1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2014-2019 Netflix Inc. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_rss.h" 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/domainset.h> 38 #include <sys/ktls.h> 39 #include <sys/lock.h> 40 #include <sys/mbuf.h> 41 #include <sys/mutex.h> 42 #include <sys/rmlock.h> 43 #include <sys/proc.h> 44 #include <sys/protosw.h> 45 #include <sys/refcount.h> 46 #include <sys/smp.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/sysctl.h> 50 #include <sys/taskqueue.h> 51 #include <sys/kthread.h> 52 #include <sys/uio.h> 53 #include <sys/vmmeter.h> 54 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 55 #include <machine/pcb.h> 56 #endif 57 #include <machine/vmparam.h> 58 #include <net/if.h> 59 #include <net/if_var.h> 60 #ifdef RSS 61 #include <net/netisr.h> 62 #include <net/rss_config.h> 63 #endif 64 #include <net/route.h> 65 #include <net/route/nhop.h> 66 #if defined(INET) || defined(INET6) 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #endif 70 #include <netinet/tcp_var.h> 71 #ifdef TCP_OFFLOAD 72 #include <netinet/tcp_offload.h> 73 #endif 74 #include <opencrypto/xform.h> 75 #include <vm/uma_dbg.h> 76 #include <vm/vm.h> 77 #include <vm/vm_pageout.h> 78 #include <vm/vm_page.h> 79 80 struct ktls_wq { 81 struct mtx mtx; 82 STAILQ_HEAD(, mbuf) m_head; 83 STAILQ_HEAD(, socket) so_head; 84 bool running; 85 int lastallocfail; 86 } __aligned(CACHE_LINE_SIZE); 87 88 struct ktls_domain_info { 89 int count; 90 int cpu[MAXCPU]; 91 }; 92 93 struct ktls_domain_info ktls_domains[MAXMEMDOM]; 94 static struct ktls_wq *ktls_wq; 95 static struct proc *ktls_proc; 96 LIST_HEAD(, ktls_crypto_backend) ktls_backends; 97 static struct rmlock ktls_backends_lock; 98 static uma_zone_t ktls_session_zone; 99 static uma_zone_t ktls_buffer_zone; 100 static uint16_t ktls_cpuid_lookup[MAXCPU]; 101 102 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 103 "Kernel TLS offload"); 104 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 105 "Kernel TLS offload stats"); 106 107 static int ktls_allow_unload; 108 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, allow_unload, CTLFLAG_RDTUN, 109 &ktls_allow_unload, 0, "Allow software crypto modules to unload"); 110 111 #ifdef RSS 112 static int ktls_bind_threads = 1; 113 #else 114 static int ktls_bind_threads; 115 #endif 116 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN, 117 &ktls_bind_threads, 0, 118 "Bind crypto threads to cores (1) or cores and domains (2) at boot"); 119 120 static u_int ktls_maxlen = 16384; 121 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN, 122 &ktls_maxlen, 0, "Maximum TLS record size"); 123 124 static int ktls_number_threads; 125 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD, 126 &ktls_number_threads, 0, 127 "Number of TLS threads in thread-pool"); 128 129 static bool ktls_offload_enable; 130 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN, 131 &ktls_offload_enable, 0, 132 "Enable support for kernel TLS offload"); 133 134 static bool ktls_cbc_enable = true; 135 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN, 136 &ktls_cbc_enable, 1, 137 "Enable Support of AES-CBC crypto for kernel TLS"); 138 139 static bool ktls_sw_buffer_cache = true; 140 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN, 141 &ktls_sw_buffer_cache, 1, 142 "Enable caching of output buffers for SW encryption"); 143 144 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active); 145 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD, 146 &ktls_tasks_active, "Number of active tasks"); 147 148 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued); 149 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD, 150 &ktls_cnt_tx_queued, 151 "Number of TLS records in queue to tasks for SW encryption"); 152 153 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued); 154 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD, 155 &ktls_cnt_rx_queued, 156 "Number of TLS sockets in queue to tasks for SW decryption"); 157 158 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total); 159 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total, 160 CTLFLAG_RD, &ktls_offload_total, 161 "Total successful TLS setups (parameters set)"); 162 163 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls); 164 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls, 165 CTLFLAG_RD, &ktls_offload_enable_calls, 166 "Total number of TLS enable calls made"); 167 168 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active); 169 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD, 170 &ktls_offload_active, "Total Active TLS sessions"); 171 172 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records); 173 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD, 174 &ktls_offload_corrupted_records, "Total corrupted TLS records received"); 175 176 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto); 177 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD, 178 &ktls_offload_failed_crypto, "Total TLS crypto failures"); 179 180 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet); 181 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD, 182 &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet"); 183 184 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw); 185 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD, 186 &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW"); 187 188 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed); 189 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD, 190 &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet"); 191 192 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 193 "Software TLS session stats"); 194 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 195 "Hardware (ifnet) TLS session stats"); 196 #ifdef TCP_OFFLOAD 197 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 198 "TOE TLS session stats"); 199 #endif 200 201 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc); 202 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc, 203 "Active number of software TLS sessions using AES-CBC"); 204 205 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm); 206 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm, 207 "Active number of software TLS sessions using AES-GCM"); 208 209 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20); 210 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD, 211 &ktls_sw_chacha20, 212 "Active number of software TLS sessions using Chacha20-Poly1305"); 213 214 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc); 215 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD, 216 &ktls_ifnet_cbc, 217 "Active number of ifnet TLS sessions using AES-CBC"); 218 219 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm); 220 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD, 221 &ktls_ifnet_gcm, 222 "Active number of ifnet TLS sessions using AES-GCM"); 223 224 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20); 225 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD, 226 &ktls_ifnet_chacha20, 227 "Active number of ifnet TLS sessions using Chacha20-Poly1305"); 228 229 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset); 230 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD, 231 &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag"); 232 233 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped); 234 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD, 235 &ktls_ifnet_reset_dropped, 236 "TLS sessions dropped after failing to update ifnet send tag"); 237 238 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed); 239 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD, 240 &ktls_ifnet_reset_failed, 241 "TLS sessions that failed to allocate a new ifnet send tag"); 242 243 static int ktls_ifnet_permitted; 244 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN, 245 &ktls_ifnet_permitted, 1, 246 "Whether to permit hardware (ifnet) TLS sessions"); 247 248 #ifdef TCP_OFFLOAD 249 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc); 250 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD, 251 &ktls_toe_cbc, 252 "Active number of TOE TLS sessions using AES-CBC"); 253 254 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm); 255 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD, 256 &ktls_toe_gcm, 257 "Active number of TOE TLS sessions using AES-GCM"); 258 259 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20); 260 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD, 261 &ktls_toe_chacha20, 262 "Active number of TOE TLS sessions using Chacha20-Poly1305"); 263 #endif 264 265 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS"); 266 267 static void ktls_cleanup(struct ktls_session *tls); 268 #if defined(INET) || defined(INET6) 269 static void ktls_reset_send_tag(void *context, int pending); 270 #endif 271 static void ktls_work_thread(void *ctx); 272 273 int 274 ktls_crypto_backend_register(struct ktls_crypto_backend *be) 275 { 276 struct ktls_crypto_backend *curr_be, *tmp; 277 278 if (be->api_version != KTLS_API_VERSION) { 279 printf("KTLS: API version mismatch (%d vs %d) for %s\n", 280 be->api_version, KTLS_API_VERSION, 281 be->name); 282 return (EINVAL); 283 } 284 285 rm_wlock(&ktls_backends_lock); 286 printf("KTLS: Registering crypto method %s with prio %d\n", 287 be->name, be->prio); 288 if (LIST_EMPTY(&ktls_backends)) { 289 LIST_INSERT_HEAD(&ktls_backends, be, next); 290 } else { 291 LIST_FOREACH_SAFE(curr_be, &ktls_backends, next, tmp) { 292 if (curr_be->prio < be->prio) { 293 LIST_INSERT_BEFORE(curr_be, be, next); 294 break; 295 } 296 if (LIST_NEXT(curr_be, next) == NULL) { 297 LIST_INSERT_AFTER(curr_be, be, next); 298 break; 299 } 300 } 301 } 302 rm_wunlock(&ktls_backends_lock); 303 return (0); 304 } 305 306 int 307 ktls_crypto_backend_deregister(struct ktls_crypto_backend *be) 308 { 309 struct ktls_crypto_backend *tmp; 310 311 /* 312 * Don't error if the backend isn't registered. This permits 313 * MOD_UNLOAD handlers to use this function unconditionally. 314 */ 315 rm_wlock(&ktls_backends_lock); 316 LIST_FOREACH(tmp, &ktls_backends, next) { 317 if (tmp == be) 318 break; 319 } 320 if (tmp == NULL) { 321 rm_wunlock(&ktls_backends_lock); 322 return (0); 323 } 324 325 if (!ktls_allow_unload) { 326 rm_wunlock(&ktls_backends_lock); 327 printf( 328 "KTLS: Deregistering crypto method %s is not supported\n", 329 be->name); 330 return (EBUSY); 331 } 332 333 if (be->use_count) { 334 rm_wunlock(&ktls_backends_lock); 335 return (EBUSY); 336 } 337 338 LIST_REMOVE(be, next); 339 rm_wunlock(&ktls_backends_lock); 340 return (0); 341 } 342 343 #if defined(INET) || defined(INET6) 344 static u_int 345 ktls_get_cpu(struct socket *so) 346 { 347 struct inpcb *inp; 348 #ifdef NUMA 349 struct ktls_domain_info *di; 350 #endif 351 u_int cpuid; 352 353 inp = sotoinpcb(so); 354 #ifdef RSS 355 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 356 if (cpuid != NETISR_CPUID_NONE) 357 return (cpuid); 358 #endif 359 /* 360 * Just use the flowid to shard connections in a repeatable 361 * fashion. Note that some crypto backends rely on the 362 * serialization provided by having the same connection use 363 * the same queue. 364 */ 365 #ifdef NUMA 366 if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) { 367 di = &ktls_domains[inp->inp_numa_domain]; 368 cpuid = di->cpu[inp->inp_flowid % di->count]; 369 } else 370 #endif 371 cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads]; 372 return (cpuid); 373 } 374 #endif 375 376 static int 377 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags) 378 { 379 vm_page_t m; 380 int i; 381 382 KASSERT((ktls_maxlen & PAGE_MASK) == 0, 383 ("%s: ktls max length %d is not page size-aligned", 384 __func__, ktls_maxlen)); 385 386 for (i = 0; i < count; i++) { 387 m = vm_page_alloc_contig_domain(NULL, 0, domain, 388 VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | 389 VM_ALLOC_NODUMP | malloc2vm_flags(flags), 390 atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, 391 VM_MEMATTR_DEFAULT); 392 if (m == NULL) 393 break; 394 store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); 395 } 396 return (i); 397 } 398 399 static void 400 ktls_buffer_release(void *arg __unused, void **store, int count) 401 { 402 vm_page_t m; 403 int i, j; 404 405 for (i = 0; i < count; i++) { 406 m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i])); 407 for (j = 0; j < atop(ktls_maxlen); j++) { 408 (void)vm_page_unwire_noq(m + j); 409 vm_page_free(m + j); 410 } 411 } 412 } 413 414 static void 415 ktls_free_mext_contig(struct mbuf *m) 416 { 417 M_ASSERTEXTPG(m); 418 uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0])); 419 } 420 421 static void 422 ktls_init(void *dummy __unused) 423 { 424 struct thread *td; 425 struct pcpu *pc; 426 cpuset_t mask; 427 int count, domain, error, i; 428 429 rm_init(&ktls_backends_lock, "ktls backends"); 430 LIST_INIT(&ktls_backends); 431 432 ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS, 433 M_WAITOK | M_ZERO); 434 435 ktls_session_zone = uma_zcreate("ktls_session", 436 sizeof(struct ktls_session), 437 NULL, NULL, NULL, NULL, 438 UMA_ALIGN_CACHE, 0); 439 440 if (ktls_sw_buffer_cache) { 441 ktls_buffer_zone = uma_zcache_create("ktls_buffers", 442 roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL, 443 ktls_buffer_import, ktls_buffer_release, NULL, 444 UMA_ZONE_FIRSTTOUCH); 445 } 446 447 /* 448 * Initialize the workqueues to run the TLS work. We create a 449 * work queue for each CPU. 450 */ 451 CPU_FOREACH(i) { 452 STAILQ_INIT(&ktls_wq[i].m_head); 453 STAILQ_INIT(&ktls_wq[i].so_head); 454 mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF); 455 error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i], 456 &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i); 457 if (error) 458 panic("Can't add KTLS thread %d error %d", i, error); 459 460 /* 461 * Bind threads to cores. If ktls_bind_threads is > 462 * 1, then we bind to the NUMA domain. 463 */ 464 if (ktls_bind_threads) { 465 if (ktls_bind_threads > 1) { 466 pc = pcpu_find(i); 467 domain = pc->pc_domain; 468 CPU_COPY(&cpuset_domain[domain], &mask); 469 count = ktls_domains[domain].count; 470 ktls_domains[domain].cpu[count] = i; 471 ktls_domains[domain].count++; 472 } else { 473 CPU_SETOF(i, &mask); 474 } 475 error = cpuset_setthread(td->td_tid, &mask); 476 if (error) 477 panic( 478 "Unable to bind KTLS thread for CPU %d error %d", 479 i, error); 480 } 481 ktls_cpuid_lookup[ktls_number_threads] = i; 482 ktls_number_threads++; 483 } 484 485 /* 486 * If we somehow have an empty domain, fall back to choosing 487 * among all KTLS threads. 488 */ 489 if (ktls_bind_threads > 1) { 490 for (i = 0; i < vm_ndomains; i++) { 491 if (ktls_domains[i].count == 0) { 492 ktls_bind_threads = 1; 493 break; 494 } 495 } 496 } 497 498 printf("KTLS: Initialized %d threads\n", ktls_number_threads); 499 } 500 SYSINIT(ktls, SI_SUB_SMP + 1, SI_ORDER_ANY, ktls_init, NULL); 501 502 #if defined(INET) || defined(INET6) 503 static int 504 ktls_create_session(struct socket *so, struct tls_enable *en, 505 struct ktls_session **tlsp) 506 { 507 struct ktls_session *tls; 508 int error; 509 510 /* Only TLS 1.0 - 1.3 are supported. */ 511 if (en->tls_vmajor != TLS_MAJOR_VER_ONE) 512 return (EINVAL); 513 if (en->tls_vminor < TLS_MINOR_VER_ZERO || 514 en->tls_vminor > TLS_MINOR_VER_THREE) 515 return (EINVAL); 516 517 if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE) 518 return (EINVAL); 519 if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE) 520 return (EINVAL); 521 if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv)) 522 return (EINVAL); 523 524 /* All supported algorithms require a cipher key. */ 525 if (en->cipher_key_len == 0) 526 return (EINVAL); 527 528 /* No flags are currently supported. */ 529 if (en->flags != 0) 530 return (EINVAL); 531 532 /* Common checks for supported algorithms. */ 533 switch (en->cipher_algorithm) { 534 case CRYPTO_AES_NIST_GCM_16: 535 /* 536 * auth_algorithm isn't used, but permit GMAC values 537 * for compatibility. 538 */ 539 switch (en->auth_algorithm) { 540 case 0: 541 #ifdef COMPAT_FREEBSD12 542 /* XXX: Really 13.0-current COMPAT. */ 543 case CRYPTO_AES_128_NIST_GMAC: 544 case CRYPTO_AES_192_NIST_GMAC: 545 case CRYPTO_AES_256_NIST_GMAC: 546 #endif 547 break; 548 default: 549 return (EINVAL); 550 } 551 if (en->auth_key_len != 0) 552 return (EINVAL); 553 if ((en->tls_vminor == TLS_MINOR_VER_TWO && 554 en->iv_len != TLS_AEAD_GCM_LEN) || 555 (en->tls_vminor == TLS_MINOR_VER_THREE && 556 en->iv_len != TLS_1_3_GCM_IV_LEN)) 557 return (EINVAL); 558 break; 559 case CRYPTO_AES_CBC: 560 switch (en->auth_algorithm) { 561 case CRYPTO_SHA1_HMAC: 562 /* 563 * TLS 1.0 requires an implicit IV. TLS 1.1+ 564 * all use explicit IVs. 565 */ 566 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 567 if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN) 568 return (EINVAL); 569 break; 570 } 571 572 /* FALLTHROUGH */ 573 case CRYPTO_SHA2_256_HMAC: 574 case CRYPTO_SHA2_384_HMAC: 575 /* Ignore any supplied IV. */ 576 en->iv_len = 0; 577 break; 578 default: 579 return (EINVAL); 580 } 581 if (en->auth_key_len == 0) 582 return (EINVAL); 583 break; 584 case CRYPTO_CHACHA20_POLY1305: 585 if (en->auth_algorithm != 0 || en->auth_key_len != 0) 586 return (EINVAL); 587 if (en->tls_vminor != TLS_MINOR_VER_TWO && 588 en->tls_vminor != TLS_MINOR_VER_THREE) 589 return (EINVAL); 590 if (en->iv_len != TLS_CHACHA20_IV_LEN) 591 return (EINVAL); 592 break; 593 default: 594 return (EINVAL); 595 } 596 597 tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 598 599 counter_u64_add(ktls_offload_active, 1); 600 601 refcount_init(&tls->refcount, 1); 602 TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls); 603 604 tls->wq_index = ktls_get_cpu(so); 605 606 tls->params.cipher_algorithm = en->cipher_algorithm; 607 tls->params.auth_algorithm = en->auth_algorithm; 608 tls->params.tls_vmajor = en->tls_vmajor; 609 tls->params.tls_vminor = en->tls_vminor; 610 tls->params.flags = en->flags; 611 tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen); 612 613 /* Set the header and trailer lengths. */ 614 tls->params.tls_hlen = sizeof(struct tls_record_layer); 615 switch (en->cipher_algorithm) { 616 case CRYPTO_AES_NIST_GCM_16: 617 /* 618 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte 619 * nonce. TLS 1.3 uses a 12 byte implicit IV. 620 */ 621 if (en->tls_vminor < TLS_MINOR_VER_THREE) 622 tls->params.tls_hlen += sizeof(uint64_t); 623 tls->params.tls_tlen = AES_GMAC_HASH_LEN; 624 tls->params.tls_bs = 1; 625 break; 626 case CRYPTO_AES_CBC: 627 switch (en->auth_algorithm) { 628 case CRYPTO_SHA1_HMAC: 629 if (en->tls_vminor == TLS_MINOR_VER_ZERO) { 630 /* Implicit IV, no nonce. */ 631 } else { 632 tls->params.tls_hlen += AES_BLOCK_LEN; 633 } 634 tls->params.tls_tlen = AES_BLOCK_LEN + 635 SHA1_HASH_LEN; 636 break; 637 case CRYPTO_SHA2_256_HMAC: 638 tls->params.tls_hlen += AES_BLOCK_LEN; 639 tls->params.tls_tlen = AES_BLOCK_LEN + 640 SHA2_256_HASH_LEN; 641 break; 642 case CRYPTO_SHA2_384_HMAC: 643 tls->params.tls_hlen += AES_BLOCK_LEN; 644 tls->params.tls_tlen = AES_BLOCK_LEN + 645 SHA2_384_HASH_LEN; 646 break; 647 default: 648 panic("invalid hmac"); 649 } 650 tls->params.tls_bs = AES_BLOCK_LEN; 651 break; 652 case CRYPTO_CHACHA20_POLY1305: 653 /* 654 * Chacha20 uses a 12 byte implicit IV. 655 */ 656 tls->params.tls_tlen = POLY1305_HASH_LEN; 657 tls->params.tls_bs = 1; 658 break; 659 default: 660 panic("invalid cipher"); 661 } 662 663 /* 664 * TLS 1.3 includes optional padding which we do not support, 665 * and also puts the "real" record type at the end of the 666 * encrypted data. 667 */ 668 if (en->tls_vminor == TLS_MINOR_VER_THREE) 669 tls->params.tls_tlen += sizeof(uint8_t); 670 671 KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN, 672 ("TLS header length too long: %d", tls->params.tls_hlen)); 673 KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN, 674 ("TLS trailer length too long: %d", tls->params.tls_tlen)); 675 676 if (en->auth_key_len != 0) { 677 tls->params.auth_key_len = en->auth_key_len; 678 tls->params.auth_key = malloc(en->auth_key_len, M_KTLS, 679 M_WAITOK); 680 error = copyin(en->auth_key, tls->params.auth_key, 681 en->auth_key_len); 682 if (error) 683 goto out; 684 } 685 686 tls->params.cipher_key_len = en->cipher_key_len; 687 tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK); 688 error = copyin(en->cipher_key, tls->params.cipher_key, 689 en->cipher_key_len); 690 if (error) 691 goto out; 692 693 /* 694 * This holds the implicit portion of the nonce for AEAD 695 * ciphers and the initial implicit IV for TLS 1.0. The 696 * explicit portions of the IV are generated in ktls_frame(). 697 */ 698 if (en->iv_len != 0) { 699 tls->params.iv_len = en->iv_len; 700 error = copyin(en->iv, tls->params.iv, en->iv_len); 701 if (error) 702 goto out; 703 704 /* 705 * For TLS 1.2 with GCM, generate an 8-byte nonce as a 706 * counter to generate unique explicit IVs. 707 * 708 * Store this counter in the last 8 bytes of the IV 709 * array so that it is 8-byte aligned. 710 */ 711 if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 712 en->tls_vminor == TLS_MINOR_VER_TWO) 713 arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0); 714 } 715 716 *tlsp = tls; 717 return (0); 718 719 out: 720 ktls_cleanup(tls); 721 return (error); 722 } 723 724 static struct ktls_session * 725 ktls_clone_session(struct ktls_session *tls) 726 { 727 struct ktls_session *tls_new; 728 729 tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO); 730 731 counter_u64_add(ktls_offload_active, 1); 732 733 refcount_init(&tls_new->refcount, 1); 734 735 /* Copy fields from existing session. */ 736 tls_new->params = tls->params; 737 tls_new->wq_index = tls->wq_index; 738 739 /* Deep copy keys. */ 740 if (tls_new->params.auth_key != NULL) { 741 tls_new->params.auth_key = malloc(tls->params.auth_key_len, 742 M_KTLS, M_WAITOK); 743 memcpy(tls_new->params.auth_key, tls->params.auth_key, 744 tls->params.auth_key_len); 745 } 746 747 tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS, 748 M_WAITOK); 749 memcpy(tls_new->params.cipher_key, tls->params.cipher_key, 750 tls->params.cipher_key_len); 751 752 return (tls_new); 753 } 754 #endif 755 756 static void 757 ktls_cleanup(struct ktls_session *tls) 758 { 759 760 counter_u64_add(ktls_offload_active, -1); 761 switch (tls->mode) { 762 case TCP_TLS_MODE_SW: 763 MPASS(tls->be != NULL); 764 switch (tls->params.cipher_algorithm) { 765 case CRYPTO_AES_CBC: 766 counter_u64_add(ktls_sw_cbc, -1); 767 break; 768 case CRYPTO_AES_NIST_GCM_16: 769 counter_u64_add(ktls_sw_gcm, -1); 770 break; 771 case CRYPTO_CHACHA20_POLY1305: 772 counter_u64_add(ktls_sw_chacha20, -1); 773 break; 774 } 775 tls->free(tls); 776 break; 777 case TCP_TLS_MODE_IFNET: 778 switch (tls->params.cipher_algorithm) { 779 case CRYPTO_AES_CBC: 780 counter_u64_add(ktls_ifnet_cbc, -1); 781 break; 782 case CRYPTO_AES_NIST_GCM_16: 783 counter_u64_add(ktls_ifnet_gcm, -1); 784 break; 785 case CRYPTO_CHACHA20_POLY1305: 786 counter_u64_add(ktls_ifnet_chacha20, -1); 787 break; 788 } 789 if (tls->snd_tag != NULL) 790 m_snd_tag_rele(tls->snd_tag); 791 break; 792 #ifdef TCP_OFFLOAD 793 case TCP_TLS_MODE_TOE: 794 switch (tls->params.cipher_algorithm) { 795 case CRYPTO_AES_CBC: 796 counter_u64_add(ktls_toe_cbc, -1); 797 break; 798 case CRYPTO_AES_NIST_GCM_16: 799 counter_u64_add(ktls_toe_gcm, -1); 800 break; 801 case CRYPTO_CHACHA20_POLY1305: 802 counter_u64_add(ktls_toe_chacha20, -1); 803 break; 804 } 805 break; 806 #endif 807 } 808 if (tls->params.auth_key != NULL) { 809 zfree(tls->params.auth_key, M_KTLS); 810 tls->params.auth_key = NULL; 811 tls->params.auth_key_len = 0; 812 } 813 if (tls->params.cipher_key != NULL) { 814 zfree(tls->params.cipher_key, M_KTLS); 815 tls->params.cipher_key = NULL; 816 tls->params.cipher_key_len = 0; 817 } 818 explicit_bzero(tls->params.iv, sizeof(tls->params.iv)); 819 } 820 821 #if defined(INET) || defined(INET6) 822 823 #ifdef TCP_OFFLOAD 824 static int 825 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction) 826 { 827 struct inpcb *inp; 828 struct tcpcb *tp; 829 int error; 830 831 inp = so->so_pcb; 832 INP_WLOCK(inp); 833 if (inp->inp_flags2 & INP_FREED) { 834 INP_WUNLOCK(inp); 835 return (ECONNRESET); 836 } 837 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 838 INP_WUNLOCK(inp); 839 return (ECONNRESET); 840 } 841 if (inp->inp_socket == NULL) { 842 INP_WUNLOCK(inp); 843 return (ECONNRESET); 844 } 845 tp = intotcpcb(inp); 846 if (!(tp->t_flags & TF_TOE)) { 847 INP_WUNLOCK(inp); 848 return (EOPNOTSUPP); 849 } 850 851 error = tcp_offload_alloc_tls_session(tp, tls, direction); 852 INP_WUNLOCK(inp); 853 if (error == 0) { 854 tls->mode = TCP_TLS_MODE_TOE; 855 switch (tls->params.cipher_algorithm) { 856 case CRYPTO_AES_CBC: 857 counter_u64_add(ktls_toe_cbc, 1); 858 break; 859 case CRYPTO_AES_NIST_GCM_16: 860 counter_u64_add(ktls_toe_gcm, 1); 861 break; 862 case CRYPTO_CHACHA20_POLY1305: 863 counter_u64_add(ktls_toe_chacha20, 1); 864 break; 865 } 866 } 867 return (error); 868 } 869 #endif 870 871 /* 872 * Common code used when first enabling ifnet TLS on a connection or 873 * when allocating a new ifnet TLS session due to a routing change. 874 * This function allocates a new TLS send tag on whatever interface 875 * the connection is currently routed over. 876 */ 877 static int 878 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force, 879 struct m_snd_tag **mstp) 880 { 881 union if_snd_tag_alloc_params params; 882 struct ifnet *ifp; 883 struct nhop_object *nh; 884 struct tcpcb *tp; 885 int error; 886 887 INP_RLOCK(inp); 888 if (inp->inp_flags2 & INP_FREED) { 889 INP_RUNLOCK(inp); 890 return (ECONNRESET); 891 } 892 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 893 INP_RUNLOCK(inp); 894 return (ECONNRESET); 895 } 896 if (inp->inp_socket == NULL) { 897 INP_RUNLOCK(inp); 898 return (ECONNRESET); 899 } 900 tp = intotcpcb(inp); 901 902 /* 903 * Check administrative controls on ifnet TLS to determine if 904 * ifnet TLS should be denied. 905 * 906 * - Always permit 'force' requests. 907 * - ktls_ifnet_permitted == 0: always deny. 908 */ 909 if (!force && ktls_ifnet_permitted == 0) { 910 INP_RUNLOCK(inp); 911 return (ENXIO); 912 } 913 914 /* 915 * XXX: Use the cached route in the inpcb to find the 916 * interface. This should perhaps instead use 917 * rtalloc1_fib(dst, 0, 0, fibnum). Since KTLS is only 918 * enabled after a connection has completed key negotiation in 919 * userland, the cached route will be present in practice. 920 */ 921 nh = inp->inp_route.ro_nh; 922 if (nh == NULL) { 923 INP_RUNLOCK(inp); 924 return (ENXIO); 925 } 926 ifp = nh->nh_ifp; 927 if_ref(ifp); 928 929 /* 930 * Allocate a TLS + ratelimit tag if the connection has an 931 * existing pacing rate. 932 */ 933 if (tp->t_pacing_rate != -1 && 934 (ifp->if_capenable & IFCAP_TXTLS_RTLMT) != 0) { 935 params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT; 936 params.tls_rate_limit.inp = inp; 937 params.tls_rate_limit.tls = tls; 938 params.tls_rate_limit.max_rate = tp->t_pacing_rate; 939 } else { 940 params.hdr.type = IF_SND_TAG_TYPE_TLS; 941 params.tls.inp = inp; 942 params.tls.tls = tls; 943 } 944 params.hdr.flowid = inp->inp_flowid; 945 params.hdr.flowtype = inp->inp_flowtype; 946 params.hdr.numa_domain = inp->inp_numa_domain; 947 INP_RUNLOCK(inp); 948 949 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 950 error = EOPNOTSUPP; 951 goto out; 952 } 953 if (inp->inp_vflag & INP_IPV6) { 954 if ((ifp->if_capenable & IFCAP_TXTLS6) == 0) { 955 error = EOPNOTSUPP; 956 goto out; 957 } 958 } else { 959 if ((ifp->if_capenable & IFCAP_TXTLS4) == 0) { 960 error = EOPNOTSUPP; 961 goto out; 962 } 963 } 964 error = m_snd_tag_alloc(ifp, ¶ms, mstp); 965 out: 966 if_rele(ifp); 967 return (error); 968 } 969 970 static int 971 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, bool force) 972 { 973 struct m_snd_tag *mst; 974 int error; 975 976 error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst); 977 if (error == 0) { 978 tls->mode = TCP_TLS_MODE_IFNET; 979 tls->snd_tag = mst; 980 switch (tls->params.cipher_algorithm) { 981 case CRYPTO_AES_CBC: 982 counter_u64_add(ktls_ifnet_cbc, 1); 983 break; 984 case CRYPTO_AES_NIST_GCM_16: 985 counter_u64_add(ktls_ifnet_gcm, 1); 986 break; 987 case CRYPTO_CHACHA20_POLY1305: 988 counter_u64_add(ktls_ifnet_chacha20, 1); 989 break; 990 } 991 } 992 return (error); 993 } 994 995 static int 996 ktls_try_sw(struct socket *so, struct ktls_session *tls, int direction) 997 { 998 struct rm_priotracker prio; 999 struct ktls_crypto_backend *be; 1000 1001 /* 1002 * Choose the best software crypto backend. Backends are 1003 * stored in sorted priority order (larget value == most 1004 * important at the head of the list), so this just stops on 1005 * the first backend that claims the session by returning 1006 * success. 1007 */ 1008 if (ktls_allow_unload) 1009 rm_rlock(&ktls_backends_lock, &prio); 1010 LIST_FOREACH(be, &ktls_backends, next) { 1011 if (be->try(so, tls, direction) == 0) 1012 break; 1013 KASSERT(tls->cipher == NULL, 1014 ("ktls backend leaked a cipher pointer")); 1015 } 1016 if (be != NULL) { 1017 if (ktls_allow_unload) 1018 be->use_count++; 1019 tls->be = be; 1020 } 1021 if (ktls_allow_unload) 1022 rm_runlock(&ktls_backends_lock, &prio); 1023 if (be == NULL) 1024 return (EOPNOTSUPP); 1025 tls->mode = TCP_TLS_MODE_SW; 1026 switch (tls->params.cipher_algorithm) { 1027 case CRYPTO_AES_CBC: 1028 counter_u64_add(ktls_sw_cbc, 1); 1029 break; 1030 case CRYPTO_AES_NIST_GCM_16: 1031 counter_u64_add(ktls_sw_gcm, 1); 1032 break; 1033 case CRYPTO_CHACHA20_POLY1305: 1034 counter_u64_add(ktls_sw_chacha20, 1); 1035 break; 1036 } 1037 return (0); 1038 } 1039 1040 /* 1041 * KTLS RX stores data in the socket buffer as a list of TLS records, 1042 * where each record is stored as a control message containg the TLS 1043 * header followed by data mbufs containing the decrypted data. This 1044 * is different from KTLS TX which always uses an mb_ext_pgs mbuf for 1045 * both encrypted and decrypted data. TLS records decrypted by a NIC 1046 * should be queued to the socket buffer as records, but encrypted 1047 * data which needs to be decrypted by software arrives as a stream of 1048 * regular mbufs which need to be converted. In addition, there may 1049 * already be pending encrypted data in the socket buffer when KTLS RX 1050 * is enabled. 1051 * 1052 * To manage not-yet-decrypted data for KTLS RX, the following scheme 1053 * is used: 1054 * 1055 * - A single chain of NOTREADY mbufs is hung off of sb_mtls. 1056 * 1057 * - ktls_check_rx checks this chain of mbufs reading the TLS header 1058 * from the first mbuf. Once all of the data for that TLS record is 1059 * queued, the socket is queued to a worker thread. 1060 * 1061 * - The worker thread calls ktls_decrypt to decrypt TLS records in 1062 * the TLS chain. Each TLS record is detached from the TLS chain, 1063 * decrypted, and inserted into the regular socket buffer chain as 1064 * record starting with a control message holding the TLS header and 1065 * a chain of mbufs holding the encrypted data. 1066 */ 1067 1068 static void 1069 sb_mark_notready(struct sockbuf *sb) 1070 { 1071 struct mbuf *m; 1072 1073 m = sb->sb_mb; 1074 sb->sb_mtls = m; 1075 sb->sb_mb = NULL; 1076 sb->sb_mbtail = NULL; 1077 sb->sb_lastrecord = NULL; 1078 for (; m != NULL; m = m->m_next) { 1079 KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL", 1080 __func__)); 1081 KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail", 1082 __func__)); 1083 KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len", 1084 __func__)); 1085 m->m_flags |= M_NOTREADY; 1086 sb->sb_acc -= m->m_len; 1087 sb->sb_tlscc += m->m_len; 1088 sb->sb_mtlstail = m; 1089 } 1090 KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc, 1091 ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc, 1092 sb->sb_ccc)); 1093 } 1094 1095 int 1096 ktls_enable_rx(struct socket *so, struct tls_enable *en) 1097 { 1098 struct ktls_session *tls; 1099 int error; 1100 1101 if (!ktls_offload_enable) 1102 return (ENOTSUP); 1103 if (SOLISTENING(so)) 1104 return (EINVAL); 1105 1106 counter_u64_add(ktls_offload_enable_calls, 1); 1107 1108 /* 1109 * This should always be true since only the TCP socket option 1110 * invokes this function. 1111 */ 1112 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1113 return (EINVAL); 1114 1115 /* 1116 * XXX: Don't overwrite existing sessions. We should permit 1117 * this to support rekeying in the future. 1118 */ 1119 if (so->so_rcv.sb_tls_info != NULL) 1120 return (EALREADY); 1121 1122 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1123 return (ENOTSUP); 1124 1125 /* TLS 1.3 is not yet supported. */ 1126 if (en->tls_vmajor == TLS_MAJOR_VER_ONE && 1127 en->tls_vminor == TLS_MINOR_VER_THREE) 1128 return (ENOTSUP); 1129 1130 error = ktls_create_session(so, en, &tls); 1131 if (error) 1132 return (error); 1133 1134 #ifdef TCP_OFFLOAD 1135 error = ktls_try_toe(so, tls, KTLS_RX); 1136 if (error) 1137 #endif 1138 error = ktls_try_sw(so, tls, KTLS_RX); 1139 1140 if (error) { 1141 ktls_cleanup(tls); 1142 return (error); 1143 } 1144 1145 /* Mark the socket as using TLS offload. */ 1146 SOCKBUF_LOCK(&so->so_rcv); 1147 so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq); 1148 so->so_rcv.sb_tls_info = tls; 1149 so->so_rcv.sb_flags |= SB_TLS_RX; 1150 1151 /* Mark existing data as not ready until it can be decrypted. */ 1152 sb_mark_notready(&so->so_rcv); 1153 ktls_check_rx(&so->so_rcv); 1154 SOCKBUF_UNLOCK(&so->so_rcv); 1155 1156 counter_u64_add(ktls_offload_total, 1); 1157 1158 return (0); 1159 } 1160 1161 int 1162 ktls_enable_tx(struct socket *so, struct tls_enable *en) 1163 { 1164 struct ktls_session *tls; 1165 struct inpcb *inp; 1166 int error; 1167 1168 if (!ktls_offload_enable) 1169 return (ENOTSUP); 1170 if (SOLISTENING(so)) 1171 return (EINVAL); 1172 1173 counter_u64_add(ktls_offload_enable_calls, 1); 1174 1175 /* 1176 * This should always be true since only the TCP socket option 1177 * invokes this function. 1178 */ 1179 if (so->so_proto->pr_protocol != IPPROTO_TCP) 1180 return (EINVAL); 1181 1182 /* 1183 * XXX: Don't overwrite existing sessions. We should permit 1184 * this to support rekeying in the future. 1185 */ 1186 if (so->so_snd.sb_tls_info != NULL) 1187 return (EALREADY); 1188 1189 if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable) 1190 return (ENOTSUP); 1191 1192 /* TLS requires ext pgs */ 1193 if (mb_use_ext_pgs == 0) 1194 return (ENXIO); 1195 1196 error = ktls_create_session(so, en, &tls); 1197 if (error) 1198 return (error); 1199 1200 /* Prefer TOE -> ifnet TLS -> software TLS. */ 1201 #ifdef TCP_OFFLOAD 1202 error = ktls_try_toe(so, tls, KTLS_TX); 1203 if (error) 1204 #endif 1205 error = ktls_try_ifnet(so, tls, false); 1206 if (error) 1207 error = ktls_try_sw(so, tls, KTLS_TX); 1208 1209 if (error) { 1210 ktls_cleanup(tls); 1211 return (error); 1212 } 1213 1214 error = sblock(&so->so_snd, SBL_WAIT); 1215 if (error) { 1216 ktls_cleanup(tls); 1217 return (error); 1218 } 1219 1220 /* 1221 * Write lock the INP when setting sb_tls_info so that 1222 * routines in tcp_ratelimit.c can read sb_tls_info while 1223 * holding the INP lock. 1224 */ 1225 inp = so->so_pcb; 1226 INP_WLOCK(inp); 1227 SOCKBUF_LOCK(&so->so_snd); 1228 so->so_snd.sb_tls_seqno = be64dec(en->rec_seq); 1229 so->so_snd.sb_tls_info = tls; 1230 if (tls->mode != TCP_TLS_MODE_SW) 1231 so->so_snd.sb_flags |= SB_TLS_IFNET; 1232 SOCKBUF_UNLOCK(&so->so_snd); 1233 INP_WUNLOCK(inp); 1234 sbunlock(&so->so_snd); 1235 1236 counter_u64_add(ktls_offload_total, 1); 1237 1238 return (0); 1239 } 1240 1241 int 1242 ktls_get_rx_mode(struct socket *so) 1243 { 1244 struct ktls_session *tls; 1245 struct inpcb *inp; 1246 int mode; 1247 1248 if (SOLISTENING(so)) 1249 return (EINVAL); 1250 inp = so->so_pcb; 1251 INP_WLOCK_ASSERT(inp); 1252 SOCKBUF_LOCK(&so->so_rcv); 1253 tls = so->so_rcv.sb_tls_info; 1254 if (tls == NULL) 1255 mode = TCP_TLS_MODE_NONE; 1256 else 1257 mode = tls->mode; 1258 SOCKBUF_UNLOCK(&so->so_rcv); 1259 return (mode); 1260 } 1261 1262 int 1263 ktls_get_tx_mode(struct socket *so) 1264 { 1265 struct ktls_session *tls; 1266 struct inpcb *inp; 1267 int mode; 1268 1269 if (SOLISTENING(so)) 1270 return (EINVAL); 1271 inp = so->so_pcb; 1272 INP_WLOCK_ASSERT(inp); 1273 SOCKBUF_LOCK(&so->so_snd); 1274 tls = so->so_snd.sb_tls_info; 1275 if (tls == NULL) 1276 mode = TCP_TLS_MODE_NONE; 1277 else 1278 mode = tls->mode; 1279 SOCKBUF_UNLOCK(&so->so_snd); 1280 return (mode); 1281 } 1282 1283 /* 1284 * Switch between SW and ifnet TLS sessions as requested. 1285 */ 1286 int 1287 ktls_set_tx_mode(struct socket *so, int mode) 1288 { 1289 struct ktls_session *tls, *tls_new; 1290 struct inpcb *inp; 1291 int error; 1292 1293 if (SOLISTENING(so)) 1294 return (EINVAL); 1295 switch (mode) { 1296 case TCP_TLS_MODE_SW: 1297 case TCP_TLS_MODE_IFNET: 1298 break; 1299 default: 1300 return (EINVAL); 1301 } 1302 1303 inp = so->so_pcb; 1304 INP_WLOCK_ASSERT(inp); 1305 SOCKBUF_LOCK(&so->so_snd); 1306 tls = so->so_snd.sb_tls_info; 1307 if (tls == NULL) { 1308 SOCKBUF_UNLOCK(&so->so_snd); 1309 return (0); 1310 } 1311 1312 if (tls->mode == mode) { 1313 SOCKBUF_UNLOCK(&so->so_snd); 1314 return (0); 1315 } 1316 1317 tls = ktls_hold(tls); 1318 SOCKBUF_UNLOCK(&so->so_snd); 1319 INP_WUNLOCK(inp); 1320 1321 tls_new = ktls_clone_session(tls); 1322 1323 if (mode == TCP_TLS_MODE_IFNET) 1324 error = ktls_try_ifnet(so, tls_new, true); 1325 else 1326 error = ktls_try_sw(so, tls_new, KTLS_TX); 1327 if (error) { 1328 counter_u64_add(ktls_switch_failed, 1); 1329 ktls_free(tls_new); 1330 ktls_free(tls); 1331 INP_WLOCK(inp); 1332 return (error); 1333 } 1334 1335 error = sblock(&so->so_snd, SBL_WAIT); 1336 if (error) { 1337 counter_u64_add(ktls_switch_failed, 1); 1338 ktls_free(tls_new); 1339 ktls_free(tls); 1340 INP_WLOCK(inp); 1341 return (error); 1342 } 1343 1344 /* 1345 * If we raced with another session change, keep the existing 1346 * session. 1347 */ 1348 if (tls != so->so_snd.sb_tls_info) { 1349 counter_u64_add(ktls_switch_failed, 1); 1350 sbunlock(&so->so_snd); 1351 ktls_free(tls_new); 1352 ktls_free(tls); 1353 INP_WLOCK(inp); 1354 return (EBUSY); 1355 } 1356 1357 SOCKBUF_LOCK(&so->so_snd); 1358 so->so_snd.sb_tls_info = tls_new; 1359 if (tls_new->mode != TCP_TLS_MODE_SW) 1360 so->so_snd.sb_flags |= SB_TLS_IFNET; 1361 SOCKBUF_UNLOCK(&so->so_snd); 1362 sbunlock(&so->so_snd); 1363 1364 /* 1365 * Drop two references on 'tls'. The first is for the 1366 * ktls_hold() above. The second drops the reference from the 1367 * socket buffer. 1368 */ 1369 KASSERT(tls->refcount >= 2, ("too few references on old session")); 1370 ktls_free(tls); 1371 ktls_free(tls); 1372 1373 if (mode == TCP_TLS_MODE_IFNET) 1374 counter_u64_add(ktls_switch_to_ifnet, 1); 1375 else 1376 counter_u64_add(ktls_switch_to_sw, 1); 1377 1378 INP_WLOCK(inp); 1379 return (0); 1380 } 1381 1382 /* 1383 * Try to allocate a new TLS send tag. This task is scheduled when 1384 * ip_output detects a route change while trying to transmit a packet 1385 * holding a TLS record. If a new tag is allocated, replace the tag 1386 * in the TLS session. Subsequent packets on the connection will use 1387 * the new tag. If a new tag cannot be allocated, drop the 1388 * connection. 1389 */ 1390 static void 1391 ktls_reset_send_tag(void *context, int pending) 1392 { 1393 struct epoch_tracker et; 1394 struct ktls_session *tls; 1395 struct m_snd_tag *old, *new; 1396 struct inpcb *inp; 1397 struct tcpcb *tp; 1398 int error; 1399 1400 MPASS(pending == 1); 1401 1402 tls = context; 1403 inp = tls->inp; 1404 1405 /* 1406 * Free the old tag first before allocating a new one. 1407 * ip[6]_output_send() will treat a NULL send tag the same as 1408 * an ifp mismatch and drop packets until a new tag is 1409 * allocated. 1410 * 1411 * Write-lock the INP when changing tls->snd_tag since 1412 * ip[6]_output_send() holds a read-lock when reading the 1413 * pointer. 1414 */ 1415 INP_WLOCK(inp); 1416 old = tls->snd_tag; 1417 tls->snd_tag = NULL; 1418 INP_WUNLOCK(inp); 1419 if (old != NULL) 1420 m_snd_tag_rele(old); 1421 1422 error = ktls_alloc_snd_tag(inp, tls, true, &new); 1423 1424 if (error == 0) { 1425 INP_WLOCK(inp); 1426 tls->snd_tag = new; 1427 mtx_pool_lock(mtxpool_sleep, tls); 1428 tls->reset_pending = false; 1429 mtx_pool_unlock(mtxpool_sleep, tls); 1430 if (!in_pcbrele_wlocked(inp)) 1431 INP_WUNLOCK(inp); 1432 1433 counter_u64_add(ktls_ifnet_reset, 1); 1434 1435 /* 1436 * XXX: Should we kick tcp_output explicitly now that 1437 * the send tag is fixed or just rely on timers? 1438 */ 1439 } else { 1440 NET_EPOCH_ENTER(et); 1441 INP_WLOCK(inp); 1442 if (!in_pcbrele_wlocked(inp)) { 1443 if (!(inp->inp_flags & INP_TIMEWAIT) && 1444 !(inp->inp_flags & INP_DROPPED)) { 1445 tp = intotcpcb(inp); 1446 CURVNET_SET(tp->t_vnet); 1447 tp = tcp_drop(tp, ECONNABORTED); 1448 CURVNET_RESTORE(); 1449 if (tp != NULL) 1450 INP_WUNLOCK(inp); 1451 counter_u64_add(ktls_ifnet_reset_dropped, 1); 1452 } else 1453 INP_WUNLOCK(inp); 1454 } 1455 NET_EPOCH_EXIT(et); 1456 1457 counter_u64_add(ktls_ifnet_reset_failed, 1); 1458 1459 /* 1460 * Leave reset_pending true to avoid future tasks while 1461 * the socket goes away. 1462 */ 1463 } 1464 1465 ktls_free(tls); 1466 } 1467 1468 int 1469 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls) 1470 { 1471 1472 if (inp == NULL) 1473 return (ENOBUFS); 1474 1475 INP_LOCK_ASSERT(inp); 1476 1477 /* 1478 * See if we should schedule a task to update the send tag for 1479 * this session. 1480 */ 1481 mtx_pool_lock(mtxpool_sleep, tls); 1482 if (!tls->reset_pending) { 1483 (void) ktls_hold(tls); 1484 in_pcbref(inp); 1485 tls->inp = inp; 1486 tls->reset_pending = true; 1487 taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task); 1488 } 1489 mtx_pool_unlock(mtxpool_sleep, tls); 1490 return (ENOBUFS); 1491 } 1492 1493 #ifdef RATELIMIT 1494 int 1495 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate) 1496 { 1497 union if_snd_tag_modify_params params = { 1498 .rate_limit.max_rate = max_pacing_rate, 1499 .rate_limit.flags = M_NOWAIT, 1500 }; 1501 struct m_snd_tag *mst; 1502 struct ifnet *ifp; 1503 int error; 1504 1505 /* Can't get to the inp, but it should be locked. */ 1506 /* INP_LOCK_ASSERT(inp); */ 1507 1508 MPASS(tls->mode == TCP_TLS_MODE_IFNET); 1509 1510 if (tls->snd_tag == NULL) { 1511 /* 1512 * Resetting send tag, ignore this change. The 1513 * pending reset may or may not see this updated rate 1514 * in the tcpcb. If it doesn't, we will just lose 1515 * this rate change. 1516 */ 1517 return (0); 1518 } 1519 1520 MPASS(tls->snd_tag != NULL); 1521 MPASS(tls->snd_tag->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT); 1522 1523 mst = tls->snd_tag; 1524 ifp = mst->ifp; 1525 return (ifp->if_snd_tag_modify(mst, ¶ms)); 1526 } 1527 #endif 1528 #endif 1529 1530 void 1531 ktls_destroy(struct ktls_session *tls) 1532 { 1533 struct rm_priotracker prio; 1534 1535 ktls_cleanup(tls); 1536 if (tls->be != NULL && ktls_allow_unload) { 1537 rm_rlock(&ktls_backends_lock, &prio); 1538 tls->be->use_count--; 1539 rm_runlock(&ktls_backends_lock, &prio); 1540 } 1541 uma_zfree(ktls_session_zone, tls); 1542 } 1543 1544 void 1545 ktls_seq(struct sockbuf *sb, struct mbuf *m) 1546 { 1547 1548 for (; m != NULL; m = m->m_next) { 1549 KASSERT((m->m_flags & M_EXTPG) != 0, 1550 ("ktls_seq: mapped mbuf %p", m)); 1551 1552 m->m_epg_seqno = sb->sb_tls_seqno; 1553 sb->sb_tls_seqno++; 1554 } 1555 } 1556 1557 /* 1558 * Add TLS framing (headers and trailers) to a chain of mbufs. Each 1559 * mbuf in the chain must be an unmapped mbuf. The payload of the 1560 * mbuf must be populated with the payload of each TLS record. 1561 * 1562 * The record_type argument specifies the TLS record type used when 1563 * populating the TLS header. 1564 * 1565 * The enq_count argument on return is set to the number of pages of 1566 * payload data for this entire chain that need to be encrypted via SW 1567 * encryption. The returned value should be passed to ktls_enqueue 1568 * when scheduling encryption of this chain of mbufs. To handle the 1569 * special case of empty fragments for TLS 1.0 sessions, an empty 1570 * fragment counts as one page. 1571 */ 1572 void 1573 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt, 1574 uint8_t record_type) 1575 { 1576 struct tls_record_layer *tlshdr; 1577 struct mbuf *m; 1578 uint64_t *noncep; 1579 uint16_t tls_len; 1580 int maxlen; 1581 1582 maxlen = tls->params.max_frame_len; 1583 *enq_cnt = 0; 1584 for (m = top; m != NULL; m = m->m_next) { 1585 /* 1586 * All mbufs in the chain should be TLS records whose 1587 * payload does not exceed the maximum frame length. 1588 * 1589 * Empty TLS records are permitted when using CBC. 1590 */ 1591 KASSERT(m->m_len <= maxlen && 1592 (tls->params.cipher_algorithm == CRYPTO_AES_CBC ? 1593 m->m_len >= 0 : m->m_len > 0), 1594 ("ktls_frame: m %p len %d\n", m, m->m_len)); 1595 1596 /* 1597 * TLS frames require unmapped mbufs to store session 1598 * info. 1599 */ 1600 KASSERT((m->m_flags & M_EXTPG) != 0, 1601 ("ktls_frame: mapped mbuf %p (top = %p)\n", m, top)); 1602 1603 tls_len = m->m_len; 1604 1605 /* Save a reference to the session. */ 1606 m->m_epg_tls = ktls_hold(tls); 1607 1608 m->m_epg_hdrlen = tls->params.tls_hlen; 1609 m->m_epg_trllen = tls->params.tls_tlen; 1610 if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) { 1611 int bs, delta; 1612 1613 /* 1614 * AES-CBC pads messages to a multiple of the 1615 * block size. Note that the padding is 1616 * applied after the digest and the encryption 1617 * is done on the "plaintext || mac || padding". 1618 * At least one byte of padding is always 1619 * present. 1620 * 1621 * Compute the final trailer length assuming 1622 * at most one block of padding. 1623 * tls->params.sb_tls_tlen is the maximum 1624 * possible trailer length (padding + digest). 1625 * delta holds the number of excess padding 1626 * bytes if the maximum were used. Those 1627 * extra bytes are removed. 1628 */ 1629 bs = tls->params.tls_bs; 1630 delta = (tls_len + tls->params.tls_tlen) & (bs - 1); 1631 m->m_epg_trllen -= delta; 1632 } 1633 m->m_len += m->m_epg_hdrlen + m->m_epg_trllen; 1634 1635 /* Populate the TLS header. */ 1636 tlshdr = (void *)m->m_epg_hdr; 1637 tlshdr->tls_vmajor = tls->params.tls_vmajor; 1638 1639 /* 1640 * TLS 1.3 masquarades as TLS 1.2 with a record type 1641 * of TLS_RLTYPE_APP. 1642 */ 1643 if (tls->params.tls_vminor == TLS_MINOR_VER_THREE && 1644 tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) { 1645 tlshdr->tls_vminor = TLS_MINOR_VER_TWO; 1646 tlshdr->tls_type = TLS_RLTYPE_APP; 1647 /* save the real record type for later */ 1648 m->m_epg_record_type = record_type; 1649 m->m_epg_trail[0] = record_type; 1650 } else { 1651 tlshdr->tls_vminor = tls->params.tls_vminor; 1652 tlshdr->tls_type = record_type; 1653 } 1654 tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr)); 1655 1656 /* 1657 * Store nonces / explicit IVs after the end of the 1658 * TLS header. 1659 * 1660 * For GCM with TLS 1.2, an 8 byte nonce is copied 1661 * from the end of the IV. The nonce is then 1662 * incremented for use by the next record. 1663 * 1664 * For CBC, a random nonce is inserted for TLS 1.1+. 1665 */ 1666 if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 && 1667 tls->params.tls_vminor == TLS_MINOR_VER_TWO) { 1668 noncep = (uint64_t *)(tls->params.iv + 8); 1669 be64enc(tlshdr + 1, *noncep); 1670 (*noncep)++; 1671 } else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC && 1672 tls->params.tls_vminor >= TLS_MINOR_VER_ONE) 1673 arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0); 1674 1675 /* 1676 * When using SW encryption, mark the mbuf not ready. 1677 * It will be marked ready via sbready() after the 1678 * record has been encrypted. 1679 * 1680 * When using ifnet TLS, unencrypted TLS records are 1681 * sent down the stack to the NIC. 1682 */ 1683 if (tls->mode == TCP_TLS_MODE_SW) { 1684 m->m_flags |= M_NOTREADY; 1685 m->m_epg_nrdy = m->m_epg_npgs; 1686 if (__predict_false(tls_len == 0)) { 1687 /* TLS 1.0 empty fragment. */ 1688 *enq_cnt += 1; 1689 } else 1690 *enq_cnt += m->m_epg_npgs; 1691 } 1692 } 1693 } 1694 1695 void 1696 ktls_check_rx(struct sockbuf *sb) 1697 { 1698 struct tls_record_layer hdr; 1699 struct ktls_wq *wq; 1700 struct socket *so; 1701 bool running; 1702 1703 SOCKBUF_LOCK_ASSERT(sb); 1704 KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX", 1705 __func__, sb)); 1706 so = __containerof(sb, struct socket, so_rcv); 1707 1708 if (sb->sb_flags & SB_TLS_RX_RUNNING) 1709 return; 1710 1711 /* Is there enough queued for a TLS header? */ 1712 if (sb->sb_tlscc < sizeof(hdr)) { 1713 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0) 1714 so->so_error = EMSGSIZE; 1715 return; 1716 } 1717 1718 m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr); 1719 1720 /* Is the entire record queued? */ 1721 if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) { 1722 if ((sb->sb_state & SBS_CANTRCVMORE) != 0) 1723 so->so_error = EMSGSIZE; 1724 return; 1725 } 1726 1727 sb->sb_flags |= SB_TLS_RX_RUNNING; 1728 1729 soref(so); 1730 wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index]; 1731 mtx_lock(&wq->mtx); 1732 STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list); 1733 running = wq->running; 1734 mtx_unlock(&wq->mtx); 1735 if (!running) 1736 wakeup(wq); 1737 counter_u64_add(ktls_cnt_rx_queued, 1); 1738 } 1739 1740 static struct mbuf * 1741 ktls_detach_record(struct sockbuf *sb, int len) 1742 { 1743 struct mbuf *m, *n, *top; 1744 int remain; 1745 1746 SOCKBUF_LOCK_ASSERT(sb); 1747 MPASS(len <= sb->sb_tlscc); 1748 1749 /* 1750 * If TLS chain is the exact size of the record, 1751 * just grab the whole record. 1752 */ 1753 top = sb->sb_mtls; 1754 if (sb->sb_tlscc == len) { 1755 sb->sb_mtls = NULL; 1756 sb->sb_mtlstail = NULL; 1757 goto out; 1758 } 1759 1760 /* 1761 * While it would be nice to use m_split() here, we need 1762 * to know exactly what m_split() allocates to update the 1763 * accounting, so do it inline instead. 1764 */ 1765 remain = len; 1766 for (m = top; remain > m->m_len; m = m->m_next) 1767 remain -= m->m_len; 1768 1769 /* Easy case: don't have to split 'm'. */ 1770 if (remain == m->m_len) { 1771 sb->sb_mtls = m->m_next; 1772 if (sb->sb_mtls == NULL) 1773 sb->sb_mtlstail = NULL; 1774 m->m_next = NULL; 1775 goto out; 1776 } 1777 1778 /* 1779 * Need to allocate an mbuf to hold the remainder of 'm'. Try 1780 * with M_NOWAIT first. 1781 */ 1782 n = m_get(M_NOWAIT, MT_DATA); 1783 if (n == NULL) { 1784 /* 1785 * Use M_WAITOK with socket buffer unlocked. If 1786 * 'sb_mtls' changes while the lock is dropped, return 1787 * NULL to force the caller to retry. 1788 */ 1789 SOCKBUF_UNLOCK(sb); 1790 1791 n = m_get(M_WAITOK, MT_DATA); 1792 1793 SOCKBUF_LOCK(sb); 1794 if (sb->sb_mtls != top) { 1795 m_free(n); 1796 return (NULL); 1797 } 1798 } 1799 n->m_flags |= M_NOTREADY; 1800 1801 /* Store remainder in 'n'. */ 1802 n->m_len = m->m_len - remain; 1803 if (m->m_flags & M_EXT) { 1804 n->m_data = m->m_data + remain; 1805 mb_dupcl(n, m); 1806 } else { 1807 bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len); 1808 } 1809 1810 /* Trim 'm' and update accounting. */ 1811 m->m_len -= n->m_len; 1812 sb->sb_tlscc -= n->m_len; 1813 sb->sb_ccc -= n->m_len; 1814 1815 /* Account for 'n'. */ 1816 sballoc_ktls_rx(sb, n); 1817 1818 /* Insert 'n' into the TLS chain. */ 1819 sb->sb_mtls = n; 1820 n->m_next = m->m_next; 1821 if (sb->sb_mtlstail == m) 1822 sb->sb_mtlstail = n; 1823 1824 /* Detach the record from the TLS chain. */ 1825 m->m_next = NULL; 1826 1827 out: 1828 MPASS(m_length(top, NULL) == len); 1829 for (m = top; m != NULL; m = m->m_next) 1830 sbfree_ktls_rx(sb, m); 1831 sb->sb_tlsdcc = len; 1832 sb->sb_ccc += len; 1833 SBCHECK(sb); 1834 return (top); 1835 } 1836 1837 static void 1838 ktls_decrypt(struct socket *so) 1839 { 1840 char tls_header[MBUF_PEXT_HDR_LEN]; 1841 struct ktls_session *tls; 1842 struct sockbuf *sb; 1843 struct tls_record_layer *hdr; 1844 struct tls_get_record tgr; 1845 struct mbuf *control, *data, *m; 1846 uint64_t seqno; 1847 int error, remain, tls_len, trail_len; 1848 1849 hdr = (struct tls_record_layer *)tls_header; 1850 sb = &so->so_rcv; 1851 SOCKBUF_LOCK(sb); 1852 KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING, 1853 ("%s: socket %p not running", __func__, so)); 1854 1855 tls = sb->sb_tls_info; 1856 MPASS(tls != NULL); 1857 1858 for (;;) { 1859 /* Is there enough queued for a TLS header? */ 1860 if (sb->sb_tlscc < tls->params.tls_hlen) 1861 break; 1862 1863 m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header); 1864 tls_len = sizeof(*hdr) + ntohs(hdr->tls_length); 1865 1866 if (hdr->tls_vmajor != tls->params.tls_vmajor || 1867 hdr->tls_vminor != tls->params.tls_vminor) 1868 error = EINVAL; 1869 else if (tls_len < tls->params.tls_hlen || tls_len > 1870 tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 + 1871 tls->params.tls_tlen) 1872 error = EMSGSIZE; 1873 else 1874 error = 0; 1875 if (__predict_false(error != 0)) { 1876 /* 1877 * We have a corrupted record and are likely 1878 * out of sync. The connection isn't 1879 * recoverable at this point, so abort it. 1880 */ 1881 SOCKBUF_UNLOCK(sb); 1882 counter_u64_add(ktls_offload_corrupted_records, 1); 1883 1884 CURVNET_SET(so->so_vnet); 1885 so->so_proto->pr_usrreqs->pru_abort(so); 1886 so->so_error = error; 1887 CURVNET_RESTORE(); 1888 goto deref; 1889 } 1890 1891 /* Is the entire record queued? */ 1892 if (sb->sb_tlscc < tls_len) 1893 break; 1894 1895 /* 1896 * Split out the portion of the mbuf chain containing 1897 * this TLS record. 1898 */ 1899 data = ktls_detach_record(sb, tls_len); 1900 if (data == NULL) 1901 continue; 1902 MPASS(sb->sb_tlsdcc == tls_len); 1903 1904 seqno = sb->sb_tls_seqno; 1905 sb->sb_tls_seqno++; 1906 SBCHECK(sb); 1907 SOCKBUF_UNLOCK(sb); 1908 1909 error = tls->sw_decrypt(tls, hdr, data, seqno, &trail_len); 1910 if (error) { 1911 counter_u64_add(ktls_offload_failed_crypto, 1); 1912 1913 SOCKBUF_LOCK(sb); 1914 if (sb->sb_tlsdcc == 0) { 1915 /* 1916 * sbcut/drop/flush discarded these 1917 * mbufs. 1918 */ 1919 m_freem(data); 1920 break; 1921 } 1922 1923 /* 1924 * Drop this TLS record's data, but keep 1925 * decrypting subsequent records. 1926 */ 1927 sb->sb_ccc -= tls_len; 1928 sb->sb_tlsdcc = 0; 1929 1930 CURVNET_SET(so->so_vnet); 1931 so->so_error = EBADMSG; 1932 sorwakeup_locked(so); 1933 CURVNET_RESTORE(); 1934 1935 m_freem(data); 1936 1937 SOCKBUF_LOCK(sb); 1938 continue; 1939 } 1940 1941 /* Allocate the control mbuf. */ 1942 tgr.tls_type = hdr->tls_type; 1943 tgr.tls_vmajor = hdr->tls_vmajor; 1944 tgr.tls_vminor = hdr->tls_vminor; 1945 tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen - 1946 trail_len); 1947 control = sbcreatecontrol_how(&tgr, sizeof(tgr), 1948 TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK); 1949 1950 SOCKBUF_LOCK(sb); 1951 if (sb->sb_tlsdcc == 0) { 1952 /* sbcut/drop/flush discarded these mbufs. */ 1953 MPASS(sb->sb_tlscc == 0); 1954 m_freem(data); 1955 m_freem(control); 1956 break; 1957 } 1958 1959 /* 1960 * Clear the 'dcc' accounting in preparation for 1961 * adding the decrypted record. 1962 */ 1963 sb->sb_ccc -= tls_len; 1964 sb->sb_tlsdcc = 0; 1965 SBCHECK(sb); 1966 1967 /* If there is no payload, drop all of the data. */ 1968 if (tgr.tls_length == htobe16(0)) { 1969 m_freem(data); 1970 data = NULL; 1971 } else { 1972 /* Trim header. */ 1973 remain = tls->params.tls_hlen; 1974 while (remain > 0) { 1975 if (data->m_len > remain) { 1976 data->m_data += remain; 1977 data->m_len -= remain; 1978 break; 1979 } 1980 remain -= data->m_len; 1981 data = m_free(data); 1982 } 1983 1984 /* Trim trailer and clear M_NOTREADY. */ 1985 remain = be16toh(tgr.tls_length); 1986 m = data; 1987 for (m = data; remain > m->m_len; m = m->m_next) { 1988 m->m_flags &= ~M_NOTREADY; 1989 remain -= m->m_len; 1990 } 1991 m->m_len = remain; 1992 m_freem(m->m_next); 1993 m->m_next = NULL; 1994 m->m_flags &= ~M_NOTREADY; 1995 1996 /* Set EOR on the final mbuf. */ 1997 m->m_flags |= M_EOR; 1998 } 1999 2000 sbappendcontrol_locked(sb, data, control, 0); 2001 } 2002 2003 sb->sb_flags &= ~SB_TLS_RX_RUNNING; 2004 2005 if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0) 2006 so->so_error = EMSGSIZE; 2007 2008 sorwakeup_locked(so); 2009 2010 deref: 2011 SOCKBUF_UNLOCK_ASSERT(sb); 2012 2013 CURVNET_SET(so->so_vnet); 2014 SOCK_LOCK(so); 2015 sorele(so); 2016 CURVNET_RESTORE(); 2017 } 2018 2019 void 2020 ktls_enqueue_to_free(struct mbuf *m) 2021 { 2022 struct ktls_wq *wq; 2023 bool running; 2024 2025 /* Mark it for freeing. */ 2026 m->m_epg_flags |= EPG_FLAG_2FREE; 2027 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2028 mtx_lock(&wq->mtx); 2029 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2030 running = wq->running; 2031 mtx_unlock(&wq->mtx); 2032 if (!running) 2033 wakeup(wq); 2034 } 2035 2036 static void * 2037 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m) 2038 { 2039 void *buf; 2040 2041 if (m->m_epg_npgs <= 2) 2042 return (NULL); 2043 if (ktls_buffer_zone == NULL) 2044 return (NULL); 2045 if ((u_int)(ticks - wq->lastallocfail) < hz) { 2046 /* 2047 * Rate-limit allocation attempts after a failure. 2048 * ktls_buffer_import() will acquire a per-domain mutex to check 2049 * the free page queues and may fail consistently if memory is 2050 * fragmented. 2051 */ 2052 return (NULL); 2053 } 2054 buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM); 2055 if (buf == NULL) 2056 wq->lastallocfail = ticks; 2057 return (buf); 2058 } 2059 2060 void 2061 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count) 2062 { 2063 struct ktls_wq *wq; 2064 bool running; 2065 2066 KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2067 (M_EXTPG | M_NOTREADY)), 2068 ("ktls_enqueue: %p not unready & nomap mbuf\n", m)); 2069 KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count")); 2070 2071 KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf")); 2072 2073 m->m_epg_enc_cnt = page_count; 2074 2075 /* 2076 * Save a pointer to the socket. The caller is responsible 2077 * for taking an additional reference via soref(). 2078 */ 2079 m->m_epg_so = so; 2080 2081 wq = &ktls_wq[m->m_epg_tls->wq_index]; 2082 mtx_lock(&wq->mtx); 2083 STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq); 2084 running = wq->running; 2085 mtx_unlock(&wq->mtx); 2086 if (!running) 2087 wakeup(wq); 2088 counter_u64_add(ktls_cnt_tx_queued, 1); 2089 } 2090 2091 static __noinline void 2092 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top) 2093 { 2094 struct ktls_session *tls; 2095 struct socket *so; 2096 struct mbuf *m; 2097 vm_paddr_t parray[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2098 struct iovec src_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2099 struct iovec dst_iov[1 + btoc(TLS_MAX_MSG_SIZE_V10_2)]; 2100 vm_page_t pg; 2101 void *cbuf; 2102 int error, i, len, npages, off, total_pages; 2103 bool is_anon; 2104 2105 so = top->m_epg_so; 2106 tls = top->m_epg_tls; 2107 KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top)); 2108 KASSERT(so != NULL, ("so = NULL, top = %p\n", top)); 2109 #ifdef INVARIANTS 2110 top->m_epg_so = NULL; 2111 #endif 2112 total_pages = top->m_epg_enc_cnt; 2113 npages = 0; 2114 2115 /* 2116 * Encrypt the TLS records in the chain of mbufs starting with 2117 * 'top'. 'total_pages' gives us a total count of pages and is 2118 * used to know when we have finished encrypting the TLS 2119 * records originally queued with 'top'. 2120 * 2121 * NB: These mbufs are queued in the socket buffer and 2122 * 'm_next' is traversing the mbufs in the socket buffer. The 2123 * socket buffer lock is not held while traversing this chain. 2124 * Since the mbufs are all marked M_NOTREADY their 'm_next' 2125 * pointers should be stable. However, the 'm_next' of the 2126 * last mbuf encrypted is not necessarily NULL. It can point 2127 * to other mbufs appended while 'top' was on the TLS work 2128 * queue. 2129 * 2130 * Each mbuf holds an entire TLS record. 2131 */ 2132 error = 0; 2133 for (m = top; npages != total_pages; m = m->m_next) { 2134 KASSERT(m->m_epg_tls == tls, 2135 ("different TLS sessions in a single mbuf chain: %p vs %p", 2136 tls, m->m_epg_tls)); 2137 KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == 2138 (M_EXTPG | M_NOTREADY), 2139 ("%p not unready & nomap mbuf (top = %p)\n", m, top)); 2140 KASSERT(npages + m->m_epg_npgs <= total_pages, 2141 ("page count mismatch: top %p, total_pages %d, m %p", top, 2142 total_pages, m)); 2143 KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen, 2144 ("page count %d larger than maximum frame length %d", 2145 m->m_epg_npgs, ktls_maxlen)); 2146 2147 /* 2148 * Generate source and destination ivoecs to pass to 2149 * the SW encryption backend. For writable mbufs, the 2150 * destination iovec is a copy of the source and 2151 * encryption is done in place. For file-backed mbufs 2152 * (from sendfile), anonymous wired pages are 2153 * allocated and assigned to the destination iovec. 2154 */ 2155 is_anon = (m->m_epg_flags & EPG_FLAG_ANON) != 0; 2156 2157 off = m->m_epg_1st_off; 2158 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2159 len = m_epg_pagelen(m, i, off); 2160 src_iov[i].iov_len = len; 2161 src_iov[i].iov_base = 2162 (char *)(void *)PHYS_TO_DMAP(m->m_epg_pa[i]) + off; 2163 } 2164 2165 if (is_anon) { 2166 memcpy(dst_iov, src_iov, i * sizeof(struct iovec)); 2167 } else if ((cbuf = ktls_buffer_alloc(wq, m)) != NULL) { 2168 len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len - 2169 m->m_epg_1st_off; 2170 dst_iov[0].iov_base = (char *)cbuf + m->m_epg_1st_off; 2171 dst_iov[0].iov_len = len; 2172 parray[0] = DMAP_TO_PHYS((vm_offset_t)cbuf); 2173 i = 1; 2174 } else { 2175 cbuf = NULL; 2176 off = m->m_epg_1st_off; 2177 for (i = 0; i < m->m_epg_npgs; i++, off = 0) { 2178 do { 2179 pg = vm_page_alloc(NULL, 0, 2180 VM_ALLOC_NORMAL | 2181 VM_ALLOC_NOOBJ | 2182 VM_ALLOC_NODUMP | 2183 VM_ALLOC_WIRED | 2184 VM_ALLOC_WAITFAIL); 2185 } while (pg == NULL); 2186 2187 len = m_epg_pagelen(m, i, off); 2188 parray[i] = VM_PAGE_TO_PHYS(pg); 2189 dst_iov[i].iov_base = 2190 (char *)(void *)PHYS_TO_DMAP( 2191 parray[i]) + off; 2192 dst_iov[i].iov_len = len; 2193 } 2194 } 2195 2196 if (__predict_false(m->m_epg_npgs == 0)) { 2197 /* TLS 1.0 empty fragment. */ 2198 npages++; 2199 } else 2200 npages += m->m_epg_npgs; 2201 2202 error = (*tls->sw_encrypt)(tls, 2203 (const struct tls_record_layer *)m->m_epg_hdr, 2204 m->m_epg_trail, src_iov, dst_iov, m->m_epg_npgs, i, 2205 m->m_epg_seqno, m->m_epg_record_type); 2206 if (error) { 2207 counter_u64_add(ktls_offload_failed_crypto, 1); 2208 break; 2209 } 2210 2211 /* 2212 * For file-backed mbufs, release the file-backed 2213 * pages and replace them in the ext_pgs array with 2214 * the anonymous wired pages allocated above. 2215 */ 2216 if (!is_anon) { 2217 /* Free the old pages. */ 2218 m->m_ext.ext_free(m); 2219 2220 /* Replace them with the new pages. */ 2221 if (cbuf != NULL) { 2222 for (i = 0; i < m->m_epg_npgs; i++) 2223 m->m_epg_pa[i] = parray[0] + ptoa(i); 2224 2225 /* Contig pages should go back to the cache. */ 2226 m->m_ext.ext_free = ktls_free_mext_contig; 2227 } else { 2228 for (i = 0; i < m->m_epg_npgs; i++) 2229 m->m_epg_pa[i] = parray[i]; 2230 2231 /* Use the basic free routine. */ 2232 m->m_ext.ext_free = mb_free_mext_pgs; 2233 } 2234 2235 /* Pages are now writable. */ 2236 m->m_epg_flags |= EPG_FLAG_ANON; 2237 } 2238 2239 /* 2240 * Drop a reference to the session now that it is no 2241 * longer needed. Existing code depends on encrypted 2242 * records having no associated session vs 2243 * yet-to-be-encrypted records having an associated 2244 * session. 2245 */ 2246 m->m_epg_tls = NULL; 2247 ktls_free(tls); 2248 } 2249 2250 CURVNET_SET(so->so_vnet); 2251 if (error == 0) { 2252 (void)(*so->so_proto->pr_usrreqs->pru_ready)(so, top, npages); 2253 } else { 2254 so->so_proto->pr_usrreqs->pru_abort(so); 2255 so->so_error = EIO; 2256 mb_free_notready(top, total_pages); 2257 } 2258 2259 SOCK_LOCK(so); 2260 sorele(so); 2261 CURVNET_RESTORE(); 2262 } 2263 2264 static void 2265 ktls_work_thread(void *ctx) 2266 { 2267 struct ktls_wq *wq = ctx; 2268 struct mbuf *m, *n; 2269 struct socket *so, *son; 2270 STAILQ_HEAD(, mbuf) local_m_head; 2271 STAILQ_HEAD(, socket) local_so_head; 2272 2273 if (ktls_bind_threads > 1) { 2274 curthread->td_domain.dr_policy = 2275 DOMAINSET_PREF(PCPU_GET(domain)); 2276 } 2277 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__) 2278 fpu_kern_thread(0); 2279 #endif 2280 for (;;) { 2281 mtx_lock(&wq->mtx); 2282 while (STAILQ_EMPTY(&wq->m_head) && 2283 STAILQ_EMPTY(&wq->so_head)) { 2284 wq->running = false; 2285 mtx_sleep(wq, &wq->mtx, 0, "-", 0); 2286 wq->running = true; 2287 } 2288 2289 STAILQ_INIT(&local_m_head); 2290 STAILQ_CONCAT(&local_m_head, &wq->m_head); 2291 STAILQ_INIT(&local_so_head); 2292 STAILQ_CONCAT(&local_so_head, &wq->so_head); 2293 mtx_unlock(&wq->mtx); 2294 2295 STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) { 2296 if (m->m_epg_flags & EPG_FLAG_2FREE) { 2297 ktls_free(m->m_epg_tls); 2298 uma_zfree(zone_mbuf, m); 2299 } else { 2300 ktls_encrypt(wq, m); 2301 counter_u64_add(ktls_cnt_tx_queued, -1); 2302 } 2303 } 2304 2305 STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) { 2306 ktls_decrypt(so); 2307 counter_u64_add(ktls_cnt_rx_queued, -1); 2308 } 2309 } 2310 } 2311