xref: /freebsd/sys/kern/tty_info.c (revision 5e3190f700637fcfc1a52daeaa4a031fdd2557c7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2002 Networks Associates Technologies, Inc.
13  * All rights reserved.
14  *
15  * Portions of this software were developed for the FreeBSD Project by
16  * ThinkSec AS and NAI Labs, the Security Research Division of Network
17  * Associates, Inc.  under DARPA/SPAWAR contract N66001-01-C-8035
18  * ("CBOSS"), as part of the DARPA CHATS research program.
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  * 1. Redistributions of source code must retain the above copyright
24  *    notice, this list of conditions and the following disclaimer.
25  * 2. Redistributions in binary form must reproduce the above copyright
26  *    notice, this list of conditions and the following disclaimer in the
27  *    documentation and/or other materials provided with the distribution.
28  * 3. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  */
44 
45 #include <sys/cdefs.h>
46 #include "opt_stack.h"
47 
48 #include <sys/param.h>
49 #include <sys/cons.h>
50 #include <sys/kdb.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/resourcevar.h>
56 #include <sys/sbuf.h>
57 #include <sys/sched.h>
58 #include <sys/stack.h>
59 #include <sys/sysctl.h>
60 #include <sys/systm.h>
61 #include <sys/tty.h>
62 
63 #include <vm/vm.h>
64 #include <vm/pmap.h>
65 #include <vm/vm_map.h>
66 
67 /*
68  * Returns 1 if p2 is "better" than p1
69  *
70  * The algorithm for picking the "interesting" process is thus:
71  *
72  *	1) Only foreground processes are eligible - implied.
73  *	2) Runnable processes are favored over anything else.  The runner
74  *	   with the highest cpu utilization is picked (p_estcpu).  Ties are
75  *	   broken by picking the highest pid.
76  *	3) The sleeper with the shortest sleep time is next.  With ties,
77  *	   we pick out just "short-term" sleepers (P_SINTR == 0).
78  *	4) Further ties are broken by picking the highest pid.
79  */
80 
81 #define TESTAB(a, b)    ((a)<<1 | (b))
82 #define ONLYA   2
83 #define ONLYB   1
84 #define BOTH    3
85 
86 static int
87 proc_sum(struct proc *p, fixpt_t *estcpup)
88 {
89 	struct thread *td;
90 	int estcpu;
91 	int val;
92 
93 	val = 0;
94 	estcpu = 0;
95 	FOREACH_THREAD_IN_PROC(p, td) {
96 		thread_lock(td);
97 		if (TD_ON_RUNQ(td) ||
98 		    TD_IS_RUNNING(td))
99 			val = 1;
100 		estcpu += sched_pctcpu(td);
101 		thread_unlock(td);
102 	}
103 	*estcpup = estcpu;
104 
105 	return (val);
106 }
107 
108 static int
109 thread_compare(struct thread *td, struct thread *td2)
110 {
111 	int runa, runb;
112 	int slpa, slpb;
113 	fixpt_t esta, estb;
114 
115 	if (td == NULL)
116 		return (1);
117 
118 	/*
119 	 * Fetch running stats, pctcpu usage, and interruptable flag.
120 	 */
121 	thread_lock(td);
122 	runa = TD_IS_RUNNING(td) || TD_ON_RUNQ(td);
123 	slpa = td->td_flags & TDF_SINTR;
124 	esta = sched_pctcpu(td);
125 	thread_unlock(td);
126 	thread_lock(td2);
127 	runb = TD_IS_RUNNING(td2) || TD_ON_RUNQ(td2);
128 	estb = sched_pctcpu(td2);
129 	slpb = td2->td_flags & TDF_SINTR;
130 	thread_unlock(td2);
131 	/*
132 	 * see if at least one of them is runnable
133 	 */
134 	switch (TESTAB(runa, runb)) {
135 	case ONLYA:
136 		return (0);
137 	case ONLYB:
138 		return (1);
139 	case BOTH:
140 		break;
141 	}
142 	/*
143 	 *  favor one with highest recent cpu utilization
144 	 */
145 	if (estb > esta)
146 		return (1);
147 	if (esta > estb)
148 		return (0);
149 	/*
150 	 * favor one sleeping in a non-interruptible sleep
151 	 */
152 	switch (TESTAB(slpa, slpb)) {
153 	case ONLYA:
154 		return (0);
155 	case ONLYB:
156 		return (1);
157 	case BOTH:
158 		break;
159 	}
160 
161 	return (td < td2);
162 }
163 
164 static int
165 proc_compare(struct proc *p1, struct proc *p2)
166 {
167 
168 	int runa, runb;
169 	fixpt_t esta, estb;
170 
171 	if (p1 == NULL)
172 		return (1);
173 
174 	/*
175 	 * Fetch various stats about these processes.  After we drop the
176 	 * lock the information could be stale but the race is unimportant.
177 	 */
178 	PROC_LOCK(p1);
179 	runa = proc_sum(p1, &esta);
180 	PROC_UNLOCK(p1);
181 	PROC_LOCK(p2);
182 	runb = proc_sum(p2, &estb);
183 	PROC_UNLOCK(p2);
184 
185 	/*
186 	 * see if at least one of them is runnable
187 	 */
188 	switch (TESTAB(runa, runb)) {
189 	case ONLYA:
190 		return (0);
191 	case ONLYB:
192 		return (1);
193 	case BOTH:
194 		break;
195 	}
196 	/*
197 	 *  favor one with highest recent cpu utilization
198 	 */
199 	if (estb > esta)
200 		return (1);
201 	if (esta > estb)
202 		return (0);
203 	/*
204 	 * weed out zombies
205 	 */
206 	switch (TESTAB(p1->p_state == PRS_ZOMBIE, p2->p_state == PRS_ZOMBIE)) {
207 	case ONLYA:
208 		return (1);
209 	case ONLYB:
210 		return (0);
211 	case BOTH:
212 		break;
213 	}
214 
215 	return (p2->p_pid > p1->p_pid);		/* tie - return highest pid */
216 }
217 
218 static int
219 sbuf_tty_drain(void *a, const char *d, int len)
220 {
221 	struct tty *tp;
222 	int rc;
223 
224 	tp = a;
225 
226 	if (kdb_active) {
227 		cnputsn(d, len);
228 		return (len);
229 	}
230 	if (tp != NULL && !KERNEL_PANICKED()) {
231 		rc = tty_putstrn(tp, d, len);
232 		if (rc != 0)
233 			return (-ENXIO);
234 		return (len);
235 	}
236 	return (-ENXIO);
237 }
238 
239 #ifdef STACK
240 #ifdef INVARIANTS
241 static int tty_info_kstacks = STACK_SBUF_FMT_COMPACT;
242 #else
243 static int tty_info_kstacks = STACK_SBUF_FMT_NONE;
244 #endif
245 
246 static int
247 sysctl_tty_info_kstacks(SYSCTL_HANDLER_ARGS)
248 {
249 	enum stack_sbuf_fmt val;
250 	int error;
251 
252 	val = tty_info_kstacks;
253 	error = sysctl_handle_int(oidp, &val, 0, req);
254 	if (error != 0 || req->newptr == NULL)
255 		return (error);
256 
257 	switch (val) {
258 	case STACK_SBUF_FMT_NONE:
259 	case STACK_SBUF_FMT_LONG:
260 	case STACK_SBUF_FMT_COMPACT:
261 		tty_info_kstacks = val;
262 		break;
263 	default:
264 		error = EINVAL;
265 	}
266 
267 	return (error);
268 }
269 SYSCTL_PROC(_kern, OID_AUTO, tty_info_kstacks,
270     CTLFLAG_RWTUN | CTLFLAG_MPSAFE | CTLTYPE_INT, NULL, 0,
271     sysctl_tty_info_kstacks, "I",
272     "Adjust format of kernel stack(9) traces on ^T (tty info): "
273     "0 - disabled; 1 - long; 2 - compact");
274 #endif
275 
276 /*
277  * Report on state of foreground process group.
278  */
279 void
280 tty_info(struct tty *tp)
281 {
282 	struct timeval rtime, utime, stime;
283 #ifdef STACK
284 	struct stack stack;
285 	int sterr, kstacks_val;
286 	bool print_kstacks;
287 #endif
288 	struct proc *p, *ppick;
289 	struct thread *td, *tdpick;
290 	const char *stateprefix, *state;
291 	struct sbuf sb;
292 	long rss;
293 	int load, pctcpu;
294 	pid_t pid;
295 	char comm[MAXCOMLEN + 1];
296 	struct rusage ru;
297 
298 	tty_assert_locked(tp);
299 
300 	if (tty_checkoutq(tp) == 0)
301 		return;
302 
303 	(void)sbuf_new(&sb, tp->t_prbuf, tp->t_prbufsz, SBUF_FIXEDLEN);
304 	sbuf_set_drain(&sb, sbuf_tty_drain, tp);
305 
306 	/* Print load average. */
307 	load = ((int64_t)averunnable.ldavg[0] * 100 + FSCALE / 2) >> FSHIFT;
308 	sbuf_printf(&sb, "%sload: %d.%02d ", tp->t_column == 0 ? "" : "\n",
309 	    load / 100, load % 100);
310 
311 	if (tp->t_session == NULL) {
312 		sbuf_printf(&sb, "not a controlling terminal\n");
313 		goto out;
314 	}
315 	if (tp->t_pgrp == NULL) {
316 		sbuf_printf(&sb, "no foreground process group\n");
317 		goto out;
318 	}
319 	PGRP_LOCK(tp->t_pgrp);
320 	if (LIST_EMPTY(&tp->t_pgrp->pg_members)) {
321 		PGRP_UNLOCK(tp->t_pgrp);
322 		sbuf_printf(&sb, "empty foreground process group\n");
323 		goto out;
324 	}
325 
326 	/*
327 	 * Pick the most interesting process and copy some of its
328 	 * state for printing later.  This operation could rely on stale
329 	 * data as we can't hold the proc slock or thread locks over the
330 	 * whole list. However, we're guaranteed not to reference an exited
331 	 * thread or proc since we hold the tty locked.
332 	 */
333 	p = NULL;
334 	LIST_FOREACH(ppick, &tp->t_pgrp->pg_members, p_pglist)
335 		if (proc_compare(p, ppick))
336 			p = ppick;
337 
338 	PROC_LOCK(p);
339 	PGRP_UNLOCK(tp->t_pgrp);
340 	td = NULL;
341 	FOREACH_THREAD_IN_PROC(p, tdpick)
342 		if (thread_compare(td, tdpick))
343 			td = tdpick;
344 	stateprefix = "";
345 	thread_lock(td);
346 	if (TD_IS_RUNNING(td))
347 		state = "running";
348 	else if (TD_ON_RUNQ(td) || TD_CAN_RUN(td))
349 		state = "runnable";
350 	else if (TD_IS_SLEEPING(td)) {
351 		/* XXX: If we're sleeping, are we ever not in a queue? */
352 		if (TD_ON_SLEEPQ(td))
353 			state = td->td_wmesg;
354 		else
355 			state = "sleeping without queue";
356 	} else if (TD_ON_LOCK(td)) {
357 		state = td->td_lockname;
358 		stateprefix = "*";
359 	} else if (TD_IS_SUSPENDED(td))
360 		state = "suspended";
361 	else if (TD_AWAITING_INTR(td))
362 		state = "intrwait";
363 	else if (p->p_state == PRS_ZOMBIE)
364 		state = "zombie";
365 	else
366 		state = "unknown";
367 	pctcpu = (sched_pctcpu(td) * 10000 + FSCALE / 2) >> FSHIFT;
368 #ifdef STACK
369 	kstacks_val = atomic_load_int(&tty_info_kstacks);
370 	print_kstacks = (kstacks_val != STACK_SBUF_FMT_NONE);
371 
372 	if (print_kstacks) {
373 		if (TD_IS_SWAPPED(td))
374 			sterr = ENOENT;
375 		else
376 			sterr = stack_save_td(&stack, td);
377 	}
378 #endif
379 	thread_unlock(td);
380 	if (p->p_state == PRS_NEW || p->p_state == PRS_ZOMBIE)
381 		rss = 0;
382 	else
383 		rss = pgtok(vmspace_resident_count(p->p_vmspace));
384 	microuptime(&rtime);
385 	timevalsub(&rtime, &p->p_stats->p_start);
386 	rufetchcalc(p, &ru, &utime, &stime);
387 	pid = p->p_pid;
388 	strlcpy(comm, p->p_comm, sizeof comm);
389 	PROC_UNLOCK(p);
390 
391 	/* Print command, pid, state, rtime, utime, stime, %cpu, and rss. */
392 	sbuf_printf(&sb,
393 	    " cmd: %s %d [%s%s] %ld.%02ldr %ld.%02ldu %ld.%02lds %d%% %ldk\n",
394 	    comm, pid, stateprefix, state,
395 	    (long)rtime.tv_sec, rtime.tv_usec / 10000,
396 	    (long)utime.tv_sec, utime.tv_usec / 10000,
397 	    (long)stime.tv_sec, stime.tv_usec / 10000,
398 	    pctcpu / 100, rss);
399 
400 #ifdef STACK
401 	if (print_kstacks && sterr == 0)
402 		stack_sbuf_print_flags(&sb, &stack, M_NOWAIT, kstacks_val);
403 #endif
404 
405 out:
406 	sbuf_finish(&sb);
407 	sbuf_delete(&sb);
408 }
409