1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/ktr.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/reg.h> 42 #include <sys/syscallsubr.h> 43 #include <sys/sysent.h> 44 #include <sys/sysproto.h> 45 #include <sys/priv.h> 46 #include <sys/proc.h> 47 #include <sys/vnode.h> 48 #include <sys/ptrace.h> 49 #include <sys/rwlock.h> 50 #include <sys/sx.h> 51 #include <sys/malloc.h> 52 #include <sys/signalvar.h> 53 #include <sys/caprights.h> 54 #include <sys/filedesc.h> 55 56 #include <security/audit/audit.h> 57 58 #include <vm/vm.h> 59 #include <vm/pmap.h> 60 #include <vm/vm_extern.h> 61 #include <vm/vm_map.h> 62 #include <vm/vm_kern.h> 63 #include <vm/vm_object.h> 64 #include <vm/vm_page.h> 65 #include <vm/vm_param.h> 66 67 #ifdef COMPAT_FREEBSD32 68 #include <sys/procfs.h> 69 #endif 70 71 /* Assert it's safe to unlock a process, e.g. to allocate working memory */ 72 #define PROC_ASSERT_TRACEREQ(p) MPASS(((p)->p_flag2 & P2_PTRACEREQ) != 0) 73 74 /* 75 * Functions implemented using PROC_ACTION(): 76 * 77 * proc_read_regs(proc, regs) 78 * Get the current user-visible register set from the process 79 * and copy it into the regs structure (<machine/reg.h>). 80 * The process is stopped at the time read_regs is called. 81 * 82 * proc_write_regs(proc, regs) 83 * Update the current register set from the passed in regs 84 * structure. Take care to avoid clobbering special CPU 85 * registers or privileged bits in the PSL. 86 * Depending on the architecture this may have fix-up work to do, 87 * especially if the IAR or PCW are modified. 88 * The process is stopped at the time write_regs is called. 89 * 90 * proc_read_fpregs, proc_write_fpregs 91 * deal with the floating point register set, otherwise as above. 92 * 93 * proc_read_dbregs, proc_write_dbregs 94 * deal with the processor debug register set, otherwise as above. 95 * 96 * proc_sstep(proc) 97 * Arrange for the process to trap after executing a single instruction. 98 */ 99 100 #define PROC_ACTION(action) do { \ 101 int error; \ 102 \ 103 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ 104 if ((td->td_proc->p_flag & P_INMEM) == 0) \ 105 error = EIO; \ 106 else \ 107 error = (action); \ 108 return (error); \ 109 } while (0) 110 111 int 112 proc_read_regs(struct thread *td, struct reg *regs) 113 { 114 115 PROC_ACTION(fill_regs(td, regs)); 116 } 117 118 int 119 proc_write_regs(struct thread *td, struct reg *regs) 120 { 121 122 PROC_ACTION(set_regs(td, regs)); 123 } 124 125 int 126 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 127 { 128 129 PROC_ACTION(fill_dbregs(td, dbregs)); 130 } 131 132 int 133 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 134 { 135 136 PROC_ACTION(set_dbregs(td, dbregs)); 137 } 138 139 /* 140 * Ptrace doesn't support fpregs at all, and there are no security holes 141 * or translations for fpregs, so we can just copy them. 142 */ 143 int 144 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 145 { 146 147 PROC_ACTION(fill_fpregs(td, fpregs)); 148 } 149 150 int 151 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 152 { 153 154 PROC_ACTION(set_fpregs(td, fpregs)); 155 } 156 157 static struct regset * 158 proc_find_regset(struct thread *td, int note) 159 { 160 struct regset **regsetp, **regset_end, *regset; 161 struct sysentvec *sv; 162 163 sv = td->td_proc->p_sysent; 164 regsetp = sv->sv_regset_begin; 165 if (regsetp == NULL) 166 return (NULL); 167 regset_end = sv->sv_regset_end; 168 MPASS(regset_end != NULL); 169 for (; regsetp < regset_end; regsetp++) { 170 regset = *regsetp; 171 if (regset->note != note) 172 continue; 173 174 return (regset); 175 } 176 177 return (NULL); 178 } 179 180 static int 181 proc_read_regset(struct thread *td, int note, struct iovec *iov) 182 { 183 struct regset *regset; 184 struct proc *p; 185 void *buf; 186 size_t size; 187 int error; 188 189 regset = proc_find_regset(td, note); 190 if (regset == NULL) 191 return (EINVAL); 192 193 if (iov->iov_base == NULL) { 194 iov->iov_len = regset->size; 195 if (iov->iov_len == 0) 196 return (EINVAL); 197 198 return (0); 199 } 200 201 /* The length is wrong, return an error */ 202 if (iov->iov_len != regset->size) 203 return (EINVAL); 204 205 if (regset->get == NULL) 206 return (EINVAL); 207 208 error = 0; 209 size = regset->size; 210 p = td->td_proc; 211 212 /* Drop the proc lock while allocating the temp buffer */ 213 PROC_ASSERT_TRACEREQ(p); 214 PROC_UNLOCK(p); 215 buf = malloc(size, M_TEMP, M_WAITOK); 216 PROC_LOCK(p); 217 218 if (!regset->get(regset, td, buf, &size)) { 219 error = EINVAL; 220 } else { 221 KASSERT(size == regset->size, 222 ("%s: Getter function changed the size", __func__)); 223 224 iov->iov_len = size; 225 PROC_UNLOCK(p); 226 error = copyout(buf, iov->iov_base, size); 227 PROC_LOCK(p); 228 } 229 230 free(buf, M_TEMP); 231 232 return (error); 233 } 234 235 static int 236 proc_write_regset(struct thread *td, int note, struct iovec *iov) 237 { 238 struct regset *regset; 239 struct proc *p; 240 void *buf; 241 size_t size; 242 int error; 243 244 regset = proc_find_regset(td, note); 245 if (regset == NULL) 246 return (EINVAL); 247 248 /* The length is wrong, return an error */ 249 if (iov->iov_len != regset->size) 250 return (EINVAL); 251 252 if (regset->set == NULL) 253 return (EINVAL); 254 255 size = regset->size; 256 p = td->td_proc; 257 258 /* Drop the proc lock while allocating the temp buffer */ 259 PROC_ASSERT_TRACEREQ(p); 260 PROC_UNLOCK(p); 261 buf = malloc(size, M_TEMP, M_WAITOK); 262 error = copyin(iov->iov_base, buf, size); 263 PROC_LOCK(p); 264 265 if (error == 0) { 266 if (!regset->set(regset, td, buf, size)) { 267 error = EINVAL; 268 } 269 } 270 271 free(buf, M_TEMP); 272 273 return (error); 274 } 275 276 #ifdef COMPAT_FREEBSD32 277 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 278 int 279 proc_read_regs32(struct thread *td, struct reg32 *regs32) 280 { 281 282 PROC_ACTION(fill_regs32(td, regs32)); 283 } 284 285 int 286 proc_write_regs32(struct thread *td, struct reg32 *regs32) 287 { 288 289 PROC_ACTION(set_regs32(td, regs32)); 290 } 291 292 int 293 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 294 { 295 296 PROC_ACTION(fill_dbregs32(td, dbregs32)); 297 } 298 299 int 300 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 301 { 302 303 PROC_ACTION(set_dbregs32(td, dbregs32)); 304 } 305 306 int 307 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 308 { 309 310 PROC_ACTION(fill_fpregs32(td, fpregs32)); 311 } 312 313 int 314 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 315 { 316 317 PROC_ACTION(set_fpregs32(td, fpregs32)); 318 } 319 #endif 320 321 int 322 proc_sstep(struct thread *td) 323 { 324 325 PROC_ACTION(ptrace_single_step(td)); 326 } 327 328 int 329 proc_rwmem(struct proc *p, struct uio *uio) 330 { 331 vm_map_t map; 332 vm_offset_t pageno; /* page number */ 333 vm_prot_t reqprot; 334 int error, fault_flags, page_offset, writing; 335 336 /* 337 * Make sure that the process' vmspace remains live. 338 */ 339 if (p != curproc) 340 PROC_ASSERT_HELD(p); 341 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 342 343 /* 344 * The map we want... 345 */ 346 map = &p->p_vmspace->vm_map; 347 348 /* 349 * If we are writing, then we request vm_fault() to create a private 350 * copy of each page. Since these copies will not be writeable by the 351 * process, we must explicity request that they be dirtied. 352 */ 353 writing = uio->uio_rw == UIO_WRITE; 354 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 355 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 356 357 /* 358 * Only map in one page at a time. We don't have to, but it 359 * makes things easier. This way is trivial - right? 360 */ 361 do { 362 vm_offset_t uva; 363 u_int len; 364 vm_page_t m; 365 366 uva = (vm_offset_t)uio->uio_offset; 367 368 /* 369 * Get the page number of this segment. 370 */ 371 pageno = trunc_page(uva); 372 page_offset = uva - pageno; 373 374 /* 375 * How many bytes to copy 376 */ 377 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 378 379 /* 380 * Fault and hold the page on behalf of the process. 381 */ 382 error = vm_fault(map, pageno, reqprot, fault_flags, &m); 383 if (error != KERN_SUCCESS) { 384 if (error == KERN_RESOURCE_SHORTAGE) 385 error = ENOMEM; 386 else 387 error = EFAULT; 388 break; 389 } 390 391 /* 392 * Now do the i/o move. 393 */ 394 error = uiomove_fromphys(&m, page_offset, len, uio); 395 396 /* Make the I-cache coherent for breakpoints. */ 397 if (writing && error == 0) { 398 vm_map_lock_read(map); 399 if (vm_map_check_protection(map, pageno, pageno + 400 PAGE_SIZE, VM_PROT_EXECUTE)) 401 vm_sync_icache(map, uva, len); 402 vm_map_unlock_read(map); 403 } 404 405 /* 406 * Release the page. 407 */ 408 vm_page_unwire(m, PQ_ACTIVE); 409 410 } while (error == 0 && uio->uio_resid > 0); 411 412 return (error); 413 } 414 415 static ssize_t 416 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 417 size_t len, enum uio_rw rw) 418 { 419 struct iovec iov; 420 struct uio uio; 421 ssize_t slen; 422 423 MPASS(len < SSIZE_MAX); 424 slen = (ssize_t)len; 425 426 iov.iov_base = (caddr_t)buf; 427 iov.iov_len = len; 428 uio.uio_iov = &iov; 429 uio.uio_iovcnt = 1; 430 uio.uio_offset = va; 431 uio.uio_resid = slen; 432 uio.uio_segflg = UIO_SYSSPACE; 433 uio.uio_rw = rw; 434 uio.uio_td = td; 435 proc_rwmem(p, &uio); 436 if (uio.uio_resid == slen) 437 return (-1); 438 return (slen - uio.uio_resid); 439 } 440 441 ssize_t 442 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 443 size_t len) 444 { 445 446 return (proc_iop(td, p, va, buf, len, UIO_READ)); 447 } 448 449 ssize_t 450 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 451 size_t len) 452 { 453 454 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 455 } 456 457 static int 458 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 459 { 460 struct vattr vattr; 461 vm_map_t map; 462 vm_map_entry_t entry; 463 vm_object_t obj, tobj, lobj; 464 struct vmspace *vm; 465 struct vnode *vp; 466 char *freepath, *fullpath; 467 u_int pathlen; 468 int error, index; 469 470 error = 0; 471 obj = NULL; 472 473 vm = vmspace_acquire_ref(p); 474 map = &vm->vm_map; 475 vm_map_lock_read(map); 476 477 do { 478 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 479 ("Submap in map header")); 480 index = 0; 481 VM_MAP_ENTRY_FOREACH(entry, map) { 482 if (index >= pve->pve_entry && 483 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 484 break; 485 index++; 486 } 487 if (index < pve->pve_entry) { 488 error = EINVAL; 489 break; 490 } 491 if (entry == &map->header) { 492 error = ENOENT; 493 break; 494 } 495 496 /* We got an entry. */ 497 pve->pve_entry = index + 1; 498 pve->pve_timestamp = map->timestamp; 499 pve->pve_start = entry->start; 500 pve->pve_end = entry->end - 1; 501 pve->pve_offset = entry->offset; 502 pve->pve_prot = entry->protection; 503 504 /* Backing object's path needed? */ 505 if (pve->pve_pathlen == 0) 506 break; 507 508 pathlen = pve->pve_pathlen; 509 pve->pve_pathlen = 0; 510 511 obj = entry->object.vm_object; 512 if (obj != NULL) 513 VM_OBJECT_RLOCK(obj); 514 } while (0); 515 516 vm_map_unlock_read(map); 517 518 pve->pve_fsid = VNOVAL; 519 pve->pve_fileid = VNOVAL; 520 521 if (error == 0 && obj != NULL) { 522 lobj = obj; 523 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 524 if (tobj != obj) 525 VM_OBJECT_RLOCK(tobj); 526 if (lobj != obj) 527 VM_OBJECT_RUNLOCK(lobj); 528 lobj = tobj; 529 pve->pve_offset += tobj->backing_object_offset; 530 } 531 vp = vm_object_vnode(lobj); 532 if (vp != NULL) 533 vref(vp); 534 if (lobj != obj) 535 VM_OBJECT_RUNLOCK(lobj); 536 VM_OBJECT_RUNLOCK(obj); 537 538 if (vp != NULL) { 539 freepath = NULL; 540 fullpath = NULL; 541 vn_fullpath(vp, &fullpath, &freepath); 542 vn_lock(vp, LK_SHARED | LK_RETRY); 543 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 544 pve->pve_fileid = vattr.va_fileid; 545 pve->pve_fsid = vattr.va_fsid; 546 } 547 vput(vp); 548 549 if (fullpath != NULL) { 550 pve->pve_pathlen = strlen(fullpath) + 1; 551 if (pve->pve_pathlen <= pathlen) { 552 error = copyout(fullpath, pve->pve_path, 553 pve->pve_pathlen); 554 } else 555 error = ENAMETOOLONG; 556 } 557 if (freepath != NULL) 558 free(freepath, M_TEMP); 559 } 560 } 561 vmspace_free(vm); 562 if (error == 0) 563 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 564 p->p_pid, pve->pve_entry, pve->pve_start); 565 566 return (error); 567 } 568 569 /* 570 * Process debugging system call. 571 */ 572 #ifndef _SYS_SYSPROTO_H_ 573 struct ptrace_args { 574 int req; 575 pid_t pid; 576 caddr_t addr; 577 int data; 578 }; 579 #endif 580 581 int 582 sys_ptrace(struct thread *td, struct ptrace_args *uap) 583 { 584 /* 585 * XXX this obfuscation is to reduce stack usage, but the register 586 * structs may be too large to put on the stack anyway. 587 */ 588 union { 589 struct ptrace_io_desc piod; 590 struct ptrace_lwpinfo pl; 591 struct ptrace_vm_entry pve; 592 struct ptrace_coredump pc; 593 struct ptrace_sc_remote sr; 594 struct dbreg dbreg; 595 struct fpreg fpreg; 596 struct reg reg; 597 struct iovec vec; 598 syscallarg_t args[nitems(td->td_sa.args)]; 599 struct ptrace_sc_ret psr; 600 int ptevents; 601 } r; 602 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 603 void *addr; 604 int error; 605 606 if (!allow_ptrace) 607 return (ENOSYS); 608 error = 0; 609 610 AUDIT_ARG_PID(uap->pid); 611 AUDIT_ARG_CMD(uap->req); 612 AUDIT_ARG_VALUE(uap->data); 613 addr = &r; 614 switch (uap->req) { 615 case PT_GET_EVENT_MASK: 616 case PT_LWPINFO: 617 case PT_GET_SC_ARGS: 618 case PT_GET_SC_RET: 619 break; 620 case PT_GETREGS: 621 bzero(&r.reg, sizeof(r.reg)); 622 break; 623 case PT_GETFPREGS: 624 bzero(&r.fpreg, sizeof(r.fpreg)); 625 break; 626 case PT_GETDBREGS: 627 bzero(&r.dbreg, sizeof(r.dbreg)); 628 break; 629 case PT_GETREGSET: 630 case PT_SETREGSET: 631 error = copyin(uap->addr, &r.vec, sizeof(r.vec)); 632 break; 633 case PT_SETREGS: 634 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 635 break; 636 case PT_SETFPREGS: 637 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 638 break; 639 case PT_SETDBREGS: 640 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 641 break; 642 case PT_SET_EVENT_MASK: 643 if (uap->data != sizeof(r.ptevents)) 644 error = EINVAL; 645 else 646 error = copyin(uap->addr, &r.ptevents, uap->data); 647 break; 648 case PT_IO: 649 error = copyin(uap->addr, &r.piod, sizeof(r.piod)); 650 break; 651 case PT_VM_ENTRY: 652 error = copyin(uap->addr, &r.pve, sizeof(r.pve)); 653 break; 654 case PT_COREDUMP: 655 if (uap->data != sizeof(r.pc)) 656 error = EINVAL; 657 else 658 error = copyin(uap->addr, &r.pc, uap->data); 659 break; 660 case PT_SC_REMOTE: 661 if (uap->data != sizeof(r.sr)) { 662 error = EINVAL; 663 break; 664 } 665 error = copyin(uap->addr, &r.sr, uap->data); 666 if (error != 0) 667 break; 668 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 669 error = EINVAL; 670 break; 671 } 672 error = copyin(r.sr.pscr_args, pscr_args, 673 sizeof(u_long) * r.sr.pscr_nargs); 674 if (error != 0) 675 break; 676 r.sr.pscr_args = pscr_args; 677 break; 678 default: 679 addr = uap->addr; 680 break; 681 } 682 if (error) 683 return (error); 684 685 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 686 if (error) 687 return (error); 688 689 switch (uap->req) { 690 case PT_VM_ENTRY: 691 error = copyout(&r.pve, uap->addr, sizeof(r.pve)); 692 break; 693 case PT_IO: 694 error = copyout(&r.piod, uap->addr, sizeof(r.piod)); 695 break; 696 case PT_GETREGS: 697 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 698 break; 699 case PT_GETFPREGS: 700 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 701 break; 702 case PT_GETDBREGS: 703 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 704 break; 705 case PT_GETREGSET: 706 error = copyout(&r.vec, uap->addr, sizeof(r.vec)); 707 break; 708 case PT_GET_EVENT_MASK: 709 /* NB: The size in uap->data is validated in kern_ptrace(). */ 710 error = copyout(&r.ptevents, uap->addr, uap->data); 711 break; 712 case PT_LWPINFO: 713 /* NB: The size in uap->data is validated in kern_ptrace(). */ 714 error = copyout(&r.pl, uap->addr, uap->data); 715 break; 716 case PT_GET_SC_ARGS: 717 error = copyout(r.args, uap->addr, MIN(uap->data, 718 sizeof(r.args))); 719 break; 720 case PT_GET_SC_RET: 721 error = copyout(&r.psr, uap->addr, MIN(uap->data, 722 sizeof(r.psr))); 723 break; 724 case PT_SC_REMOTE: 725 error = copyout(&r.sr.pscr_ret, uap->addr + 726 offsetof(struct ptrace_sc_remote, pscr_ret), 727 sizeof(r.sr.pscr_ret)); 728 break; 729 } 730 731 return (error); 732 } 733 734 #ifdef COMPAT_FREEBSD32 735 /* 736 * PROC_READ(regs, td2, addr); 737 * becomes either: 738 * proc_read_regs(td2, addr); 739 * or 740 * proc_read_regs32(td2, addr); 741 * .. except this is done at runtime. There is an additional 742 * complication in that PROC_WRITE disallows 32 bit consumers 743 * from writing to 64 bit address space targets. 744 */ 745 #define PROC_READ(w, t, a) wrap32 ? \ 746 proc_read_ ## w ## 32(t, a) : \ 747 proc_read_ ## w (t, a) 748 #define PROC_WRITE(w, t, a) wrap32 ? \ 749 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 750 proc_write_ ## w (t, a) 751 #else 752 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 753 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 754 #endif 755 756 void 757 proc_set_traced(struct proc *p, bool stop) 758 { 759 760 sx_assert(&proctree_lock, SX_XLOCKED); 761 PROC_LOCK_ASSERT(p, MA_OWNED); 762 p->p_flag |= P_TRACED; 763 if (stop) 764 p->p_flag2 |= P2_PTRACE_FSTP; 765 p->p_ptevents = PTRACE_DEFAULT; 766 } 767 768 void 769 ptrace_unsuspend(struct proc *p) 770 { 771 PROC_LOCK_ASSERT(p, MA_OWNED); 772 773 PROC_SLOCK(p); 774 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 775 thread_unsuspend(p); 776 PROC_SUNLOCK(p); 777 itimer_proc_continue(p); 778 kqtimer_proc_continue(p); 779 } 780 781 static int 782 proc_can_ptrace(struct thread *td, struct proc *p) 783 { 784 int error; 785 786 PROC_LOCK_ASSERT(p, MA_OWNED); 787 788 if ((p->p_flag & P_WEXIT) != 0) 789 return (ESRCH); 790 791 if ((error = p_cansee(td, p)) != 0) 792 return (error); 793 if ((error = p_candebug(td, p)) != 0) 794 return (error); 795 796 /* not being traced... */ 797 if ((p->p_flag & P_TRACED) == 0) 798 return (EPERM); 799 800 /* not being traced by YOU */ 801 if (p->p_pptr != td->td_proc) 802 return (EBUSY); 803 804 /* not currently stopped */ 805 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 806 p->p_suspcount != p->p_numthreads || 807 (p->p_flag & P_WAITED) == 0) 808 return (EBUSY); 809 810 return (0); 811 } 812 813 static struct thread * 814 ptrace_sel_coredump_thread(struct proc *p) 815 { 816 struct thread *td2; 817 818 PROC_LOCK_ASSERT(p, MA_OWNED); 819 MPASS((p->p_flag & P_STOPPED_TRACE) != 0); 820 821 FOREACH_THREAD_IN_PROC(p, td2) { 822 if ((td2->td_dbgflags & TDB_SSWITCH) != 0) 823 return (td2); 824 } 825 return (NULL); 826 } 827 828 int 829 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 830 { 831 struct iovec iov; 832 struct uio uio; 833 struct proc *curp, *p, *pp; 834 struct thread *td2 = NULL, *td3; 835 struct ptrace_io_desc *piod = NULL; 836 struct ptrace_lwpinfo *pl; 837 struct ptrace_sc_ret *psr; 838 struct ptrace_sc_remote *pscr; 839 struct file *fp; 840 struct ptrace_coredump *pc; 841 struct thr_coredump_req *tcq; 842 struct thr_syscall_req *tsr; 843 int error, num, tmp; 844 lwpid_t tid = 0, *buf; 845 #ifdef COMPAT_FREEBSD32 846 int wrap32 = 0, safe = 0; 847 #endif 848 bool proctree_locked, p2_req_set; 849 850 curp = td->td_proc; 851 proctree_locked = false; 852 p2_req_set = false; 853 854 /* Lock proctree before locking the process. */ 855 switch (req) { 856 case PT_TRACE_ME: 857 case PT_ATTACH: 858 case PT_STEP: 859 case PT_CONTINUE: 860 case PT_TO_SCE: 861 case PT_TO_SCX: 862 case PT_SYSCALL: 863 case PT_FOLLOW_FORK: 864 case PT_LWP_EVENTS: 865 case PT_GET_EVENT_MASK: 866 case PT_SET_EVENT_MASK: 867 case PT_DETACH: 868 case PT_GET_SC_ARGS: 869 sx_xlock(&proctree_lock); 870 proctree_locked = true; 871 break; 872 default: 873 break; 874 } 875 876 if (req == PT_TRACE_ME) { 877 p = td->td_proc; 878 PROC_LOCK(p); 879 } else { 880 if (pid <= PID_MAX) { 881 if ((p = pfind(pid)) == NULL) { 882 if (proctree_locked) 883 sx_xunlock(&proctree_lock); 884 return (ESRCH); 885 } 886 } else { 887 td2 = tdfind(pid, -1); 888 if (td2 == NULL) { 889 if (proctree_locked) 890 sx_xunlock(&proctree_lock); 891 return (ESRCH); 892 } 893 p = td2->td_proc; 894 tid = pid; 895 pid = p->p_pid; 896 } 897 } 898 AUDIT_ARG_PROCESS(p); 899 900 if ((p->p_flag & P_WEXIT) != 0) { 901 error = ESRCH; 902 goto fail; 903 } 904 if ((error = p_cansee(td, p)) != 0) 905 goto fail; 906 907 if ((error = p_candebug(td, p)) != 0) 908 goto fail; 909 910 /* 911 * System processes can't be debugged. 912 */ 913 if ((p->p_flag & P_SYSTEM) != 0) { 914 error = EINVAL; 915 goto fail; 916 } 917 918 if (tid == 0) { 919 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 920 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 921 td2 = p->p_xthread; 922 } else { 923 td2 = FIRST_THREAD_IN_PROC(p); 924 } 925 tid = td2->td_tid; 926 } 927 928 #ifdef COMPAT_FREEBSD32 929 /* 930 * Test if we're a 32 bit client and what the target is. 931 * Set the wrap controls accordingly. 932 */ 933 if (SV_CURPROC_FLAG(SV_ILP32)) { 934 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 935 safe = 1; 936 wrap32 = 1; 937 } 938 #endif 939 /* 940 * Permissions check 941 */ 942 switch (req) { 943 case PT_TRACE_ME: 944 /* 945 * Always legal, when there is a parent process which 946 * could trace us. Otherwise, reject. 947 */ 948 if ((p->p_flag & P_TRACED) != 0) { 949 error = EBUSY; 950 goto fail; 951 } 952 if (p->p_pptr == initproc) { 953 error = EPERM; 954 goto fail; 955 } 956 break; 957 958 case PT_ATTACH: 959 /* Self */ 960 if (p == td->td_proc) { 961 error = EINVAL; 962 goto fail; 963 } 964 965 /* Already traced */ 966 if (p->p_flag & P_TRACED) { 967 error = EBUSY; 968 goto fail; 969 } 970 971 /* Can't trace an ancestor if you're being traced. */ 972 if (curp->p_flag & P_TRACED) { 973 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 974 if (pp == p) { 975 error = EINVAL; 976 goto fail; 977 } 978 } 979 } 980 981 /* OK */ 982 break; 983 984 case PT_CLEARSTEP: 985 /* Allow thread to clear single step for itself */ 986 if (td->td_tid == tid) 987 break; 988 989 /* FALLTHROUGH */ 990 default: 991 /* 992 * Check for ptrace eligibility before waiting for 993 * holds to drain. 994 */ 995 error = proc_can_ptrace(td, p); 996 if (error != 0) 997 goto fail; 998 999 /* 1000 * Block parallel ptrace requests. Most important, do 1001 * not allow other thread in debugger to continue the 1002 * debuggee until coredump finished. 1003 */ 1004 while ((p->p_flag2 & P2_PTRACEREQ) != 0) { 1005 if (proctree_locked) 1006 sx_xunlock(&proctree_lock); 1007 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH | 1008 (proctree_locked ? PDROP : 0), "pptrace", 0); 1009 if (proctree_locked) { 1010 sx_xlock(&proctree_lock); 1011 PROC_LOCK(p); 1012 } 1013 if (error == 0 && td2->td_proc != p) 1014 error = ESRCH; 1015 if (error == 0) 1016 error = proc_can_ptrace(td, p); 1017 if (error != 0) 1018 goto fail; 1019 } 1020 1021 /* Ok */ 1022 break; 1023 } 1024 1025 /* 1026 * Keep this process around and request parallel ptrace() 1027 * request to wait until we finish this request. 1028 */ 1029 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0); 1030 p->p_flag2 |= P2_PTRACEREQ; 1031 p2_req_set = true; 1032 _PHOLD(p); 1033 1034 /* 1035 * Actually do the requests 1036 */ 1037 1038 td->td_retval[0] = 0; 1039 1040 switch (req) { 1041 case PT_TRACE_ME: 1042 /* set my trace flag and "owner" so it can read/write me */ 1043 proc_set_traced(p, false); 1044 if (p->p_flag & P_PPWAIT) 1045 p->p_flag |= P_PPTRACE; 1046 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 1047 break; 1048 1049 case PT_ATTACH: 1050 /* security check done above */ 1051 /* 1052 * It would be nice if the tracing relationship was separate 1053 * from the parent relationship but that would require 1054 * another set of links in the proc struct or for "wait" 1055 * to scan the entire proc table. To make life easier, 1056 * we just re-parent the process we're trying to trace. 1057 * The old parent is remembered so we can put things back 1058 * on a "detach". 1059 */ 1060 proc_set_traced(p, true); 1061 proc_reparent(p, td->td_proc, false); 1062 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 1063 p->p_oppid); 1064 1065 sx_xunlock(&proctree_lock); 1066 proctree_locked = false; 1067 MPASS(p->p_xthread == NULL); 1068 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 1069 1070 /* 1071 * If already stopped due to a stop signal, clear the 1072 * existing stop before triggering a traced SIGSTOP. 1073 */ 1074 if ((p->p_flag & P_STOPPED_SIG) != 0) { 1075 PROC_SLOCK(p); 1076 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 1077 thread_unsuspend(p); 1078 PROC_SUNLOCK(p); 1079 } 1080 1081 kern_psignal(p, SIGSTOP); 1082 break; 1083 1084 case PT_CLEARSTEP: 1085 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 1086 p->p_pid); 1087 error = ptrace_clear_single_step(td2); 1088 break; 1089 1090 case PT_SETSTEP: 1091 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 1092 p->p_pid); 1093 error = ptrace_single_step(td2); 1094 break; 1095 1096 case PT_SUSPEND: 1097 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 1098 p->p_pid); 1099 td2->td_dbgflags |= TDB_SUSPEND; 1100 ast_sched(td2, TDA_SUSPEND); 1101 break; 1102 1103 case PT_RESUME: 1104 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1105 p->p_pid); 1106 td2->td_dbgflags &= ~TDB_SUSPEND; 1107 break; 1108 1109 case PT_FOLLOW_FORK: 1110 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1111 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1112 data ? "enabled" : "disabled"); 1113 if (data) 1114 p->p_ptevents |= PTRACE_FORK; 1115 else 1116 p->p_ptevents &= ~PTRACE_FORK; 1117 break; 1118 1119 case PT_LWP_EVENTS: 1120 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1121 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1122 data ? "enabled" : "disabled"); 1123 if (data) 1124 p->p_ptevents |= PTRACE_LWP; 1125 else 1126 p->p_ptevents &= ~PTRACE_LWP; 1127 break; 1128 1129 case PT_GET_EVENT_MASK: 1130 if (data != sizeof(p->p_ptevents)) { 1131 error = EINVAL; 1132 break; 1133 } 1134 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1135 p->p_ptevents); 1136 *(int *)addr = p->p_ptevents; 1137 break; 1138 1139 case PT_SET_EVENT_MASK: 1140 if (data != sizeof(p->p_ptevents)) { 1141 error = EINVAL; 1142 break; 1143 } 1144 tmp = *(int *)addr; 1145 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1146 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1147 error = EINVAL; 1148 break; 1149 } 1150 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1151 p->p_pid, p->p_ptevents, tmp); 1152 p->p_ptevents = tmp; 1153 break; 1154 1155 case PT_GET_SC_ARGS: 1156 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1157 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 1158 #ifdef COMPAT_FREEBSD32 1159 || (wrap32 && !safe) 1160 #endif 1161 ) { 1162 error = EINVAL; 1163 break; 1164 } 1165 bzero(addr, sizeof(td2->td_sa.args)); 1166 /* See the explanation in linux_ptrace_get_syscall_info(). */ 1167 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) == 1168 SV_ABI_LINUX ? sizeof(td2->td_sa.args) : 1169 td2->td_sa.callp->sy_narg * sizeof(syscallarg_t)); 1170 break; 1171 1172 case PT_GET_SC_RET: 1173 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1174 #ifdef COMPAT_FREEBSD32 1175 || (wrap32 && !safe) 1176 #endif 1177 ) { 1178 error = EINVAL; 1179 break; 1180 } 1181 psr = addr; 1182 bzero(psr, sizeof(*psr)); 1183 psr->sr_error = td2->td_errno; 1184 if (psr->sr_error == 0) { 1185 psr->sr_retval[0] = td2->td_retval[0]; 1186 psr->sr_retval[1] = td2->td_retval[1]; 1187 } 1188 CTR4(KTR_PTRACE, 1189 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1190 p->p_pid, psr->sr_error, psr->sr_retval[0], 1191 psr->sr_retval[1]); 1192 break; 1193 1194 case PT_STEP: 1195 case PT_CONTINUE: 1196 case PT_TO_SCE: 1197 case PT_TO_SCX: 1198 case PT_SYSCALL: 1199 case PT_DETACH: 1200 /* Zero means do not send any signal */ 1201 if (data < 0 || data > _SIG_MAXSIG) { 1202 error = EINVAL; 1203 break; 1204 } 1205 1206 switch (req) { 1207 case PT_STEP: 1208 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1209 td2->td_tid, p->p_pid, data); 1210 error = ptrace_single_step(td2); 1211 if (error) 1212 goto out; 1213 break; 1214 case PT_CONTINUE: 1215 case PT_TO_SCE: 1216 case PT_TO_SCX: 1217 case PT_SYSCALL: 1218 if (addr != (void *)1) { 1219 error = ptrace_set_pc(td2, 1220 (u_long)(uintfptr_t)addr); 1221 if (error) 1222 goto out; 1223 } 1224 switch (req) { 1225 case PT_TO_SCE: 1226 p->p_ptevents |= PTRACE_SCE; 1227 CTR4(KTR_PTRACE, 1228 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1229 p->p_pid, p->p_ptevents, 1230 (u_long)(uintfptr_t)addr, data); 1231 break; 1232 case PT_TO_SCX: 1233 p->p_ptevents |= PTRACE_SCX; 1234 CTR4(KTR_PTRACE, 1235 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1236 p->p_pid, p->p_ptevents, 1237 (u_long)(uintfptr_t)addr, data); 1238 break; 1239 case PT_SYSCALL: 1240 p->p_ptevents |= PTRACE_SYSCALL; 1241 CTR4(KTR_PTRACE, 1242 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1243 p->p_pid, p->p_ptevents, 1244 (u_long)(uintfptr_t)addr, data); 1245 break; 1246 case PT_CONTINUE: 1247 CTR3(KTR_PTRACE, 1248 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1249 p->p_pid, (u_long)(uintfptr_t)addr, data); 1250 break; 1251 } 1252 break; 1253 case PT_DETACH: 1254 /* 1255 * Clear P_TRACED before reparenting 1256 * a detached process back to its original 1257 * parent. Otherwise the debugee will be set 1258 * as an orphan of the debugger. 1259 */ 1260 p->p_flag &= ~(P_TRACED | P_WAITED); 1261 1262 /* 1263 * Reset the process parent. 1264 */ 1265 if (p->p_oppid != p->p_pptr->p_pid) { 1266 PROC_LOCK(p->p_pptr); 1267 sigqueue_take(p->p_ksi); 1268 PROC_UNLOCK(p->p_pptr); 1269 1270 pp = proc_realparent(p); 1271 proc_reparent(p, pp, false); 1272 if (pp == initproc) 1273 p->p_sigparent = SIGCHLD; 1274 CTR3(KTR_PTRACE, 1275 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1276 p->p_pid, pp->p_pid, data); 1277 } else { 1278 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1279 p->p_pid, data); 1280 } 1281 1282 p->p_ptevents = 0; 1283 FOREACH_THREAD_IN_PROC(p, td3) { 1284 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1285 sigqueue_delete(&td3->td_sigqueue, 1286 SIGSTOP); 1287 } 1288 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1289 TDB_SUSPEND | TDB_BORN); 1290 } 1291 1292 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1293 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1294 p->p_flag2 &= ~P2_PTRACE_FSTP; 1295 } 1296 1297 /* should we send SIGCHLD? */ 1298 /* childproc_continued(p); */ 1299 break; 1300 } 1301 1302 sx_xunlock(&proctree_lock); 1303 proctree_locked = false; 1304 1305 sendsig: 1306 MPASS(!proctree_locked); 1307 1308 /* 1309 * Clear the pending event for the thread that just 1310 * reported its event (p_xthread). This may not be 1311 * the thread passed to PT_CONTINUE, PT_STEP, etc. if 1312 * the debugger is resuming a different thread. 1313 * 1314 * Deliver any pending signal via the reporting thread. 1315 */ 1316 MPASS(p->p_xthread != NULL); 1317 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1318 p->p_xthread->td_xsig = data; 1319 p->p_xthread = NULL; 1320 p->p_xsig = data; 1321 1322 /* 1323 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1324 * always works immediately, even if another thread is 1325 * unsuspended first and attempts to handle a 1326 * different signal or if the POSIX.1b style signal 1327 * queue cannot accommodate any new signals. 1328 */ 1329 if (data == SIGKILL) 1330 proc_wkilled(p); 1331 1332 /* 1333 * Unsuspend all threads. To leave a thread 1334 * suspended, use PT_SUSPEND to suspend it before 1335 * continuing the process. 1336 */ 1337 ptrace_unsuspend(p); 1338 break; 1339 1340 case PT_WRITE_I: 1341 case PT_WRITE_D: 1342 td2->td_dbgflags |= TDB_USERWR; 1343 PROC_UNLOCK(p); 1344 error = 0; 1345 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1346 sizeof(int)) != sizeof(int)) 1347 error = ENOMEM; 1348 else 1349 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1350 p->p_pid, addr, data); 1351 PROC_LOCK(p); 1352 break; 1353 1354 case PT_READ_I: 1355 case PT_READ_D: 1356 PROC_UNLOCK(p); 1357 error = tmp = 0; 1358 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1359 sizeof(int)) != sizeof(int)) 1360 error = ENOMEM; 1361 else 1362 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1363 p->p_pid, addr, tmp); 1364 td->td_retval[0] = tmp; 1365 PROC_LOCK(p); 1366 break; 1367 1368 case PT_IO: 1369 piod = addr; 1370 iov.iov_base = piod->piod_addr; 1371 iov.iov_len = piod->piod_len; 1372 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1373 uio.uio_resid = piod->piod_len; 1374 uio.uio_iov = &iov; 1375 uio.uio_iovcnt = 1; 1376 uio.uio_segflg = UIO_USERSPACE; 1377 uio.uio_td = td; 1378 switch (piod->piod_op) { 1379 case PIOD_READ_D: 1380 case PIOD_READ_I: 1381 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1382 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1383 uio.uio_rw = UIO_READ; 1384 break; 1385 case PIOD_WRITE_D: 1386 case PIOD_WRITE_I: 1387 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1388 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1389 td2->td_dbgflags |= TDB_USERWR; 1390 uio.uio_rw = UIO_WRITE; 1391 break; 1392 default: 1393 error = EINVAL; 1394 goto out; 1395 } 1396 PROC_UNLOCK(p); 1397 error = proc_rwmem(p, &uio); 1398 piod->piod_len -= uio.uio_resid; 1399 PROC_LOCK(p); 1400 break; 1401 1402 case PT_KILL: 1403 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1404 data = SIGKILL; 1405 goto sendsig; /* in PT_CONTINUE above */ 1406 1407 case PT_SETREGS: 1408 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1409 p->p_pid); 1410 td2->td_dbgflags |= TDB_USERWR; 1411 error = PROC_WRITE(regs, td2, addr); 1412 break; 1413 1414 case PT_GETREGS: 1415 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1416 p->p_pid); 1417 error = PROC_READ(regs, td2, addr); 1418 break; 1419 1420 case PT_SETFPREGS: 1421 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1422 p->p_pid); 1423 td2->td_dbgflags |= TDB_USERWR; 1424 error = PROC_WRITE(fpregs, td2, addr); 1425 break; 1426 1427 case PT_GETFPREGS: 1428 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1429 p->p_pid); 1430 error = PROC_READ(fpregs, td2, addr); 1431 break; 1432 1433 case PT_SETDBREGS: 1434 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1435 p->p_pid); 1436 td2->td_dbgflags |= TDB_USERWR; 1437 error = PROC_WRITE(dbregs, td2, addr); 1438 break; 1439 1440 case PT_GETDBREGS: 1441 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1442 p->p_pid); 1443 error = PROC_READ(dbregs, td2, addr); 1444 break; 1445 1446 case PT_SETREGSET: 1447 CTR2(KTR_PTRACE, "PT_SETREGSET: tid %d (pid %d)", td2->td_tid, 1448 p->p_pid); 1449 error = proc_write_regset(td2, data, addr); 1450 break; 1451 1452 case PT_GETREGSET: 1453 CTR2(KTR_PTRACE, "PT_GETREGSET: tid %d (pid %d)", td2->td_tid, 1454 p->p_pid); 1455 error = proc_read_regset(td2, data, addr); 1456 break; 1457 1458 case PT_LWPINFO: 1459 if (data <= 0 || data > sizeof(*pl)) { 1460 error = EINVAL; 1461 break; 1462 } 1463 pl = addr; 1464 bzero(pl, sizeof(*pl)); 1465 pl->pl_lwpid = td2->td_tid; 1466 pl->pl_event = PL_EVENT_NONE; 1467 pl->pl_flags = 0; 1468 if (td2->td_dbgflags & TDB_XSIG) { 1469 pl->pl_event = PL_EVENT_SIGNAL; 1470 if (td2->td_si.si_signo != 0 && 1471 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1472 + sizeof(pl->pl_siginfo)){ 1473 pl->pl_flags |= PL_FLAG_SI; 1474 pl->pl_siginfo = td2->td_si; 1475 } 1476 } 1477 if (td2->td_dbgflags & TDB_SCE) 1478 pl->pl_flags |= PL_FLAG_SCE; 1479 else if (td2->td_dbgflags & TDB_SCX) 1480 pl->pl_flags |= PL_FLAG_SCX; 1481 if (td2->td_dbgflags & TDB_EXEC) 1482 pl->pl_flags |= PL_FLAG_EXEC; 1483 if (td2->td_dbgflags & TDB_FORK) { 1484 pl->pl_flags |= PL_FLAG_FORKED; 1485 pl->pl_child_pid = td2->td_dbg_forked; 1486 if (td2->td_dbgflags & TDB_VFORK) 1487 pl->pl_flags |= PL_FLAG_VFORKED; 1488 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1489 TDB_VFORK) 1490 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1491 if (td2->td_dbgflags & TDB_CHILD) 1492 pl->pl_flags |= PL_FLAG_CHILD; 1493 if (td2->td_dbgflags & TDB_BORN) 1494 pl->pl_flags |= PL_FLAG_BORN; 1495 if (td2->td_dbgflags & TDB_EXIT) 1496 pl->pl_flags |= PL_FLAG_EXITED; 1497 pl->pl_sigmask = td2->td_sigmask; 1498 pl->pl_siglist = td2->td_siglist; 1499 strcpy(pl->pl_tdname, td2->td_name); 1500 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1501 pl->pl_syscall_code = td2->td_sa.code; 1502 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg; 1503 } else { 1504 pl->pl_syscall_code = 0; 1505 pl->pl_syscall_narg = 0; 1506 } 1507 CTR6(KTR_PTRACE, 1508 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1509 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1510 pl->pl_child_pid, pl->pl_syscall_code); 1511 break; 1512 1513 case PT_GETNUMLWPS: 1514 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1515 p->p_numthreads); 1516 td->td_retval[0] = p->p_numthreads; 1517 break; 1518 1519 case PT_GETLWPLIST: 1520 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1521 p->p_pid, data, p->p_numthreads); 1522 if (data <= 0) { 1523 error = EINVAL; 1524 break; 1525 } 1526 num = imin(p->p_numthreads, data); 1527 PROC_UNLOCK(p); 1528 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1529 tmp = 0; 1530 PROC_LOCK(p); 1531 FOREACH_THREAD_IN_PROC(p, td2) { 1532 if (tmp >= num) 1533 break; 1534 buf[tmp++] = td2->td_tid; 1535 } 1536 PROC_UNLOCK(p); 1537 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1538 free(buf, M_TEMP); 1539 if (!error) 1540 td->td_retval[0] = tmp; 1541 PROC_LOCK(p); 1542 break; 1543 1544 case PT_VM_TIMESTAMP: 1545 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1546 p->p_pid, p->p_vmspace->vm_map.timestamp); 1547 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1548 break; 1549 1550 case PT_VM_ENTRY: 1551 PROC_UNLOCK(p); 1552 error = ptrace_vm_entry(td, p, addr); 1553 PROC_LOCK(p); 1554 break; 1555 1556 case PT_COREDUMP: 1557 pc = addr; 1558 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d", 1559 p->p_pid, pc->pc_fd); 1560 1561 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) { 1562 error = EINVAL; 1563 break; 1564 } 1565 PROC_UNLOCK(p); 1566 1567 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO); 1568 fp = NULL; 1569 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp); 1570 if (error != 0) 1571 goto coredump_cleanup_nofp; 1572 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) { 1573 error = EPIPE; 1574 goto coredump_cleanup; 1575 } 1576 1577 PROC_LOCK(p); 1578 error = proc_can_ptrace(td, p); 1579 if (error != 0) 1580 goto coredump_cleanup_locked; 1581 1582 td2 = ptrace_sel_coredump_thread(p); 1583 if (td2 == NULL) { 1584 error = EBUSY; 1585 goto coredump_cleanup_locked; 1586 } 1587 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1588 TDB_SCREMOTEREQ)) == 0, 1589 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1590 1591 tcq->tc_vp = fp->f_vnode; 1592 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit; 1593 tcq->tc_flags = SVC_PT_COREDUMP; 1594 if ((pc->pc_flags & PC_COMPRESS) == 0) 1595 tcq->tc_flags |= SVC_NOCOMPRESS; 1596 if ((pc->pc_flags & PC_ALL) != 0) 1597 tcq->tc_flags |= SVC_ALL; 1598 td2->td_remotereq = tcq; 1599 td2->td_dbgflags |= TDB_COREDUMPREQ; 1600 thread_run_flash(td2); 1601 while ((td2->td_dbgflags & TDB_COREDUMPREQ) != 0) 1602 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0); 1603 error = tcq->tc_error; 1604 coredump_cleanup_locked: 1605 PROC_UNLOCK(p); 1606 coredump_cleanup: 1607 fdrop(fp, td); 1608 coredump_cleanup_nofp: 1609 free(tcq, M_TEMP); 1610 PROC_LOCK(p); 1611 break; 1612 1613 case PT_SC_REMOTE: 1614 pscr = addr; 1615 CTR2(KTR_PTRACE, "PT_SC_REMOTE: pid %d, syscall %d", 1616 p->p_pid, pscr->pscr_syscall); 1617 if ((td2->td_dbgflags & TDB_BOUNDARY) == 0) { 1618 error = EBUSY; 1619 break; 1620 } 1621 PROC_UNLOCK(p); 1622 MPASS(pscr->pscr_nargs <= nitems(td->td_sa.args)); 1623 1624 tsr = malloc(sizeof(struct thr_syscall_req), M_TEMP, 1625 M_WAITOK | M_ZERO); 1626 1627 tsr->ts_sa.code = pscr->pscr_syscall; 1628 tsr->ts_nargs = pscr->pscr_nargs; 1629 memcpy(&tsr->ts_sa.args, pscr->pscr_args, 1630 sizeof(syscallarg_t) * tsr->ts_nargs); 1631 1632 PROC_LOCK(p); 1633 error = proc_can_ptrace(td, p); 1634 if (error != 0) { 1635 free(tsr, M_TEMP); 1636 break; 1637 } 1638 if (td2->td_proc != p) { 1639 free(tsr, M_TEMP); 1640 error = ESRCH; 1641 break; 1642 } 1643 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1644 TDB_SCREMOTEREQ)) == 0, 1645 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1646 1647 td2->td_remotereq = tsr; 1648 td2->td_dbgflags |= TDB_SCREMOTEREQ; 1649 thread_run_flash(td2); 1650 while ((td2->td_dbgflags & TDB_SCREMOTEREQ) != 0) 1651 msleep(p, &p->p_mtx, PPAUSE, "pscrx", 0); 1652 error = 0; 1653 memcpy(&pscr->pscr_ret, &tsr->ts_ret, sizeof(tsr->ts_ret)); 1654 free(tsr, M_TEMP); 1655 break; 1656 1657 default: 1658 #ifdef __HAVE_PTRACE_MACHDEP 1659 if (req >= PT_FIRSTMACH) { 1660 PROC_UNLOCK(p); 1661 error = cpu_ptrace(td2, req, addr, data); 1662 PROC_LOCK(p); 1663 } else 1664 #endif 1665 /* Unknown request. */ 1666 error = EINVAL; 1667 break; 1668 } 1669 out: 1670 /* Drop our hold on this process now that the request has completed. */ 1671 _PRELE(p); 1672 fail: 1673 if (p2_req_set) { 1674 if ((p->p_flag2 & P2_PTRACEREQ) != 0) 1675 wakeup(&p->p_flag2); 1676 p->p_flag2 &= ~P2_PTRACEREQ; 1677 } 1678 PROC_UNLOCK(p); 1679 if (proctree_locked) 1680 sx_xunlock(&proctree_lock); 1681 return (error); 1682 } 1683 #undef PROC_READ 1684 #undef PROC_WRITE 1685