1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/ktr.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/syscallsubr.h> 44 #include <sys/sysent.h> 45 #include <sys/sysproto.h> 46 #include <sys/pioctl.h> 47 #include <sys/priv.h> 48 #include <sys/proc.h> 49 #include <sys/vnode.h> 50 #include <sys/ptrace.h> 51 #include <sys/rwlock.h> 52 #include <sys/sx.h> 53 #include <sys/malloc.h> 54 #include <sys/signalvar.h> 55 56 #include <machine/reg.h> 57 58 #include <security/audit/audit.h> 59 60 #include <vm/vm.h> 61 #include <vm/pmap.h> 62 #include <vm/vm_extern.h> 63 #include <vm/vm_map.h> 64 #include <vm/vm_kern.h> 65 #include <vm/vm_object.h> 66 #include <vm/vm_page.h> 67 #include <vm/vm_param.h> 68 69 #ifdef COMPAT_FREEBSD32 70 #include <sys/procfs.h> 71 #include <compat/freebsd32/freebsd32_signal.h> 72 73 struct ptrace_io_desc32 { 74 int piod_op; 75 uint32_t piod_offs; 76 uint32_t piod_addr; 77 uint32_t piod_len; 78 }; 79 80 struct ptrace_sc_ret32 { 81 uint32_t sr_retval[2]; 82 int sr_error; 83 }; 84 85 struct ptrace_vm_entry32 { 86 int pve_entry; 87 int pve_timestamp; 88 uint32_t pve_start; 89 uint32_t pve_end; 90 uint32_t pve_offset; 91 u_int pve_prot; 92 u_int pve_pathlen; 93 int32_t pve_fileid; 94 u_int pve_fsid; 95 uint32_t pve_path; 96 }; 97 #endif 98 99 /* 100 * Functions implemented using PROC_ACTION(): 101 * 102 * proc_read_regs(proc, regs) 103 * Get the current user-visible register set from the process 104 * and copy it into the regs structure (<machine/reg.h>). 105 * The process is stopped at the time read_regs is called. 106 * 107 * proc_write_regs(proc, regs) 108 * Update the current register set from the passed in regs 109 * structure. Take care to avoid clobbering special CPU 110 * registers or privileged bits in the PSL. 111 * Depending on the architecture this may have fix-up work to do, 112 * especially if the IAR or PCW are modified. 113 * The process is stopped at the time write_regs is called. 114 * 115 * proc_read_fpregs, proc_write_fpregs 116 * deal with the floating point register set, otherwise as above. 117 * 118 * proc_read_dbregs, proc_write_dbregs 119 * deal with the processor debug register set, otherwise as above. 120 * 121 * proc_sstep(proc) 122 * Arrange for the process to trap after executing a single instruction. 123 */ 124 125 #define PROC_ACTION(action) do { \ 126 int error; \ 127 \ 128 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); \ 129 if ((td->td_proc->p_flag & P_INMEM) == 0) \ 130 error = EIO; \ 131 else \ 132 error = (action); \ 133 return (error); \ 134 } while(0) 135 136 int 137 proc_read_regs(struct thread *td, struct reg *regs) 138 { 139 140 PROC_ACTION(fill_regs(td, regs)); 141 } 142 143 int 144 proc_write_regs(struct thread *td, struct reg *regs) 145 { 146 147 PROC_ACTION(set_regs(td, regs)); 148 } 149 150 int 151 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 152 { 153 154 PROC_ACTION(fill_dbregs(td, dbregs)); 155 } 156 157 int 158 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 159 { 160 161 PROC_ACTION(set_dbregs(td, dbregs)); 162 } 163 164 /* 165 * Ptrace doesn't support fpregs at all, and there are no security holes 166 * or translations for fpregs, so we can just copy them. 167 */ 168 int 169 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 170 { 171 172 PROC_ACTION(fill_fpregs(td, fpregs)); 173 } 174 175 int 176 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 177 { 178 179 PROC_ACTION(set_fpregs(td, fpregs)); 180 } 181 182 #ifdef COMPAT_FREEBSD32 183 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 184 int 185 proc_read_regs32(struct thread *td, struct reg32 *regs32) 186 { 187 188 PROC_ACTION(fill_regs32(td, regs32)); 189 } 190 191 int 192 proc_write_regs32(struct thread *td, struct reg32 *regs32) 193 { 194 195 PROC_ACTION(set_regs32(td, regs32)); 196 } 197 198 int 199 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 200 { 201 202 PROC_ACTION(fill_dbregs32(td, dbregs32)); 203 } 204 205 int 206 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 207 { 208 209 PROC_ACTION(set_dbregs32(td, dbregs32)); 210 } 211 212 int 213 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 214 { 215 216 PROC_ACTION(fill_fpregs32(td, fpregs32)); 217 } 218 219 int 220 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 221 { 222 223 PROC_ACTION(set_fpregs32(td, fpregs32)); 224 } 225 #endif 226 227 int 228 proc_sstep(struct thread *td) 229 { 230 231 PROC_ACTION(ptrace_single_step(td)); 232 } 233 234 int 235 proc_rwmem(struct proc *p, struct uio *uio) 236 { 237 vm_map_t map; 238 vm_offset_t pageno; /* page number */ 239 vm_prot_t reqprot; 240 int error, fault_flags, page_offset, writing; 241 242 /* 243 * Assert that someone has locked this vmspace. (Should be 244 * curthread but we can't assert that.) This keeps the process 245 * from exiting out from under us until this operation completes. 246 */ 247 PROC_ASSERT_HELD(p); 248 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 249 250 /* 251 * The map we want... 252 */ 253 map = &p->p_vmspace->vm_map; 254 255 /* 256 * If we are writing, then we request vm_fault() to create a private 257 * copy of each page. Since these copies will not be writeable by the 258 * process, we must explicity request that they be dirtied. 259 */ 260 writing = uio->uio_rw == UIO_WRITE; 261 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 262 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 263 264 /* 265 * Only map in one page at a time. We don't have to, but it 266 * makes things easier. This way is trivial - right? 267 */ 268 do { 269 vm_offset_t uva; 270 u_int len; 271 vm_page_t m; 272 273 uva = (vm_offset_t)uio->uio_offset; 274 275 /* 276 * Get the page number of this segment. 277 */ 278 pageno = trunc_page(uva); 279 page_offset = uva - pageno; 280 281 /* 282 * How many bytes to copy 283 */ 284 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 285 286 /* 287 * Fault and hold the page on behalf of the process. 288 */ 289 error = vm_fault(map, pageno, reqprot, fault_flags, &m); 290 if (error != KERN_SUCCESS) { 291 if (error == KERN_RESOURCE_SHORTAGE) 292 error = ENOMEM; 293 else 294 error = EFAULT; 295 break; 296 } 297 298 /* 299 * Now do the i/o move. 300 */ 301 error = uiomove_fromphys(&m, page_offset, len, uio); 302 303 /* Make the I-cache coherent for breakpoints. */ 304 if (writing && error == 0) { 305 vm_map_lock_read(map); 306 if (vm_map_check_protection(map, pageno, pageno + 307 PAGE_SIZE, VM_PROT_EXECUTE)) 308 vm_sync_icache(map, uva, len); 309 vm_map_unlock_read(map); 310 } 311 312 /* 313 * Release the page. 314 */ 315 vm_page_unwire(m, PQ_ACTIVE); 316 317 } while (error == 0 && uio->uio_resid > 0); 318 319 return (error); 320 } 321 322 static ssize_t 323 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 324 size_t len, enum uio_rw rw) 325 { 326 struct iovec iov; 327 struct uio uio; 328 ssize_t slen; 329 330 MPASS(len < SSIZE_MAX); 331 slen = (ssize_t)len; 332 333 iov.iov_base = (caddr_t)buf; 334 iov.iov_len = len; 335 uio.uio_iov = &iov; 336 uio.uio_iovcnt = 1; 337 uio.uio_offset = va; 338 uio.uio_resid = slen; 339 uio.uio_segflg = UIO_SYSSPACE; 340 uio.uio_rw = rw; 341 uio.uio_td = td; 342 proc_rwmem(p, &uio); 343 if (uio.uio_resid == slen) 344 return (-1); 345 return (slen - uio.uio_resid); 346 } 347 348 ssize_t 349 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 350 size_t len) 351 { 352 353 return (proc_iop(td, p, va, buf, len, UIO_READ)); 354 } 355 356 ssize_t 357 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 358 size_t len) 359 { 360 361 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 362 } 363 364 static int 365 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 366 { 367 struct vattr vattr; 368 vm_map_t map; 369 vm_map_entry_t entry; 370 vm_object_t obj, tobj, lobj; 371 struct vmspace *vm; 372 struct vnode *vp; 373 char *freepath, *fullpath; 374 u_int pathlen; 375 int error, index; 376 377 error = 0; 378 obj = NULL; 379 380 vm = vmspace_acquire_ref(p); 381 map = &vm->vm_map; 382 vm_map_lock_read(map); 383 384 do { 385 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 386 ("Submap in map header")); 387 index = 0; 388 VM_MAP_ENTRY_FOREACH(entry, map) { 389 if (index >= pve->pve_entry && 390 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 391 break; 392 index++; 393 } 394 if (index < pve->pve_entry) { 395 error = EINVAL; 396 break; 397 } 398 if (entry == &map->header) { 399 error = ENOENT; 400 break; 401 } 402 403 /* We got an entry. */ 404 pve->pve_entry = index + 1; 405 pve->pve_timestamp = map->timestamp; 406 pve->pve_start = entry->start; 407 pve->pve_end = entry->end - 1; 408 pve->pve_offset = entry->offset; 409 pve->pve_prot = entry->protection; 410 411 /* Backing object's path needed? */ 412 if (pve->pve_pathlen == 0) 413 break; 414 415 pathlen = pve->pve_pathlen; 416 pve->pve_pathlen = 0; 417 418 obj = entry->object.vm_object; 419 if (obj != NULL) 420 VM_OBJECT_RLOCK(obj); 421 } while (0); 422 423 vm_map_unlock_read(map); 424 425 pve->pve_fsid = VNOVAL; 426 pve->pve_fileid = VNOVAL; 427 428 if (error == 0 && obj != NULL) { 429 lobj = obj; 430 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 431 if (tobj != obj) 432 VM_OBJECT_RLOCK(tobj); 433 if (lobj != obj) 434 VM_OBJECT_RUNLOCK(lobj); 435 lobj = tobj; 436 pve->pve_offset += tobj->backing_object_offset; 437 } 438 vp = vm_object_vnode(lobj); 439 if (vp != NULL) 440 vref(vp); 441 if (lobj != obj) 442 VM_OBJECT_RUNLOCK(lobj); 443 VM_OBJECT_RUNLOCK(obj); 444 445 if (vp != NULL) { 446 freepath = NULL; 447 fullpath = NULL; 448 vn_fullpath(td, vp, &fullpath, &freepath); 449 vn_lock(vp, LK_SHARED | LK_RETRY); 450 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 451 pve->pve_fileid = vattr.va_fileid; 452 pve->pve_fsid = vattr.va_fsid; 453 } 454 vput(vp); 455 456 if (fullpath != NULL) { 457 pve->pve_pathlen = strlen(fullpath) + 1; 458 if (pve->pve_pathlen <= pathlen) { 459 error = copyout(fullpath, pve->pve_path, 460 pve->pve_pathlen); 461 } else 462 error = ENAMETOOLONG; 463 } 464 if (freepath != NULL) 465 free(freepath, M_TEMP); 466 } 467 } 468 vmspace_free(vm); 469 if (error == 0) 470 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 471 p->p_pid, pve->pve_entry, pve->pve_start); 472 473 return (error); 474 } 475 476 #ifdef COMPAT_FREEBSD32 477 static int 478 ptrace_vm_entry32(struct thread *td, struct proc *p, 479 struct ptrace_vm_entry32 *pve32) 480 { 481 struct ptrace_vm_entry pve; 482 int error; 483 484 pve.pve_entry = pve32->pve_entry; 485 pve.pve_pathlen = pve32->pve_pathlen; 486 pve.pve_path = (void *)(uintptr_t)pve32->pve_path; 487 488 error = ptrace_vm_entry(td, p, &pve); 489 if (error == 0) { 490 pve32->pve_entry = pve.pve_entry; 491 pve32->pve_timestamp = pve.pve_timestamp; 492 pve32->pve_start = pve.pve_start; 493 pve32->pve_end = pve.pve_end; 494 pve32->pve_offset = pve.pve_offset; 495 pve32->pve_prot = pve.pve_prot; 496 pve32->pve_fileid = pve.pve_fileid; 497 pve32->pve_fsid = pve.pve_fsid; 498 } 499 500 pve32->pve_pathlen = pve.pve_pathlen; 501 return (error); 502 } 503 504 static void 505 ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, 506 struct ptrace_lwpinfo32 *pl32) 507 { 508 509 bzero(pl32, sizeof(*pl32)); 510 pl32->pl_lwpid = pl->pl_lwpid; 511 pl32->pl_event = pl->pl_event; 512 pl32->pl_flags = pl->pl_flags; 513 pl32->pl_sigmask = pl->pl_sigmask; 514 pl32->pl_siglist = pl->pl_siglist; 515 siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); 516 strcpy(pl32->pl_tdname, pl->pl_tdname); 517 pl32->pl_child_pid = pl->pl_child_pid; 518 pl32->pl_syscall_code = pl->pl_syscall_code; 519 pl32->pl_syscall_narg = pl->pl_syscall_narg; 520 } 521 522 static void 523 ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, 524 struct ptrace_sc_ret32 *psr32) 525 { 526 527 bzero(psr32, sizeof(*psr32)); 528 psr32->sr_retval[0] = psr->sr_retval[0]; 529 psr32->sr_retval[1] = psr->sr_retval[1]; 530 psr32->sr_error = psr->sr_error; 531 } 532 #endif /* COMPAT_FREEBSD32 */ 533 534 /* 535 * Process debugging system call. 536 */ 537 #ifndef _SYS_SYSPROTO_H_ 538 struct ptrace_args { 539 int req; 540 pid_t pid; 541 caddr_t addr; 542 int data; 543 }; 544 #endif 545 546 #ifdef COMPAT_FREEBSD32 547 /* 548 * This CPP subterfuge is to try and reduce the number of ifdefs in 549 * the body of the code. 550 * COPYIN(uap->addr, &r.reg, sizeof r.reg); 551 * becomes either: 552 * copyin(uap->addr, &r.reg, sizeof r.reg); 553 * or 554 * copyin(uap->addr, &r.reg32, sizeof r.reg32); 555 * .. except this is done at runtime. 556 */ 557 #define BZERO(a, s) wrap32 ? \ 558 bzero(a ## 32, s ## 32) : \ 559 bzero(a, s) 560 #define COPYIN(u, k, s) wrap32 ? \ 561 copyin(u, k ## 32, s ## 32) : \ 562 copyin(u, k, s) 563 #define COPYOUT(k, u, s) wrap32 ? \ 564 copyout(k ## 32, u, s ## 32) : \ 565 copyout(k, u, s) 566 #else 567 #define BZERO(a, s) bzero(a, s) 568 #define COPYIN(u, k, s) copyin(u, k, s) 569 #define COPYOUT(k, u, s) copyout(k, u, s) 570 #endif 571 int 572 sys_ptrace(struct thread *td, struct ptrace_args *uap) 573 { 574 /* 575 * XXX this obfuscation is to reduce stack usage, but the register 576 * structs may be too large to put on the stack anyway. 577 */ 578 union { 579 struct ptrace_io_desc piod; 580 struct ptrace_lwpinfo pl; 581 struct ptrace_vm_entry pve; 582 struct dbreg dbreg; 583 struct fpreg fpreg; 584 struct reg reg; 585 #ifdef COMPAT_FREEBSD32 586 struct dbreg32 dbreg32; 587 struct fpreg32 fpreg32; 588 struct reg32 reg32; 589 struct ptrace_io_desc32 piod32; 590 struct ptrace_lwpinfo32 pl32; 591 struct ptrace_vm_entry32 pve32; 592 #endif 593 char args[sizeof(td->td_sa.args)]; 594 struct ptrace_sc_ret psr; 595 int ptevents; 596 } r; 597 void *addr; 598 int error = 0; 599 #ifdef COMPAT_FREEBSD32 600 int wrap32 = 0; 601 602 if (SV_CURPROC_FLAG(SV_ILP32)) 603 wrap32 = 1; 604 #endif 605 AUDIT_ARG_PID(uap->pid); 606 AUDIT_ARG_CMD(uap->req); 607 AUDIT_ARG_VALUE(uap->data); 608 addr = &r; 609 switch (uap->req) { 610 case PT_GET_EVENT_MASK: 611 case PT_LWPINFO: 612 case PT_GET_SC_ARGS: 613 case PT_GET_SC_RET: 614 break; 615 case PT_GETREGS: 616 BZERO(&r.reg, sizeof r.reg); 617 break; 618 case PT_GETFPREGS: 619 BZERO(&r.fpreg, sizeof r.fpreg); 620 break; 621 case PT_GETDBREGS: 622 BZERO(&r.dbreg, sizeof r.dbreg); 623 break; 624 case PT_SETREGS: 625 error = COPYIN(uap->addr, &r.reg, sizeof r.reg); 626 break; 627 case PT_SETFPREGS: 628 error = COPYIN(uap->addr, &r.fpreg, sizeof r.fpreg); 629 break; 630 case PT_SETDBREGS: 631 error = COPYIN(uap->addr, &r.dbreg, sizeof r.dbreg); 632 break; 633 case PT_SET_EVENT_MASK: 634 if (uap->data != sizeof(r.ptevents)) 635 error = EINVAL; 636 else 637 error = copyin(uap->addr, &r.ptevents, uap->data); 638 break; 639 case PT_IO: 640 error = COPYIN(uap->addr, &r.piod, sizeof r.piod); 641 break; 642 case PT_VM_ENTRY: 643 error = COPYIN(uap->addr, &r.pve, sizeof r.pve); 644 break; 645 default: 646 addr = uap->addr; 647 break; 648 } 649 if (error) 650 return (error); 651 652 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 653 if (error) 654 return (error); 655 656 switch (uap->req) { 657 case PT_VM_ENTRY: 658 error = COPYOUT(&r.pve, uap->addr, sizeof r.pve); 659 break; 660 case PT_IO: 661 error = COPYOUT(&r.piod, uap->addr, sizeof r.piod); 662 break; 663 case PT_GETREGS: 664 error = COPYOUT(&r.reg, uap->addr, sizeof r.reg); 665 break; 666 case PT_GETFPREGS: 667 error = COPYOUT(&r.fpreg, uap->addr, sizeof r.fpreg); 668 break; 669 case PT_GETDBREGS: 670 error = COPYOUT(&r.dbreg, uap->addr, sizeof r.dbreg); 671 break; 672 case PT_GET_EVENT_MASK: 673 /* NB: The size in uap->data is validated in kern_ptrace(). */ 674 error = copyout(&r.ptevents, uap->addr, uap->data); 675 break; 676 case PT_LWPINFO: 677 /* NB: The size in uap->data is validated in kern_ptrace(). */ 678 error = copyout(&r.pl, uap->addr, uap->data); 679 break; 680 case PT_GET_SC_ARGS: 681 error = copyout(r.args, uap->addr, MIN(uap->data, 682 sizeof(r.args))); 683 break; 684 case PT_GET_SC_RET: 685 error = copyout(&r.psr, uap->addr, MIN(uap->data, 686 sizeof(r.psr))); 687 break; 688 } 689 690 return (error); 691 } 692 #undef COPYIN 693 #undef COPYOUT 694 #undef BZERO 695 696 #ifdef COMPAT_FREEBSD32 697 /* 698 * PROC_READ(regs, td2, addr); 699 * becomes either: 700 * proc_read_regs(td2, addr); 701 * or 702 * proc_read_regs32(td2, addr); 703 * .. except this is done at runtime. There is an additional 704 * complication in that PROC_WRITE disallows 32 bit consumers 705 * from writing to 64 bit address space targets. 706 */ 707 #define PROC_READ(w, t, a) wrap32 ? \ 708 proc_read_ ## w ## 32(t, a) : \ 709 proc_read_ ## w (t, a) 710 #define PROC_WRITE(w, t, a) wrap32 ? \ 711 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 712 proc_write_ ## w (t, a) 713 #else 714 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 715 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 716 #endif 717 718 void 719 proc_set_traced(struct proc *p, bool stop) 720 { 721 722 sx_assert(&proctree_lock, SX_XLOCKED); 723 PROC_LOCK_ASSERT(p, MA_OWNED); 724 p->p_flag |= P_TRACED; 725 if (stop) 726 p->p_flag2 |= P2_PTRACE_FSTP; 727 p->p_ptevents = PTRACE_DEFAULT; 728 } 729 730 int 731 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 732 { 733 struct iovec iov; 734 struct uio uio; 735 struct proc *curp, *p, *pp; 736 struct thread *td2 = NULL, *td3; 737 struct ptrace_io_desc *piod = NULL; 738 struct ptrace_lwpinfo *pl; 739 struct ptrace_sc_ret *psr; 740 int error, num, tmp; 741 int proctree_locked = 0; 742 lwpid_t tid = 0, *buf; 743 #ifdef COMPAT_FREEBSD32 744 int wrap32 = 0, safe = 0; 745 struct ptrace_io_desc32 *piod32 = NULL; 746 struct ptrace_lwpinfo32 *pl32 = NULL; 747 struct ptrace_sc_ret32 *psr32 = NULL; 748 union { 749 struct ptrace_lwpinfo pl; 750 struct ptrace_sc_ret psr; 751 } r; 752 #endif 753 754 curp = td->td_proc; 755 756 /* Lock proctree before locking the process. */ 757 switch (req) { 758 case PT_TRACE_ME: 759 case PT_ATTACH: 760 case PT_STEP: 761 case PT_CONTINUE: 762 case PT_TO_SCE: 763 case PT_TO_SCX: 764 case PT_SYSCALL: 765 case PT_FOLLOW_FORK: 766 case PT_LWP_EVENTS: 767 case PT_GET_EVENT_MASK: 768 case PT_SET_EVENT_MASK: 769 case PT_DETACH: 770 case PT_GET_SC_ARGS: 771 sx_xlock(&proctree_lock); 772 proctree_locked = 1; 773 break; 774 default: 775 break; 776 } 777 778 if (req == PT_TRACE_ME) { 779 p = td->td_proc; 780 PROC_LOCK(p); 781 } else { 782 if (pid <= PID_MAX) { 783 if ((p = pfind(pid)) == NULL) { 784 if (proctree_locked) 785 sx_xunlock(&proctree_lock); 786 return (ESRCH); 787 } 788 } else { 789 td2 = tdfind(pid, -1); 790 if (td2 == NULL) { 791 if (proctree_locked) 792 sx_xunlock(&proctree_lock); 793 return (ESRCH); 794 } 795 p = td2->td_proc; 796 tid = pid; 797 pid = p->p_pid; 798 } 799 } 800 AUDIT_ARG_PROCESS(p); 801 802 if ((p->p_flag & P_WEXIT) != 0) { 803 error = ESRCH; 804 goto fail; 805 } 806 if ((error = p_cansee(td, p)) != 0) 807 goto fail; 808 809 if ((error = p_candebug(td, p)) != 0) 810 goto fail; 811 812 /* 813 * System processes can't be debugged. 814 */ 815 if ((p->p_flag & P_SYSTEM) != 0) { 816 error = EINVAL; 817 goto fail; 818 } 819 820 if (tid == 0) { 821 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 822 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 823 td2 = p->p_xthread; 824 } else { 825 td2 = FIRST_THREAD_IN_PROC(p); 826 } 827 tid = td2->td_tid; 828 } 829 830 #ifdef COMPAT_FREEBSD32 831 /* 832 * Test if we're a 32 bit client and what the target is. 833 * Set the wrap controls accordingly. 834 */ 835 if (SV_CURPROC_FLAG(SV_ILP32)) { 836 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 837 safe = 1; 838 wrap32 = 1; 839 } 840 #endif 841 /* 842 * Permissions check 843 */ 844 switch (req) { 845 case PT_TRACE_ME: 846 /* 847 * Always legal, when there is a parent process which 848 * could trace us. Otherwise, reject. 849 */ 850 if ((p->p_flag & P_TRACED) != 0) { 851 error = EBUSY; 852 goto fail; 853 } 854 if (p->p_pptr == initproc) { 855 error = EPERM; 856 goto fail; 857 } 858 break; 859 860 case PT_ATTACH: 861 /* Self */ 862 if (p == td->td_proc) { 863 error = EINVAL; 864 goto fail; 865 } 866 867 /* Already traced */ 868 if (p->p_flag & P_TRACED) { 869 error = EBUSY; 870 goto fail; 871 } 872 873 /* Can't trace an ancestor if you're being traced. */ 874 if (curp->p_flag & P_TRACED) { 875 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 876 if (pp == p) { 877 error = EINVAL; 878 goto fail; 879 } 880 } 881 } 882 883 /* OK */ 884 break; 885 886 case PT_CLEARSTEP: 887 /* Allow thread to clear single step for itself */ 888 if (td->td_tid == tid) 889 break; 890 891 /* FALLTHROUGH */ 892 default: 893 /* not being traced... */ 894 if ((p->p_flag & P_TRACED) == 0) { 895 error = EPERM; 896 goto fail; 897 } 898 899 /* not being traced by YOU */ 900 if (p->p_pptr != td->td_proc) { 901 error = EBUSY; 902 goto fail; 903 } 904 905 /* not currently stopped */ 906 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 907 p->p_suspcount != p->p_numthreads || 908 (p->p_flag & P_WAITED) == 0) { 909 error = EBUSY; 910 goto fail; 911 } 912 913 /* OK */ 914 break; 915 } 916 917 /* Keep this process around until we finish this request. */ 918 _PHOLD(p); 919 920 #ifdef FIX_SSTEP 921 /* 922 * Single step fixup ala procfs 923 */ 924 FIX_SSTEP(td2); 925 #endif 926 927 /* 928 * Actually do the requests 929 */ 930 931 td->td_retval[0] = 0; 932 933 switch (req) { 934 case PT_TRACE_ME: 935 /* set my trace flag and "owner" so it can read/write me */ 936 proc_set_traced(p, false); 937 if (p->p_flag & P_PPWAIT) 938 p->p_flag |= P_PPTRACE; 939 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 940 break; 941 942 case PT_ATTACH: 943 /* security check done above */ 944 /* 945 * It would be nice if the tracing relationship was separate 946 * from the parent relationship but that would require 947 * another set of links in the proc struct or for "wait" 948 * to scan the entire proc table. To make life easier, 949 * we just re-parent the process we're trying to trace. 950 * The old parent is remembered so we can put things back 951 * on a "detach". 952 */ 953 proc_set_traced(p, true); 954 proc_reparent(p, td->td_proc, false); 955 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 956 p->p_oppid); 957 958 sx_xunlock(&proctree_lock); 959 proctree_locked = 0; 960 MPASS(p->p_xthread == NULL); 961 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 962 963 /* 964 * If already stopped due to a stop signal, clear the 965 * existing stop before triggering a traced SIGSTOP. 966 */ 967 if ((p->p_flag & P_STOPPED_SIG) != 0) { 968 PROC_SLOCK(p); 969 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 970 thread_unsuspend(p); 971 PROC_SUNLOCK(p); 972 } 973 974 kern_psignal(p, SIGSTOP); 975 break; 976 977 case PT_CLEARSTEP: 978 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 979 p->p_pid); 980 error = ptrace_clear_single_step(td2); 981 break; 982 983 case PT_SETSTEP: 984 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 985 p->p_pid); 986 error = ptrace_single_step(td2); 987 break; 988 989 case PT_SUSPEND: 990 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 991 p->p_pid); 992 td2->td_dbgflags |= TDB_SUSPEND; 993 thread_lock(td2); 994 td2->td_flags |= TDF_NEEDSUSPCHK; 995 thread_unlock(td2); 996 break; 997 998 case PT_RESUME: 999 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1000 p->p_pid); 1001 td2->td_dbgflags &= ~TDB_SUSPEND; 1002 break; 1003 1004 case PT_FOLLOW_FORK: 1005 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1006 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1007 data ? "enabled" : "disabled"); 1008 if (data) 1009 p->p_ptevents |= PTRACE_FORK; 1010 else 1011 p->p_ptevents &= ~PTRACE_FORK; 1012 break; 1013 1014 case PT_LWP_EVENTS: 1015 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1016 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1017 data ? "enabled" : "disabled"); 1018 if (data) 1019 p->p_ptevents |= PTRACE_LWP; 1020 else 1021 p->p_ptevents &= ~PTRACE_LWP; 1022 break; 1023 1024 case PT_GET_EVENT_MASK: 1025 if (data != sizeof(p->p_ptevents)) { 1026 error = EINVAL; 1027 break; 1028 } 1029 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1030 p->p_ptevents); 1031 *(int *)addr = p->p_ptevents; 1032 break; 1033 1034 case PT_SET_EVENT_MASK: 1035 if (data != sizeof(p->p_ptevents)) { 1036 error = EINVAL; 1037 break; 1038 } 1039 tmp = *(int *)addr; 1040 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1041 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1042 error = EINVAL; 1043 break; 1044 } 1045 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1046 p->p_pid, p->p_ptevents, tmp); 1047 p->p_ptevents = tmp; 1048 break; 1049 1050 case PT_GET_SC_ARGS: 1051 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1052 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 1053 #ifdef COMPAT_FREEBSD32 1054 || (wrap32 && !safe) 1055 #endif 1056 ) { 1057 error = EINVAL; 1058 break; 1059 } 1060 bzero(addr, sizeof(td2->td_sa.args)); 1061 #ifdef COMPAT_FREEBSD32 1062 if (wrap32) 1063 for (num = 0; num < nitems(td2->td_sa.args); num++) 1064 ((uint32_t *)addr)[num] = (uint32_t) 1065 td2->td_sa.args[num]; 1066 else 1067 #endif 1068 bcopy(td2->td_sa.args, addr, td2->td_sa.narg * 1069 sizeof(register_t)); 1070 break; 1071 1072 case PT_GET_SC_RET: 1073 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1074 #ifdef COMPAT_FREEBSD32 1075 || (wrap32 && !safe) 1076 #endif 1077 ) { 1078 error = EINVAL; 1079 break; 1080 } 1081 #ifdef COMPAT_FREEBSD32 1082 if (wrap32) { 1083 psr = &r.psr; 1084 psr32 = addr; 1085 } else 1086 #endif 1087 psr = addr; 1088 bzero(psr, sizeof(*psr)); 1089 psr->sr_error = td2->td_errno; 1090 if (psr->sr_error == 0) { 1091 psr->sr_retval[0] = td2->td_retval[0]; 1092 psr->sr_retval[1] = td2->td_retval[1]; 1093 } 1094 #ifdef COMPAT_FREEBSD32 1095 if (wrap32) 1096 ptrace_sc_ret_to32(psr, psr32); 1097 #endif 1098 CTR4(KTR_PTRACE, 1099 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1100 p->p_pid, psr->sr_error, psr->sr_retval[0], 1101 psr->sr_retval[1]); 1102 break; 1103 1104 case PT_STEP: 1105 case PT_CONTINUE: 1106 case PT_TO_SCE: 1107 case PT_TO_SCX: 1108 case PT_SYSCALL: 1109 case PT_DETACH: 1110 /* Zero means do not send any signal */ 1111 if (data < 0 || data > _SIG_MAXSIG) { 1112 error = EINVAL; 1113 break; 1114 } 1115 1116 switch (req) { 1117 case PT_STEP: 1118 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1119 td2->td_tid, p->p_pid, data); 1120 error = ptrace_single_step(td2); 1121 if (error) 1122 goto out; 1123 break; 1124 case PT_CONTINUE: 1125 case PT_TO_SCE: 1126 case PT_TO_SCX: 1127 case PT_SYSCALL: 1128 if (addr != (void *)1) { 1129 error = ptrace_set_pc(td2, 1130 (u_long)(uintfptr_t)addr); 1131 if (error) 1132 goto out; 1133 } 1134 switch (req) { 1135 case PT_TO_SCE: 1136 p->p_ptevents |= PTRACE_SCE; 1137 CTR4(KTR_PTRACE, 1138 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1139 p->p_pid, p->p_ptevents, 1140 (u_long)(uintfptr_t)addr, data); 1141 break; 1142 case PT_TO_SCX: 1143 p->p_ptevents |= PTRACE_SCX; 1144 CTR4(KTR_PTRACE, 1145 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1146 p->p_pid, p->p_ptevents, 1147 (u_long)(uintfptr_t)addr, data); 1148 break; 1149 case PT_SYSCALL: 1150 p->p_ptevents |= PTRACE_SYSCALL; 1151 CTR4(KTR_PTRACE, 1152 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1153 p->p_pid, p->p_ptevents, 1154 (u_long)(uintfptr_t)addr, data); 1155 break; 1156 case PT_CONTINUE: 1157 CTR3(KTR_PTRACE, 1158 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1159 p->p_pid, (u_long)(uintfptr_t)addr, data); 1160 break; 1161 } 1162 break; 1163 case PT_DETACH: 1164 /* 1165 * Reset the process parent. 1166 * 1167 * NB: This clears P_TRACED before reparenting 1168 * a detached process back to its original 1169 * parent. Otherwise the debugee will be set 1170 * as an orphan of the debugger. 1171 */ 1172 p->p_flag &= ~(P_TRACED | P_WAITED); 1173 if (p->p_oppid != p->p_pptr->p_pid) { 1174 PROC_LOCK(p->p_pptr); 1175 sigqueue_take(p->p_ksi); 1176 PROC_UNLOCK(p->p_pptr); 1177 1178 pp = proc_realparent(p); 1179 proc_reparent(p, pp, false); 1180 if (pp == initproc) 1181 p->p_sigparent = SIGCHLD; 1182 CTR3(KTR_PTRACE, 1183 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1184 p->p_pid, pp->p_pid, data); 1185 } else 1186 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1187 p->p_pid, data); 1188 p->p_ptevents = 0; 1189 FOREACH_THREAD_IN_PROC(p, td3) { 1190 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1191 sigqueue_delete(&td3->td_sigqueue, 1192 SIGSTOP); 1193 } 1194 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1195 TDB_SUSPEND); 1196 } 1197 1198 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1199 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1200 p->p_flag2 &= ~P2_PTRACE_FSTP; 1201 } 1202 1203 /* should we send SIGCHLD? */ 1204 /* childproc_continued(p); */ 1205 break; 1206 } 1207 1208 sx_xunlock(&proctree_lock); 1209 proctree_locked = 0; 1210 1211 sendsig: 1212 MPASS(proctree_locked == 0); 1213 1214 /* 1215 * Clear the pending event for the thread that just 1216 * reported its event (p_xthread). This may not be 1217 * the thread passed to PT_CONTINUE, PT_STEP, etc. if 1218 * the debugger is resuming a different thread. 1219 * 1220 * Deliver any pending signal via the reporting thread. 1221 */ 1222 MPASS(p->p_xthread != NULL); 1223 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1224 p->p_xthread->td_xsig = data; 1225 p->p_xthread = NULL; 1226 p->p_xsig = data; 1227 1228 /* 1229 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1230 * always works immediately, even if another thread is 1231 * unsuspended first and attempts to handle a 1232 * different signal or if the POSIX.1b style signal 1233 * queue cannot accommodate any new signals. 1234 */ 1235 if (data == SIGKILL) 1236 proc_wkilled(p); 1237 1238 /* 1239 * Unsuspend all threads. To leave a thread 1240 * suspended, use PT_SUSPEND to suspend it before 1241 * continuing the process. 1242 */ 1243 PROC_SLOCK(p); 1244 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 1245 thread_unsuspend(p); 1246 PROC_SUNLOCK(p); 1247 break; 1248 1249 case PT_WRITE_I: 1250 case PT_WRITE_D: 1251 td2->td_dbgflags |= TDB_USERWR; 1252 PROC_UNLOCK(p); 1253 error = 0; 1254 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1255 sizeof(int)) != sizeof(int)) 1256 error = ENOMEM; 1257 else 1258 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1259 p->p_pid, addr, data); 1260 PROC_LOCK(p); 1261 break; 1262 1263 case PT_READ_I: 1264 case PT_READ_D: 1265 PROC_UNLOCK(p); 1266 error = tmp = 0; 1267 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1268 sizeof(int)) != sizeof(int)) 1269 error = ENOMEM; 1270 else 1271 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1272 p->p_pid, addr, tmp); 1273 td->td_retval[0] = tmp; 1274 PROC_LOCK(p); 1275 break; 1276 1277 case PT_IO: 1278 #ifdef COMPAT_FREEBSD32 1279 if (wrap32) { 1280 piod32 = addr; 1281 iov.iov_base = (void *)(uintptr_t)piod32->piod_addr; 1282 iov.iov_len = piod32->piod_len; 1283 uio.uio_offset = (off_t)(uintptr_t)piod32->piod_offs; 1284 uio.uio_resid = piod32->piod_len; 1285 } else 1286 #endif 1287 { 1288 piod = addr; 1289 iov.iov_base = piod->piod_addr; 1290 iov.iov_len = piod->piod_len; 1291 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1292 uio.uio_resid = piod->piod_len; 1293 } 1294 uio.uio_iov = &iov; 1295 uio.uio_iovcnt = 1; 1296 uio.uio_segflg = UIO_USERSPACE; 1297 uio.uio_td = td; 1298 #ifdef COMPAT_FREEBSD32 1299 tmp = wrap32 ? piod32->piod_op : piod->piod_op; 1300 #else 1301 tmp = piod->piod_op; 1302 #endif 1303 switch (tmp) { 1304 case PIOD_READ_D: 1305 case PIOD_READ_I: 1306 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1307 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1308 uio.uio_rw = UIO_READ; 1309 break; 1310 case PIOD_WRITE_D: 1311 case PIOD_WRITE_I: 1312 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1313 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1314 td2->td_dbgflags |= TDB_USERWR; 1315 uio.uio_rw = UIO_WRITE; 1316 break; 1317 default: 1318 error = EINVAL; 1319 goto out; 1320 } 1321 PROC_UNLOCK(p); 1322 error = proc_rwmem(p, &uio); 1323 #ifdef COMPAT_FREEBSD32 1324 if (wrap32) 1325 piod32->piod_len -= uio.uio_resid; 1326 else 1327 #endif 1328 piod->piod_len -= uio.uio_resid; 1329 PROC_LOCK(p); 1330 break; 1331 1332 case PT_KILL: 1333 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1334 data = SIGKILL; 1335 goto sendsig; /* in PT_CONTINUE above */ 1336 1337 case PT_SETREGS: 1338 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1339 p->p_pid); 1340 td2->td_dbgflags |= TDB_USERWR; 1341 error = PROC_WRITE(regs, td2, addr); 1342 break; 1343 1344 case PT_GETREGS: 1345 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1346 p->p_pid); 1347 error = PROC_READ(regs, td2, addr); 1348 break; 1349 1350 case PT_SETFPREGS: 1351 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1352 p->p_pid); 1353 td2->td_dbgflags |= TDB_USERWR; 1354 error = PROC_WRITE(fpregs, td2, addr); 1355 break; 1356 1357 case PT_GETFPREGS: 1358 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1359 p->p_pid); 1360 error = PROC_READ(fpregs, td2, addr); 1361 break; 1362 1363 case PT_SETDBREGS: 1364 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1365 p->p_pid); 1366 td2->td_dbgflags |= TDB_USERWR; 1367 error = PROC_WRITE(dbregs, td2, addr); 1368 break; 1369 1370 case PT_GETDBREGS: 1371 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1372 p->p_pid); 1373 error = PROC_READ(dbregs, td2, addr); 1374 break; 1375 1376 case PT_LWPINFO: 1377 if (data <= 0 || 1378 #ifdef COMPAT_FREEBSD32 1379 (!wrap32 && data > sizeof(*pl)) || 1380 (wrap32 && data > sizeof(*pl32))) { 1381 #else 1382 data > sizeof(*pl)) { 1383 #endif 1384 error = EINVAL; 1385 break; 1386 } 1387 #ifdef COMPAT_FREEBSD32 1388 if (wrap32) { 1389 pl = &r.pl; 1390 pl32 = addr; 1391 } else 1392 #endif 1393 pl = addr; 1394 bzero(pl, sizeof(*pl)); 1395 pl->pl_lwpid = td2->td_tid; 1396 pl->pl_event = PL_EVENT_NONE; 1397 pl->pl_flags = 0; 1398 if (td2->td_dbgflags & TDB_XSIG) { 1399 pl->pl_event = PL_EVENT_SIGNAL; 1400 if (td2->td_si.si_signo != 0 && 1401 #ifdef COMPAT_FREEBSD32 1402 ((!wrap32 && data >= offsetof(struct ptrace_lwpinfo, 1403 pl_siginfo) + sizeof(pl->pl_siginfo)) || 1404 (wrap32 && data >= offsetof(struct ptrace_lwpinfo32, 1405 pl_siginfo) + sizeof(struct siginfo32))) 1406 #else 1407 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1408 + sizeof(pl->pl_siginfo) 1409 #endif 1410 ){ 1411 pl->pl_flags |= PL_FLAG_SI; 1412 pl->pl_siginfo = td2->td_si; 1413 } 1414 } 1415 if (td2->td_dbgflags & TDB_SCE) 1416 pl->pl_flags |= PL_FLAG_SCE; 1417 else if (td2->td_dbgflags & TDB_SCX) 1418 pl->pl_flags |= PL_FLAG_SCX; 1419 if (td2->td_dbgflags & TDB_EXEC) 1420 pl->pl_flags |= PL_FLAG_EXEC; 1421 if (td2->td_dbgflags & TDB_FORK) { 1422 pl->pl_flags |= PL_FLAG_FORKED; 1423 pl->pl_child_pid = td2->td_dbg_forked; 1424 if (td2->td_dbgflags & TDB_VFORK) 1425 pl->pl_flags |= PL_FLAG_VFORKED; 1426 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1427 TDB_VFORK) 1428 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1429 if (td2->td_dbgflags & TDB_CHILD) 1430 pl->pl_flags |= PL_FLAG_CHILD; 1431 if (td2->td_dbgflags & TDB_BORN) 1432 pl->pl_flags |= PL_FLAG_BORN; 1433 if (td2->td_dbgflags & TDB_EXIT) 1434 pl->pl_flags |= PL_FLAG_EXITED; 1435 pl->pl_sigmask = td2->td_sigmask; 1436 pl->pl_siglist = td2->td_siglist; 1437 strcpy(pl->pl_tdname, td2->td_name); 1438 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1439 pl->pl_syscall_code = td2->td_sa.code; 1440 pl->pl_syscall_narg = td2->td_sa.narg; 1441 } else { 1442 pl->pl_syscall_code = 0; 1443 pl->pl_syscall_narg = 0; 1444 } 1445 #ifdef COMPAT_FREEBSD32 1446 if (wrap32) 1447 ptrace_lwpinfo_to32(pl, pl32); 1448 #endif 1449 CTR6(KTR_PTRACE, 1450 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1451 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1452 pl->pl_child_pid, pl->pl_syscall_code); 1453 break; 1454 1455 case PT_GETNUMLWPS: 1456 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1457 p->p_numthreads); 1458 td->td_retval[0] = p->p_numthreads; 1459 break; 1460 1461 case PT_GETLWPLIST: 1462 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1463 p->p_pid, data, p->p_numthreads); 1464 if (data <= 0) { 1465 error = EINVAL; 1466 break; 1467 } 1468 num = imin(p->p_numthreads, data); 1469 PROC_UNLOCK(p); 1470 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1471 tmp = 0; 1472 PROC_LOCK(p); 1473 FOREACH_THREAD_IN_PROC(p, td2) { 1474 if (tmp >= num) 1475 break; 1476 buf[tmp++] = td2->td_tid; 1477 } 1478 PROC_UNLOCK(p); 1479 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1480 free(buf, M_TEMP); 1481 if (!error) 1482 td->td_retval[0] = tmp; 1483 PROC_LOCK(p); 1484 break; 1485 1486 case PT_VM_TIMESTAMP: 1487 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1488 p->p_pid, p->p_vmspace->vm_map.timestamp); 1489 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1490 break; 1491 1492 case PT_VM_ENTRY: 1493 PROC_UNLOCK(p); 1494 #ifdef COMPAT_FREEBSD32 1495 if (wrap32) 1496 error = ptrace_vm_entry32(td, p, addr); 1497 else 1498 #endif 1499 error = ptrace_vm_entry(td, p, addr); 1500 PROC_LOCK(p); 1501 break; 1502 1503 default: 1504 #ifdef __HAVE_PTRACE_MACHDEP 1505 if (req >= PT_FIRSTMACH) { 1506 PROC_UNLOCK(p); 1507 error = cpu_ptrace(td2, req, addr, data); 1508 PROC_LOCK(p); 1509 } else 1510 #endif 1511 /* Unknown request. */ 1512 error = EINVAL; 1513 break; 1514 } 1515 1516 out: 1517 /* Drop our hold on this process now that the request has completed. */ 1518 _PRELE(p); 1519 fail: 1520 PROC_UNLOCK(p); 1521 if (proctree_locked) 1522 sx_xunlock(&proctree_lock); 1523 return (error); 1524 } 1525 #undef PROC_READ 1526 #undef PROC_WRITE 1527 1528 /* 1529 * Stop a process because of a debugging event; 1530 * stay stopped until p->p_step is cleared 1531 * (cleared by PIOCCONT in procfs). 1532 */ 1533 void 1534 stopevent(struct proc *p, unsigned int event, unsigned int val) 1535 { 1536 1537 PROC_LOCK_ASSERT(p, MA_OWNED); 1538 p->p_step = 1; 1539 CTR3(KTR_PTRACE, "stopevent: pid %d event %u val %u", p->p_pid, event, 1540 val); 1541 do { 1542 if (event != S_EXIT) 1543 p->p_xsig = val; 1544 p->p_xthread = NULL; 1545 p->p_stype = event; /* Which event caused the stop? */ 1546 wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ 1547 msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); 1548 } while (p->p_step); 1549 } 1550