1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1994, Sean Eric Fagan 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Sean Eric Fagan. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/ktr.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/reg.h> 41 #include <sys/syscallsubr.h> 42 #include <sys/sysent.h> 43 #include <sys/sysproto.h> 44 #include <sys/priv.h> 45 #include <sys/proc.h> 46 #include <sys/vnode.h> 47 #include <sys/ptrace.h> 48 #include <sys/rwlock.h> 49 #include <sys/sx.h> 50 #include <sys/malloc.h> 51 #include <sys/signalvar.h> 52 #include <sys/caprights.h> 53 #include <sys/filedesc.h> 54 55 #include <security/audit/audit.h> 56 57 #include <vm/vm.h> 58 #include <vm/pmap.h> 59 #include <vm/vm_extern.h> 60 #include <vm/vm_map.h> 61 #include <vm/vm_kern.h> 62 #include <vm/vm_object.h> 63 #include <vm/vm_page.h> 64 #include <vm/vm_param.h> 65 66 #ifdef COMPAT_FREEBSD32 67 #include <sys/procfs.h> 68 #endif 69 70 /* Assert it's safe to unlock a process, e.g. to allocate working memory */ 71 #define PROC_ASSERT_TRACEREQ(p) MPASS(((p)->p_flag2 & P2_PTRACEREQ) != 0) 72 73 /* 74 * Functions implemented below: 75 * 76 * proc_read_regs(proc, regs) 77 * Get the current user-visible register set from the process 78 * and copy it into the regs structure (<machine/reg.h>). 79 * The process is stopped at the time read_regs is called. 80 * 81 * proc_write_regs(proc, regs) 82 * Update the current register set from the passed in regs 83 * structure. Take care to avoid clobbering special CPU 84 * registers or privileged bits in the PSL. 85 * Depending on the architecture this may have fix-up work to do, 86 * especially if the IAR or PCW are modified. 87 * The process is stopped at the time write_regs is called. 88 * 89 * proc_read_fpregs, proc_write_fpregs 90 * deal with the floating point register set, otherwise as above. 91 * 92 * proc_read_dbregs, proc_write_dbregs 93 * deal with the processor debug register set, otherwise as above. 94 * 95 * proc_sstep(proc) 96 * Arrange for the process to trap after executing a single instruction. 97 */ 98 99 int 100 proc_read_regs(struct thread *td, struct reg *regs) 101 { 102 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 103 return (fill_regs(td, regs)); 104 } 105 106 int 107 proc_write_regs(struct thread *td, struct reg *regs) 108 { 109 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 110 return (set_regs(td, regs)); 111 } 112 113 int 114 proc_read_dbregs(struct thread *td, struct dbreg *dbregs) 115 { 116 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 117 return (fill_dbregs(td, dbregs)); 118 } 119 120 int 121 proc_write_dbregs(struct thread *td, struct dbreg *dbregs) 122 { 123 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 124 return (set_dbregs(td, dbregs)); 125 } 126 127 /* 128 * Ptrace doesn't support fpregs at all, and there are no security holes 129 * or translations for fpregs, so we can just copy them. 130 */ 131 int 132 proc_read_fpregs(struct thread *td, struct fpreg *fpregs) 133 { 134 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 135 return (fill_fpregs(td, fpregs)); 136 } 137 138 int 139 proc_write_fpregs(struct thread *td, struct fpreg *fpregs) 140 { 141 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 142 return (set_fpregs(td, fpregs)); 143 } 144 145 static struct regset * 146 proc_find_regset(struct thread *td, int note) 147 { 148 struct regset **regsetp, **regset_end, *regset; 149 struct sysentvec *sv; 150 151 sv = td->td_proc->p_sysent; 152 regsetp = sv->sv_regset_begin; 153 if (regsetp == NULL) 154 return (NULL); 155 regset_end = sv->sv_regset_end; 156 MPASS(regset_end != NULL); 157 for (; regsetp < regset_end; regsetp++) { 158 regset = *regsetp; 159 if (regset->note != note) 160 continue; 161 162 return (regset); 163 } 164 165 return (NULL); 166 } 167 168 static int 169 proc_read_regset(struct thread *td, int note, struct iovec *iov) 170 { 171 struct regset *regset; 172 struct proc *p; 173 void *buf; 174 size_t size; 175 int error; 176 177 regset = proc_find_regset(td, note); 178 if (regset == NULL) 179 return (EINVAL); 180 181 if (regset->get == NULL) 182 return (EINVAL); 183 184 size = regset->size; 185 /* 186 * The regset is dynamically sized, e.g. the size could change 187 * depending on the hardware, or may have a per-thread size. 188 */ 189 if (size == 0) { 190 if (!regset->get(regset, td, NULL, &size)) 191 return (EINVAL); 192 } 193 194 if (iov->iov_base == NULL) { 195 iov->iov_len = size; 196 if (iov->iov_len == 0) 197 return (EINVAL); 198 199 return (0); 200 } 201 202 /* The length is wrong, return an error */ 203 if (iov->iov_len != size) 204 return (EINVAL); 205 206 error = 0; 207 p = td->td_proc; 208 209 /* Drop the proc lock while allocating the temp buffer */ 210 PROC_ASSERT_TRACEREQ(p); 211 PROC_UNLOCK(p); 212 buf = malloc(size, M_TEMP, M_WAITOK); 213 PROC_LOCK(p); 214 215 if (!regset->get(regset, td, buf, &size)) { 216 error = EINVAL; 217 } else { 218 KASSERT(size == regset->size || regset->size == 0, 219 ("%s: Getter function changed the size", __func__)); 220 221 iov->iov_len = size; 222 PROC_UNLOCK(p); 223 error = copyout(buf, iov->iov_base, size); 224 PROC_LOCK(p); 225 } 226 227 free(buf, M_TEMP); 228 229 return (error); 230 } 231 232 static int 233 proc_write_regset(struct thread *td, int note, struct iovec *iov) 234 { 235 struct regset *regset; 236 struct proc *p; 237 void *buf; 238 size_t size; 239 int error; 240 241 regset = proc_find_regset(td, note); 242 if (regset == NULL) 243 return (EINVAL); 244 245 size = regset->size; 246 /* 247 * The regset is dynamically sized, e.g. the size could change 248 * depending on the hardware, or may have a per-thread size. 249 */ 250 if (size == 0) { 251 if (!regset->get(regset, td, NULL, &size)) 252 return (EINVAL); 253 } 254 255 /* The length is wrong, return an error */ 256 if (iov->iov_len != size) 257 return (EINVAL); 258 259 if (regset->set == NULL) 260 return (EINVAL); 261 262 p = td->td_proc; 263 264 /* Drop the proc lock while allocating the temp buffer */ 265 PROC_ASSERT_TRACEREQ(p); 266 PROC_UNLOCK(p); 267 buf = malloc(size, M_TEMP, M_WAITOK); 268 error = copyin(iov->iov_base, buf, size); 269 PROC_LOCK(p); 270 271 if (error == 0) { 272 if (!regset->set(regset, td, buf, size)) { 273 error = EINVAL; 274 } 275 } 276 277 free(buf, M_TEMP); 278 279 return (error); 280 } 281 282 #ifdef COMPAT_FREEBSD32 283 /* For 32 bit binaries, we need to expose the 32 bit regs layouts. */ 284 int 285 proc_read_regs32(struct thread *td, struct reg32 *regs32) 286 { 287 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 288 return (fill_regs32(td, regs32)); 289 } 290 291 int 292 proc_write_regs32(struct thread *td, struct reg32 *regs32) 293 { 294 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 295 return (set_regs32(td, regs32)); 296 } 297 298 int 299 proc_read_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 300 { 301 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 302 return (fill_dbregs32(td, dbregs32)); 303 } 304 305 int 306 proc_write_dbregs32(struct thread *td, struct dbreg32 *dbregs32) 307 { 308 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 309 return (set_dbregs32(td, dbregs32)); 310 } 311 312 int 313 proc_read_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 314 { 315 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 316 return (fill_fpregs32(td, fpregs32)); 317 } 318 319 int 320 proc_write_fpregs32(struct thread *td, struct fpreg32 *fpregs32) 321 { 322 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 323 return (set_fpregs32(td, fpregs32)); 324 } 325 #endif 326 327 int 328 proc_sstep(struct thread *td) 329 { 330 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 331 return (ptrace_single_step(td)); 332 } 333 334 int 335 proc_rwmem(struct proc *p, struct uio *uio) 336 { 337 vm_map_t map; 338 vm_offset_t pageno; /* page number */ 339 vm_prot_t reqprot; 340 int error, fault_flags, page_offset, writing; 341 342 /* 343 * Make sure that the process' vmspace remains live. 344 */ 345 if (p != curproc) 346 PROC_ASSERT_HELD(p); 347 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 348 349 /* 350 * The map we want... 351 */ 352 map = &p->p_vmspace->vm_map; 353 354 /* 355 * If we are writing, then we request vm_fault() to create a private 356 * copy of each page. Since these copies will not be writeable by the 357 * process, we must explicity request that they be dirtied. 358 */ 359 writing = uio->uio_rw == UIO_WRITE; 360 reqprot = writing ? VM_PROT_COPY | VM_PROT_READ : VM_PROT_READ; 361 fault_flags = writing ? VM_FAULT_DIRTY : VM_FAULT_NORMAL; 362 363 /* 364 * Only map in one page at a time. We don't have to, but it 365 * makes things easier. This way is trivial - right? 366 */ 367 do { 368 vm_offset_t uva; 369 u_int len; 370 vm_page_t m; 371 372 uva = (vm_offset_t)uio->uio_offset; 373 374 /* 375 * Get the page number of this segment. 376 */ 377 pageno = trunc_page(uva); 378 page_offset = uva - pageno; 379 380 /* 381 * How many bytes to copy 382 */ 383 len = min(PAGE_SIZE - page_offset, uio->uio_resid); 384 385 /* 386 * Fault and hold the page on behalf of the process. 387 */ 388 error = vm_fault(map, pageno, reqprot, fault_flags, &m); 389 if (error != KERN_SUCCESS) { 390 if (error == KERN_RESOURCE_SHORTAGE) 391 error = ENOMEM; 392 else 393 error = EFAULT; 394 break; 395 } 396 397 /* 398 * Now do the i/o move. 399 */ 400 error = uiomove_fromphys(&m, page_offset, len, uio); 401 402 /* Make the I-cache coherent for breakpoints. */ 403 if (writing && error == 0) { 404 vm_map_lock_read(map); 405 if (vm_map_check_protection(map, pageno, pageno + 406 PAGE_SIZE, VM_PROT_EXECUTE)) 407 vm_sync_icache(map, uva, len); 408 vm_map_unlock_read(map); 409 } 410 411 /* 412 * Release the page. 413 */ 414 vm_page_unwire(m, PQ_ACTIVE); 415 416 } while (error == 0 && uio->uio_resid > 0); 417 418 return (error); 419 } 420 421 static ssize_t 422 proc_iop(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 423 size_t len, enum uio_rw rw) 424 { 425 struct iovec iov; 426 struct uio uio; 427 ssize_t slen; 428 429 MPASS(len < SSIZE_MAX); 430 slen = (ssize_t)len; 431 432 iov.iov_base = (caddr_t)buf; 433 iov.iov_len = len; 434 uio.uio_iov = &iov; 435 uio.uio_iovcnt = 1; 436 uio.uio_offset = va; 437 uio.uio_resid = slen; 438 uio.uio_segflg = UIO_SYSSPACE; 439 uio.uio_rw = rw; 440 uio.uio_td = td; 441 proc_rwmem(p, &uio); 442 if (uio.uio_resid == slen) 443 return (-1); 444 return (slen - uio.uio_resid); 445 } 446 447 ssize_t 448 proc_readmem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 449 size_t len) 450 { 451 452 return (proc_iop(td, p, va, buf, len, UIO_READ)); 453 } 454 455 ssize_t 456 proc_writemem(struct thread *td, struct proc *p, vm_offset_t va, void *buf, 457 size_t len) 458 { 459 460 return (proc_iop(td, p, va, buf, len, UIO_WRITE)); 461 } 462 463 static int 464 ptrace_vm_entry(struct thread *td, struct proc *p, struct ptrace_vm_entry *pve) 465 { 466 struct vattr vattr; 467 vm_map_t map; 468 vm_map_entry_t entry; 469 vm_object_t obj, tobj, lobj; 470 struct vmspace *vm; 471 struct vnode *vp; 472 char *freepath, *fullpath; 473 u_int pathlen; 474 int error, index; 475 476 error = 0; 477 obj = NULL; 478 479 vm = vmspace_acquire_ref(p); 480 map = &vm->vm_map; 481 vm_map_lock_read(map); 482 483 do { 484 KASSERT((map->header.eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 485 ("Submap in map header")); 486 index = 0; 487 VM_MAP_ENTRY_FOREACH(entry, map) { 488 if (index >= pve->pve_entry && 489 (entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 490 break; 491 index++; 492 } 493 if (index < pve->pve_entry) { 494 error = EINVAL; 495 break; 496 } 497 if (entry == &map->header) { 498 error = ENOENT; 499 break; 500 } 501 502 /* We got an entry. */ 503 pve->pve_entry = index + 1; 504 pve->pve_timestamp = map->timestamp; 505 pve->pve_start = entry->start; 506 pve->pve_end = entry->end - 1; 507 pve->pve_offset = entry->offset; 508 pve->pve_prot = entry->protection; 509 510 /* Backing object's path needed? */ 511 if (pve->pve_pathlen == 0) 512 break; 513 514 pathlen = pve->pve_pathlen; 515 pve->pve_pathlen = 0; 516 517 obj = entry->object.vm_object; 518 if (obj != NULL) 519 VM_OBJECT_RLOCK(obj); 520 } while (0); 521 522 vm_map_unlock_read(map); 523 524 pve->pve_fsid = VNOVAL; 525 pve->pve_fileid = VNOVAL; 526 527 if (error == 0 && obj != NULL) { 528 lobj = obj; 529 for (tobj = obj; tobj != NULL; tobj = tobj->backing_object) { 530 if (tobj != obj) 531 VM_OBJECT_RLOCK(tobj); 532 if (lobj != obj) 533 VM_OBJECT_RUNLOCK(lobj); 534 lobj = tobj; 535 pve->pve_offset += tobj->backing_object_offset; 536 } 537 vp = vm_object_vnode(lobj); 538 if (vp != NULL) 539 vref(vp); 540 if (lobj != obj) 541 VM_OBJECT_RUNLOCK(lobj); 542 VM_OBJECT_RUNLOCK(obj); 543 544 if (vp != NULL) { 545 freepath = NULL; 546 fullpath = NULL; 547 vn_fullpath(vp, &fullpath, &freepath); 548 vn_lock(vp, LK_SHARED | LK_RETRY); 549 if (VOP_GETATTR(vp, &vattr, td->td_ucred) == 0) { 550 pve->pve_fileid = vattr.va_fileid; 551 pve->pve_fsid = vattr.va_fsid; 552 } 553 vput(vp); 554 555 if (fullpath != NULL) { 556 pve->pve_pathlen = strlen(fullpath) + 1; 557 if (pve->pve_pathlen <= pathlen) { 558 error = copyout(fullpath, pve->pve_path, 559 pve->pve_pathlen); 560 } else 561 error = ENAMETOOLONG; 562 } 563 if (freepath != NULL) 564 free(freepath, M_TEMP); 565 } 566 } 567 vmspace_free(vm); 568 if (error == 0) 569 CTR3(KTR_PTRACE, "PT_VM_ENTRY: pid %d, entry %d, start %p", 570 p->p_pid, pve->pve_entry, pve->pve_start); 571 572 return (error); 573 } 574 575 /* 576 * Process debugging system call. 577 */ 578 #ifndef _SYS_SYSPROTO_H_ 579 struct ptrace_args { 580 int req; 581 pid_t pid; 582 caddr_t addr; 583 int data; 584 }; 585 #endif 586 587 int 588 sys_ptrace(struct thread *td, struct ptrace_args *uap) 589 { 590 /* 591 * XXX this obfuscation is to reduce stack usage, but the register 592 * structs may be too large to put on the stack anyway. 593 */ 594 union { 595 struct ptrace_io_desc piod; 596 struct ptrace_lwpinfo pl; 597 struct ptrace_vm_entry pve; 598 struct ptrace_coredump pc; 599 struct ptrace_sc_remote sr; 600 struct dbreg dbreg; 601 struct fpreg fpreg; 602 struct reg reg; 603 struct iovec vec; 604 syscallarg_t args[nitems(td->td_sa.args)]; 605 struct ptrace_sc_ret psr; 606 int ptevents; 607 } r; 608 syscallarg_t pscr_args[nitems(td->td_sa.args)]; 609 void *addr; 610 int error; 611 612 if (!allow_ptrace) 613 return (ENOSYS); 614 error = 0; 615 616 AUDIT_ARG_PID(uap->pid); 617 AUDIT_ARG_CMD(uap->req); 618 AUDIT_ARG_VALUE(uap->data); 619 addr = &r; 620 switch (uap->req) { 621 case PT_GET_EVENT_MASK: 622 case PT_LWPINFO: 623 case PT_GET_SC_ARGS: 624 case PT_GET_SC_RET: 625 break; 626 case PT_GETREGS: 627 bzero(&r.reg, sizeof(r.reg)); 628 break; 629 case PT_GETFPREGS: 630 bzero(&r.fpreg, sizeof(r.fpreg)); 631 break; 632 case PT_GETDBREGS: 633 bzero(&r.dbreg, sizeof(r.dbreg)); 634 break; 635 case PT_GETREGSET: 636 case PT_SETREGSET: 637 error = copyin(uap->addr, &r.vec, sizeof(r.vec)); 638 break; 639 case PT_SETREGS: 640 error = copyin(uap->addr, &r.reg, sizeof(r.reg)); 641 break; 642 case PT_SETFPREGS: 643 error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); 644 break; 645 case PT_SETDBREGS: 646 error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); 647 break; 648 case PT_SET_EVENT_MASK: 649 if (uap->data != sizeof(r.ptevents)) 650 error = EINVAL; 651 else 652 error = copyin(uap->addr, &r.ptevents, uap->data); 653 break; 654 case PT_IO: 655 error = copyin(uap->addr, &r.piod, sizeof(r.piod)); 656 break; 657 case PT_VM_ENTRY: 658 error = copyin(uap->addr, &r.pve, sizeof(r.pve)); 659 break; 660 case PT_COREDUMP: 661 if (uap->data != sizeof(r.pc)) 662 error = EINVAL; 663 else 664 error = copyin(uap->addr, &r.pc, uap->data); 665 break; 666 case PT_SC_REMOTE: 667 if (uap->data != sizeof(r.sr)) { 668 error = EINVAL; 669 break; 670 } 671 error = copyin(uap->addr, &r.sr, uap->data); 672 if (error != 0) 673 break; 674 if (r.sr.pscr_nargs > nitems(td->td_sa.args)) { 675 error = EINVAL; 676 break; 677 } 678 error = copyin(r.sr.pscr_args, pscr_args, 679 sizeof(u_long) * r.sr.pscr_nargs); 680 if (error != 0) 681 break; 682 r.sr.pscr_args = pscr_args; 683 break; 684 default: 685 addr = uap->addr; 686 break; 687 } 688 if (error) 689 return (error); 690 691 error = kern_ptrace(td, uap->req, uap->pid, addr, uap->data); 692 if (error) 693 return (error); 694 695 switch (uap->req) { 696 case PT_VM_ENTRY: 697 error = copyout(&r.pve, uap->addr, sizeof(r.pve)); 698 break; 699 case PT_IO: 700 error = copyout(&r.piod, uap->addr, sizeof(r.piod)); 701 break; 702 case PT_GETREGS: 703 error = copyout(&r.reg, uap->addr, sizeof(r.reg)); 704 break; 705 case PT_GETFPREGS: 706 error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); 707 break; 708 case PT_GETDBREGS: 709 error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); 710 break; 711 case PT_GETREGSET: 712 error = copyout(&r.vec, uap->addr, sizeof(r.vec)); 713 break; 714 case PT_GET_EVENT_MASK: 715 /* NB: The size in uap->data is validated in kern_ptrace(). */ 716 error = copyout(&r.ptevents, uap->addr, uap->data); 717 break; 718 case PT_LWPINFO: 719 /* NB: The size in uap->data is validated in kern_ptrace(). */ 720 error = copyout(&r.pl, uap->addr, uap->data); 721 break; 722 case PT_GET_SC_ARGS: 723 error = copyout(r.args, uap->addr, MIN(uap->data, 724 sizeof(r.args))); 725 break; 726 case PT_GET_SC_RET: 727 error = copyout(&r.psr, uap->addr, MIN(uap->data, 728 sizeof(r.psr))); 729 break; 730 case PT_SC_REMOTE: 731 error = copyout(&r.sr.pscr_ret, uap->addr + 732 offsetof(struct ptrace_sc_remote, pscr_ret), 733 sizeof(r.sr.pscr_ret)); 734 break; 735 } 736 737 return (error); 738 } 739 740 #ifdef COMPAT_FREEBSD32 741 /* 742 * PROC_READ(regs, td2, addr); 743 * becomes either: 744 * proc_read_regs(td2, addr); 745 * or 746 * proc_read_regs32(td2, addr); 747 * .. except this is done at runtime. There is an additional 748 * complication in that PROC_WRITE disallows 32 bit consumers 749 * from writing to 64 bit address space targets. 750 */ 751 #define PROC_READ(w, t, a) wrap32 ? \ 752 proc_read_ ## w ## 32(t, a) : \ 753 proc_read_ ## w (t, a) 754 #define PROC_WRITE(w, t, a) wrap32 ? \ 755 (safe ? proc_write_ ## w ## 32(t, a) : EINVAL ) : \ 756 proc_write_ ## w (t, a) 757 #else 758 #define PROC_READ(w, t, a) proc_read_ ## w (t, a) 759 #define PROC_WRITE(w, t, a) proc_write_ ## w (t, a) 760 #endif 761 762 void 763 proc_set_traced(struct proc *p, bool stop) 764 { 765 766 sx_assert(&proctree_lock, SX_XLOCKED); 767 PROC_LOCK_ASSERT(p, MA_OWNED); 768 p->p_flag |= P_TRACED; 769 if (stop) 770 p->p_flag2 |= P2_PTRACE_FSTP; 771 p->p_ptevents = PTRACE_DEFAULT; 772 } 773 774 void 775 ptrace_unsuspend(struct proc *p) 776 { 777 PROC_LOCK_ASSERT(p, MA_OWNED); 778 779 PROC_SLOCK(p); 780 p->p_flag &= ~(P_STOPPED_TRACE | P_STOPPED_SIG | P_WAITED); 781 thread_unsuspend(p); 782 PROC_SUNLOCK(p); 783 itimer_proc_continue(p); 784 kqtimer_proc_continue(p); 785 } 786 787 static int 788 proc_can_ptrace(struct thread *td, struct proc *p) 789 { 790 int error; 791 792 PROC_LOCK_ASSERT(p, MA_OWNED); 793 794 if ((p->p_flag & P_WEXIT) != 0) 795 return (ESRCH); 796 797 if ((error = p_cansee(td, p)) != 0) 798 return (error); 799 if ((error = p_candebug(td, p)) != 0) 800 return (error); 801 802 /* not being traced... */ 803 if ((p->p_flag & P_TRACED) == 0) 804 return (EPERM); 805 806 /* not being traced by YOU */ 807 if (p->p_pptr != td->td_proc) 808 return (EBUSY); 809 810 /* not currently stopped */ 811 if ((p->p_flag & P_STOPPED_TRACE) == 0 || 812 p->p_suspcount != p->p_numthreads || 813 (p->p_flag & P_WAITED) == 0) 814 return (EBUSY); 815 816 return (0); 817 } 818 819 static struct thread * 820 ptrace_sel_coredump_thread(struct proc *p) 821 { 822 struct thread *td2; 823 824 PROC_LOCK_ASSERT(p, MA_OWNED); 825 MPASS((p->p_flag & P_STOPPED_TRACE) != 0); 826 827 FOREACH_THREAD_IN_PROC(p, td2) { 828 if ((td2->td_dbgflags & TDB_SSWITCH) != 0) 829 return (td2); 830 } 831 return (NULL); 832 } 833 834 int 835 kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data) 836 { 837 struct iovec iov; 838 struct uio uio; 839 struct proc *curp, *p, *pp; 840 struct thread *td2 = NULL, *td3; 841 struct ptrace_io_desc *piod = NULL; 842 struct ptrace_lwpinfo *pl; 843 struct ptrace_sc_ret *psr; 844 struct ptrace_sc_remote *pscr; 845 struct file *fp; 846 struct ptrace_coredump *pc; 847 struct thr_coredump_req *tcq; 848 struct thr_syscall_req *tsr; 849 int error, num, tmp; 850 lwpid_t tid = 0, *buf; 851 #ifdef COMPAT_FREEBSD32 852 int wrap32 = 0, safe = 0; 853 #endif 854 bool proctree_locked, p2_req_set; 855 856 curp = td->td_proc; 857 proctree_locked = false; 858 p2_req_set = false; 859 860 /* Lock proctree before locking the process. */ 861 switch (req) { 862 case PT_TRACE_ME: 863 case PT_ATTACH: 864 case PT_STEP: 865 case PT_CONTINUE: 866 case PT_TO_SCE: 867 case PT_TO_SCX: 868 case PT_SYSCALL: 869 case PT_FOLLOW_FORK: 870 case PT_LWP_EVENTS: 871 case PT_GET_EVENT_MASK: 872 case PT_SET_EVENT_MASK: 873 case PT_DETACH: 874 case PT_GET_SC_ARGS: 875 sx_xlock(&proctree_lock); 876 proctree_locked = true; 877 break; 878 default: 879 break; 880 } 881 882 if (req == PT_TRACE_ME) { 883 p = td->td_proc; 884 PROC_LOCK(p); 885 } else { 886 if (pid <= PID_MAX) { 887 if ((p = pfind(pid)) == NULL) { 888 if (proctree_locked) 889 sx_xunlock(&proctree_lock); 890 return (ESRCH); 891 } 892 } else { 893 td2 = tdfind(pid, -1); 894 if (td2 == NULL) { 895 if (proctree_locked) 896 sx_xunlock(&proctree_lock); 897 return (ESRCH); 898 } 899 p = td2->td_proc; 900 tid = pid; 901 pid = p->p_pid; 902 } 903 } 904 AUDIT_ARG_PROCESS(p); 905 906 if ((p->p_flag & P_WEXIT) != 0) { 907 error = ESRCH; 908 goto fail; 909 } 910 if ((error = p_cansee(td, p)) != 0) 911 goto fail; 912 913 if ((error = p_candebug(td, p)) != 0) 914 goto fail; 915 916 /* 917 * System processes can't be debugged. 918 */ 919 if ((p->p_flag & P_SYSTEM) != 0) { 920 error = EINVAL; 921 goto fail; 922 } 923 924 if (tid == 0) { 925 if ((p->p_flag & P_STOPPED_TRACE) != 0) { 926 KASSERT(p->p_xthread != NULL, ("NULL p_xthread")); 927 td2 = p->p_xthread; 928 } else { 929 td2 = FIRST_THREAD_IN_PROC(p); 930 } 931 tid = td2->td_tid; 932 } 933 934 #ifdef COMPAT_FREEBSD32 935 /* 936 * Test if we're a 32 bit client and what the target is. 937 * Set the wrap controls accordingly. 938 */ 939 if (SV_CURPROC_FLAG(SV_ILP32)) { 940 if (SV_PROC_FLAG(td2->td_proc, SV_ILP32)) 941 safe = 1; 942 wrap32 = 1; 943 } 944 #endif 945 /* 946 * Permissions check 947 */ 948 switch (req) { 949 case PT_TRACE_ME: 950 /* 951 * Always legal, when there is a parent process which 952 * could trace us. Otherwise, reject. 953 */ 954 if ((p->p_flag & P_TRACED) != 0) { 955 error = EBUSY; 956 goto fail; 957 } 958 if (p->p_pptr == initproc) { 959 error = EPERM; 960 goto fail; 961 } 962 break; 963 964 case PT_ATTACH: 965 /* Self */ 966 if (p == td->td_proc) { 967 error = EINVAL; 968 goto fail; 969 } 970 971 /* Already traced */ 972 if (p->p_flag & P_TRACED) { 973 error = EBUSY; 974 goto fail; 975 } 976 977 /* Can't trace an ancestor if you're being traced. */ 978 if (curp->p_flag & P_TRACED) { 979 for (pp = curp->p_pptr; pp != NULL; pp = pp->p_pptr) { 980 if (pp == p) { 981 error = EINVAL; 982 goto fail; 983 } 984 } 985 } 986 987 /* OK */ 988 break; 989 990 case PT_CLEARSTEP: 991 /* Allow thread to clear single step for itself */ 992 if (td->td_tid == tid) 993 break; 994 995 /* FALLTHROUGH */ 996 default: 997 /* 998 * Check for ptrace eligibility before waiting for 999 * holds to drain. 1000 */ 1001 error = proc_can_ptrace(td, p); 1002 if (error != 0) 1003 goto fail; 1004 1005 /* 1006 * Block parallel ptrace requests. Most important, do 1007 * not allow other thread in debugger to continue the 1008 * debuggee until coredump finished. 1009 */ 1010 while ((p->p_flag2 & P2_PTRACEREQ) != 0) { 1011 if (proctree_locked) 1012 sx_xunlock(&proctree_lock); 1013 error = msleep(&p->p_flag2, &p->p_mtx, PPAUSE | PCATCH | 1014 (proctree_locked ? PDROP : 0), "pptrace", 0); 1015 if (proctree_locked) { 1016 sx_xlock(&proctree_lock); 1017 PROC_LOCK(p); 1018 } 1019 if (error == 0 && td2->td_proc != p) 1020 error = ESRCH; 1021 if (error == 0) 1022 error = proc_can_ptrace(td, p); 1023 if (error != 0) 1024 goto fail; 1025 } 1026 1027 /* Ok */ 1028 break; 1029 } 1030 1031 /* 1032 * Keep this process around and request parallel ptrace() 1033 * request to wait until we finish this request. 1034 */ 1035 MPASS((p->p_flag2 & P2_PTRACEREQ) == 0); 1036 p->p_flag2 |= P2_PTRACEREQ; 1037 p2_req_set = true; 1038 _PHOLD(p); 1039 1040 /* 1041 * Actually do the requests 1042 */ 1043 1044 td->td_retval[0] = 0; 1045 1046 switch (req) { 1047 case PT_TRACE_ME: 1048 /* set my trace flag and "owner" so it can read/write me */ 1049 proc_set_traced(p, false); 1050 if (p->p_flag & P_PPWAIT) 1051 p->p_flag |= P_PPTRACE; 1052 CTR1(KTR_PTRACE, "PT_TRACE_ME: pid %d", p->p_pid); 1053 break; 1054 1055 case PT_ATTACH: 1056 /* security check done above */ 1057 /* 1058 * It would be nice if the tracing relationship was separate 1059 * from the parent relationship but that would require 1060 * another set of links in the proc struct or for "wait" 1061 * to scan the entire proc table. To make life easier, 1062 * we just re-parent the process we're trying to trace. 1063 * The old parent is remembered so we can put things back 1064 * on a "detach". 1065 */ 1066 proc_set_traced(p, true); 1067 proc_reparent(p, td->td_proc, false); 1068 CTR2(KTR_PTRACE, "PT_ATTACH: pid %d, oppid %d", p->p_pid, 1069 p->p_oppid); 1070 1071 sx_xunlock(&proctree_lock); 1072 proctree_locked = false; 1073 MPASS(p->p_xthread == NULL); 1074 MPASS((p->p_flag & P_STOPPED_TRACE) == 0); 1075 1076 /* 1077 * If already stopped due to a stop signal, clear the 1078 * existing stop before triggering a traced SIGSTOP. 1079 */ 1080 if ((p->p_flag & P_STOPPED_SIG) != 0) { 1081 PROC_SLOCK(p); 1082 p->p_flag &= ~(P_STOPPED_SIG | P_WAITED); 1083 thread_unsuspend(p); 1084 PROC_SUNLOCK(p); 1085 } 1086 1087 kern_psignal(p, SIGSTOP); 1088 break; 1089 1090 case PT_CLEARSTEP: 1091 CTR2(KTR_PTRACE, "PT_CLEARSTEP: tid %d (pid %d)", td2->td_tid, 1092 p->p_pid); 1093 error = ptrace_clear_single_step(td2); 1094 break; 1095 1096 case PT_SETSTEP: 1097 CTR2(KTR_PTRACE, "PT_SETSTEP: tid %d (pid %d)", td2->td_tid, 1098 p->p_pid); 1099 error = ptrace_single_step(td2); 1100 break; 1101 1102 case PT_SUSPEND: 1103 CTR2(KTR_PTRACE, "PT_SUSPEND: tid %d (pid %d)", td2->td_tid, 1104 p->p_pid); 1105 td2->td_dbgflags |= TDB_SUSPEND; 1106 ast_sched(td2, TDA_SUSPEND); 1107 break; 1108 1109 case PT_RESUME: 1110 CTR2(KTR_PTRACE, "PT_RESUME: tid %d (pid %d)", td2->td_tid, 1111 p->p_pid); 1112 td2->td_dbgflags &= ~TDB_SUSPEND; 1113 break; 1114 1115 case PT_FOLLOW_FORK: 1116 CTR3(KTR_PTRACE, "PT_FOLLOW_FORK: pid %d %s -> %s", p->p_pid, 1117 p->p_ptevents & PTRACE_FORK ? "enabled" : "disabled", 1118 data ? "enabled" : "disabled"); 1119 if (data) 1120 p->p_ptevents |= PTRACE_FORK; 1121 else 1122 p->p_ptevents &= ~PTRACE_FORK; 1123 break; 1124 1125 case PT_LWP_EVENTS: 1126 CTR3(KTR_PTRACE, "PT_LWP_EVENTS: pid %d %s -> %s", p->p_pid, 1127 p->p_ptevents & PTRACE_LWP ? "enabled" : "disabled", 1128 data ? "enabled" : "disabled"); 1129 if (data) 1130 p->p_ptevents |= PTRACE_LWP; 1131 else 1132 p->p_ptevents &= ~PTRACE_LWP; 1133 break; 1134 1135 case PT_GET_EVENT_MASK: 1136 if (data != sizeof(p->p_ptevents)) { 1137 error = EINVAL; 1138 break; 1139 } 1140 CTR2(KTR_PTRACE, "PT_GET_EVENT_MASK: pid %d mask %#x", p->p_pid, 1141 p->p_ptevents); 1142 *(int *)addr = p->p_ptevents; 1143 break; 1144 1145 case PT_SET_EVENT_MASK: 1146 if (data != sizeof(p->p_ptevents)) { 1147 error = EINVAL; 1148 break; 1149 } 1150 tmp = *(int *)addr; 1151 if ((tmp & ~(PTRACE_EXEC | PTRACE_SCE | PTRACE_SCX | 1152 PTRACE_FORK | PTRACE_LWP | PTRACE_VFORK)) != 0) { 1153 error = EINVAL; 1154 break; 1155 } 1156 CTR3(KTR_PTRACE, "PT_SET_EVENT_MASK: pid %d mask %#x -> %#x", 1157 p->p_pid, p->p_ptevents, tmp); 1158 p->p_ptevents = tmp; 1159 break; 1160 1161 case PT_GET_SC_ARGS: 1162 CTR1(KTR_PTRACE, "PT_GET_SC_ARGS: pid %d", p->p_pid); 1163 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) == 0 1164 #ifdef COMPAT_FREEBSD32 1165 || (wrap32 && !safe) 1166 #endif 1167 ) { 1168 error = EINVAL; 1169 break; 1170 } 1171 bzero(addr, sizeof(td2->td_sa.args)); 1172 /* See the explanation in linux_ptrace_get_syscall_info(). */ 1173 bcopy(td2->td_sa.args, addr, SV_PROC_ABI(td->td_proc) == 1174 SV_ABI_LINUX ? sizeof(td2->td_sa.args) : 1175 td2->td_sa.callp->sy_narg * sizeof(syscallarg_t)); 1176 break; 1177 1178 case PT_GET_SC_RET: 1179 if ((td2->td_dbgflags & (TDB_SCX)) == 0 1180 #ifdef COMPAT_FREEBSD32 1181 || (wrap32 && !safe) 1182 #endif 1183 ) { 1184 error = EINVAL; 1185 break; 1186 } 1187 psr = addr; 1188 bzero(psr, sizeof(*psr)); 1189 psr->sr_error = td2->td_errno; 1190 if (psr->sr_error == 0) { 1191 psr->sr_retval[0] = td2->td_retval[0]; 1192 psr->sr_retval[1] = td2->td_retval[1]; 1193 } 1194 CTR4(KTR_PTRACE, 1195 "PT_GET_SC_RET: pid %d error %d retval %#lx,%#lx", 1196 p->p_pid, psr->sr_error, psr->sr_retval[0], 1197 psr->sr_retval[1]); 1198 break; 1199 1200 case PT_STEP: 1201 case PT_CONTINUE: 1202 case PT_TO_SCE: 1203 case PT_TO_SCX: 1204 case PT_SYSCALL: 1205 case PT_DETACH: 1206 /* Zero means do not send any signal */ 1207 if (data < 0 || data > _SIG_MAXSIG) { 1208 error = EINVAL; 1209 break; 1210 } 1211 1212 switch (req) { 1213 case PT_STEP: 1214 CTR3(KTR_PTRACE, "PT_STEP: tid %d (pid %d), sig = %d", 1215 td2->td_tid, p->p_pid, data); 1216 error = ptrace_single_step(td2); 1217 if (error) 1218 goto out; 1219 break; 1220 case PT_CONTINUE: 1221 case PT_TO_SCE: 1222 case PT_TO_SCX: 1223 case PT_SYSCALL: 1224 if (addr != (void *)1) { 1225 error = ptrace_set_pc(td2, 1226 (u_long)(uintfptr_t)addr); 1227 if (error) 1228 goto out; 1229 } 1230 switch (req) { 1231 case PT_TO_SCE: 1232 p->p_ptevents |= PTRACE_SCE; 1233 CTR4(KTR_PTRACE, 1234 "PT_TO_SCE: pid %d, events = %#x, PC = %#lx, sig = %d", 1235 p->p_pid, p->p_ptevents, 1236 (u_long)(uintfptr_t)addr, data); 1237 break; 1238 case PT_TO_SCX: 1239 p->p_ptevents |= PTRACE_SCX; 1240 CTR4(KTR_PTRACE, 1241 "PT_TO_SCX: pid %d, events = %#x, PC = %#lx, sig = %d", 1242 p->p_pid, p->p_ptevents, 1243 (u_long)(uintfptr_t)addr, data); 1244 break; 1245 case PT_SYSCALL: 1246 p->p_ptevents |= PTRACE_SYSCALL; 1247 CTR4(KTR_PTRACE, 1248 "PT_SYSCALL: pid %d, events = %#x, PC = %#lx, sig = %d", 1249 p->p_pid, p->p_ptevents, 1250 (u_long)(uintfptr_t)addr, data); 1251 break; 1252 case PT_CONTINUE: 1253 CTR3(KTR_PTRACE, 1254 "PT_CONTINUE: pid %d, PC = %#lx, sig = %d", 1255 p->p_pid, (u_long)(uintfptr_t)addr, data); 1256 break; 1257 } 1258 break; 1259 case PT_DETACH: 1260 /* 1261 * Clear P_TRACED before reparenting 1262 * a detached process back to its original 1263 * parent. Otherwise the debugee will be set 1264 * as an orphan of the debugger. 1265 */ 1266 p->p_flag &= ~(P_TRACED | P_WAITED); 1267 1268 /* 1269 * Reset the process parent. 1270 */ 1271 if (p->p_oppid != p->p_pptr->p_pid) { 1272 PROC_LOCK(p->p_pptr); 1273 sigqueue_take(p->p_ksi); 1274 PROC_UNLOCK(p->p_pptr); 1275 1276 pp = proc_realparent(p); 1277 proc_reparent(p, pp, false); 1278 if (pp == initproc) 1279 p->p_sigparent = SIGCHLD; 1280 CTR3(KTR_PTRACE, 1281 "PT_DETACH: pid %d reparented to pid %d, sig %d", 1282 p->p_pid, pp->p_pid, data); 1283 } else { 1284 CTR2(KTR_PTRACE, "PT_DETACH: pid %d, sig %d", 1285 p->p_pid, data); 1286 } 1287 1288 p->p_ptevents = 0; 1289 FOREACH_THREAD_IN_PROC(p, td3) { 1290 if ((td3->td_dbgflags & TDB_FSTP) != 0) { 1291 sigqueue_delete(&td3->td_sigqueue, 1292 SIGSTOP); 1293 } 1294 td3->td_dbgflags &= ~(TDB_XSIG | TDB_FSTP | 1295 TDB_SUSPEND | TDB_BORN); 1296 } 1297 1298 if ((p->p_flag2 & P2_PTRACE_FSTP) != 0) { 1299 sigqueue_delete(&p->p_sigqueue, SIGSTOP); 1300 p->p_flag2 &= ~P2_PTRACE_FSTP; 1301 } 1302 1303 /* should we send SIGCHLD? */ 1304 /* childproc_continued(p); */ 1305 break; 1306 } 1307 1308 sx_xunlock(&proctree_lock); 1309 proctree_locked = false; 1310 1311 sendsig: 1312 MPASS(!proctree_locked); 1313 1314 /* 1315 * Clear the pending event for the thread that just 1316 * reported its event (p_xthread). This may not be 1317 * the thread passed to PT_CONTINUE, PT_STEP, etc. if 1318 * the debugger is resuming a different thread. 1319 * 1320 * Deliver any pending signal via the reporting thread. 1321 */ 1322 MPASS(p->p_xthread != NULL); 1323 p->p_xthread->td_dbgflags &= ~TDB_XSIG; 1324 p->p_xthread->td_xsig = data; 1325 p->p_xthread = NULL; 1326 p->p_xsig = data; 1327 1328 /* 1329 * P_WKILLED is insurance that a PT_KILL/SIGKILL 1330 * always works immediately, even if another thread is 1331 * unsuspended first and attempts to handle a 1332 * different signal or if the POSIX.1b style signal 1333 * queue cannot accommodate any new signals. 1334 */ 1335 if (data == SIGKILL) 1336 proc_wkilled(p); 1337 1338 /* 1339 * Unsuspend all threads. To leave a thread 1340 * suspended, use PT_SUSPEND to suspend it before 1341 * continuing the process. 1342 */ 1343 ptrace_unsuspend(p); 1344 break; 1345 1346 case PT_WRITE_I: 1347 case PT_WRITE_D: 1348 td2->td_dbgflags |= TDB_USERWR; 1349 PROC_UNLOCK(p); 1350 error = 0; 1351 if (proc_writemem(td, p, (off_t)(uintptr_t)addr, &data, 1352 sizeof(int)) != sizeof(int)) 1353 error = ENOMEM; 1354 else 1355 CTR3(KTR_PTRACE, "PT_WRITE: pid %d: %p <= %#x", 1356 p->p_pid, addr, data); 1357 PROC_LOCK(p); 1358 break; 1359 1360 case PT_READ_I: 1361 case PT_READ_D: 1362 PROC_UNLOCK(p); 1363 error = tmp = 0; 1364 if (proc_readmem(td, p, (off_t)(uintptr_t)addr, &tmp, 1365 sizeof(int)) != sizeof(int)) 1366 error = ENOMEM; 1367 else 1368 CTR3(KTR_PTRACE, "PT_READ: pid %d: %p >= %#x", 1369 p->p_pid, addr, tmp); 1370 td->td_retval[0] = tmp; 1371 PROC_LOCK(p); 1372 break; 1373 1374 case PT_IO: 1375 piod = addr; 1376 iov.iov_base = piod->piod_addr; 1377 iov.iov_len = piod->piod_len; 1378 uio.uio_offset = (off_t)(uintptr_t)piod->piod_offs; 1379 uio.uio_resid = piod->piod_len; 1380 uio.uio_iov = &iov; 1381 uio.uio_iovcnt = 1; 1382 uio.uio_segflg = UIO_USERSPACE; 1383 uio.uio_td = td; 1384 switch (piod->piod_op) { 1385 case PIOD_READ_D: 1386 case PIOD_READ_I: 1387 CTR3(KTR_PTRACE, "PT_IO: pid %d: READ (%p, %#x)", 1388 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1389 uio.uio_rw = UIO_READ; 1390 break; 1391 case PIOD_WRITE_D: 1392 case PIOD_WRITE_I: 1393 CTR3(KTR_PTRACE, "PT_IO: pid %d: WRITE (%p, %#x)", 1394 p->p_pid, (uintptr_t)uio.uio_offset, uio.uio_resid); 1395 td2->td_dbgflags |= TDB_USERWR; 1396 uio.uio_rw = UIO_WRITE; 1397 break; 1398 default: 1399 error = EINVAL; 1400 goto out; 1401 } 1402 PROC_UNLOCK(p); 1403 error = proc_rwmem(p, &uio); 1404 piod->piod_len -= uio.uio_resid; 1405 PROC_LOCK(p); 1406 break; 1407 1408 case PT_KILL: 1409 CTR1(KTR_PTRACE, "PT_KILL: pid %d", p->p_pid); 1410 data = SIGKILL; 1411 goto sendsig; /* in PT_CONTINUE above */ 1412 1413 case PT_SETREGS: 1414 CTR2(KTR_PTRACE, "PT_SETREGS: tid %d (pid %d)", td2->td_tid, 1415 p->p_pid); 1416 td2->td_dbgflags |= TDB_USERWR; 1417 error = PROC_WRITE(regs, td2, addr); 1418 break; 1419 1420 case PT_GETREGS: 1421 CTR2(KTR_PTRACE, "PT_GETREGS: tid %d (pid %d)", td2->td_tid, 1422 p->p_pid); 1423 error = PROC_READ(regs, td2, addr); 1424 break; 1425 1426 case PT_SETFPREGS: 1427 CTR2(KTR_PTRACE, "PT_SETFPREGS: tid %d (pid %d)", td2->td_tid, 1428 p->p_pid); 1429 td2->td_dbgflags |= TDB_USERWR; 1430 error = PROC_WRITE(fpregs, td2, addr); 1431 break; 1432 1433 case PT_GETFPREGS: 1434 CTR2(KTR_PTRACE, "PT_GETFPREGS: tid %d (pid %d)", td2->td_tid, 1435 p->p_pid); 1436 error = PROC_READ(fpregs, td2, addr); 1437 break; 1438 1439 case PT_SETDBREGS: 1440 CTR2(KTR_PTRACE, "PT_SETDBREGS: tid %d (pid %d)", td2->td_tid, 1441 p->p_pid); 1442 td2->td_dbgflags |= TDB_USERWR; 1443 error = PROC_WRITE(dbregs, td2, addr); 1444 break; 1445 1446 case PT_GETDBREGS: 1447 CTR2(KTR_PTRACE, "PT_GETDBREGS: tid %d (pid %d)", td2->td_tid, 1448 p->p_pid); 1449 error = PROC_READ(dbregs, td2, addr); 1450 break; 1451 1452 case PT_SETREGSET: 1453 CTR2(KTR_PTRACE, "PT_SETREGSET: tid %d (pid %d)", td2->td_tid, 1454 p->p_pid); 1455 error = proc_write_regset(td2, data, addr); 1456 break; 1457 1458 case PT_GETREGSET: 1459 CTR2(KTR_PTRACE, "PT_GETREGSET: tid %d (pid %d)", td2->td_tid, 1460 p->p_pid); 1461 error = proc_read_regset(td2, data, addr); 1462 break; 1463 1464 case PT_LWPINFO: 1465 if (data <= 0 || data > sizeof(*pl)) { 1466 error = EINVAL; 1467 break; 1468 } 1469 pl = addr; 1470 bzero(pl, sizeof(*pl)); 1471 pl->pl_lwpid = td2->td_tid; 1472 pl->pl_event = PL_EVENT_NONE; 1473 pl->pl_flags = 0; 1474 if (td2->td_dbgflags & TDB_XSIG) { 1475 pl->pl_event = PL_EVENT_SIGNAL; 1476 if (td2->td_si.si_signo != 0 && 1477 data >= offsetof(struct ptrace_lwpinfo, pl_siginfo) 1478 + sizeof(pl->pl_siginfo)){ 1479 pl->pl_flags |= PL_FLAG_SI; 1480 pl->pl_siginfo = td2->td_si; 1481 } 1482 } 1483 if (td2->td_dbgflags & TDB_SCE) 1484 pl->pl_flags |= PL_FLAG_SCE; 1485 else if (td2->td_dbgflags & TDB_SCX) 1486 pl->pl_flags |= PL_FLAG_SCX; 1487 if (td2->td_dbgflags & TDB_EXEC) 1488 pl->pl_flags |= PL_FLAG_EXEC; 1489 if (td2->td_dbgflags & TDB_FORK) { 1490 pl->pl_flags |= PL_FLAG_FORKED; 1491 pl->pl_child_pid = td2->td_dbg_forked; 1492 if (td2->td_dbgflags & TDB_VFORK) 1493 pl->pl_flags |= PL_FLAG_VFORKED; 1494 } else if ((td2->td_dbgflags & (TDB_SCX | TDB_VFORK)) == 1495 TDB_VFORK) 1496 pl->pl_flags |= PL_FLAG_VFORK_DONE; 1497 if (td2->td_dbgflags & TDB_CHILD) 1498 pl->pl_flags |= PL_FLAG_CHILD; 1499 if (td2->td_dbgflags & TDB_BORN) 1500 pl->pl_flags |= PL_FLAG_BORN; 1501 if (td2->td_dbgflags & TDB_EXIT) 1502 pl->pl_flags |= PL_FLAG_EXITED; 1503 pl->pl_sigmask = td2->td_sigmask; 1504 pl->pl_siglist = td2->td_siglist; 1505 strcpy(pl->pl_tdname, td2->td_name); 1506 if ((td2->td_dbgflags & (TDB_SCE | TDB_SCX)) != 0) { 1507 pl->pl_syscall_code = td2->td_sa.code; 1508 pl->pl_syscall_narg = td2->td_sa.callp->sy_narg; 1509 } else { 1510 pl->pl_syscall_code = 0; 1511 pl->pl_syscall_narg = 0; 1512 } 1513 CTR6(KTR_PTRACE, 1514 "PT_LWPINFO: tid %d (pid %d) event %d flags %#x child pid %d syscall %d", 1515 td2->td_tid, p->p_pid, pl->pl_event, pl->pl_flags, 1516 pl->pl_child_pid, pl->pl_syscall_code); 1517 break; 1518 1519 case PT_GETNUMLWPS: 1520 CTR2(KTR_PTRACE, "PT_GETNUMLWPS: pid %d: %d threads", p->p_pid, 1521 p->p_numthreads); 1522 td->td_retval[0] = p->p_numthreads; 1523 break; 1524 1525 case PT_GETLWPLIST: 1526 CTR3(KTR_PTRACE, "PT_GETLWPLIST: pid %d: data %d, actual %d", 1527 p->p_pid, data, p->p_numthreads); 1528 if (data <= 0) { 1529 error = EINVAL; 1530 break; 1531 } 1532 num = imin(p->p_numthreads, data); 1533 PROC_UNLOCK(p); 1534 buf = malloc(num * sizeof(lwpid_t), M_TEMP, M_WAITOK); 1535 tmp = 0; 1536 PROC_LOCK(p); 1537 FOREACH_THREAD_IN_PROC(p, td2) { 1538 if (tmp >= num) 1539 break; 1540 buf[tmp++] = td2->td_tid; 1541 } 1542 PROC_UNLOCK(p); 1543 error = copyout(buf, addr, tmp * sizeof(lwpid_t)); 1544 free(buf, M_TEMP); 1545 if (!error) 1546 td->td_retval[0] = tmp; 1547 PROC_LOCK(p); 1548 break; 1549 1550 case PT_VM_TIMESTAMP: 1551 CTR2(KTR_PTRACE, "PT_VM_TIMESTAMP: pid %d: timestamp %d", 1552 p->p_pid, p->p_vmspace->vm_map.timestamp); 1553 td->td_retval[0] = p->p_vmspace->vm_map.timestamp; 1554 break; 1555 1556 case PT_VM_ENTRY: 1557 PROC_UNLOCK(p); 1558 error = ptrace_vm_entry(td, p, addr); 1559 PROC_LOCK(p); 1560 break; 1561 1562 case PT_COREDUMP: 1563 pc = addr; 1564 CTR2(KTR_PTRACE, "PT_COREDUMP: pid %d, fd %d", 1565 p->p_pid, pc->pc_fd); 1566 1567 if ((pc->pc_flags & ~(PC_COMPRESS | PC_ALL)) != 0) { 1568 error = EINVAL; 1569 break; 1570 } 1571 PROC_UNLOCK(p); 1572 1573 tcq = malloc(sizeof(*tcq), M_TEMP, M_WAITOK | M_ZERO); 1574 fp = NULL; 1575 error = fget_write(td, pc->pc_fd, &cap_write_rights, &fp); 1576 if (error != 0) 1577 goto coredump_cleanup_nofp; 1578 if (fp->f_type != DTYPE_VNODE || fp->f_vnode->v_type != VREG) { 1579 error = EPIPE; 1580 goto coredump_cleanup; 1581 } 1582 1583 PROC_LOCK(p); 1584 error = proc_can_ptrace(td, p); 1585 if (error != 0) 1586 goto coredump_cleanup_locked; 1587 1588 td2 = ptrace_sel_coredump_thread(p); 1589 if (td2 == NULL) { 1590 error = EBUSY; 1591 goto coredump_cleanup_locked; 1592 } 1593 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1594 TDB_SCREMOTEREQ)) == 0, 1595 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1596 1597 tcq->tc_vp = fp->f_vnode; 1598 tcq->tc_limit = pc->pc_limit == 0 ? OFF_MAX : pc->pc_limit; 1599 tcq->tc_flags = SVC_PT_COREDUMP; 1600 if ((pc->pc_flags & PC_COMPRESS) == 0) 1601 tcq->tc_flags |= SVC_NOCOMPRESS; 1602 if ((pc->pc_flags & PC_ALL) != 0) 1603 tcq->tc_flags |= SVC_ALL; 1604 td2->td_remotereq = tcq; 1605 td2->td_dbgflags |= TDB_COREDUMPREQ; 1606 thread_run_flash(td2); 1607 while ((td2->td_dbgflags & TDB_COREDUMPREQ) != 0) 1608 msleep(p, &p->p_mtx, PPAUSE, "crdmp", 0); 1609 error = tcq->tc_error; 1610 coredump_cleanup_locked: 1611 PROC_UNLOCK(p); 1612 coredump_cleanup: 1613 fdrop(fp, td); 1614 coredump_cleanup_nofp: 1615 free(tcq, M_TEMP); 1616 PROC_LOCK(p); 1617 break; 1618 1619 case PT_SC_REMOTE: 1620 pscr = addr; 1621 CTR2(KTR_PTRACE, "PT_SC_REMOTE: pid %d, syscall %d", 1622 p->p_pid, pscr->pscr_syscall); 1623 if ((td2->td_dbgflags & TDB_BOUNDARY) == 0) { 1624 error = EBUSY; 1625 break; 1626 } 1627 PROC_UNLOCK(p); 1628 MPASS(pscr->pscr_nargs <= nitems(td->td_sa.args)); 1629 1630 tsr = malloc(sizeof(struct thr_syscall_req), M_TEMP, 1631 M_WAITOK | M_ZERO); 1632 1633 tsr->ts_sa.code = pscr->pscr_syscall; 1634 tsr->ts_nargs = pscr->pscr_nargs; 1635 memcpy(&tsr->ts_sa.args, pscr->pscr_args, 1636 sizeof(syscallarg_t) * tsr->ts_nargs); 1637 1638 PROC_LOCK(p); 1639 error = proc_can_ptrace(td, p); 1640 if (error != 0) { 1641 free(tsr, M_TEMP); 1642 break; 1643 } 1644 if (td2->td_proc != p) { 1645 free(tsr, M_TEMP); 1646 error = ESRCH; 1647 break; 1648 } 1649 KASSERT((td2->td_dbgflags & (TDB_COREDUMPREQ | 1650 TDB_SCREMOTEREQ)) == 0, 1651 ("proc %d tid %d req coredump", p->p_pid, td2->td_tid)); 1652 1653 td2->td_remotereq = tsr; 1654 td2->td_dbgflags |= TDB_SCREMOTEREQ; 1655 thread_run_flash(td2); 1656 while ((td2->td_dbgflags & TDB_SCREMOTEREQ) != 0) 1657 msleep(p, &p->p_mtx, PPAUSE, "pscrx", 0); 1658 error = 0; 1659 memcpy(&pscr->pscr_ret, &tsr->ts_ret, sizeof(tsr->ts_ret)); 1660 free(tsr, M_TEMP); 1661 break; 1662 1663 default: 1664 #ifdef __HAVE_PTRACE_MACHDEP 1665 if (req >= PT_FIRSTMACH) { 1666 PROC_UNLOCK(p); 1667 error = cpu_ptrace(td2, req, addr, data); 1668 PROC_LOCK(p); 1669 } else 1670 #endif 1671 /* Unknown request. */ 1672 error = EINVAL; 1673 break; 1674 } 1675 out: 1676 /* Drop our hold on this process now that the request has completed. */ 1677 _PRELE(p); 1678 fail: 1679 if (p2_req_set) { 1680 if ((p->p_flag2 & P2_PTRACEREQ) != 0) 1681 wakeup(&p->p_flag2); 1682 p->p_flag2 &= ~P2_PTRACEREQ; 1683 } 1684 PROC_UNLOCK(p); 1685 if (proctree_locked) 1686 sx_xunlock(&proctree_lock); 1687 return (error); 1688 } 1689 #undef PROC_READ 1690 #undef PROC_WRITE 1691