1 /* 2 * Copyright (c) 1994, Sean Eric Fagan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Sean Eric Fagan. 16 * 4. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $FreeBSD$ 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/sysproto.h> 39 #include <sys/proc.h> 40 #include <sys/vnode.h> 41 #include <sys/ptrace.h> 42 #include <sys/sx.h> 43 #include <sys/user.h> 44 45 #include <machine/reg.h> 46 47 #include <vm/vm.h> 48 #include <vm/pmap.h> 49 #include <vm/vm_extern.h> 50 #include <vm/vm_map.h> 51 #include <vm/vm_kern.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_page.h> 54 55 /* 56 * Functions implemented using PROC_ACTION(): 57 * 58 * proc_read_regs(proc, regs) 59 * Get the current user-visible register set from the process 60 * and copy it into the regs structure (<machine/reg.h>). 61 * The process is stopped at the time read_regs is called. 62 * 63 * proc_write_regs(proc, regs) 64 * Update the current register set from the passed in regs 65 * structure. Take care to avoid clobbering special CPU 66 * registers or privileged bits in the PSL. 67 * Depending on the architecture this may have fix-up work to do, 68 * especially if the IAR or PCW are modified. 69 * The process is stopped at the time write_regs is called. 70 * 71 * proc_read_fpregs, proc_write_fpregs 72 * deal with the floating point register set, otherwise as above. 73 * 74 * proc_read_dbregs, proc_write_dbregs 75 * deal with the processor debug register set, otherwise as above. 76 * 77 * proc_sstep(proc) 78 * Arrange for the process to trap after executing a single instruction. 79 */ 80 81 #define PROC_ACTION(action) do { \ 82 int error; \ 83 \ 84 mtx_lock_spin(&sched_lock); \ 85 if ((td->td_proc->p_sflag & PS_INMEM) == 0) \ 86 error = EIO; \ 87 else \ 88 error = (action); \ 89 mtx_unlock_spin(&sched_lock); \ 90 return (error); \ 91 } while(0) 92 93 int 94 proc_read_regs(struct thread *td, struct reg *regs) 95 { 96 97 PROC_ACTION(fill_regs(td, regs)); 98 } 99 100 int 101 proc_write_regs(struct thread *td, struct reg *regs) 102 { 103 104 PROC_ACTION(set_regs(td, regs)); 105 } 106 107 int 108 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 109 { 110 111 PROC_ACTION(fill_dbregs(td, dbregs)); 112 } 113 114 int 115 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 116 { 117 118 PROC_ACTION(set_dbregs(td, dbregs)); 119 } 120 121 /* 122 * Ptrace doesn't support fpregs at all, and there are no security holes 123 * or translations for fpregs, so we can just copy them. 124 */ 125 int 126 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 127 { 128 129 PROC_ACTION(fill_fpregs(td, fpregs)); 130 } 131 132 int 133 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 134 { 135 136 PROC_ACTION(set_fpregs(td, fpregs)); 137 } 138 139 int 140 proc_sstep(struct thread *td) 141 { 142 143 PROC_ACTION(ptrace_single_step(td)); 144 } 145 146 int 147 proc_rwmem(struct proc *p, struct uio *uio) 148 { 149 struct vmspace *vm; 150 vm_map_t map; 151 vm_object_t object = NULL; 152 vm_offset_t pageno = 0; /* page number */ 153 vm_prot_t reqprot; 154 vm_offset_t kva; 155 int error, writing; 156 157 GIANT_REQUIRED; 158 159 /* 160 * if the vmspace is in the midst of being deallocated or the 161 * process is exiting, don't try to grab anything. The page table 162 * usage in that process can be messed up. 163 */ 164 vm = p->p_vmspace; 165 if ((p->p_flag & P_WEXIT)) 166 return (EFAULT); 167 if (vm->vm_refcnt < 1) 168 return (EFAULT); 169 ++vm->vm_refcnt; 170 /* 171 * The map we want... 172 */ 173 map = &vm->vm_map; 174 175 writing = uio->uio_rw == UIO_WRITE; 176 reqprot = writing ? (VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE) : 177 VM_PROT_READ; 178 179 kva = kmem_alloc_pageable(kernel_map, PAGE_SIZE); 180 181 /* 182 * Only map in one page at a time. We don't have to, but it 183 * makes things easier. This way is trivial - right? 184 */ 185 do { 186 vm_map_t tmap; 187 vm_offset_t uva; 188 int page_offset; /* offset into page */ 189 vm_map_entry_t out_entry; 190 vm_prot_t out_prot; 191 boolean_t wired; 192 vm_pindex_t pindex; 193 u_int len; 194 vm_page_t m; 195 196 object = NULL; 197 198 uva = (vm_offset_t)uio->uio_offset; 199 200 /* 201 * Get the page number of this segment. 202 */ 203 pageno = trunc_page(uva); 204 page_offset = uva - pageno; 205 206 /* 207 * How many bytes to copy 208 */ 209 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 210 211 /* 212 * Fault the page on behalf of the process 213 */ 214 error = vm_fault(map, pageno, reqprot, VM_FAULT_NORMAL); 215 if (error) { 216 error = EFAULT; 217 break; 218 } 219 220 /* 221 * Now we need to get the page. out_entry, out_prot, wired, 222 * and single_use aren't used. One would think the vm code 223 * would be a *bit* nicer... We use tmap because 224 * vm_map_lookup() can change the map argument. 225 */ 226 tmap = map; 227 error = vm_map_lookup(&tmap, pageno, reqprot, &out_entry, 228 &object, &pindex, &out_prot, &wired); 229 230 if (error) { 231 error = EFAULT; 232 233 /* 234 * Make sure that there is no residue in 'object' from 235 * an error return on vm_map_lookup. 236 */ 237 object = NULL; 238 239 break; 240 } 241 242 m = vm_page_lookup(object, pindex); 243 244 /* Allow fallback to backing objects if we are reading */ 245 246 while (m == NULL && !writing && object->backing_object) { 247 248 pindex += OFF_TO_IDX(object->backing_object_offset); 249 object = object->backing_object; 250 251 m = vm_page_lookup(object, pindex); 252 } 253 254 if (m == NULL) { 255 error = EFAULT; 256 257 /* 258 * Make sure that there is no residue in 'object' from 259 * an error return on vm_map_lookup. 260 */ 261 object = NULL; 262 263 vm_map_lookup_done(tmap, out_entry); 264 265 break; 266 } 267 268 /* 269 * Wire the page into memory 270 */ 271 vm_page_lock_queues(); 272 vm_page_wire(m); 273 vm_page_unlock_queues(); 274 275 /* 276 * We're done with tmap now. 277 * But reference the object first, so that we won't loose 278 * it. 279 */ 280 vm_object_reference(object); 281 vm_map_lookup_done(tmap, out_entry); 282 283 pmap_qenter(kva, &m, 1); 284 285 /* 286 * Now do the i/o move. 287 */ 288 error = uiomove((caddr_t)(kva + page_offset), len, uio); 289 290 pmap_qremove(kva, 1); 291 292 /* 293 * release the page and the object 294 */ 295 vm_page_lock_queues(); 296 vm_page_unwire(m, 1); 297 vm_page_unlock_queues(); 298 vm_object_deallocate(object); 299 300 object = NULL; 301 302 } while (error == 0 && uio->uio_resid > 0); 303 304 if (object) 305 vm_object_deallocate(object); 306 307 kmem_free(kernel_map, kva, PAGE_SIZE); 308 vmspace_free(vm); 309 return (error); 310 } 311 312 /* 313 * Process debugging system call. 314 */ 315 #ifndef _SYS_SYSPROTO_H_ 316 struct ptrace_args { 317 int req; 318 pid_t pid; 319 caddr_t addr; 320 int data; 321 }; 322 #endif 323 324 int 325 ptrace(struct thread *td, struct ptrace_args *uap) 326 { 327 struct iovec iov; 328 struct uio uio; 329 /* 330 * XXX this obfuscation is to reduce stack usage, but the register 331 * structs may be too large to put on the stack anyway. 332 */ 333 union { 334 struct ptrace_io_desc piod; 335 struct dbreg dbreg; 336 struct fpreg fpreg; 337 struct reg reg; 338 } r; 339 struct proc *curp, *p, *pp; 340 struct thread *td2; 341 int error, write, tmp; 342 int proctree_locked = 0; 343 344 curp = td->td_proc; 345 346 /* 347 * Do copyin() early before getting locks and lock proctree before 348 * locking the process. 349 */ 350 switch (uap->req) { 351 case PT_TRACE_ME: 352 case PT_ATTACH: 353 case PT_STEP: 354 case PT_CONTINUE: 355 case PT_DETACH: 356 sx_xlock(&proctree_lock); 357 proctree_locked = 1; 358 break; 359 #ifdef PT_SETREGS 360 case PT_SETREGS: 361 error = copyin(uap->addr, &r.reg, sizeof r.reg); 362 if (error) 363 return (error); 364 break; 365 #endif /* PT_SETREGS */ 366 #ifdef PT_SETFPREGS 367 case PT_SETFPREGS: 368 error = copyin(uap->addr, &r.fpreg, sizeof r.fpreg); 369 if (error) 370 return (error); 371 break; 372 #endif /* PT_SETFPREGS */ 373 #ifdef PT_SETDBREGS 374 case PT_SETDBREGS: 375 error = copyin(uap->addr, &r.dbreg, sizeof r.dbreg); 376 if (error) 377 return (error); 378 break; 379 #endif /* PT_SETDBREGS */ 380 default: 381 break; 382 } 383 384 write = 0; 385 if (uap->req == PT_TRACE_ME) { 386 p = td->td_proc; 387 PROC_LOCK(p); 388 } else { 389 if ((p = pfind(uap->pid)) == NULL) { 390 if (proctree_locked) 391 sx_xunlock(&proctree_lock); 392 return (ESRCH); 393 } 394 } 395 if ((error = p_cansee(td, p)) != 0) 396 goto fail; 397 398 if ((error = p_candebug(td, p)) != 0) 399 goto fail; 400 401 /* 402 * System processes can't be debugged. 403 */ 404 if ((p->p_flag & P_SYSTEM) != 0) { 405 error = EINVAL; 406 goto fail; 407 } 408 409 /* 410 * Permissions check 411 */ 412 switch (uap->req) { 413 case PT_TRACE_ME: 414 /* Always legal. */ 415 break; 416 417 case PT_ATTACH: 418 /* Self */ 419 if (p->p_pid == td->td_proc->p_pid) { 420 error = EINVAL; 421 goto fail; 422 } 423 424 /* Already traced */ 425 if (p->p_flag & P_TRACED) { 426 error = EBUSY; 427 goto fail; 428 } 429 430 /* Can't trace an ancestor if you're being traced. */ 431 if (curp->p_flag & P_TRACED) { 432 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 433 if (pp == p) { 434 error = EINVAL; 435 goto fail; 436 } 437 } 438 } 439 440 441 /* OK */ 442 break; 443 444 case PT_READ_I: 445 case PT_READ_D: 446 case PT_WRITE_I: 447 case PT_WRITE_D: 448 case PT_IO: 449 case PT_CONTINUE: 450 case PT_KILL: 451 case PT_STEP: 452 case PT_DETACH: 453 case PT_GETREGS: 454 case PT_SETREGS: 455 case PT_GETFPREGS: 456 case PT_SETFPREGS: 457 case PT_GETDBREGS: 458 case PT_SETDBREGS: 459 /* not being traced... */ 460 if ((p->p_flag & P_TRACED) == 0) { 461 error = EPERM; 462 goto fail; 463 } 464 465 /* not being traced by YOU */ 466 if (p->p_pptr != td->td_proc) { 467 error = EBUSY; 468 goto fail; 469 } 470 471 /* not currently stopped */ 472 if (!P_SHOULDSTOP(p) || (p->p_flag & P_WAITED) == 0) { 473 error = EBUSY; 474 goto fail; 475 } 476 477 /* OK */ 478 break; 479 480 default: 481 error = EINVAL; 482 goto fail; 483 } 484 485 td2 = FIRST_THREAD_IN_PROC(p); 486 #ifdef FIX_SSTEP 487 /* 488 * Single step fixup ala procfs 489 */ 490 FIX_SSTEP(td2); /* XXXKSE */ 491 #endif 492 493 /* 494 * Actually do the requests 495 */ 496 497 td->td_retval[0] = 0; 498 499 switch (uap->req) { 500 case PT_TRACE_ME: 501 /* set my trace flag and "owner" so it can read/write me */ 502 p->p_flag |= P_TRACED; 503 p->p_oppid = p->p_pptr->p_pid; 504 PROC_UNLOCK(p); 505 sx_xunlock(&proctree_lock); 506 return (0); 507 508 case PT_ATTACH: 509 /* security check done above */ 510 p->p_flag |= P_TRACED; 511 p->p_oppid = p->p_pptr->p_pid; 512 if (p->p_pptr != td->td_proc) 513 proc_reparent(p, td->td_proc); 514 uap->data = SIGSTOP; 515 goto sendsig; /* in PT_CONTINUE below */ 516 517 case PT_STEP: 518 case PT_CONTINUE: 519 case PT_DETACH: 520 /* XXX uap->data is used even in the PT_STEP case. */ 521 if (uap->req != PT_STEP && (unsigned)uap->data > _SIG_MAXSIG) { 522 error = EINVAL; 523 goto fail; 524 } 525 526 _PHOLD(p); 527 528 if (uap->req == PT_STEP) { 529 error = ptrace_single_step(td2); 530 if (error) { 531 _PRELE(p); 532 goto fail; 533 } 534 } 535 536 if (uap->addr != (caddr_t)1) { 537 fill_kinfo_proc(p, &p->p_uarea->u_kproc); 538 error = ptrace_set_pc(td2, 539 (u_long)(uintfptr_t)uap->addr); 540 if (error) { 541 _PRELE(p); 542 goto fail; 543 } 544 } 545 _PRELE(p); 546 547 if (uap->req == PT_DETACH) { 548 /* reset process parent */ 549 if (p->p_oppid != p->p_pptr->p_pid) { 550 struct proc *pp; 551 552 PROC_UNLOCK(p); 553 pp = pfind(p->p_oppid); 554 if (pp == NULL) 555 pp = initproc; 556 else 557 PROC_UNLOCK(pp); 558 PROC_LOCK(p); 559 proc_reparent(p, pp); 560 } 561 p->p_flag &= ~(P_TRACED | P_WAITED); 562 p->p_oppid = 0; 563 564 /* should we send SIGCHLD? */ 565 } 566 567 sendsig: 568 if (proctree_locked) 569 sx_xunlock(&proctree_lock); 570 /* deliver or queue signal */ 571 if (P_SHOULDSTOP(p)) { 572 p->p_xstat = uap->data; 573 mtx_lock_spin(&sched_lock); 574 p->p_flag &= ~(P_STOPPED_TRACE|P_STOPPED_SGNL); 575 setrunnable(td2); /* XXXKSE */ 576 /* Need foreach kse in proc, ... make_kse_queued(). */ 577 mtx_unlock_spin(&sched_lock); 578 } else if (uap->data) 579 psignal(p, uap->data); 580 PROC_UNLOCK(p); 581 582 return (0); 583 584 case PT_WRITE_I: 585 case PT_WRITE_D: 586 write = 1; 587 /* fallthrough */ 588 case PT_READ_I: 589 case PT_READ_D: 590 PROC_UNLOCK(p); 591 tmp = 0; 592 /* write = 0 set above */ 593 iov.iov_base = write ? (caddr_t)&uap->data : (caddr_t)&tmp; 594 iov.iov_len = sizeof(int); 595 uio.uio_iov = &iov; 596 uio.uio_iovcnt = 1; 597 uio.uio_offset = (off_t)(uintptr_t)uap->addr; 598 uio.uio_resid = sizeof(int); 599 uio.uio_segflg = UIO_SYSSPACE; /* i.e.: the uap */ 600 uio.uio_rw = write ? UIO_WRITE : UIO_READ; 601 uio.uio_td = td; 602 error = proc_rwmem(p, &uio); 603 if (uio.uio_resid != 0) { 604 /* 605 * XXX proc_rwmem() doesn't currently return ENOSPC, 606 * so I think write() can bogusly return 0. 607 * XXX what happens for short writes? We don't want 608 * to write partial data. 609 * XXX proc_rwmem() returns EPERM for other invalid 610 * addresses. Convert this to EINVAL. Does this 611 * clobber returns of EPERM for other reasons? 612 */ 613 if (error == 0 || error == ENOSPC || error == EPERM) 614 error = EINVAL; /* EOF */ 615 } 616 if (!write) 617 td->td_retval[0] = tmp; 618 return (error); 619 620 case PT_IO: 621 error = copyin(uap->addr, &r.piod, sizeof r.piod); 622 if (error) 623 return (error); 624 iov.iov_base = r.piod.piod_addr; 625 iov.iov_len = r.piod.piod_len; 626 uio.uio_iov = &iov; 627 uio.uio_iovcnt = 1; 628 uio.uio_offset = (off_t)(uintptr_t)r.piod.piod_offs; 629 uio.uio_resid = r.piod.piod_len; 630 uio.uio_segflg = UIO_USERSPACE; 631 uio.uio_td = td; 632 switch (r.piod.piod_op) { 633 case PIOD_READ_D: 634 case PIOD_READ_I: 635 uio.uio_rw = UIO_READ; 636 break; 637 case PIOD_WRITE_D: 638 case PIOD_WRITE_I: 639 uio.uio_rw = UIO_WRITE; 640 break; 641 default: 642 return (EINVAL); 643 } 644 error = proc_rwmem(p, &uio); 645 r.piod.piod_len -= uio.uio_resid; 646 (void)copyout(&r.piod, uap->addr, sizeof r.piod); 647 return (error); 648 649 case PT_KILL: 650 uap->data = SIGKILL; 651 goto sendsig; /* in PT_CONTINUE above */ 652 653 case PT_SETREGS: 654 _PHOLD(p); 655 error = proc_write_regs(td2, &r.reg); 656 _PRELE(p); 657 PROC_UNLOCK(p); 658 return (error); 659 660 case PT_GETREGS: 661 _PHOLD(p); 662 error = proc_read_regs(td2, &r.reg); 663 _PRELE(p); 664 PROC_UNLOCK(p); 665 if (error == 0) 666 error = copyout(&r.reg, uap->addr, sizeof r.reg); 667 return (error); 668 669 case PT_SETFPREGS: 670 _PHOLD(p); 671 error = proc_write_fpregs(td2, &r.fpreg); 672 _PRELE(p); 673 PROC_UNLOCK(p); 674 return (error); 675 676 case PT_GETFPREGS: 677 _PHOLD(p); 678 error = proc_read_fpregs(td2, &r.fpreg); 679 _PRELE(p); 680 PROC_UNLOCK(p); 681 if (error == 0) 682 error = copyout(&r.fpreg, uap->addr, sizeof r.fpreg); 683 return (error); 684 685 case PT_SETDBREGS: 686 _PHOLD(p); 687 error = proc_write_dbregs(td2, &r.dbreg); 688 _PRELE(p); 689 PROC_UNLOCK(p); 690 return (error); 691 692 case PT_GETDBREGS: 693 _PHOLD(p); 694 error = proc_read_dbregs(td2, &r.dbreg); 695 _PRELE(p); 696 PROC_UNLOCK(p); 697 if (error == 0) 698 error = copyout(&r.dbreg, uap->addr, sizeof r.dbreg); 699 return (error); 700 701 default: 702 KASSERT(0, ("unreachable code\n")); 703 break; 704 } 705 706 KASSERT(0, ("unreachable code\n")); 707 return (0); 708 709 fail: 710 PROC_UNLOCK(p); 711 if (proctree_locked) 712 sx_xunlock(&proctree_lock); 713 return (error); 714 } 715 716 /* 717 * Stop a process because of a debugging event; 718 * stay stopped until p->p_step is cleared 719 * (cleared by PIOCCONT in procfs). 720 */ 721 void 722 stopevent(struct proc *p, unsigned int event, unsigned int val) 723 { 724 725 PROC_LOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED); 726 p->p_step = 1; 727 728 do { 729 p->p_xstat = val; 730 p->p_stype = event; /* Which event caused the stop? */ 731 wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ 732 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); 733 } while (p->p_step); 734 } 735