 (void)so->so_proto->pr_ready(so, m, npages); 3038 } else { 3039 ktls_drop(so, EIO); 3040 mb_free_notready(m, npages); 3041 } 3042 3043 sorele(so); 3044 CURVNET_RESTORE(); 3045 } 3046 3047 /* 3048 * Similar to ktls_encrypt, but used with asynchronous OCF backends 3049 * (coprocessors) where encryption does not use host CPU resources and 3050 * it can be beneficial to queue more requests than CPUs. 3051 */ 3052 static __noinline void 3053 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top) 3054 { 3055 struct ktls_ocf_encrypt_state *state; 3056 struct ktls_session *tls; 3057 struct socket *so; 3058 struct mbuf *m, *n; 3059 int error, mpages, npages, total_pages; 3060 3061 so = top->m_epg_so; 3062 tls = top->m_epg_tls; 3063 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 3064 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 3065 #ifdef INVARIANTS 3066 top->m_epg_so = NULL; 3067 #endif 3068 total_pages = top->m_epg_enc_cnt; 3069 npages = 0; 3070 3071 error = 0; 3072 for (m = top; npages != total_pages; m = n) { 3073 KASSERT(m->m_epg_tls == tls, 3074 ("different TLS sessions in a single mbuf chain: %p vs %p", 3075 tls, m->m_epg_tls)); 3076 KASSERT(npages + m->m_epg_npgs <= total_pages, 3077 ("page count mismatch: top %p, total_pages %d, m %p", top, 3078 total_pages, m)); 3079 3080 state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO); 3081 soref(so); 3082 state->so = so; 3083 state->m = m; 3084 3085 mpages = m->m_epg_nrdy; 3086 n = m->m_next; 3087 3088 error = ktls_encrypt_record(wq, m, tls, state); 3089 if (error) { 3090 counter_u64_add(ktls_offload_failed_crypto, 1); 3091 free(state, M_KTLS); 3092 CURVNET_SET(so->so_vnet); 3093 sorele(so); 3094 CURVNET_RESTORE(); 3095 break; 3096 } 3097 3098 npages += mpages; 3099 } 3100 3101 CURVNET_SET(so->so_vnet); 3102 if (error != 0) { 3103 ktls_drop(so, EIO); 3104 mb_free_notready(m, total_pages - npages); 3105 } 3106 3107 sorele(so); 3108 CURVNET_RESTORE(); 3109 } 3110 3111 static int 3112 ktls_bind_domain(int domain) 3113 { 3114 int error; 3115 3116 error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]); 3117 if (error != 0) 3118 return (error); 3119 curthread->td_domain.dr_policy = DOMAINSET_PREF(domain); 3120 return (0); 3121 } 3122 3123 static void 3124 ktls_alloc_thread(void *ctx) 3125 { 3126 struct ktls_domain_info *ktls_domain = ctx; 3127 struct ktls_alloc_thread *sc = &ktls_domain->alloc_td; 3128 void **buf; 3129 struct sysctl_oid *oid; 3130 char name[80]; 3131 int domain, error, i, nbufs; 3132 3133 domain = ktls_domain - ktls_domains; 3134 if (bootverbose) 3135 printf("Starting KTLS alloc thread for domain %d\n", domain); 3136 error = ktls_bind_domain(domain); 3137 if (error) 3138 printf("Unable to bind KTLS alloc thread for domain %d: error %d\n", 3139 domain, error); 3140 snprintf(name, sizeof(name), "domain%d", domain); 3141 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO, 3142 name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 3143 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "allocs", 3144 CTLFLAG_RD, &sc->allocs, 0, "buffers allocated"); 3145 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups", 3146 CTLFLAG_RD, &sc->wakeups, 0, "thread wakeups"); 3147 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running", 3148 CTLFLAG_RD, &sc->running, 0, "thread running"); 3149 3150 buf = NULL; 3151 nbufs = 0; 3152 for (;;) { 3153 atomic_store_int(&sc->running, 0); 3154 tsleep(sc, PZERO | PNOLOCK, "-", 0); 3155 atomic_store_int(&sc->running, 1); 3156 sc->wakeups++; 3157 if (nbufs != ktls_max_alloc) { 3158 free(buf, M_KTLS); 3159 nbufs = atomic_load_int(&ktls_max_alloc); 3160 buf = malloc(sizeof(void *) * nbufs, M_KTLS, 3161 M_WAITOK | M_ZERO); 3162 } 3163 /* 3164 * Below we allocate nbufs with different allocation 3165 * flags than we use when allocating normally during 3166 * encryption in the ktls worker thread. We specify 3167 * M_NORECLAIM in the worker thread. However, we omit 3168 * that flag here and add M_WAITOK so that the VM 3169 * system is permitted to perform expensive work to 3170 * defragment memory. We do this here, as it does not 3171 * matter if this thread blocks. If we block a ktls 3172 * worker thread, we risk developing backlogs of 3173 * buffers to be encrypted, leading to surges of 3174 * traffic and potential NIC output drops. 3175 */ 3176 for (i = 0; i < nbufs; i++) { 3177 buf[i] = uma_zalloc(ktls_buffer_zone, M_WAITOK); 3178 sc->allocs++; 3179 } 3180 for (i = 0; i < nbufs; i++) { 3181 uma_zfree(ktls_buffer_zone, buf[i]); 3182 buf[i] = NULL; 3183 } 3184 } 3185 } 3186 3187 static void 3188 ktls_work_thread(void *ctx) 3189 { 3190 struct ktls_wq *wq = ctx; 3191 struct mbuf *m, *n; 3192 struct socket *so, *son; 3193 STAILQ_HEAD(, mbuf) local_m_head; 3194 STAILQ_HEAD(, socket) local_so_head; 3195 int cpu; 3196 3197 cpu = wq - ktls_wq; 3198 if (bootverbose) 3199 printf("Starting KTLS worker thread for CPU %d\n", cpu); 3200 3201 /* 3202 * Bind to a core. If ktls_bind_threads is > 1, then 3203 * we bind to the NUMA domain instead. 3204 */ 3205 if (ktls_bind_threads) { 3206 int error; 3207 3208 if (ktls_bind_threads > 1) { 3209 struct pcpu *pc = pcpu_find(cpu); 3210 3211 error = ktls_bind_domain(pc->pc_domain); 3212 } else { 3213 cpuset_t mask; 3214 3215 CPU_SETOF(cpu, &mask); 3216 error = cpuset_setthread(curthread->td_tid, &mask); 3217 } 3218 if (error) 3219 printf("Unable to bind KTLS worker thread for CPU %d: error %d\n", 3220 cpu, error); 3221 } 3222 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 3223 fpu_kern_thread(0); 3224 #endif 3225 for (;;) { 3226 mtx_lock(&wq->mtx); 3227 while (STAILQ_EMPTY(&wq->m_head) && 3228 STAILQ_EMPTY(&wq->so_head)) { 3229 wq->running = false; 3230 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 3231 wq->running = true; 3232 } 3233 3234 STAILQ_INIT(&local_m_head); 3235 STAILQ_CONCAT(&local_m_head, &wq->m_head); 3236 STAILQ_INIT(&local_so_head); 3237 STAILQ_CONCAT(&local_so_head, &wq->so_head); 3238 mtx_unlock(&wq->mtx); 3239 3240 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 3241 if (m->m_epg_flags & EPG_FLAG_2FREE) { 3242 ktls_free(m->m_epg_tls); 3243 m_free_raw(m); 3244 } else { 3245 if (m->m_epg_tls->sync_dispatch) 3246 ktls_encrypt(wq, m); 3247 else 3248 ktls_encrypt_async(wq, m); 3249 counter_u64_add(ktls_cnt_tx_queued, -1); 3250 } 3251 } 3252 3253 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 3254 ktls_decrypt(so); 3255 counter_u64_add(ktls_cnt_rx_queued, -1); 3256 } 3257 } 3258 } 3259 3260 static void 3261 ktls_disable_ifnet_help(void *context, int pending __unused) 3262 { 3263 struct ktls_session *tls; 3264 struct inpcb *inp; 3265 struct tcpcb *tp; 3266 struct socket *so; 3267 int err; 3268 3269 tls = context; 3270 inp = tls->inp; 3271 if (inp == NULL) 3272 return; 3273 INP_WLOCK(inp); 3274 so = inp->inp_socket; 3275 MPASS(so != NULL); 3276 if (inp->inp_flags & INP_DROPPED) { 3277 goto out; 3278 } 3279 3280 if (so->so_snd.sb_tls_info != NULL) 3281 err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW); 3282 else 3283 err = ENXIO; 3284 if (err == 0) { 3285 counter_u64_add(ktls_ifnet_disable_ok, 1); 3286 /* ktls_set_tx_mode() drops inp wlock, so recheck flags */ 3287 if ((inp->inp_flags & INP_DROPPED) == 0 && 3288 (tp = intotcpcb(inp)) != NULL && 3289 tp->t_fb->tfb_hwtls_change != NULL) 3290 (*tp->t_fb->tfb_hwtls_change)(tp, 0); 3291 } else { 3292 counter_u64_add(ktls_ifnet_disable_fail, 1); 3293 } 3294 3295 out: 3296 CURVNET_SET(so->so_vnet); 3297 sorele(so); 3298 CURVNET_RESTORE(); 3299 INP_WUNLOCK(inp); 3300 ktls_free(tls); 3301 } 3302 3303 /* 3304 * Called when re-transmits are becoming a substantial portion of the 3305 * sends on this connection. When this happens, we transition the 3306 * connection to software TLS. This is needed because most inline TLS 3307 * NICs keep crypto state only for in-order transmits. This means 3308 * that to handle a TCP rexmit (which is out-of-order), the NIC must 3309 * re-DMA the entire TLS record up to and including the current 3310 * segment. This means that when re-transmitting the last ~1448 byte 3311 * segment of a 16KB TLS record, we could wind up re-DMA'ing an order 3312 * of magnitude more data than we are sending. This can cause the 3313 * PCIe link to saturate well before the network, which can cause 3314 * output drops, and a general loss of capacity. 3315 */ 3316 void 3317 ktls_disable_ifnet(void *arg) 3318 { 3319 struct tcpcb *tp; 3320 struct inpcb *inp; 3321 struct socket *so; 3322 struct ktls_session *tls; 3323 3324 tp = arg; 3325 inp = tptoinpcb(tp); 3326 INP_WLOCK_ASSERT(inp); 3327 so = inp->inp_socket; 3328 SOCK_LOCK(so); 3329 tls = so->so_snd.sb_tls_info; 3330 if (tp->t_nic_ktls_xmit_dis == 1) { 3331 SOCK_UNLOCK(so); 3332 return; 3333 } 3334 3335 /* 3336 * note that t_nic_ktls_xmit_dis is never cleared; disabling 3337 * ifnet can only be done once per connection, so we never want 3338 * to do it again 3339 */ 3340 3341 (void)ktls_hold(tls); 3342 soref(so); 3343 tp->t_nic_ktls_xmit_dis = 1; 3344 SOCK_UNLOCK(so); 3345 TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls); 3346 (void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task); 3347 } 3348