xref: /freebsd/sys/kern/sys_timerfd.c (revision e8b37e754589c911fb7cdc706ba7c49a5bfb7175)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2014 Dmitry Chagin <dchagin@FreeBSD.org>
5  * Copyright (c) 2023 Jake Freeland <jfree@FreeBSD.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/callout.h>
32 #include <sys/fcntl.h>
33 #include <sys/file.h>
34 #include <sys/filedesc.h>
35 #include <sys/filio.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mount.h>
40 #include <sys/mutex.h>
41 #include <sys/poll.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/selinfo.h>
45 #include <sys/stat.h>
46 #include <sys/sx.h>
47 #include <sys/syscallsubr.h>
48 #include <sys/sysctl.h>
49 #include <sys/sysent.h>
50 #include <sys/sysproto.h>
51 #include <sys/timerfd.h>
52 #include <sys/timespec.h>
53 #include <sys/uio.h>
54 #include <sys/user.h>
55 
56 #include <security/audit/audit.h>
57 
58 static MALLOC_DEFINE(M_TIMERFD, "timerfd", "timerfd structures");
59 
60 static struct mtx timerfd_list_lock;
61 static LIST_HEAD(, timerfd) timerfd_list;
62 MTX_SYSINIT(timerfd, &timerfd_list_lock, "timerfd_list_lock", MTX_DEF);
63 
64 static struct unrhdr64 tfdino_unr;
65 
66 #define	TFD_NOJUMP	0	/* Realtime clock has not jumped. */
67 #define	TFD_READ	1	/* Jumped, tfd has been read since. */
68 #define	TFD_ZREAD	2	/* Jumped backwards, CANCEL_ON_SET=false. */
69 #define	TFD_CANCELED	4	/* Jumped, CANCEL_ON_SET=true. */
70 #define	TFD_JUMPED	(TFD_ZREAD | TFD_CANCELED)
71 
72 /*
73  * One structure allocated per timerfd descriptor.
74  *
75  * Locking semantics:
76  * (t)	locked by tfd_lock mtx
77  * (l)	locked by timerfd_list_lock sx
78  * (c)	const until freeing
79  */
80 struct timerfd {
81 	/* User specified. */
82 	struct itimerspec tfd_time;	/* (t) tfd timer */
83 	clockid_t	tfd_clockid;	/* (c) timing base */
84 	int		tfd_flags;	/* (c) creation flags */
85 	int		tfd_timflags;	/* (t) timer flags */
86 
87 	/* Used internally. */
88 	timerfd_t	tfd_count;	/* (t) expiration count since read */
89 	bool		tfd_expired;	/* (t) true upon initial expiration */
90 	struct mtx	tfd_lock;	/* tfd mtx lock */
91 	struct callout	tfd_callout;	/* (t) expiration notification */
92 	struct selinfo	tfd_sel;	/* (t) I/O alerts */
93 	struct timespec	tfd_boottim;	/* (t) cached boottime */
94 	int		tfd_jumped;	/* (t) timer jump status */
95 	LIST_ENTRY(timerfd) entry;	/* (l) entry in list */
96 
97 	/* For stat(2). */
98 	ino_t		tfd_ino;	/* (c) inode number */
99 	struct timespec	tfd_atim;	/* (t) time of last read */
100 	struct timespec	tfd_mtim;	/* (t) time of last settime */
101 	struct timespec tfd_birthtim;	/* (c) creation time */
102 };
103 
104 static void
timerfd_init(void * data)105 timerfd_init(void *data)
106 {
107 	new_unrhdr64(&tfdino_unr, 1);
108 }
109 
110 SYSINIT(timerfd, SI_SUB_VFS, SI_ORDER_ANY, timerfd_init, NULL);
111 
112 static inline void
timerfd_getboottime(struct timespec * ts)113 timerfd_getboottime(struct timespec *ts)
114 {
115 	struct timeval tv;
116 
117 	getboottime(&tv);
118 	TIMEVAL_TO_TIMESPEC(&tv, ts);
119 }
120 
121 /*
122  * Call when a discontinuous jump has occured in CLOCK_REALTIME and
123  * update timerfd's cached boottime. A jump can be triggered using
124  * functions like clock_settime(2) or settimeofday(2).
125  *
126  * Timer is marked TFD_CANCELED if TFD_TIMER_CANCEL_ON_SET is set
127  * and the realtime clock jumps.
128  * Timer is marked TFD_ZREAD if TFD_TIMER_CANCEL_ON_SET is not set,
129  * but the realtime clock jumps backwards.
130  */
131 void
timerfd_jumped(void)132 timerfd_jumped(void)
133 {
134 	struct timerfd *tfd;
135 	struct timespec boottime, diff;
136 
137 	if (LIST_EMPTY(&timerfd_list))
138 		return;
139 
140 	timerfd_getboottime(&boottime);
141 	mtx_lock(&timerfd_list_lock);
142 	LIST_FOREACH(tfd, &timerfd_list, entry) {
143 		mtx_lock(&tfd->tfd_lock);
144 		if (tfd->tfd_clockid != CLOCK_REALTIME ||
145 		    (tfd->tfd_timflags & TFD_TIMER_ABSTIME) == 0 ||
146 		    timespeccmp(&boottime, &tfd->tfd_boottim, ==)) {
147 			mtx_unlock(&tfd->tfd_lock);
148 			continue;
149 		}
150 
151 		if (callout_active(&tfd->tfd_callout)) {
152 			if ((tfd->tfd_timflags & TFD_TIMER_CANCEL_ON_SET) != 0)
153 				tfd->tfd_jumped = TFD_CANCELED;
154 			else if (timespeccmp(&boottime, &tfd->tfd_boottim, <))
155 				tfd->tfd_jumped = TFD_ZREAD;
156 
157 			/*
158 			 * Do not reschedule callout when
159 			 * inside interval time loop.
160 			 */
161 			if (!tfd->tfd_expired) {
162 				timespecsub(&boottime,
163 				    &tfd->tfd_boottim, &diff);
164 				timespecsub(&tfd->tfd_time.it_value,
165 				    &diff, &tfd->tfd_time.it_value);
166 				if (callout_stop(&tfd->tfd_callout) == 1) {
167 					callout_schedule_sbt(&tfd->tfd_callout,
168 					    tstosbt(tfd->tfd_time.it_value),
169 					    0, C_ABSOLUTE);
170 				}
171 			}
172 		}
173 
174 		tfd->tfd_boottim = boottime;
175 		mtx_unlock(&tfd->tfd_lock);
176 	}
177 	mtx_unlock(&timerfd_list_lock);
178 }
179 
180 static int
timerfd_read(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)181 timerfd_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
182     int flags, struct thread *td)
183 {
184 	struct timerfd *tfd = fp->f_data;
185 	timerfd_t count;
186 	int error = 0;
187 
188 	if (uio->uio_resid < sizeof(timerfd_t))
189 		return (EINVAL);
190 
191 	mtx_lock(&tfd->tfd_lock);
192 retry:
193 	getnanotime(&tfd->tfd_atim);
194 	if ((tfd->tfd_jumped & TFD_JUMPED) != 0) {
195 		if (tfd->tfd_jumped == TFD_CANCELED)
196 			error = ECANCELED;
197 		tfd->tfd_jumped = TFD_READ;
198 		tfd->tfd_count = 0;
199 		mtx_unlock(&tfd->tfd_lock);
200 		return (error);
201 	} else {
202 		tfd->tfd_jumped = TFD_NOJUMP;
203 	}
204 	if (tfd->tfd_count == 0) {
205 		if ((fp->f_flag & FNONBLOCK) != 0) {
206 			mtx_unlock(&tfd->tfd_lock);
207 			return (EAGAIN);
208 		}
209 		error = mtx_sleep(&tfd->tfd_count, &tfd->tfd_lock,
210 		    PCATCH, "tfdrd", 0);
211 		if (error == 0) {
212 			goto retry;
213 		} else {
214 			mtx_unlock(&tfd->tfd_lock);
215 			return (error);
216 		}
217 	}
218 
219 	count = tfd->tfd_count;
220 	tfd->tfd_count = 0;
221 	mtx_unlock(&tfd->tfd_lock);
222 	error = uiomove(&count, sizeof(timerfd_t), uio);
223 
224 	return (error);
225 }
226 
227 static int
timerfd_ioctl(struct file * fp,u_long cmd,void * data,struct ucred * active_cred,struct thread * td)228 timerfd_ioctl(struct file *fp, u_long cmd, void *data,
229     struct ucred *active_cred, struct thread *td)
230 {
231 	switch (cmd) {
232 	case FIOASYNC:
233 		if (*(int *)data != 0)
234 			atomic_set_int(&fp->f_flag, FASYNC);
235 		else
236 			atomic_clear_int(&fp->f_flag, FASYNC);
237 		return (0);
238 	case FIONBIO:
239 		if (*(int *)data != 0)
240 			atomic_set_int(&fp->f_flag, FNONBLOCK);
241 		else
242 			atomic_clear_int(&fp->f_flag, FNONBLOCK);
243 		return (0);
244 	}
245 	return (ENOTTY);
246 }
247 
248 static int
timerfd_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)249 timerfd_poll(struct file *fp, int events, struct ucred *active_cred,
250     struct thread *td)
251 {
252 	struct timerfd *tfd = fp->f_data;
253 	int revents = 0;
254 
255 	mtx_lock(&tfd->tfd_lock);
256 	if ((events & (POLLIN | POLLRDNORM)) != 0 &&
257 	    tfd->tfd_count > 0 && tfd->tfd_jumped != TFD_READ)
258 		revents |= events & (POLLIN | POLLRDNORM);
259 	if (revents == 0)
260 		selrecord(td, &tfd->tfd_sel);
261 	mtx_unlock(&tfd->tfd_lock);
262 
263 	return (revents);
264 }
265 
266 static void
filt_timerfddetach(struct knote * kn)267 filt_timerfddetach(struct knote *kn)
268 {
269 	struct timerfd *tfd = kn->kn_hook;
270 
271 	mtx_lock(&tfd->tfd_lock);
272 	knlist_remove(&tfd->tfd_sel.si_note, kn, 1);
273 	mtx_unlock(&tfd->tfd_lock);
274 }
275 
276 static int
filt_timerfdread(struct knote * kn,long hint)277 filt_timerfdread(struct knote *kn, long hint)
278 {
279 	struct timerfd *tfd = kn->kn_hook;
280 
281 	mtx_assert(&tfd->tfd_lock, MA_OWNED);
282 	kn->kn_data = (int64_t)tfd->tfd_count;
283 	return (tfd->tfd_count > 0);
284 }
285 
286 static const struct filterops timerfd_rfiltops = {
287 	.f_isfd = 1,
288 	.f_detach = filt_timerfddetach,
289 	.f_event = filt_timerfdread,
290 };
291 
292 static int
timerfd_kqfilter(struct file * fp,struct knote * kn)293 timerfd_kqfilter(struct file *fp, struct knote *kn)
294 {
295 	struct timerfd *tfd = fp->f_data;
296 
297 	if (kn->kn_filter != EVFILT_READ)
298 		return (EINVAL);
299 
300 	kn->kn_fop = &timerfd_rfiltops;
301 	kn->kn_hook = tfd;
302 	knlist_add(&tfd->tfd_sel.si_note, kn, 0);
303 
304 	return (0);
305 }
306 
307 static int
timerfd_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)308 timerfd_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
309 {
310 	struct timerfd *tfd = fp->f_data;
311 
312 	bzero(sb, sizeof(*sb));
313 	sb->st_nlink = fp->f_count - 1;
314 	sb->st_uid = fp->f_cred->cr_uid;
315 	sb->st_gid = fp->f_cred->cr_gid;
316 	sb->st_blksize = PAGE_SIZE;
317 	mtx_lock(&tfd->tfd_lock);
318 	sb->st_atim = tfd->tfd_atim;
319 	sb->st_mtim = tfd->tfd_mtim;
320 	mtx_unlock(&tfd->tfd_lock);
321 	sb->st_ctim = sb->st_mtim;
322 	sb->st_ino = tfd->tfd_ino;
323 	sb->st_birthtim = tfd->tfd_birthtim;
324 
325 	return (0);
326 }
327 
328 static int
timerfd_close(struct file * fp,struct thread * td)329 timerfd_close(struct file *fp, struct thread *td)
330 {
331 	struct timerfd *tfd = fp->f_data;
332 
333 	mtx_lock(&timerfd_list_lock);
334 	LIST_REMOVE(tfd, entry);
335 	mtx_unlock(&timerfd_list_lock);
336 
337 	callout_drain(&tfd->tfd_callout);
338 	seldrain(&tfd->tfd_sel);
339 	knlist_destroy(&tfd->tfd_sel.si_note);
340 	mtx_destroy(&tfd->tfd_lock);
341 	free(tfd, M_TIMERFD);
342 	fp->f_ops = &badfileops;
343 
344 	return (0);
345 }
346 
347 static int
timerfd_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)348 timerfd_fill_kinfo(struct file *fp, struct kinfo_file *kif,
349     struct filedesc *fdp)
350 {
351 	struct timerfd *tfd = fp->f_data;
352 
353 	kif->kf_type = KF_TYPE_TIMERFD;
354 	kif->kf_un.kf_timerfd.kf_timerfd_clockid = tfd->tfd_clockid;
355 	kif->kf_un.kf_timerfd.kf_timerfd_flags = tfd->tfd_flags;
356 	kif->kf_un.kf_timerfd.kf_timerfd_addr = (uintptr_t)tfd;
357 
358 	return (0);
359 }
360 
361 static const struct fileops timerfdops = {
362 	.fo_read = timerfd_read,
363 	.fo_write = invfo_rdwr,
364 	.fo_truncate = invfo_truncate,
365 	.fo_ioctl = timerfd_ioctl,
366 	.fo_poll = timerfd_poll,
367 	.fo_kqfilter = timerfd_kqfilter,
368 	.fo_stat = timerfd_stat,
369 	.fo_close = timerfd_close,
370 	.fo_chmod = invfo_chmod,
371 	.fo_chown = invfo_chown,
372 	.fo_sendfile = invfo_sendfile,
373 	.fo_fill_kinfo = timerfd_fill_kinfo,
374 	.fo_cmp = file_kcmp_generic,
375 	.fo_flags = DFLAG_PASSABLE,
376 };
377 
378 static void
timerfd_curval(struct timerfd * tfd,struct itimerspec * old_value)379 timerfd_curval(struct timerfd *tfd, struct itimerspec *old_value)
380 {
381 	struct timespec curr_value;
382 
383 	mtx_assert(&tfd->tfd_lock, MA_OWNED);
384 	*old_value = tfd->tfd_time;
385 	if (timespecisset(&tfd->tfd_time.it_value)) {
386 		nanouptime(&curr_value);
387 		timespecsub(&tfd->tfd_time.it_value, &curr_value,
388 		    &old_value->it_value);
389 	}
390 }
391 
392 static void
timerfd_expire(void * arg)393 timerfd_expire(void *arg)
394 {
395 	struct timerfd *tfd = (struct timerfd *)arg;
396 	struct timespec uptime;
397 
398 	++tfd->tfd_count;
399 	tfd->tfd_expired = true;
400 	if (timespecisset(&tfd->tfd_time.it_interval)) {
401 		/* Count missed events. */
402 		nanouptime(&uptime);
403 		if (timespeccmp(&uptime, &tfd->tfd_time.it_value, >)) {
404 			timespecsub(&uptime, &tfd->tfd_time.it_value, &uptime);
405 			tfd->tfd_count += tstosbt(uptime) /
406 			    tstosbt(tfd->tfd_time.it_interval);
407 		}
408 		timespecadd(&tfd->tfd_time.it_value,
409 		    &tfd->tfd_time.it_interval, &tfd->tfd_time.it_value);
410 		callout_schedule_sbt(&tfd->tfd_callout,
411 		    tstosbt(tfd->tfd_time.it_value),
412 		    0, C_ABSOLUTE);
413 	} else {
414 		/* Single shot timer. */
415 		callout_deactivate(&tfd->tfd_callout);
416 		timespecclear(&tfd->tfd_time.it_value);
417 	}
418 
419 	wakeup(&tfd->tfd_count);
420 	selwakeup(&tfd->tfd_sel);
421 	KNOTE_LOCKED(&tfd->tfd_sel.si_note, 0);
422 }
423 
424 int
kern_timerfd_create(struct thread * td,int clockid,int flags)425 kern_timerfd_create(struct thread *td, int clockid, int flags)
426 {
427 	struct file *fp;
428 	struct timerfd *tfd;
429 	int error, fd, fflags;
430 
431 	AUDIT_ARG_VALUE(clockid);
432 	AUDIT_ARG_FFLAGS(flags);
433 
434 	switch (clockid) {
435 	case CLOCK_REALTIME:
436 		/* FALLTHROUGH */
437 	case CLOCK_MONOTONIC:
438 		/* FALLTHROUGH */
439 	case CLOCK_UPTIME:
440 		/*
441 		 * CLOCK_BOOTTIME should be added once different from
442 		 * CLOCK_UPTIME
443 		 */
444 		break;
445 	default:
446 		return (EINVAL);
447 	}
448 	if ((flags & ~(TFD_CLOEXEC | TFD_NONBLOCK)) != 0)
449 		return (EINVAL);
450 
451 	fflags = FREAD;
452 	if ((flags & TFD_CLOEXEC) != 0)
453 		fflags |= O_CLOEXEC;
454 	if ((flags & TFD_NONBLOCK) != 0)
455 		fflags |= FNONBLOCK;
456 
457 	error = falloc(td, &fp, &fd, fflags);
458 	if (error != 0)
459 		return (error);
460 
461 	tfd = malloc(sizeof(*tfd), M_TIMERFD, M_WAITOK | M_ZERO);
462 	tfd->tfd_clockid = (clockid_t)clockid;
463 	tfd->tfd_flags = flags;
464 	tfd->tfd_ino = alloc_unr64(&tfdino_unr);
465 	mtx_init(&tfd->tfd_lock, "timerfd", NULL, MTX_DEF);
466 	callout_init_mtx(&tfd->tfd_callout, &tfd->tfd_lock, 0);
467 	knlist_init_mtx(&tfd->tfd_sel.si_note, &tfd->tfd_lock);
468 	timerfd_getboottime(&tfd->tfd_boottim);
469 	getnanotime(&tfd->tfd_birthtim);
470 	mtx_lock(&timerfd_list_lock);
471 	LIST_INSERT_HEAD(&timerfd_list, tfd, entry);
472 	mtx_unlock(&timerfd_list_lock);
473 
474 	finit(fp, fflags, DTYPE_TIMERFD, tfd, &timerfdops);
475 
476 	fdrop(fp, td);
477 
478 	td->td_retval[0] = fd;
479 	return (0);
480 }
481 
482 int
kern_timerfd_gettime(struct thread * td,int fd,struct itimerspec * curr_value)483 kern_timerfd_gettime(struct thread *td, int fd, struct itimerspec *curr_value)
484 {
485 	struct file *fp;
486 	struct timerfd *tfd;
487 	int error;
488 
489 	error = fget(td, fd, &cap_write_rights, &fp);
490 	if (error != 0)
491 		return (error);
492 	if (fp->f_type != DTYPE_TIMERFD) {
493 		fdrop(fp, td);
494 		return (EINVAL);
495 	}
496 	tfd = fp->f_data;
497 
498 	mtx_lock(&tfd->tfd_lock);
499 	timerfd_curval(tfd, curr_value);
500 	mtx_unlock(&tfd->tfd_lock);
501 
502 	fdrop(fp, td);
503 	return (0);
504 }
505 
506 int
kern_timerfd_settime(struct thread * td,int fd,int flags,const struct itimerspec * new_value,struct itimerspec * old_value)507 kern_timerfd_settime(struct thread *td, int fd, int flags,
508     const struct itimerspec *new_value, struct itimerspec *old_value)
509 {
510 	struct file *fp;
511 	struct timerfd *tfd;
512 	struct timespec ts;
513 	int error = 0;
514 
515 	if ((flags & ~(TFD_TIMER_ABSTIME | TFD_TIMER_CANCEL_ON_SET)) != 0)
516 		return (EINVAL);
517 	if (!timespecvalid_interval(&new_value->it_value) ||
518 	    !timespecvalid_interval(&new_value->it_interval))
519 		return (EINVAL);
520 
521 	error = fget(td, fd, &cap_write_rights, &fp);
522 	if (error != 0)
523 		return (error);
524 	if (fp->f_type != DTYPE_TIMERFD) {
525 		fdrop(fp, td);
526 		return (EINVAL);
527 	}
528 	tfd = fp->f_data;
529 
530 	mtx_lock(&tfd->tfd_lock);
531 	getnanotime(&tfd->tfd_mtim);
532 	tfd->tfd_timflags = flags;
533 
534 	/* Store old itimerspec, if applicable. */
535 	if (old_value != NULL)
536 		timerfd_curval(tfd, old_value);
537 
538 	/* Set new expiration. */
539 	tfd->tfd_time = *new_value;
540 	if (timespecisset(&tfd->tfd_time.it_value)) {
541 		if ((flags & TFD_TIMER_ABSTIME) == 0) {
542 			nanouptime(&ts);
543 			timespecadd(&tfd->tfd_time.it_value, &ts,
544 			    &tfd->tfd_time.it_value);
545 		} else if (tfd->tfd_clockid == CLOCK_REALTIME) {
546 			/* ECANCELED if unread jump is pending. */
547 			if (tfd->tfd_jumped == TFD_CANCELED)
548 				error = ECANCELED;
549 			/* Convert from CLOCK_REALTIME to CLOCK_BOOTTIME. */
550 			timespecsub(&tfd->tfd_time.it_value, &tfd->tfd_boottim,
551 			    &tfd->tfd_time.it_value);
552 		}
553 		callout_reset_sbt(&tfd->tfd_callout,
554 		    tstosbt(tfd->tfd_time.it_value),
555 		    0, timerfd_expire, tfd, C_ABSOLUTE);
556 	} else {
557 		callout_stop(&tfd->tfd_callout);
558 	}
559 	tfd->tfd_count = 0;
560 	tfd->tfd_expired = false;
561 	tfd->tfd_jumped = TFD_NOJUMP;
562 	mtx_unlock(&tfd->tfd_lock);
563 
564 	fdrop(fp, td);
565 	return (error);
566 }
567 
568 int
sys_timerfd_create(struct thread * td,struct timerfd_create_args * uap)569 sys_timerfd_create(struct thread *td, struct timerfd_create_args *uap)
570 {
571 	return (kern_timerfd_create(td, uap->clockid, uap->flags));
572 }
573 
574 int
sys_timerfd_gettime(struct thread * td,struct timerfd_gettime_args * uap)575 sys_timerfd_gettime(struct thread *td, struct timerfd_gettime_args *uap)
576 {
577 	struct itimerspec curr_value;
578 	int error;
579 
580 	error = kern_timerfd_gettime(td, uap->fd, &curr_value);
581 	if (error == 0)
582 		error = copyout(&curr_value, uap->curr_value,
583 		    sizeof(curr_value));
584 
585 	return (error);
586 }
587 
588 int
sys_timerfd_settime(struct thread * td,struct timerfd_settime_args * uap)589 sys_timerfd_settime(struct thread *td, struct timerfd_settime_args *uap)
590 {
591 	struct itimerspec new_value, old_value;
592 	int error;
593 
594 	error = copyin(uap->new_value, &new_value, sizeof(new_value));
595 	if (error != 0)
596 		return (error);
597 	if (uap->old_value == NULL) {
598 		error = kern_timerfd_settime(td, uap->fd, uap->flags,
599 		    &new_value, NULL);
600 	} else {
601 		error = kern_timerfd_settime(td, uap->fd, uap->flags,
602 		    &new_value, &old_value);
603 		if (error == 0)
604 			error = copyout(&old_value, uap->old_value,
605 			    sizeof(old_value));
606 	}
607 	return (error);
608 }
609