1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_ratelimit.h" 34 #include "opt_rss.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/domainset.h> 39 #include <sys/ktls.h> 40 #include <sys/lock.h> 41 #include <sys/mbuf.h> 42 #include <sys/mutex.h> 43 #include <sys/rmlock.h> 44 #include <sys/proc.h> 45 #include <sys/protosw.h> 46 #include <sys/refcount.h> 47 #include <sys/smp.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sysctl.h> 51 #include <sys/taskqueue.h> 52 #include <sys/kthread.h> 53 #include <sys/uio.h> 54 #include <sys/vmmeter.h> 55 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 56 #include <machine/pcb.h> 57 #endif 58 #include <machine/vmparam.h> 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #ifdef RSS 62 #include <net/netisr.h> 63 #include <net/rss_config.h> 64 #endif 65 #include <net/route.h> 66 #include <net/route/nhop.h> 67 #if defined(INET) || defined(INET6) 68 #include <netinet/in.h> 69 #include <netinet/in_pcb.h> 70 #endif 71 #include <netinet/tcp_var.h> 72 #ifdef TCP_OFFLOAD 73 #include <netinet/tcp_offload.h> 74 #endif 75 #include <opencrypto/xform.h> 76 #include <vm/uma_dbg.h> 77 #include <vm/vm.h> 78 #include <vm/vm_pageout.h> 79 #include <vm/vm_page.h> 80 81 struct ktls_wq { 82 struct mtx mtx; 83 STAILQ_HEAD(, mbuf) m_head; 84 STAILQ_HEAD(, socket) so_head; 85 bool running; 86 int lastallocfail; 87 } __aligned(CACHE_LINE_SIZE); 88 89 struct ktls_domain_info { 90 int count; 91 int cpu[MAXCPU]; 92 }; 93 94 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 95 static struct ktls_wq *ktls_wq; 96 static struct proc *ktls_proc; 97 static uma_zone_t ktls_session_zone; 98 static uma_zone_t ktls_buffer_zone; 99 static uint16_t ktls_cpuid_lookup[MAXCPU]; 100 101 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 102 "Kernel TLS offload"); 103 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 104 "Kernel TLS offload stats"); 105 106 #ifdef RSS 107 static int ktls_bind_threads = 1; 108 #else 109 static int ktls_bind_threads; 110 #endif 111 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 112 &ktls_bind_threads, 0, 113 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 114 115 static u_int ktls_maxlen = 16384; 116 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 117 &ktls_maxlen, 0, "Maximum TLS record size"); 118 119 static int ktls_number_threads; 120 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 121 &ktls_number_threads, 0, 122 "Number of TLS threads in thread-pool"); 123 124 static bool ktls_offload_enable; 125 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 126 &ktls_offload_enable, 0, 127 "Enable support for kernel TLS offload"); 128 129 static bool ktls_cbc_enable = true; 130 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 131 &ktls_cbc_enable, 1, 132 "Enable Support of AES-CBC crypto for kernel TLS"); 133 134 static bool ktls_sw_buffer_cache = true; 135 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 136 &ktls_sw_buffer_cache, 1, 137 "Enable caching of output buffers for SW encryption"); 138 139 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 140 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 141 &ktls_tasks_active, "Number of active tasks"); 142 143 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 144 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 145 &ktls_cnt_tx_queued, 146 "Number of TLS records in queue to tasks for SW encryption"); 147 148 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 149 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 150 &ktls_cnt_rx_queued, 151 "Number of TLS sockets in queue to tasks for SW decryption"); 152 153 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 154 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 155 CTLFLAG_RD, &ktls_offload_total, 156 "Total successful TLS setups (parameters set)"); 157 158 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 160 CTLFLAG_RD, &ktls_offload_enable_calls, 161 "Total number of TLS enable calls made"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 165 &ktls_offload_active, "Total Active TLS sessions"); 166 167 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 168 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 169 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 170 171 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 172 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 173 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 174 175 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 176 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 177 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 178 179 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 180 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 181 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 182 183 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 184 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 185 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 186 187 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 188 "Software TLS session stats"); 189 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 190 "Hardware (ifnet) TLS session stats"); 191 #ifdef TCP_OFFLOAD 192 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 193 "TOE TLS session stats"); 194 #endif 195 196 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 197 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 198 "Active number of software TLS sessions using AES-CBC"); 199 200 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 201 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 202 "Active number of software TLS sessions using AES-GCM"); 203 204 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 205 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 206 &ktls_sw_chacha20, 207 "Active number of software TLS sessions using Chacha20-Poly1305"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 211 &ktls_ifnet_cbc, 212 "Active number of ifnet TLS sessions using AES-CBC"); 213 214 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 216 &ktls_ifnet_gcm, 217 "Active number of ifnet TLS sessions using AES-GCM"); 218 219 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 220 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 221 &ktls_ifnet_chacha20, 222 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 223 224 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 225 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 226 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 227 228 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 229 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 230 &ktls_ifnet_reset_dropped, 231 "TLS sessions dropped after failing to update ifnet send tag"); 232 233 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 234 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 235 &ktls_ifnet_reset_failed, 236 "TLS sessions that failed to allocate a new ifnet send tag"); 237 238 static int ktls_ifnet_permitted; 239 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 240 &ktls_ifnet_permitted, 1, 241 "Whether to permit hardware (ifnet) TLS sessions"); 242 243 #ifdef TCP_OFFLOAD 244 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 245 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 246 &ktls_toe_cbc, 247 "Active number of TOE TLS sessions using AES-CBC"); 248 249 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 250 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 251 &ktls_toe_gcm, 252 "Active number of TOE TLS sessions using AES-GCM"); 253 254 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 255 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 256 &ktls_toe_chacha20, 257 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 258 #endif 259 260 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 261 262 static void ktls_cleanup(struct ktls_session *tls); 263 #if defined(INET) || defined(INET6) 264 static void ktls_reset_send_tag(void *context, int pending); 265 #endif 266 static void ktls_work_thread(void *ctx); 267 268 #if defined(INET) || defined(INET6) 269 static u_int 270 ktls_get_cpu(struct socket *so) 271 { 272 struct inpcb *inp; 273 #ifdef NUMA 274 struct ktls_domain_info *di; 275 #endif 276 u_int cpuid; 277 278 inp = sotoinpcb(so); 279 #ifdef RSS 280 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 281 if (cpuid != NETISR_CPUID_NONE) 282 return (cpuid); 283 #endif 284 /* 285 * Just use the flowid to shard connections in a repeatable 286 * fashion. Note that TLS 1.0 sessions rely on the 287 * serialization provided by having the same connection use 288 * the same queue. 289 */ 290 #ifdef NUMA 291 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 292 di = &ktls_domains[inp->inp_numa_domain]; 293 cpuid = di->cpu[inp->inp_flowid % di->count]; 294 } else 295 #endif 296 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 297 return (cpuid); 298 } 299 #endif 300 301 static int 302 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 303 { 304 vm_page_t m; 305 int i; 306 307 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 308 ("%s: ktls max length %d is not page size-aligned", 309 __func__, ktls_maxlen)); 310 311 for (i = 0; i < count; i++) { 312 m = vm_page_alloc_contig_domain(NULL, 0, domain, 313 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 314 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 315 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 316 VM_MEMATTR_DEFAULT); 317 if (m == NULL) 318 break; 319 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 320 } 321 return (i); 322 } 323 324 static void 325 ktls_buffer_release(void *arg __unused, void **store, int count) 326 { 327 vm_page_t m; 328 int i, j; 329 330 for (i = 0; i < count; i++) { 331 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 332 for (j = 0; j < atop(ktls_maxlen); j++) { 333 (void)vm_page_unwire_noq(m + j); 334 vm_page_free(m + j); 335 } 336 } 337 } 338 339 static void 340 ktls_free_mext_contig(struct mbuf *m) 341 { 342 M_ASSERTEXTPG(m); 343 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 344 } 345 346 static void 347 ktls_init(void *dummy __unused) 348 { 349 struct thread *td; 350 struct pcpu *pc; 351 cpuset_t mask; 352 int count, domain, error, i; 353 354 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 355 M_WAITOK | M_ZERO); 356 357 ktls_session_zone = uma_zcreate("ktls_session", 358 sizeof(struct ktls_session), 359 NULL, NULL, NULL, NULL, 360 UMA_ALIGN_CACHE, 0); 361 362 if (ktls_sw_buffer_cache) { 363 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 364 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 365 ktls_buffer_import, ktls_buffer_release, NULL, 366 UMA_ZONE_FIRSTTOUCH); 367 } 368 369 /* 370 * Initialize the workqueues to run the TLS work. We create a 371 * work queue for each CPU. 372 */ 373 CPU_FOREACH(i) { 374 STAILQ_INIT(&ktls_wq[i].m_head); 375 STAILQ_INIT(&ktls_wq[i].so_head); 376 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 377 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 378 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 379 if (error) 380 panic("Can't add KTLS thread %d error %d", i, error); 381 382 /* 383 * Bind threads to cores. If ktls_bind_threads is > 384 * 1, then we bind to the NUMA domain. 385 */ 386 if (ktls_bind_threads) { 387 if (ktls_bind_threads > 1) { 388 pc = pcpu_find(i); 389 domain = pc->pc_domain; 390 CPU_COPY(&cpuset_domain[domain], &mask); 391 count = ktls_domains[domain].count; 392 ktls_domains[domain].cpu[count] = i; 393 ktls_domains[domain].count++; 394 } else { 395 CPU_SETOF(i, &mask); 396 } 397 error = cpuset_setthread(td->td_tid, &mask); 398 if (error) 399 panic( 400 "Unable to bind KTLS thread for CPU %d error %d", 401 i, error); 402 } 403 ktls_cpuid_lookup[ktls_number_threads] = i; 404 ktls_number_threads++; 405 } 406 407 /* 408 * If we somehow have an empty domain, fall back to choosing 409 * among all KTLS threads. 410 */ 411 if (ktls_bind_threads > 1) { 412 for (i = 0; i < vm_ndomains; i++) { 413 if (ktls_domains[i].count == 0) { 414 ktls_bind_threads = 1; 415 break; 416 } 417 } 418 } 419 420 if (bootverbose) 421 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 422 } 423 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 424 425 #if defined(INET) || defined(INET6) 426 static int 427 ktls_create_session(struct socket *so, struct tls_enable *en, 428 struct ktls_session **tlsp) 429 { 430 struct ktls_session *tls; 431 int error; 432 433 /* Only TLS 1.0 - 1.3 are supported. */ 434 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 435 return (EINVAL); 436 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 437 en->tls_vminor > TLS_MINOR_VER_THREE) 438 return (EINVAL); 439 440 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 441 return (EINVAL); 442 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 443 return (EINVAL); 444 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 445 return (EINVAL); 446 447 /* All supported algorithms require a cipher key. */ 448 if (en->cipher_key_len == 0) 449 return (EINVAL); 450 451 /* No flags are currently supported. */ 452 if (en->flags != 0) 453 return (EINVAL); 454 455 /* Common checks for supported algorithms. */ 456 switch (en->cipher_algorithm) { 457 case CRYPTO_AES_NIST_GCM_16: 458 /* 459 * auth_algorithm isn't used, but permit GMAC values 460 * for compatibility. 461 */ 462 switch (en->auth_algorithm) { 463 case 0: 464 #ifdef COMPAT_FREEBSD12 465 /* XXX: Really 13.0-current COMPAT. */ 466 case CRYPTO_AES_128_NIST_GMAC: 467 case CRYPTO_AES_192_NIST_GMAC: 468 case CRYPTO_AES_256_NIST_GMAC: 469 #endif 470 break; 471 default: 472 return (EINVAL); 473 } 474 if (en->auth_key_len != 0) 475 return (EINVAL); 476 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 477 en->iv_len != TLS_AEAD_GCM_LEN) || 478 (en->tls_vminor == TLS_MINOR_VER_THREE && 479 en->iv_len != TLS_1_3_GCM_IV_LEN)) 480 return (EINVAL); 481 break; 482 case CRYPTO_AES_CBC: 483 switch (en->auth_algorithm) { 484 case CRYPTO_SHA1_HMAC: 485 /* 486 * TLS 1.0 requires an implicit IV. TLS 1.1+ 487 * all use explicit IVs. 488 */ 489 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 490 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 491 return (EINVAL); 492 break; 493 } 494 495 /* FALLTHROUGH */ 496 case CRYPTO_SHA2_256_HMAC: 497 case CRYPTO_SHA2_384_HMAC: 498 /* Ignore any supplied IV. */ 499 en->iv_len = 0; 500 break; 501 default: 502 return (EINVAL); 503 } 504 if (en->auth_key_len == 0) 505 return (EINVAL); 506 break; 507 case CRYPTO_CHACHA20_POLY1305: 508 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 509 return (EINVAL); 510 if (en->tls_vminor != TLS_MINOR_VER_TWO && 511 en->tls_vminor != TLS_MINOR_VER_THREE) 512 return (EINVAL); 513 if (en->iv_len != TLS_CHACHA20_IV_LEN) 514 return (EINVAL); 515 break; 516 default: 517 return (EINVAL); 518 } 519 520 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 521 522 counter_u64_add(ktls_offload_active, 1); 523 524 refcount_init(&tls->refcount, 1); 525 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 526 527 tls->wq_index = ktls_get_cpu(so); 528 529 tls->params.cipher_algorithm = en->cipher_algorithm; 530 tls->params.auth_algorithm = en->auth_algorithm; 531 tls->params.tls_vmajor = en->tls_vmajor; 532 tls->params.tls_vminor = en->tls_vminor; 533 tls->params.flags = en->flags; 534 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 535 536 /* Set the header and trailer lengths. */ 537 tls->params.tls_hlen = sizeof(struct tls_record_layer); 538 switch (en->cipher_algorithm) { 539 case CRYPTO_AES_NIST_GCM_16: 540 /* 541 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 542 * nonce. TLS 1.3 uses a 12 byte implicit IV. 543 */ 544 if (en->tls_vminor < TLS_MINOR_VER_THREE) 545 tls->params.tls_hlen += sizeof(uint64_t); 546 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 547 tls->params.tls_bs = 1; 548 break; 549 case CRYPTO_AES_CBC: 550 switch (en->auth_algorithm) { 551 case CRYPTO_SHA1_HMAC: 552 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 553 /* Implicit IV, no nonce. */ 554 } else { 555 tls->params.tls_hlen += AES_BLOCK_LEN; 556 } 557 tls->params.tls_tlen = AES_BLOCK_LEN + 558 SHA1_HASH_LEN; 559 break; 560 case CRYPTO_SHA2_256_HMAC: 561 tls->params.tls_hlen += AES_BLOCK_LEN; 562 tls->params.tls_tlen = AES_BLOCK_LEN + 563 SHA2_256_HASH_LEN; 564 break; 565 case CRYPTO_SHA2_384_HMAC: 566 tls->params.tls_hlen += AES_BLOCK_LEN; 567 tls->params.tls_tlen = AES_BLOCK_LEN + 568 SHA2_384_HASH_LEN; 569 break; 570 default: 571 panic("invalid hmac"); 572 } 573 tls->params.tls_bs = AES_BLOCK_LEN; 574 break; 575 case CRYPTO_CHACHA20_POLY1305: 576 /* 577 * Chacha20 uses a 12 byte implicit IV. 578 */ 579 tls->params.tls_tlen = POLY1305_HASH_LEN; 580 tls->params.tls_bs = 1; 581 break; 582 default: 583 panic("invalid cipher"); 584 } 585 586 /* 587 * TLS 1.3 includes optional padding which we do not support, 588 * and also puts the "real" record type at the end of the 589 * encrypted data. 590 */ 591 if (en->tls_vminor == TLS_MINOR_VER_THREE) 592 tls->params.tls_tlen += sizeof(uint8_t); 593 594 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 595 ("TLS header length too long: %d", tls->params.tls_hlen)); 596 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 597 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 598 599 if (en->auth_key_len != 0) { 600 tls->params.auth_key_len = en->auth_key_len; 601 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 602 M_WAITOK); 603 error = copyin(en->auth_key, tls->params.auth_key, 604 en->auth_key_len); 605 if (error) 606 goto out; 607 } 608 609 tls->params.cipher_key_len = en->cipher_key_len; 610 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 611 error = copyin(en->cipher_key, tls->params.cipher_key, 612 en->cipher_key_len); 613 if (error) 614 goto out; 615 616 /* 617 * This holds the implicit portion of the nonce for AEAD 618 * ciphers and the initial implicit IV for TLS 1.0. The 619 * explicit portions of the IV are generated in ktls_frame(). 620 */ 621 if (en->iv_len != 0) { 622 tls->params.iv_len = en->iv_len; 623 error = copyin(en->iv, tls->params.iv, en->iv_len); 624 if (error) 625 goto out; 626 627 /* 628 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 629 * counter to generate unique explicit IVs. 630 * 631 * Store this counter in the last 8 bytes of the IV 632 * array so that it is 8-byte aligned. 633 */ 634 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 635 en->tls_vminor == TLS_MINOR_VER_TWO) 636 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 637 } 638 639 *tlsp = tls; 640 return (0); 641 642 out: 643 ktls_cleanup(tls); 644 return (error); 645 } 646 647 static struct ktls_session * 648 ktls_clone_session(struct ktls_session *tls) 649 { 650 struct ktls_session *tls_new; 651 652 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 653 654 counter_u64_add(ktls_offload_active, 1); 655 656 refcount_init(&tls_new->refcount, 1); 657 658 /* Copy fields from existing session. */ 659 tls_new->params = tls->params; 660 tls_new->wq_index = tls->wq_index; 661 662 /* Deep copy keys. */ 663 if (tls_new->params.auth_key != NULL) { 664 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 665 M_KTLS, M_WAITOK); 666 memcpy(tls_new->params.auth_key, tls->params.auth_key, 667 tls->params.auth_key_len); 668 } 669 670 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 671 M_WAITOK); 672 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 673 tls->params.cipher_key_len); 674 675 return (tls_new); 676 } 677 #endif 678 679 static void 680 ktls_cleanup(struct ktls_session *tls) 681 { 682 683 counter_u64_add(ktls_offload_active, -1); 684 switch (tls->mode) { 685 case TCP_TLS_MODE_SW: 686 switch (tls->params.cipher_algorithm) { 687 case CRYPTO_AES_CBC: 688 counter_u64_add(ktls_sw_cbc, -1); 689 break; 690 case CRYPTO_AES_NIST_GCM_16: 691 counter_u64_add(ktls_sw_gcm, -1); 692 break; 693 case CRYPTO_CHACHA20_POLY1305: 694 counter_u64_add(ktls_sw_chacha20, -1); 695 break; 696 } 697 ktls_ocf_free(tls); 698 break; 699 case TCP_TLS_MODE_IFNET: 700 switch (tls->params.cipher_algorithm) { 701 case CRYPTO_AES_CBC: 702 counter_u64_add(ktls_ifnet_cbc, -1); 703 break; 704 case CRYPTO_AES_NIST_GCM_16: 705 counter_u64_add(ktls_ifnet_gcm, -1); 706 break; 707 case CRYPTO_CHACHA20_POLY1305: 708 counter_u64_add(ktls_ifnet_chacha20, -1); 709 break; 710 } 711 if (tls->snd_tag != NULL) 712 m_snd_tag_rele(tls->snd_tag); 713 break; 714 #ifdef TCP_OFFLOAD 715 case TCP_TLS_MODE_TOE: 716 switch (tls->params.cipher_algorithm) { 717 case CRYPTO_AES_CBC: 718 counter_u64_add(ktls_toe_cbc, -1); 719 break; 720 case CRYPTO_AES_NIST_GCM_16: 721 counter_u64_add(ktls_toe_gcm, -1); 722 break; 723 case CRYPTO_CHACHA20_POLY1305: 724 counter_u64_add(ktls_toe_chacha20, -1); 725 break; 726 } 727 break; 728 #endif 729 } 730 if (tls->params.auth_key != NULL) { 731 zfree(tls->params.auth_key, M_KTLS); 732 tls->params.auth_key = NULL; 733 tls->params.auth_key_len = 0; 734 } 735 if (tls->params.cipher_key != NULL) { 736 zfree(tls->params.cipher_key, M_KTLS); 737 tls->params.cipher_key = NULL; 738 tls->params.cipher_key_len = 0; 739 } 740 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 741 } 742 743 #if defined(INET) || defined(INET6) 744 745 #ifdef TCP_OFFLOAD 746 static int 747 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 748 { 749 struct inpcb *inp; 750 struct tcpcb *tp; 751 int error; 752 753 inp = so->so_pcb; 754 INP_WLOCK(inp); 755 if (inp->inp_flags2 & INP_FREED) { 756 INP_WUNLOCK(inp); 757 return (ECONNRESET); 758 } 759 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 760 INP_WUNLOCK(inp); 761 return (ECONNRESET); 762 } 763 if (inp->inp_socket == NULL) { 764 INP_WUNLOCK(inp); 765 return (ECONNRESET); 766 } 767 tp = intotcpcb(inp); 768 if (!(tp->t_flags & TF_TOE)) { 769 INP_WUNLOCK(inp); 770 return (EOPNOTSUPP); 771 } 772 773 error = tcp_offload_alloc_tls_session(tp, tls, direction); 774 INP_WUNLOCK(inp); 775 if (error == 0) { 776 tls->mode = TCP_TLS_MODE_TOE; 777 switch (tls->params.cipher_algorithm) { 778 case CRYPTO_AES_CBC: 779 counter_u64_add(ktls_toe_cbc, 1); 780 break; 781 case CRYPTO_AES_NIST_GCM_16: 782 counter_u64_add(ktls_toe_gcm, 1); 783 break; 784 case CRYPTO_CHACHA20_POLY1305: 785 counter_u64_add(ktls_toe_chacha20, 1); 786 break; 787 } 788 } 789 return (error); 790 } 791 #endif 792 793 /* 794 * Common code used when first enabling ifnet TLS on a connection or 795 * when allocating a new ifnet TLS session due to a routing change. 796 * This function allocates a new TLS send tag on whatever interface 797 * the connection is currently routed over. 798 */ 799 static int 800 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 801 struct m_snd_tag **mstp) 802 { 803 union if_snd_tag_alloc_params params; 804 struct ifnet *ifp; 805 struct nhop_object *nh; 806 struct tcpcb *tp; 807 int error; 808 809 INP_RLOCK(inp); 810 if (inp->inp_flags2 & INP_FREED) { 811 INP_RUNLOCK(inp); 812 return (ECONNRESET); 813 } 814 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 815 INP_RUNLOCK(inp); 816 return (ECONNRESET); 817 } 818 if (inp->inp_socket == NULL) { 819 INP_RUNLOCK(inp); 820 return (ECONNRESET); 821 } 822 tp = intotcpcb(inp); 823 824 /* 825 * Check administrative controls on ifnet TLS to determine if 826 * ifnet TLS should be denied. 827 * 828 * - Always permit 'force' requests. 829 * - ktls_ifnet_permitted == 0: always deny. 830 */ 831 if (!force && ktls_ifnet_permitted == 0) { 832 INP_RUNLOCK(inp); 833 return (ENXIO); 834 } 835 836 /* 837 * XXX: Use the cached route in the inpcb to find the 838 * interface. This should perhaps instead use 839 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 840 * enabled after a connection has completed key negotiation in 841 * userland, the cached route will be present in practice. 842 */ 843 nh = inp->inp_route.ro_nh; 844 if (nh == NULL) { 845 INP_RUNLOCK(inp); 846 return (ENXIO); 847 } 848 ifp = nh->nh_ifp; 849 if_ref(ifp); 850 851 /* 852 * Allocate a TLS + ratelimit tag if the connection has an 853 * existing pacing rate. 854 */ 855 if (tp->t_pacing_rate != -1 && 856 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 857 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 858 params.tls_rate_limit.inp = inp; 859 params.tls_rate_limit.tls = tls; 860 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 861 } else { 862 params.hdr.type = IF_SND_TAG_TYPE_TLS; 863 params.tls.inp = inp; 864 params.tls.tls = tls; 865 } 866 params.hdr.flowid = inp->inp_flowid; 867 params.hdr.flowtype = inp->inp_flowtype; 868 params.hdr.numa_domain = inp->inp_numa_domain; 869 INP_RUNLOCK(inp); 870 871 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 872 error = EOPNOTSUPP; 873 goto out; 874 } 875 if (inp->inp_vflag & INP_IPV6) { 876 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 877 error = EOPNOTSUPP; 878 goto out; 879 } 880 } else { 881 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 882 error = EOPNOTSUPP; 883 goto out; 884 } 885 } 886 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 887 out: 888 if_rele(ifp); 889 return (error); 890 } 891 892 static int 893 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 894 { 895 struct m_snd_tag *mst; 896 int error; 897 898 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 899 if (error == 0) { 900 tls->mode = TCP_TLS_MODE_IFNET; 901 tls->snd_tag = mst; 902 switch (tls->params.cipher_algorithm) { 903 case CRYPTO_AES_CBC: 904 counter_u64_add(ktls_ifnet_cbc, 1); 905 break; 906 case CRYPTO_AES_NIST_GCM_16: 907 counter_u64_add(ktls_ifnet_gcm, 1); 908 break; 909 case CRYPTO_CHACHA20_POLY1305: 910 counter_u64_add(ktls_ifnet_chacha20, 1); 911 break; 912 } 913 } 914 return (error); 915 } 916 917 static int 918 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 919 { 920 int error; 921 922 error = ktls_ocf_try(so, tls, direction); 923 if (error) 924 return (error); 925 tls->mode = TCP_TLS_MODE_SW; 926 switch (tls->params.cipher_algorithm) { 927 case CRYPTO_AES_CBC: 928 counter_u64_add(ktls_sw_cbc, 1); 929 break; 930 case CRYPTO_AES_NIST_GCM_16: 931 counter_u64_add(ktls_sw_gcm, 1); 932 break; 933 case CRYPTO_CHACHA20_POLY1305: 934 counter_u64_add(ktls_sw_chacha20, 1); 935 break; 936 } 937 return (0); 938 } 939 940 /* 941 * KTLS RX stores data in the socket buffer as a list of TLS records, 942 * where each record is stored as a control message containg the TLS 943 * header followed by data mbufs containing the decrypted data. This 944 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 945 * both encrypted and decrypted data. TLS records decrypted by a NIC 946 * should be queued to the socket buffer as records, but encrypted 947 * data which needs to be decrypted by software arrives as a stream of 948 * regular mbufs which need to be converted. In addition, there may 949 * already be pending encrypted data in the socket buffer when KTLS RX 950 * is enabled. 951 * 952 * To manage not-yet-decrypted data for KTLS RX, the following scheme 953 * is used: 954 * 955 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 956 * 957 * - ktls_check_rx checks this chain of mbufs reading the TLS header 958 * from the first mbuf. Once all of the data for that TLS record is 959 * queued, the socket is queued to a worker thread. 960 * 961 * - The worker thread calls ktls_decrypt to decrypt TLS records in 962 * the TLS chain. Each TLS record is detached from the TLS chain, 963 * decrypted, and inserted into the regular socket buffer chain as 964 * record starting with a control message holding the TLS header and 965 * a chain of mbufs holding the encrypted data. 966 */ 967 968 static void 969 sb_mark_notready(struct sockbuf *sb) 970 { 971 struct mbuf *m; 972 973 m = sb->sb_mb; 974 sb->sb_mtls = m; 975 sb->sb_mb = NULL; 976 sb->sb_mbtail = NULL; 977 sb->sb_lastrecord = NULL; 978 for (; m != NULL; m = m->m_next) { 979 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 980 __func__)); 981 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 982 __func__)); 983 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 984 __func__)); 985 m->m_flags |= M_NOTREADY; 986 sb->sb_acc -= m->m_len; 987 sb->sb_tlscc += m->m_len; 988 sb->sb_mtlstail = m; 989 } 990 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 991 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 992 sb->sb_ccc)); 993 } 994 995 int 996 ktls_enable_rx(struct socket *so, struct tls_enable *en) 997 { 998 struct ktls_session *tls; 999 int error; 1000 1001 if (!ktls_offload_enable) 1002 return (ENOTSUP); 1003 if (SOLISTENING(so)) 1004 return (EINVAL); 1005 1006 counter_u64_add(ktls_offload_enable_calls, 1); 1007 1008 /* 1009 * This should always be true since only the TCP socket option 1010 * invokes this function. 1011 */ 1012 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1013 return (EINVAL); 1014 1015 /* 1016 * XXX: Don't overwrite existing sessions. We should permit 1017 * this to support rekeying in the future. 1018 */ 1019 if (so->so_rcv.sb_tls_info != NULL) 1020 return (EALREADY); 1021 1022 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1023 return (ENOTSUP); 1024 1025 /* TLS 1.3 is not yet supported. */ 1026 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1027 en->tls_vminor == TLS_MINOR_VER_THREE) 1028 return (ENOTSUP); 1029 1030 error = ktls_create_session(so, en, &tls); 1031 if (error) 1032 return (error); 1033 1034 #ifdef TCP_OFFLOAD 1035 error = ktls_try_toe(so, tls, KTLS_RX); 1036 if (error) 1037 #endif 1038 error = ktls_try_sw(so, tls, KTLS_RX); 1039 1040 if (error) { 1041 ktls_cleanup(tls); 1042 return (error); 1043 } 1044 1045 /* Mark the socket as using TLS offload. */ 1046 SOCKBUF_LOCK(&so->so_rcv); 1047 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1048 so->so_rcv.sb_tls_info = tls; 1049 so->so_rcv.sb_flags |= SB_TLS_RX; 1050 1051 /* Mark existing data as not ready until it can be decrypted. */ 1052 if (tls->mode != TCP_TLS_MODE_TOE) { 1053 sb_mark_notready(&so->so_rcv); 1054 ktls_check_rx(&so->so_rcv); 1055 } 1056 SOCKBUF_UNLOCK(&so->so_rcv); 1057 1058 counter_u64_add(ktls_offload_total, 1); 1059 1060 return (0); 1061 } 1062 1063 int 1064 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1065 { 1066 struct ktls_session *tls; 1067 struct inpcb *inp; 1068 int error; 1069 1070 if (!ktls_offload_enable) 1071 return (ENOTSUP); 1072 if (SOLISTENING(so)) 1073 return (EINVAL); 1074 1075 counter_u64_add(ktls_offload_enable_calls, 1); 1076 1077 /* 1078 * This should always be true since only the TCP socket option 1079 * invokes this function. 1080 */ 1081 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1082 return (EINVAL); 1083 1084 /* 1085 * XXX: Don't overwrite existing sessions. We should permit 1086 * this to support rekeying in the future. 1087 */ 1088 if (so->so_snd.sb_tls_info != NULL) 1089 return (EALREADY); 1090 1091 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1092 return (ENOTSUP); 1093 1094 /* TLS requires ext pgs */ 1095 if (mb_use_ext_pgs == 0) 1096 return (ENXIO); 1097 1098 error = ktls_create_session(so, en, &tls); 1099 if (error) 1100 return (error); 1101 1102 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1103 #ifdef TCP_OFFLOAD 1104 error = ktls_try_toe(so, tls, KTLS_TX); 1105 if (error) 1106 #endif 1107 error = ktls_try_ifnet(so, tls, false); 1108 if (error) 1109 error = ktls_try_sw(so, tls, KTLS_TX); 1110 1111 if (error) { 1112 ktls_cleanup(tls); 1113 return (error); 1114 } 1115 1116 error = sblock(&so->so_snd, SBL_WAIT); 1117 if (error) { 1118 ktls_cleanup(tls); 1119 return (error); 1120 } 1121 1122 /* 1123 * Write lock the INP when setting sb_tls_info so that 1124 * routines in tcp_ratelimit.c can read sb_tls_info while 1125 * holding the INP lock. 1126 */ 1127 inp = so->so_pcb; 1128 INP_WLOCK(inp); 1129 SOCKBUF_LOCK(&so->so_snd); 1130 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1131 so->so_snd.sb_tls_info = tls; 1132 if (tls->mode != TCP_TLS_MODE_SW) 1133 so->so_snd.sb_flags |= SB_TLS_IFNET; 1134 SOCKBUF_UNLOCK(&so->so_snd); 1135 INP_WUNLOCK(inp); 1136 sbunlock(&so->so_snd); 1137 1138 counter_u64_add(ktls_offload_total, 1); 1139 1140 return (0); 1141 } 1142 1143 int 1144 ktls_get_rx_mode(struct socket *so) 1145 { 1146 struct ktls_session *tls; 1147 struct inpcb *inp; 1148 int mode; 1149 1150 if (SOLISTENING(so)) 1151 return (EINVAL); 1152 inp = so->so_pcb; 1153 INP_WLOCK_ASSERT(inp); 1154 SOCKBUF_LOCK(&so->so_rcv); 1155 tls = so->so_rcv.sb_tls_info; 1156 if (tls == NULL) 1157 mode = TCP_TLS_MODE_NONE; 1158 else 1159 mode = tls->mode; 1160 SOCKBUF_UNLOCK(&so->so_rcv); 1161 return (mode); 1162 } 1163 1164 int 1165 ktls_get_tx_mode(struct socket *so) 1166 { 1167 struct ktls_session *tls; 1168 struct inpcb *inp; 1169 int mode; 1170 1171 if (SOLISTENING(so)) 1172 return (EINVAL); 1173 inp = so->so_pcb; 1174 INP_WLOCK_ASSERT(inp); 1175 SOCKBUF_LOCK(&so->so_snd); 1176 tls = so->so_snd.sb_tls_info; 1177 if (tls == NULL) 1178 mode = TCP_TLS_MODE_NONE; 1179 else 1180 mode = tls->mode; 1181 SOCKBUF_UNLOCK(&so->so_snd); 1182 return (mode); 1183 } 1184 1185 /* 1186 * Switch between SW and ifnet TLS sessions as requested. 1187 */ 1188 int 1189 ktls_set_tx_mode(struct socket *so, int mode) 1190 { 1191 struct ktls_session *tls, *tls_new; 1192 struct inpcb *inp; 1193 int error; 1194 1195 if (SOLISTENING(so)) 1196 return (EINVAL); 1197 switch (mode) { 1198 case TCP_TLS_MODE_SW: 1199 case TCP_TLS_MODE_IFNET: 1200 break; 1201 default: 1202 return (EINVAL); 1203 } 1204 1205 inp = so->so_pcb; 1206 INP_WLOCK_ASSERT(inp); 1207 SOCKBUF_LOCK(&so->so_snd); 1208 tls = so->so_snd.sb_tls_info; 1209 if (tls == NULL) { 1210 SOCKBUF_UNLOCK(&so->so_snd); 1211 return (0); 1212 } 1213 1214 if (tls->mode == mode) { 1215 SOCKBUF_UNLOCK(&so->so_snd); 1216 return (0); 1217 } 1218 1219 tls = ktls_hold(tls); 1220 SOCKBUF_UNLOCK(&so->so_snd); 1221 INP_WUNLOCK(inp); 1222 1223 tls_new = ktls_clone_session(tls); 1224 1225 if (mode == TCP_TLS_MODE_IFNET) 1226 error = ktls_try_ifnet(so, tls_new, true); 1227 else 1228 error = ktls_try_sw(so, tls_new, KTLS_TX); 1229 if (error) { 1230 counter_u64_add(ktls_switch_failed, 1); 1231 ktls_free(tls_new); 1232 ktls_free(tls); 1233 INP_WLOCK(inp); 1234 return (error); 1235 } 1236 1237 error = sblock(&so->so_snd, SBL_WAIT); 1238 if (error) { 1239 counter_u64_add(ktls_switch_failed, 1); 1240 ktls_free(tls_new); 1241 ktls_free(tls); 1242 INP_WLOCK(inp); 1243 return (error); 1244 } 1245 1246 /* 1247 * If we raced with another session change, keep the existing 1248 * session. 1249 */ 1250 if (tls != so->so_snd.sb_tls_info) { 1251 counter_u64_add(ktls_switch_failed, 1); 1252 sbunlock(&so->so_snd); 1253 ktls_free(tls_new); 1254 ktls_free(tls); 1255 INP_WLOCK(inp); 1256 return (EBUSY); 1257 } 1258 1259 SOCKBUF_LOCK(&so->so_snd); 1260 so->so_snd.sb_tls_info = tls_new; 1261 if (tls_new->mode != TCP_TLS_MODE_SW) 1262 so->so_snd.sb_flags |= SB_TLS_IFNET; 1263 SOCKBUF_UNLOCK(&so->so_snd); 1264 sbunlock(&so->so_snd); 1265 1266 /* 1267 * Drop two references on 'tls'. The first is for the 1268 * ktls_hold() above. The second drops the reference from the 1269 * socket buffer. 1270 */ 1271 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1272 ktls_free(tls); 1273 ktls_free(tls); 1274 1275 if (mode == TCP_TLS_MODE_IFNET) 1276 counter_u64_add(ktls_switch_to_ifnet, 1); 1277 else 1278 counter_u64_add(ktls_switch_to_sw, 1); 1279 1280 INP_WLOCK(inp); 1281 return (0); 1282 } 1283 1284 /* 1285 * Try to allocate a new TLS send tag. This task is scheduled when 1286 * ip_output detects a route change while trying to transmit a packet 1287 * holding a TLS record. If a new tag is allocated, replace the tag 1288 * in the TLS session. Subsequent packets on the connection will use 1289 * the new tag. If a new tag cannot be allocated, drop the 1290 * connection. 1291 */ 1292 static void 1293 ktls_reset_send_tag(void *context, int pending) 1294 { 1295 struct epoch_tracker et; 1296 struct ktls_session *tls; 1297 struct m_snd_tag *old, *new; 1298 struct inpcb *inp; 1299 struct tcpcb *tp; 1300 int error; 1301 1302 MPASS(pending == 1); 1303 1304 tls = context; 1305 inp = tls->inp; 1306 1307 /* 1308 * Free the old tag first before allocating a new one. 1309 * ip[6]_output_send() will treat a NULL send tag the same as 1310 * an ifp mismatch and drop packets until a new tag is 1311 * allocated. 1312 * 1313 * Write-lock the INP when changing tls->snd_tag since 1314 * ip[6]_output_send() holds a read-lock when reading the 1315 * pointer. 1316 */ 1317 INP_WLOCK(inp); 1318 old = tls->snd_tag; 1319 tls->snd_tag = NULL; 1320 INP_WUNLOCK(inp); 1321 if (old != NULL) 1322 m_snd_tag_rele(old); 1323 1324 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1325 1326 if (error == 0) { 1327 INP_WLOCK(inp); 1328 tls->snd_tag = new; 1329 mtx_pool_lock(mtxpool_sleep, tls); 1330 tls->reset_pending = false; 1331 mtx_pool_unlock(mtxpool_sleep, tls); 1332 if (!in_pcbrele_wlocked(inp)) 1333 INP_WUNLOCK(inp); 1334 1335 counter_u64_add(ktls_ifnet_reset, 1); 1336 1337 /* 1338 * XXX: Should we kick tcp_output explicitly now that 1339 * the send tag is fixed or just rely on timers? 1340 */ 1341 } else { 1342 NET_EPOCH_ENTER(et); 1343 INP_WLOCK(inp); 1344 if (!in_pcbrele_wlocked(inp)) { 1345 if (!(inp->inp_flags & INP_TIMEWAIT) && 1346 !(inp->inp_flags & INP_DROPPED)) { 1347 tp = intotcpcb(inp); 1348 CURVNET_SET(tp->t_vnet); 1349 tp = tcp_drop(tp, ECONNABORTED); 1350 CURVNET_RESTORE(); 1351 if (tp != NULL) 1352 INP_WUNLOCK(inp); 1353 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1354 } else 1355 INP_WUNLOCK(inp); 1356 } 1357 NET_EPOCH_EXIT(et); 1358 1359 counter_u64_add(ktls_ifnet_reset_failed, 1); 1360 1361 /* 1362 * Leave reset_pending true to avoid future tasks while 1363 * the socket goes away. 1364 */ 1365 } 1366 1367 ktls_free(tls); 1368 } 1369 1370 int 1371 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1372 { 1373 1374 if (inp == NULL) 1375 return (ENOBUFS); 1376 1377 INP_LOCK_ASSERT(inp); 1378 1379 /* 1380 * See if we should schedule a task to update the send tag for 1381 * this session. 1382 */ 1383 mtx_pool_lock(mtxpool_sleep, tls); 1384 if (!tls->reset_pending) { 1385 (void) ktls_hold(tls); 1386 in_pcbref(inp); 1387 tls->inp = inp; 1388 tls->reset_pending = true; 1389 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1390 } 1391 mtx_pool_unlock(mtxpool_sleep, tls); 1392 return (ENOBUFS); 1393 } 1394 1395 #ifdef RATELIMIT 1396 int 1397 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1398 { 1399 union if_snd_tag_modify_params params = { 1400 .rate_limit.max_rate = max_pacing_rate, 1401 .rate_limit.flags = M_NOWAIT, 1402 }; 1403 struct m_snd_tag *mst; 1404 struct ifnet *ifp; 1405 1406 /* Can't get to the inp, but it should be locked. */ 1407 /* INP_LOCK_ASSERT(inp); */ 1408 1409 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1410 1411 if (tls->snd_tag == NULL) { 1412 /* 1413 * Resetting send tag, ignore this change. The 1414 * pending reset may or may not see this updated rate 1415 * in the tcpcb. If it doesn't, we will just lose 1416 * this rate change. 1417 */ 1418 return (0); 1419 } 1420 1421 MPASS(tls->snd_tag != NULL); 1422 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1423 1424 mst = tls->snd_tag; 1425 ifp = mst->ifp; 1426 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1427 } 1428 #endif 1429 #endif 1430 1431 void 1432 ktls_destroy(struct ktls_session *tls) 1433 { 1434 1435 ktls_cleanup(tls); 1436 uma_zfree(ktls_session_zone, tls); 1437 } 1438 1439 void 1440 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1441 { 1442 1443 for (; m != NULL; m = m->m_next) { 1444 KASSERT((m->m_flags & M_EXTPG) != 0, 1445 ("ktls_seq: mapped mbuf %p", m)); 1446 1447 m->m_epg_seqno = sb->sb_tls_seqno; 1448 sb->sb_tls_seqno++; 1449 } 1450 } 1451 1452 /* 1453 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1454 * mbuf in the chain must be an unmapped mbuf. The payload of the 1455 * mbuf must be populated with the payload of each TLS record. 1456 * 1457 * The record_type argument specifies the TLS record type used when 1458 * populating the TLS header. 1459 * 1460 * The enq_count argument on return is set to the number of pages of 1461 * payload data for this entire chain that need to be encrypted via SW 1462 * encryption. The returned value should be passed to ktls_enqueue 1463 * when scheduling encryption of this chain of mbufs. To handle the 1464 * special case of empty fragments for TLS 1.0 sessions, an empty 1465 * fragment counts as one page. 1466 */ 1467 void 1468 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1469 uint8_t record_type) 1470 { 1471 struct tls_record_layer *tlshdr; 1472 struct mbuf *m; 1473 uint64_t *noncep; 1474 uint16_t tls_len; 1475 int maxlen; 1476 1477 maxlen = tls->params.max_frame_len; 1478 *enq_cnt = 0; 1479 for (m = top; m != NULL; m = m->m_next) { 1480 /* 1481 * All mbufs in the chain should be TLS records whose 1482 * payload does not exceed the maximum frame length. 1483 * 1484 * Empty TLS records are permitted when using CBC. 1485 */ 1486 KASSERT(m->m_len <= maxlen && 1487 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1488 m->m_len >= 0 : m->m_len > 0), 1489 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1490 1491 /* 1492 * TLS frames require unmapped mbufs to store session 1493 * info. 1494 */ 1495 KASSERT((m->m_flags & M_EXTPG) != 0, 1496 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1497 1498 tls_len = m->m_len; 1499 1500 /* Save a reference to the session. */ 1501 m->m_epg_tls = ktls_hold(tls); 1502 1503 m->m_epg_hdrlen = tls->params.tls_hlen; 1504 m->m_epg_trllen = tls->params.tls_tlen; 1505 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1506 int bs, delta; 1507 1508 /* 1509 * AES-CBC pads messages to a multiple of the 1510 * block size. Note that the padding is 1511 * applied after the digest and the encryption 1512 * is done on the "plaintext || mac || padding". 1513 * At least one byte of padding is always 1514 * present. 1515 * 1516 * Compute the final trailer length assuming 1517 * at most one block of padding. 1518 * tls->params.tls_tlen is the maximum 1519 * possible trailer length (padding + digest). 1520 * delta holds the number of excess padding 1521 * bytes if the maximum were used. Those 1522 * extra bytes are removed. 1523 */ 1524 bs = tls->params.tls_bs; 1525 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1526 m->m_epg_trllen -= delta; 1527 } 1528 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1529 1530 /* Populate the TLS header. */ 1531 tlshdr = (void *)m->m_epg_hdr; 1532 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1533 1534 /* 1535 * TLS 1.3 masquarades as TLS 1.2 with a record type 1536 * of TLS_RLTYPE_APP. 1537 */ 1538 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1539 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1540 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1541 tlshdr->tls_type = TLS_RLTYPE_APP; 1542 /* save the real record type for later */ 1543 m->m_epg_record_type = record_type; 1544 m->m_epg_trail[0] = record_type; 1545 } else { 1546 tlshdr->tls_vminor = tls->params.tls_vminor; 1547 tlshdr->tls_type = record_type; 1548 } 1549 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1550 1551 /* 1552 * Store nonces / explicit IVs after the end of the 1553 * TLS header. 1554 * 1555 * For GCM with TLS 1.2, an 8 byte nonce is copied 1556 * from the end of the IV. The nonce is then 1557 * incremented for use by the next record. 1558 * 1559 * For CBC, a random nonce is inserted for TLS 1.1+. 1560 */ 1561 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1562 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1563 noncep = (uint64_t *)(tls->params.iv + 8); 1564 be64enc(tlshdr + 1, *noncep); 1565 (*noncep)++; 1566 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1567 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1568 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1569 1570 /* 1571 * When using SW encryption, mark the mbuf not ready. 1572 * It will be marked ready via sbready() after the 1573 * record has been encrypted. 1574 * 1575 * When using ifnet TLS, unencrypted TLS records are 1576 * sent down the stack to the NIC. 1577 */ 1578 if (tls->mode == TCP_TLS_MODE_SW) { 1579 m->m_flags |= M_NOTREADY; 1580 m->m_epg_nrdy = m->m_epg_npgs; 1581 if (__predict_false(tls_len == 0)) { 1582 /* TLS 1.0 empty fragment. */ 1583 *enq_cnt += 1; 1584 } else 1585 *enq_cnt += m->m_epg_npgs; 1586 } 1587 } 1588 } 1589 1590 void 1591 ktls_check_rx(struct sockbuf *sb) 1592 { 1593 struct tls_record_layer hdr; 1594 struct ktls_wq *wq; 1595 struct socket *so; 1596 bool running; 1597 1598 SOCKBUF_LOCK_ASSERT(sb); 1599 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1600 __func__, sb)); 1601 so = __containerof(sb, struct socket, so_rcv); 1602 1603 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1604 return; 1605 1606 /* Is there enough queued for a TLS header? */ 1607 if (sb->sb_tlscc < sizeof(hdr)) { 1608 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1609 so->so_error = EMSGSIZE; 1610 return; 1611 } 1612 1613 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1614 1615 /* Is the entire record queued? */ 1616 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1617 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1618 so->so_error = EMSGSIZE; 1619 return; 1620 } 1621 1622 sb->sb_flags |= SB_TLS_RX_RUNNING; 1623 1624 soref(so); 1625 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1626 mtx_lock(&wq->mtx); 1627 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1628 running = wq->running; 1629 mtx_unlock(&wq->mtx); 1630 if (!running) 1631 wakeup(wq); 1632 counter_u64_add(ktls_cnt_rx_queued, 1); 1633 } 1634 1635 static struct mbuf * 1636 ktls_detach_record(struct sockbuf *sb, int len) 1637 { 1638 struct mbuf *m, *n, *top; 1639 int remain; 1640 1641 SOCKBUF_LOCK_ASSERT(sb); 1642 MPASS(len <= sb->sb_tlscc); 1643 1644 /* 1645 * If TLS chain is the exact size of the record, 1646 * just grab the whole record. 1647 */ 1648 top = sb->sb_mtls; 1649 if (sb->sb_tlscc == len) { 1650 sb->sb_mtls = NULL; 1651 sb->sb_mtlstail = NULL; 1652 goto out; 1653 } 1654 1655 /* 1656 * While it would be nice to use m_split() here, we need 1657 * to know exactly what m_split() allocates to update the 1658 * accounting, so do it inline instead. 1659 */ 1660 remain = len; 1661 for (m = top; remain > m->m_len; m = m->m_next) 1662 remain -= m->m_len; 1663 1664 /* Easy case: don't have to split 'm'. */ 1665 if (remain == m->m_len) { 1666 sb->sb_mtls = m->m_next; 1667 if (sb->sb_mtls == NULL) 1668 sb->sb_mtlstail = NULL; 1669 m->m_next = NULL; 1670 goto out; 1671 } 1672 1673 /* 1674 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1675 * with M_NOWAIT first. 1676 */ 1677 n = m_get(M_NOWAIT, MT_DATA); 1678 if (n == NULL) { 1679 /* 1680 * Use M_WAITOK with socket buffer unlocked. If 1681 * 'sb_mtls' changes while the lock is dropped, return 1682 * NULL to force the caller to retry. 1683 */ 1684 SOCKBUF_UNLOCK(sb); 1685 1686 n = m_get(M_WAITOK, MT_DATA); 1687 1688 SOCKBUF_LOCK(sb); 1689 if (sb->sb_mtls != top) { 1690 m_free(n); 1691 return (NULL); 1692 } 1693 } 1694 n->m_flags |= M_NOTREADY; 1695 1696 /* Store remainder in 'n'. */ 1697 n->m_len = m->m_len - remain; 1698 if (m->m_flags & M_EXT) { 1699 n->m_data = m->m_data + remain; 1700 mb_dupcl(n, m); 1701 } else { 1702 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1703 } 1704 1705 /* Trim 'm' and update accounting. */ 1706 m->m_len -= n->m_len; 1707 sb->sb_tlscc -= n->m_len; 1708 sb->sb_ccc -= n->m_len; 1709 1710 /* Account for 'n'. */ 1711 sballoc_ktls_rx(sb, n); 1712 1713 /* Insert 'n' into the TLS chain. */ 1714 sb->sb_mtls = n; 1715 n->m_next = m->m_next; 1716 if (sb->sb_mtlstail == m) 1717 sb->sb_mtlstail = n; 1718 1719 /* Detach the record from the TLS chain. */ 1720 m->m_next = NULL; 1721 1722 out: 1723 MPASS(m_length(top, NULL) == len); 1724 for (m = top; m != NULL; m = m->m_next) 1725 sbfree_ktls_rx(sb, m); 1726 sb->sb_tlsdcc = len; 1727 sb->sb_ccc += len; 1728 SBCHECK(sb); 1729 return (top); 1730 } 1731 1732 static void 1733 ktls_decrypt(struct socket *so) 1734 { 1735 char tls_header[MBUF_PEXT_HDR_LEN]; 1736 struct ktls_session *tls; 1737 struct sockbuf *sb; 1738 struct tls_record_layer *hdr; 1739 struct tls_get_record tgr; 1740 struct mbuf *control, *data, *m; 1741 uint64_t seqno; 1742 int error, remain, tls_len, trail_len; 1743 1744 hdr = (struct tls_record_layer *)tls_header; 1745 sb = &so->so_rcv; 1746 SOCKBUF_LOCK(sb); 1747 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1748 ("%s: socket %p not running", __func__, so)); 1749 1750 tls = sb->sb_tls_info; 1751 MPASS(tls != NULL); 1752 1753 for (;;) { 1754 /* Is there enough queued for a TLS header? */ 1755 if (sb->sb_tlscc < tls->params.tls_hlen) 1756 break; 1757 1758 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1759 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1760 1761 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1762 hdr->tls_vminor != tls->params.tls_vminor) 1763 error = EINVAL; 1764 else if (tls_len < tls->params.tls_hlen || tls_len > 1765 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1766 tls->params.tls_tlen) 1767 error = EMSGSIZE; 1768 else 1769 error = 0; 1770 if (__predict_false(error != 0)) { 1771 /* 1772 * We have a corrupted record and are likely 1773 * out of sync. The connection isn't 1774 * recoverable at this point, so abort it. 1775 */ 1776 SOCKBUF_UNLOCK(sb); 1777 counter_u64_add(ktls_offload_corrupted_records, 1); 1778 1779 CURVNET_SET(so->so_vnet); 1780 so->so_proto->pr_usrreqs->pru_abort(so); 1781 so->so_error = error; 1782 CURVNET_RESTORE(); 1783 goto deref; 1784 } 1785 1786 /* Is the entire record queued? */ 1787 if (sb->sb_tlscc < tls_len) 1788 break; 1789 1790 /* 1791 * Split out the portion of the mbuf chain containing 1792 * this TLS record. 1793 */ 1794 data = ktls_detach_record(sb, tls_len); 1795 if (data == NULL) 1796 continue; 1797 MPASS(sb->sb_tlsdcc == tls_len); 1798 1799 seqno = sb->sb_tls_seqno; 1800 sb->sb_tls_seqno++; 1801 SBCHECK(sb); 1802 SOCKBUF_UNLOCK(sb); 1803 1804 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1805 if (error) { 1806 counter_u64_add(ktls_offload_failed_crypto, 1); 1807 1808 SOCKBUF_LOCK(sb); 1809 if (sb->sb_tlsdcc == 0) { 1810 /* 1811 * sbcut/drop/flush discarded these 1812 * mbufs. 1813 */ 1814 m_freem(data); 1815 break; 1816 } 1817 1818 /* 1819 * Drop this TLS record's data, but keep 1820 * decrypting subsequent records. 1821 */ 1822 sb->sb_ccc -= tls_len; 1823 sb->sb_tlsdcc = 0; 1824 1825 CURVNET_SET(so->so_vnet); 1826 so->so_error = EBADMSG; 1827 sorwakeup_locked(so); 1828 CURVNET_RESTORE(); 1829 1830 m_freem(data); 1831 1832 SOCKBUF_LOCK(sb); 1833 continue; 1834 } 1835 1836 /* Allocate the control mbuf. */ 1837 tgr.tls_type = hdr->tls_type; 1838 tgr.tls_vmajor = hdr->tls_vmajor; 1839 tgr.tls_vminor = hdr->tls_vminor; 1840 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1841 trail_len); 1842 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1843 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1844 1845 SOCKBUF_LOCK(sb); 1846 if (sb->sb_tlsdcc == 0) { 1847 /* sbcut/drop/flush discarded these mbufs. */ 1848 MPASS(sb->sb_tlscc == 0); 1849 m_freem(data); 1850 m_freem(control); 1851 break; 1852 } 1853 1854 /* 1855 * Clear the 'dcc' accounting in preparation for 1856 * adding the decrypted record. 1857 */ 1858 sb->sb_ccc -= tls_len; 1859 sb->sb_tlsdcc = 0; 1860 SBCHECK(sb); 1861 1862 /* If there is no payload, drop all of the data. */ 1863 if (tgr.tls_length == htobe16(0)) { 1864 m_freem(data); 1865 data = NULL; 1866 } else { 1867 /* Trim header. */ 1868 remain = tls->params.tls_hlen; 1869 while (remain > 0) { 1870 if (data->m_len > remain) { 1871 data->m_data += remain; 1872 data->m_len -= remain; 1873 break; 1874 } 1875 remain -= data->m_len; 1876 data = m_free(data); 1877 } 1878 1879 /* Trim trailer and clear M_NOTREADY. */ 1880 remain = be16toh(tgr.tls_length); 1881 m = data; 1882 for (m = data; remain > m->m_len; m = m->m_next) { 1883 m->m_flags &= ~M_NOTREADY; 1884 remain -= m->m_len; 1885 } 1886 m->m_len = remain; 1887 m_freem(m->m_next); 1888 m->m_next = NULL; 1889 m->m_flags &= ~M_NOTREADY; 1890 1891 /* Set EOR on the final mbuf. */ 1892 m->m_flags |= M_EOR; 1893 } 1894 1895 sbappendcontrol_locked(sb, data, control, 0); 1896 } 1897 1898 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 1899 1900 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 1901 so->so_error = EMSGSIZE; 1902 1903 sorwakeup_locked(so); 1904 1905 deref: 1906 SOCKBUF_UNLOCK_ASSERT(sb); 1907 1908 CURVNET_SET(so->so_vnet); 1909 SOCK_LOCK(so); 1910 sorele(so); 1911 CURVNET_RESTORE(); 1912 } 1913 1914 void 1915 ktls_enqueue_to_free(struct mbuf *m) 1916 { 1917 struct ktls_wq *wq; 1918 bool running; 1919 1920 /* Mark it for freeing. */ 1921 m->m_epg_flags |= EPG_FLAG_2FREE; 1922 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1923 mtx_lock(&wq->mtx); 1924 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1925 running = wq->running; 1926 mtx_unlock(&wq->mtx); 1927 if (!running) 1928 wakeup(wq); 1929 } 1930 1931 static void * 1932 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 1933 { 1934 void *buf; 1935 1936 if (m->m_epg_npgs <= 2) 1937 return (NULL); 1938 if (ktls_buffer_zone == NULL) 1939 return (NULL); 1940 if ((u_int)(ticks - wq->lastallocfail) < hz) { 1941 /* 1942 * Rate-limit allocation attempts after a failure. 1943 * ktls_buffer_import() will acquire a per-domain mutex to check 1944 * the free page queues and may fail consistently if memory is 1945 * fragmented. 1946 */ 1947 return (NULL); 1948 } 1949 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 1950 if (buf == NULL) 1951 wq->lastallocfail = ticks; 1952 return (buf); 1953 } 1954 1955 void 1956 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 1957 { 1958 struct ktls_wq *wq; 1959 bool running; 1960 1961 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 1962 (M_EXTPG | M_NOTREADY)), 1963 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 1964 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 1965 1966 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 1967 1968 m->m_epg_enc_cnt = page_count; 1969 1970 /* 1971 * Save a pointer to the socket. The caller is responsible 1972 * for taking an additional reference via soref(). 1973 */ 1974 m->m_epg_so = so; 1975 1976 wq = &ktls_wq[m->m_epg_tls->wq_index]; 1977 mtx_lock(&wq->mtx); 1978 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 1979 running = wq->running; 1980 mtx_unlock(&wq->mtx); 1981 if (!running) 1982 wakeup(wq); 1983 counter_u64_add(ktls_cnt_tx_queued, 1); 1984 } 1985 1986 #define MAX_TLS_PAGES (1 + btoc(TLS_MAX_MSG_SIZE_V10_2)) 1987 1988 static __noinline void 1989 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 1990 { 1991 struct ktls_session *tls; 1992 struct socket *so; 1993 struct mbuf *m; 1994 vm_paddr_t parray[MAX_TLS_PAGES + 1]; 1995 struct iovec dst_iov[MAX_TLS_PAGES + 2]; 1996 vm_page_t pg; 1997 void *cbuf; 1998 int error, i, len, npages, off, total_pages; 1999 2000 so = top->m_epg_so; 2001 tls = top->m_epg_tls; 2002 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2003 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2004 #ifdef INVARIANTS 2005 top->m_epg_so = NULL; 2006 #endif 2007 total_pages = top->m_epg_enc_cnt; 2008 npages = 0; 2009 2010 /* 2011 * Encrypt the TLS records in the chain of mbufs starting with 2012 * 'top'. 'total_pages' gives us a total count of pages and is 2013 * used to know when we have finished encrypting the TLS 2014 * records originally queued with 'top'. 2015 * 2016 * NB: These mbufs are queued in the socket buffer and 2017 * 'm_next' is traversing the mbufs in the socket buffer. The 2018 * socket buffer lock is not held while traversing this chain. 2019 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2020 * pointers should be stable. However, the 'm_next' of the 2021 * last mbuf encrypted is not necessarily NULL. It can point 2022 * to other mbufs appended while 'top' was on the TLS work 2023 * queue. 2024 * 2025 * Each mbuf holds an entire TLS record. 2026 */ 2027 error = 0; 2028 for (m = top; npages != total_pages; m = m->m_next) { 2029 KASSERT(m->m_epg_tls == tls, 2030 ("different TLS sessions in a single mbuf chain: %p vs %p", 2031 tls, m->m_epg_tls)); 2032 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2033 (M_EXTPG | M_NOTREADY), 2034 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2035 KASSERT(npages + m->m_epg_npgs <= total_pages, 2036 ("page count mismatch: top %p, total_pages %d, m %p", top, 2037 total_pages, m)); 2038 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2039 ("page count %d larger than maximum frame length %d", 2040 m->m_epg_npgs, ktls_maxlen)); 2041 2042 /* 2043 * For anonymous mbufs, encryption is done in place. 2044 * For file-backed mbufs (from sendfile), anonymous 2045 * wired pages are allocated and used as the 2046 * encryption destination. 2047 */ 2048 if ((m->m_epg_flags & EPG_FLAG_ANON) != 0) { 2049 error = (*tls->sw_encrypt)(tls, m, NULL, 0); 2050 } else { 2051 if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2052 len = ptoa(m->m_epg_npgs - 1) + 2053 m->m_epg_last_len - m->m_epg_1st_off; 2054 dst_iov[0].iov_base = (char *)cbuf + 2055 m->m_epg_1st_off; 2056 dst_iov[0].iov_len = len; 2057 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2058 i = 1; 2059 } else { 2060 off = m->m_epg_1st_off; 2061 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2062 do { 2063 pg = vm_page_alloc(NULL, 0, 2064 VM_ALLOC_NORMAL | 2065 VM_ALLOC_NOOBJ | 2066 VM_ALLOC_NODUMP | 2067 VM_ALLOC_WIRED | 2068 VM_ALLOC_WAITFAIL); 2069 } while (pg == NULL); 2070 2071 len = m_epg_pagelen(m, i, off); 2072 parray[i] = VM_PAGE_TO_PHYS(pg); 2073 dst_iov[i].iov_base = 2074 (char *)(void *)PHYS_TO_DMAP( 2075 parray[i]) + off; 2076 dst_iov[i].iov_len = len; 2077 } 2078 } 2079 KASSERT(i + 1 <= nitems(dst_iov), 2080 ("dst_iov is too small")); 2081 dst_iov[i].iov_base = m->m_epg_trail; 2082 dst_iov[i].iov_len = m->m_epg_trllen; 2083 2084 error = (*tls->sw_encrypt)(tls, m, dst_iov, i + 1); 2085 2086 /* Free the old pages. */ 2087 m->m_ext.ext_free(m); 2088 2089 /* Replace them with the new pages. */ 2090 if (cbuf != NULL) { 2091 for (i = 0; i < m->m_epg_npgs; i++) 2092 m->m_epg_pa[i] = parray[0] + ptoa(i); 2093 2094 /* Contig pages should go back to the cache. */ 2095 m->m_ext.ext_free = ktls_free_mext_contig; 2096 } else { 2097 for (i = 0; i < m->m_epg_npgs; i++) 2098 m->m_epg_pa[i] = parray[i]; 2099 2100 /* Use the basic free routine. */ 2101 m->m_ext.ext_free = mb_free_mext_pgs; 2102 } 2103 2104 /* Pages are now writable. */ 2105 m->m_epg_flags |= EPG_FLAG_ANON; 2106 } 2107 if (error) { 2108 counter_u64_add(ktls_offload_failed_crypto, 1); 2109 break; 2110 } 2111 2112 if (__predict_false(m->m_epg_npgs == 0)) { 2113 /* TLS 1.0 empty fragment. */ 2114 npages++; 2115 } else 2116 npages += m->m_epg_npgs; 2117 2118 /* 2119 * Drop a reference to the session now that it is no 2120 * longer needed. Existing code depends on encrypted 2121 * records having no associated session vs 2122 * yet-to-be-encrypted records having an associated 2123 * session. 2124 */ 2125 m->m_epg_tls = NULL; 2126 ktls_free(tls); 2127 } 2128 2129 CURVNET_SET(so->so_vnet); 2130 if (error == 0) { 2131 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2132 } else { 2133 so->so_proto->pr_usrreqs->pru_abort(so); 2134 so->so_error = EIO; 2135 mb_free_notready(top, total_pages); 2136 } 2137 2138 SOCK_LOCK(so); 2139 sorele(so); 2140 CURVNET_RESTORE(); 2141 } 2142 2143 static void 2144 ktls_work_thread(void *ctx) 2145 { 2146 struct ktls_wq *wq = ctx; 2147 struct mbuf *m, *n; 2148 struct socket *so, *son; 2149 STAILQ_HEAD(, mbuf) local_m_head; 2150 STAILQ_HEAD(, socket) local_so_head; 2151 2152 if (ktls_bind_threads > 1) { 2153 curthread->td_domain.dr_policy = 2154 DOMAINSET_PREF(PCPU_GET(domain)); 2155 } 2156 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2157 fpu_kern_thread(0); 2158 #endif 2159 for (;;) { 2160 mtx_lock(&wq->mtx); 2161 while (STAILQ_EMPTY(&wq->m_head) && 2162 STAILQ_EMPTY(&wq->so_head)) { 2163 wq->running = false; 2164 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2165 wq->running = true; 2166 } 2167 2168 STAILQ_INIT(&local_m_head); 2169 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2170 STAILQ_INIT(&local_so_head); 2171 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2172 mtx_unlock(&wq->mtx); 2173 2174 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2175 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2176 ktls_free(m->m_epg_tls); 2177 uma_zfree(zone_mbuf, m); 2178 } else { 2179 ktls_encrypt(wq, m); 2180 counter_u64_add(ktls_cnt_tx_queued, -1); 2181 } 2182 } 2183 2184 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2185 ktls_decrypt(so); 2186 counter_u64_add(ktls_cnt_rx_queued, -1); 2187 } 2188 } 2189 } 2190